An Efficient Inductance Modeling for On-Chip Interconnects

Lei He, Norman Chang, Shen Lin, and O. Sam Nakagawa
[Custom Integrated Circuit Conference ’99]

Outline

- Importance of on-chip inductance
- Efficient inductance model
- Applications and conclusions
On-Chip Inductance

- Interconnect impedance is more than resistance
 - \(Z = R + j\omega L \)
 - \(\omega \) is decided not by the clock frequency, but by clock edge
 - \(\omega \propto 1/t_r \)

- On-chip inductance must be considered when \(\omega L \) is comparable to \(R \)
 - wide wires \(\Rightarrow \) low resistance
 - fast clock edge \(\Rightarrow \) high \(\omega \)

Candidates for On-Chip Inductance

- Wide and fast clock trees
 - delay (skew) will be different under RLC and RC models
 - neighboring signals can be disturbed due to large \(di/dt \)

- Wide (>1um) and fast edge rate (~100ps) buses
 - RC model under-estimates crosstalk

- Power grids, especially > 1um
 - higher current and more high-frequency components
Control of On-Chip Inductance

- Coplanar waveguide is often used for clock trees
 - closer and cleaner current return for clock synthesis

- Shielding traces may be inserted to reduce crosstalk for buses
 - shielding traces are connected to either VDD or Ground
Problem Formulation

- **Given:** a block of N traces
 - Two edge traces are AC-grounded, the rest are signal traces

- **Find:** RLC model for the block
 - considering process variation
 - efficient enough for **iterative** layout and simulation

Previous Works

- **Field solver is too expensive to be used**

- **Table-based approach has been proposed**
 - 2.5D capacitance model [Cong-He-Kahng+, DAC’97]
 - Shipped with Cadence SE 5.0
 - Statistically-based RC model [Chang-Kanevsky - Nakagawa+, ICCD’97]
 - Used in Hewlett-Packard

- **An efficient inductance model is still missing**
Outline

- Importance of on-chip inductance
- Efficient inductance model
 - Loop inductance and partial inductance
 - Foundations to reduce problem size
 - Table-based inductance extraction
- Applications and future works

Definition of Loop Inductance

\[L_y = \frac{\mu}{4\pi} \frac{1}{a_i} \frac{1}{I_j} \int \oint_{\text{loop}_{i}} \oint_{\text{loop}_{j}} \frac{1}{r_{ij}} dI_i dI_j da_i da_j \]
Loop Inductance for N Traces

- Assume edge traces are grounded
 - leads to 3x3 loop inductance matrix
- Inductance has a long range effect
 - e.g., non-negligible coupling between \(t_1 \) and \(t_3 \) with \(t_2 \) between them

<table>
<thead>
<tr>
<th>(T_{wL})</th>
<th>(T_w)</th>
<th>(T_{wL})</th>
<th>(T_w)</th>
<th>(T_{wR})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.73</td>
<td>1.15</td>
<td>0.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.15</td>
<td>1.94</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.53</td>
<td>1.24</td>
<td>1.92</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table in Brute-Force Way is Expensive

- Self inductance has nine dimensions:
 - (n, length, location, \(T_{wL} \), \(T_{sL} \), \(T_w \), \(T_{sR} \), \(T_{wR} \), \(T_{sR} \))
- Mutual inductance has ten dimensions:
 - (n, length, location1, location2, \(T_{wL} \), \(T_{sL} \), \(T_w \), \(T_{sR} \), \(T_{wR} \), \(T_{sR} \))
- Length is needed because inductance is not linearly scalable
Definition of Partial Inductance

\[L_{ij} = \frac{\mu}{4\pi} \left(\frac{1}{a_i a_j} \right) \int_{b_i}^{c_i} \int_{b_j}^{c_j} \frac{dl_i dl_j}{r_{ij}} da_i da_j \]

- Partial inductance is the portion of loop inductance for a segment when its current returns via the infinity.
 - called partial element equivalent circuit (PEEC) model
- If current is uniform, the partial inductance is

Partial Inductance for N Traces

<table>
<thead>
<tr>
<th>TW_L</th>
<th>TW</th>
<th>TW</th>
<th>TW</th>
<th>TW_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.17</td>
<td>5.43</td>
<td>5.12</td>
<td>4.89</td>
<td>4.66</td>
</tr>
<tr>
<td>5.43</td>
<td>6.79</td>
<td>6.10</td>
<td>5.48</td>
<td>5.04</td>
</tr>
<tr>
<td>5.12</td>
<td>6.10</td>
<td>6.79</td>
<td>6.10</td>
<td>5.33</td>
</tr>
<tr>
<td>4.89</td>
<td>5.48</td>
<td>6.10</td>
<td>6.79</td>
<td>5.77</td>
</tr>
<tr>
<td>4.66</td>
<td>5.04</td>
<td>5.33</td>
<td>5.77</td>
<td>6.50</td>
</tr>
</tbody>
</table>

- Treat edge traces same as inner traces
 - lead to 5x5 partial inductance table
- There is no need to specify current return loop for SPICE simulation
 - in high frequency, the current often returns via nearest quiet traces (rather than edge traces)
Foundation I

The self inductance under the PEEC model for a trace depends only on the trace itself (its length, width, thickness)

$$\begin{array}{cccccc}
T_{W_L} & T_w & T_w & T_w & T_{W_R} \\
6.17 & 5.43 & 5.12 & 4.89 & 4.66 \\
5.43 & 6.79 & 6.10 & 5.48 & 5.04 \\
5.12 & 6.79 & 6.10 & 6.10 & 5.33 \\
4.89 & 5.48 & 6.10 & 6.79 & 5.77 \\
4.66 & 5.04 & 5.33 & 5.77 & 6.50 \\
\end{array}$$

$$T_s$$ T_s L T_s R

6.50

Foundation II

The mutual inductance under the PEEC model for two traces depends only on the traces themselves (lengths, widths, and thicknesses)

$$\begin{array}{cccccc}
T_{W_L} & T_w & T_w & T_w & T_{W_R} \\
6.17 & 5.43 & 5.12 & 4.89 & 4.66 \\
5.43 & 6.79 & 6.10 & 5.48 & 5.04 \\
5.12 & 6.79 & 6.10 & 6.10 & 5.33 \\
4.89 & 5.48 & 6.10 & 6.79 & 5.77 \\
4.66 & 5.04 & 5.33 & 5.77 & 6.50 \\
\end{array}$$

$$T_s$$ T_s L T_s R

$$t_L$$ t_1 t_2 t_3 t_{R}

6.17 4.66

4.66 6.50
Validation and Implication of Foundations

- Two foundations can also be validated theoretically

- Problem size of inductance extraction can be greatly reduced
 - solve 1-trace problem for self inductance
 - solve 2-trace problem for mutual inductance

- There is no loss of accuracy during reduction

Analytical Solutions to Inductance

- Without considering skin effect and internal inductance
 - Self inductance \[L(nH) = 2 \mu l \cdot \left[\ln\left(\frac{2l}{w + l}\right) + 0.5 - k \right] \]
 - \(k = f(w, l) \)
 - \(0 < k < 0.0025 \)
 - Mutual inductance \[L(nH) = \frac{\mu l}{2\pi} \cdot \left[\ln\left(\frac{2l}{s}\right) - 1 + \frac{s}{l} \right] \]

- Inductance is not sensitive to width, thickness and spacing
 - No need to consider process variations for inductance

Not suitable for on-chip interconnects
Table-based Solutions to Inductance

- Only need to solve self and mutual inductance for two-trace structures via numerical extraction
- Built tables for each layer under nominal geometry
 - Self inductance table has two dimensions
 - Width and length
 - Mutual inductance table has four dimensions
 - Two widths, length, and spacing
- Bicubic-spline interpolation and linear extrapolation for inductance not in tables
- It has been integrated with statistically-based RC model

Outline

- Importance of on-chip inductance

- Efficient inductance model
 - Loop inductance and partial inductance
 - Foundations to reduce problem size
 - Table-based inductance extraction

- Applications and future works
 - Coplanar waveguide
 - Buses structure
Coplanar Waveguide

- Wire taping helps to sharpen waveform, but causes reflections
- Coplanar waveguide needs to be synthesized to match impedance
 - with optimized width and spacing for all three traces

Loop inductance for Coplanar Waveguide

- Its loop inductance can be solved analytically in order to match impedance
 - In symmetric case \[L_{\text{loop}} = L_{p_{22}} - 2L_{p_{23}} + \frac{L_{p_{11}}}{2} + \frac{L_{p_{13}}}{2} \]
Shielding Insertion

- To decide Ns and Ws for given length, widths and spacings for a set of signal traces
 - Ns: number of signal traces between two shielding traces
 - Ws: width of shielding traces

![Diagram showing signal traces with shielding insertion]

Trade-off between Area and Noise

- Total 18 signal traces
 - 2000um long, 0.8um wide
 - separated by 0.8um

- Drivers --130x; Receivers -- 40x

- Power supply: 1.3V

<table>
<thead>
<tr>
<th>Ns</th>
<th>Ws</th>
<th>Noise(V)</th>
<th>Routing Area (um)</th>
<th>Wire Area (um)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>--</td>
<td>0.71</td>
<td>61.1(0.0%)</td>
<td>46.4(0.0%)</td>
</tr>
<tr>
<td>6</td>
<td>0.8</td>
<td>0.38</td>
<td>64.8</td>
<td>48.0</td>
</tr>
<tr>
<td>6</td>
<td>1.6</td>
<td>0.27</td>
<td>66.4</td>
<td>49.6</td>
</tr>
<tr>
<td>6</td>
<td>2.4</td>
<td>0.22</td>
<td>68.0</td>
<td>51.2</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
<td>0.17</td>
<td>69.6(13%)</td>
<td>50.4(8.8%)</td>
</tr>
</tbody>
</table>
Conclusions

- An efficient table-based inductance model has been developed
 - by pre-solving two-trace problems

- The statistically-based RLC model has been used for clock tree modeling and simulation, and shielding insertion in real designs