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Abstract

In this paper, we present a new hypergraph partitioning algorithm that is based on the multilevel paradigm. In

the multilevel paradigm, a sequence of successively coarser hypergraphs is constructed. A bisection of the smallest

hypergraph is computed and it is used to obtain a bisection of the original hypergraph by successively projecting and

refining the bisection to the next level finer hypergraph. We have developed new hypergraph coarsening strategies

within the multilevel framework. We evaluate the performance both in terms of the size of the hyperedge cut on the

bisection as well as run time on a number of VLSI circuits. Our experiments show that our multilevel hypergraph

partitioning algorithm produces high quality partitioning in relatively small amount of time. The quality of the

partitionings produced by our scheme are on the average 6% to 23% better than those produced by other state-of-

the-art schemes. Furthermore, our partitioning algorithm is significantly faster, often requiring 4 to 10 times less

time than that required by the other schemes. Our multilevel hypergraph partitioning algorithm scales very well for

large hypergraphs. Hypergraphs with over 100,000 vertices can be bisected in a few minutes on today’s workstations.

Also, on the large hypergraphs, our scheme outperforms other schemes (in hyperedge cut) quite consistently with

larger margins (9% to 30%).

1 Introduction

Hypergraph partitioning is an important problem and has extensive application to many areas, including VLSI design

[16], efficient storage of large databases on disks [26], and data mining [25]. The problem is to partition the vertices

of a hypergraph ink roughly equal parts, such that the number of hyperedges connecting vertices in different parts is

minimized. A hypergraph is a generalization of a graph, where the set of edges is replaced by a set of hyperedges. A

hyperedge extends the notion of an edge by allowing more than two vertices to be connected by a hyperedge. Formally,

a hypergraphH = (V, Eh) is defined as a set of verticesV and a set of hyperedgesEh , where each hyperedge is a

subset of the vertex setV [29], and the size a hyperedge is the cardinality of this subset.
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the policy of the government, and no official endorsement should be inferred. Access to computing facilities was provided by AHPCRC, and the
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Figure 1: (a) Circuit showing cells and nets, (b) hypergraph representation of the circuit, (c) weighted clique modeling of hyper-
graph.

During the course of VLSI circuit design and synthesis, it is quite important to be able to divide the system spec-

ification into clusters so that the inter-cluster connections are minimized. This step has many applications including

design packaging, HDL-based synthesis, design optimization, rapid prototyping, simulation, and testing. In particular,

many rapid prototyping systems use partitioning to map a complex circuit onto hundreds of interconnected FPGAs.

Such partitioning instances are challenging because the timing, area, and I/O resource utilization must satisfy hard

device-specific constraints. For example, if the number of signal nets leaving any one of the clusters is greater than

the number of signal pins available in the FPGA, then this cluster cannot be implemented using a single FPGA. In

this case, the circuit needs to be further partitioned, and thus implemented using multiple FPGAs. Hypergraphs can

be used to naturally represent a VLSI circuit. The vertices of the hypergraph can be used to represent the cells of the

circuit, and the hyperedges can be used to represent the nets connecting these cells (as illustrated in Figure 1). A high

quality hypergraph partitioning algorithm greatly affects the feasibility, quality, and cost of the resulting system.

Efficient storage of large databases requires information that are accessed together by individual queries to be

stored on a small number of disk blocks. This significantly improves the performance of database operations when

disk access time is the bottleneck. By clustering related information we can minimize the number of disk accesses.

Graph partitioning is an effective method for database clustering [28] but the performance can be further improved

by using hypergraph partitioning. In particular, the database is modeled as hypergraph, in which the various items

stored in the database (i.e., records) represent the vertices, and records that are accessed together by single queries are

connected via hyperedges. This hypergraph is then partitioned into parts, so that the size of each part is smaller than

the size of the disk sector, and the number of hyperedges that connect records in different disk-sectors is minimized.

Other applications include clustering as well as the partitioning of the roadmap database for routing applications and

declustering data in parallel databases [26].
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1.1 Related Work

The problem of computing an optimal bisection of a hypergraph is at least NP-hard [30]. However, because of the

importance of the problem in many application areas, many heuristic algorithms have been developed. The survey

by Alpert and Khang [16] provides a detailed description and comparison of various such schemes. In a widely used

class ofiterative refinement partitioning algorithms, an initial bisection is computed (often obtained randomly) and

then the partition is refined by repeatedly moving vertices between the two parts to reduce the hyperedge-cut. These

algorithms often use the Schweikert-Kernighan heuristic [2] (an extension of the Kernighan-Lin (KL) heuristic [1]

for hypergraphs), or the faster Fiduccia-Mattheyses (FM) [3] refinement heuristic to iteratively improve the quality of

the partition. In all of these methods (sometimes also called KLFM schemes), a vertex is moved (or a vertex-pair is

swapped) if it results in the greatest reduction in the edge-cuts, which is also called the gain for moving the vertex.

The partition produced by these methods is often poor especially for larger hypergraphs, for a number of reasons.

First, these methods choose vertices for movement based only upon local information. For example, it may be better

to move a vertex with smaller gain, as it may allow many good moves later. Second, if many vertices have the same

gain, then the method offers no insight on which of these vertices to move [4]. Third, a hyperedge that has more than

one vertices on both sides of the partition line does not influence the computation of the gain of vertices contained in

it, making the gain computation quite inexact [22]. Hence, these algorithms have been extended in a number of ways

[4, 20, 22, 23].

Krishnamurthy [4] tried to introduce intelligence in the tie breaking process from among the many possible moves

with the same high gain. He used aLook Ahead(LAr ) algorithm which looks ahead up tor -level of gains before

making moves. PROP [22], introduced by Dutt and Deng, used a probabilistic gain computation model for deciding

the vertices that needs to move across the partition line. It tries to capture the implications of moving a node across

the partition boundary for a hyperedge that contains many vertices on both the sides of the partition. These schemes

tend to enhance the performance of the basic KLFM familly of refinement algorithms, at the expense of increased run

time. Dutt and Deng [23] proposed two new methods, namely CLIP and CDIP, for computing gains of hyperedges

that contain more than one node on either side of the partition boundary. CDIP in conjunction with LA3 and CLIP in

conjunction with PROP are two schemes that have shown the best results in their experiments.

Another class of hypergraph partitioning algorithms [5, 7, 13, 24] performs partitioning in two phases. In the first

phase, the hypergraph is coarsened to form a small hypergraph, and then the FM algorithm is used to bisect the small

hypergraph. In the second phase, they use the bisection of this contracted hypergraph to obtain a bisection of the

original hypergraph. Since FM refinement is done only on the small coarse hypergraph, this step is usually fast. But

the overall performance of such a scheme depends upon the quality of the coarsening method. In many schemes, the

projected partition is further improved using the FM refinement scheme [13].

Recently a new class of partitioning algorithms was developed [10, 12, 11, 17] that are based upon the multilevel

paradigm. In these algorithms, a sequence of successively smaller (coarser) graphs is constructed. A bisection of the

smallest graph is computed. This bisection is now successively projected to the next level finer graph, and at each level

an iterative refinement algorithm such as KLFM is used to further improve the bisection. The various phases of multi-

level bisection are illustrated in Figure 2. The iterative refinement schemes such as KLFM become quite powerful in

this multilevel context for the following reason. First, movement of a single node across partition boundary in a coarse

graph can lead to movement of a large number of related nodes in the original graph. Second, the refined partitioning

projected to the next level serves as an excellent initial partitioning for the KL or FM refinement algorithms. This

paradigm was independently studied by Bui and Jones [10] in the context of computing fill reducing matrix reorder-

ing, by Hendrickson and Leland [12] in the context of finite element grid partitioning, and by Hauck and Borriello [17]

(called Optimized KLFM) and by Cong and Smith [11] for hypergraph partitioning. Karypis and Kumar extensively

studied this paradigm in [27, 33] for partitioning of graphs. They presented new graph coarsening schemes for which

even a good bisection of the coarsest graph is a pretty good bisection of the original graph. This makes the overall
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multilevel paradigm even more robust. Furthermore, it allows the use of simplified variants of KLFM refinement

schemes during the uncoarsening phase, which significantly speeds up the refinement without compromising the over-

all quality. METIS [27], a multilevel graph partitioning algorithm based upon this work, routinely finds substantially

better bisections and is often two orders of magnitude faster than the hitherto state-of-the-art spectral-based bisection

techniques [6, 8] for graphs.
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Figure 2: The various phases of the multilevel graph bisection. During the coarsening phase, the size of the graph is successively
decreased; during the initial partitioning phase, a bisection of the smaller graph is computed; and during the uncoarsening and
refinement phase, the bisection is successively refined as it is projected to the larger graphs. During the uncoarsening and
refinement phase the dashed lines indicate projected partitionings, and dark solid indicate partitionings that were produced after
refinement. G0 is the given graph, which is the finest graph. Gi+1 is next level coarser graph of Gi , vice versa, Gi is next level
finer graph of Gi+1. G4 is the coarsest graph.

The improved coarsening schemes ofMETIS work only for graphs, and are not directly applicable to hypergraphs. If

the hypergraph is first converted into a graph (by replacing each hyperedge by a set of regular edges), thenMETIS [27]

can be used to compute a partitioning of this graph. This technique was investigated by Alpert and Khang [21] in

their algorithm called GMetis. They converted hypergraphs to graphs by simply replacing each hyperedge by a clique,

and then dropped many edges from each clique randomly. They usedMETIS to compute a partitioning of each such

random graph and selected the best of these partitionings. Their results show that reasonably good partitionings can

be obtained in a reasonable amount of time for a variety of benchmark problems. In particular, the performance of

their resulting scheme is comparable to other state-of-the art schemes such as PARABOLI [15], PROP [22], and the

multilevel hypergraph partitioner from Hauck and Borriello [17].

The conversion of a hypergraph into a graph by replacing each hyperedge by a clique does not result in an equivalent

representation, since high quality partitionings of the resulting graph do not necessarily lead to high quality partition-

ings of the hypergraph. This is illustrated in Figure 3. Figure 3(a) shows the original hyperedge and Figure 3(b) shows

the graph obtained after replacing the hyperedge by its clique. The standard hyperedge to edge conversion [31] assigns

a uniform weight of 1/(|e| − 1) to each edge in the clique, where|e| is thesizeof the hyperegdei.e., the number of

vertices in the hyperedge. Thus, in our example, each edge is assigned a weight of 1/3. Figures 3(c) and 3(d) show two

example bisections in which the edge-cuts are 1 and 4/3, respectively. So different partitionings of the converted graph
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Figure 3: (a) original hypergraph, (b) graph obtained after clique conversion in which weight of each edge = 1/3, (c) an example
partitioning with weight of hyperedges cut down =1, and (d) an example partitioning with weight of hyperedges cut down= 4/3

lead to different cuts in the graph, whereas for the original hypergraph both of these partitionings result in a cut-size

of one. The fundamental problem associated with replacing a hyperedge by its clique, is that there exists no scheme to

assign weight to the edges of the clique that can correctly capture the cost of cutting this hyperedge [14]. This hinders

the partitioning refinement algorithm since vertices are moved between partitions depending on the reduction in the

number of edges they cut in the converted graph, whereas the real objective is to minimize the number of hyperedges

that are cut in the original hypergraph. Furthermore, the hyperedge to clique conversion destroys the natural sparsity of

the hypergraph, significantly increasing the run-time of the partitioning algorithm. Alpert and Khang [21] solved this

problem by dropping many edges of the clique randomly. But this makes the graph representation even less accurate.

A better approach is to develop coarsening and refinement schemes that operate directly on the hypergraph. Note that

the multilevel scheme by Hauck and Borriello [17] operates directly on hypergraphs, and thus is able to perform ac-

curate refinement during the uncoarsening phase. However, all coarsening schemes studied in [17] are edge-oriented;

i.e., they only merge pairs of nodes to construct coarser graphs. Hence, despite a powerful refinement scheme (FM

with the use of look-ahead LA3) during the uncoarsening phase, their performance is only as good as that of GMetis

[21].

1.2 Our Contributions

In this paper we present a multilevel hypergraph partitioning algorithm,hMETIS, that operates directly on the hy-

pergraphs. A key contribution of our work is the development of new hypergraph coarsening schemes that allow

the multilevel paradigm to provide high quality partitions quite consistently. The use of these powerful coarsening

schemes also allows the refinement to be simplified considerably (even beyond the plain FM refinement), making the

multilevel scheme quite fast. We investigate various algorithms for the coarsening and uncoarsening phases which

operates on the hypergraphs without converting them into graphs. We have also developed new multi-phase refine-

ment schemes (v- and V-cycles) based on the multilevel paradigm. These schemes take an initial partition as input

and try to improve them using the multilevel scheme. These multi-phase schemes further reduce the run-times as well

as improve the solution quality. Figure 4 shows the general framework of our algorithmhMETIS, using both v- and

V-cycles.

We evaluate the performance both in terms of the size of the hyperedge cut on the bisection as well as run time

on a number of VLSI circuits. Our experiments show that our multilevel hypergraph partitioning algorithm produces

high quality partitioning in relatively small amount of time. The quality of the partitionings produced by our scheme

are on the average 6% to 23% better than those produced by other state-of-the-art schemes [15, 19, 21, 22, 23]. The

difference in quality over other schemes becomes even greater for larger hypergraphs. Furthermore, our partitioning

algorithm is significantly faster, often requiring 4 to 10 times less time than that required by the other schemes. For

many circuits in the well known ACM/SIGDA benchmark set [9], our scheme is able to find better partitionings than

those reported in the literature for any other hypergraph partitioning algorithm.
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Figure 4: Multilevel Hypergraph Partitioning with one embedded v-cycles followed by a V-cycle.

The rest of this paper is organized as follows. Section 2 describes the different algorithms used in the three phases

of our multilevel hypergraph partitioning algorithm. A comprehensive experimental evaluation of these algorithms is

provided in Section 3. Section 4 describes and experimentally evaluates a new partitioning refinement algorithm based

on the multilevel paradigm. Section 5 compares the results produced by our algorithm to those produced by earlier

hypergraph partitioning algorithms.

2 Multilevel Hypergraph Bisection

We now present the framework ofhMETIS, in which the coarsening and the refinement scheme work directly with

hyperedges without using the clique representation to transform them into edges. We have developed new algorithms

for both the phases, which in conjunction have the capability of delivering very good quality solutions.

2.1 Coarsening Phase

During the coarsening phase, a sequence of successively smaller hypergraphs are constructed. As in the case of

multilevel graph bisection, the purpose of coarsening is to create a small hypergraph, such that a good bisection of the

small hypergraph is not significantly worse than the bisection directly obtained for the original hypergraph. In addition

to that, hypergraph coarsening also helps in successively reducing the sizes of the hyperedges. That is, after several

levels of coarsening, large hyperedges are contracted to hyperedges connecting just a few vertices. This is particularly

helpful, since refinement heuristics based on the KLFM familly of algorithms [1, 2, 3] are very effective in refining

small hyperedges but are quite ineffective in refining hyperedges with a large number of vertices belonging to different

partitions.

Groups of vertices that are merged together to form single vertices in the next level coarse hypergraph can be

selected in different ways. One possibility is to select pairs of vertices with common hyperedges and merge them

together, as illustrated in Figure 5(a). A second possibility is to merge together all the vertices that belong to a

hyperedge as illustrated in Figure 5(b). Finally, a third possibility is to merge together a subset of the vertices belonging

to a hyperedge as illustrated in Figure 5(c). These three different schemes for grouping vertices together for contraction

are described below.

Edge Coarsening The heavy-edge matching scheme used in the multilevel graph bisection algorithm can also be

used to obtain successive coarser hypergraphs by merging the pairs of vertices connected by many hyperedges. In
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(b) Hyperedge Coarsening

(c) Modified Hyperedge Coarsening

(a) Edge Coarsening

Figure 5: Various ways of matching the vertices in the hypergraph and the coarsening they induce. (a) In the edge-coarsening
connected pairs of vertices are matched together. (b) In the hyperedge-coarsening all the vertices belonging to a hyperedge are
matched together. (c) In the modified hyperedge coarsening, we match together both all the vertices in a hyperedge as well as
groups of vertices belonging to a hyperedge.

thisedge coarsening(EC) scheme a heavy-edge maximal1 matching of the vertices of the hypergraph is computed as

follows. The vertices are visited in a random order. For each vertexv, all unmatched vertices that belong to hyperedges

incident tov are considered, and the one that is connected via the edge with the largest weight is matched withv. The

weight of an edge connecting two verticesv andu is computed as the sum of theedge-weightsof all the hyperedges

that containv andu. Each hyperedgee of size|e| is assigned an edge-weight of 1/(|e|−1), and as hyperedges collapse

on each other during coarsening, their edge-weights are added up accordingly.

This edge coarsening scheme is similar in nature to the schemes that treat the hypergraph as a graph by replacing

each hyperedge with its clique representation [31]. However, this hypergraph to graph conversion is done implicitly

during matching without forming the actual graph.

Hyperedge Coarsening Even though the edge coarsening scheme is able to produce successively coarse hy-

pergraphs, it decreases the hyperedge weight of the coarse graph only for those pairs of matched vertices that are

connected via a hyperedge of size two. As a result, the total hyperedge weight of successive coarse graphs does not

decrease very fast. In order to ensure that for every group of vertices that are contracted together, there is a decrease

in the hyperedge weight in the coarse graph, each such group of vertices must be connected by a hyperedge.

This is the motivation behind thehyperedge coarsening(HEC) scheme. In this scheme, an independent set of hy-

peredges is selected and the vertices that belong to individual hyperedges are contracted together. This is implemented

as follows. The hyperedges are initially sorted in a non-increasing hyperedge-weight order and the hyperedges of the

same weight are sorted in a non-decreasing hyperedge size order. Then, the hyperedges are visited in that order, and

for each hyperedge that connects vertices that have not yet been matched, they are matched together. Thus, this scheme

1One can also compute a maximum weight matching [32]; however that would have significantly increased the amount of time required by this
phase.
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gives preference to the hyperedges that have large weight and those that are of small size. After all hyperedges have

been visited, the groups of vertices that have been matched are contracted together to form the next level coarse graph.

The vertices that are not part of any contracted hyperedges, they are simply copied to the next level coarse graph.

Modified Hyperedge Coarsening The hyperedge coarsening algorithm is able to significantly reduce the amount

of hyperedge weight that is left exposed in successive coarse graphs. However, during each coarsening phase, a large

majority of the hyperedges do not get contracted because vertices that belong to them have been contracted via other

hyperedges. This leads to two problems. First, the size of many hyperedges does not decrease sufficiently, making

FM-based refinement difficult. Second, the weight of the vertices (i.e., the number of vertices that have been col-

lapsed together) in successive coarse graphs become significantly different, which distorts the shape of the contracted

hypergraph.

To correct this problem we implemented amodified hyperedge coarsening(MHEC) scheme as follows. After the

hyperedges to be contracted have been selected using the hyperedge coarsening scheme, the list of hyperedges are

traversed again. And for each hyperedge that has not yet been contracted, the vertices that do not belong to any other

contracted hyperedge are matched to be contracted together.

2.2 Initial Partitioning Phase

During the initial partitioning phase, a bisection of the coarsest hypergraph is computed, such that it has a small cut,

and satisfies a user specified balance constraint. The balance constraint puts an upper bound on the difference between

the relative size of the two partitions. Since this hypergraph has a very small number of vertices (usually less than

200 vertices) the time to find a partitioning using any of the heuristic algorithms tends to be small. Note that it is not

useful to find an optimal partition of this coarsest graph, as the initial partition will be substantially modified during

the refinement phase. We used the following two algorithms for computing the initial partitioning.

The first algorithm simply creates a random bisection such that each part has roughly equal vertex weight. The

second algorithm starts from a randomly selected vertex and grows a region around it in a breadth-first fashion [33]

until half of the vertices are in this region. Then the vertices belonging to the grown region are assigned to the first

part and the rest of the vertices are assigned to the second part. After a partitioning is constructed using either of these

algorithms, the partitioning is refined using the FM refinement algorithm.

Since both algorithms are randomized, different runs give solutions of different quality. For this reason, we perform

a small number of initial partitionings. At this point we can select the best initial partitioning and project it to the

original hypergraph as described in Section 2.3. However, the partitioning of the coarsest hypergraph that has the

smallest cut may not necessarily be the one that will lead to the smaller cut in the original hypergraph. It is possible

that another partitioning of the coarsest hypergraph (with higher cut) leads to a better partitioning of the original

hypergraph after the refinement is performed during the uncoarsening phase. For this reason, instead of selecting a

single initial partitioning (i.e., the one with the smallest cut), we propagate all initial partitionings.

Note that propagation ofi initial partitionings increases the time during the refinement phase by a factor ofi . Thus,

by increasing the value ofi , we can potentially improve the quality of the final partitioning at the expense of higher

runtime. One way to dampen the increase in runtime due to large values ofi , is to drop unpromising partitionings

as the hypergraph is uncoarsened. For example, one possibility is to propagate only those partitionings whose cuts

are withx% of the best partitionings at the current level. If the value ofx is sufficiently large, then all partitionings

will be maintained and propagated in the entire refinement phase. On the other hand, if the value ofx is sufficiently

small, then on average only one partitioning will be maintained, as all other partitionings will be eliminated at the

coarsest level. For moderate values ofx , many partitionings may be available at the coarests graph, but the number of

such available partitionings will decrease as the graph is uncoarsened. This is useful for two reasons. First, it is more

important to have many alternate partitionings at the coarser levels, as the size of the cut of a partitioning at a coarse
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level is less accurate reflection of the size of the cut of the original finest level hypergraph. Second, the refinement is

more expensive at the fine levels, as these levels contain far more nodes than the coarse levels. Hence by choosing an

appropriate value ofx , we can benefit from the availability of many alternate partitionings at the coarser levels, and

avoid paying the high cost of refinement at the finer levels by keeping fewer candidates on average.

In our experiments reported in this paper, we find 10 initial partitionings at the coarsest graph, and we drop all

partitionings whose cut is 10% worse than the best cut at that level. This allows us to both filter out the really bad

partitionings (and thus reduce the amount of time spent in refinement), and at the same time keep more than just one

promising partitioning (so that to improve the overall partitioning quality). In our experiments we have seen that by

keeping 10 partitionings, we can reduce the cut on the average by 3% to 4%, whereas the partitioning time increases

only by a factor of two. Computing and propagating more partitionings does not further reduce the cut significantly. In

our experiments, keeping 20 partitionings further reduces the cut by a factor less than 0.5%, on the average. Increasing

the vaue of parameterx (from 10% to a higher value such as 20%) did not significantly improve the quality of the

partitionings, although it did increase the run time.

2.3 Uncoarsening and Refinement Phase

During the uncoarsening phase, a partitioning of the coarser hypergraph is successively projected to the next level finer

hypergraph, and a partitioning refinement algorithm is used to reduce the cut-set (and thus improve the quality of the

partitioning) without violating the user specified balance constraints. Since the next level finer hypergraph has more

degrees of freedom, such refinement algorithms tend to improve the quality.

We have implemented two different partitioning refinement algorithms. The first is the FM algorithm [3] which

repeatedly moves vertices between partitions in order to improve the cut. The second algorithm, called HER, moves

groups of vertices between partitions so that an entire hyperedge is removed from the cut. These algorithms are further

described in the remaining of this section.

Fiduccia-Mattheyses (FM) The partitioning refinement algorithm by Fiduccia and Mattheyses [3] is iterative in

nature. It starts with an initial partitioning of the hypergraph. In each iteration, it tries to find subsets of vertices in

each partition, such that by moving them to other partitions, improves the quality of the partitioning (i.e., the number

of hyperedges being cut decreases) and the balance constraint is not violated. If such subsets exist, then the movement

is performed and this becomes the partitioning for the next iteration. The algorithm continues by repeating the entire

process. If it cannot find such a subset, then the algorithm terminates, since the partitioning is at a local minima and

no further improvement can be made by this algorithm.

In particular, for each vertexv, the FM algorithm computes thegain which is the reduction in the hyperedge-cut

achieved by movingv to the other partition. Initially all vertices areunlocked, that is, they are free to move to the other

partition. The algorithm iteratively selects an unlocked vertexv with the largest gain (subject to balance constraints)

and moves it to the other partition. When a vertexv is moved, it islockedand the gain of the vertices adjacent tov are

updated. After each vertex movement, the algorithm also records the size of the cut achieved at this point. Note that the

algorithm does not allow locked vertices to be moved since this may result in thrashing (i.e., repeated movement of the

same vertex). A single pass of the FM algorithm ends when there are no more unlocked vertices (i.e., all the vertices

have been moved). Then, the recorded cut-sizes are checked, and the point where the minimum cut was achieved is

selected, and all vertices that were moved after that point are moved back to their original partition. Now, this becomes

the initial partitioning for the next pass of the algorithm. With the use of appropriate data-structures, the complexity

of each pass of the FM algorithm isO(|Eh |) [3].

For refinement in the context of multilevel schemes, the initial partitioning obtained from the next level coarser

graph, is actually a very good partition. For this reason we can make a number of optimizations to the original FM

algorithm. The first optimization limits the maximum number of passes performed by the FM algorithm to only
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Figure 6: Initial partitioning of the given hypergraph with the gains of each vertex. Required balance factor is 40/60.

two. This is because, the greatest reduction in the cut is obtained during the first or second pass and any subsequent

passes only marginally improve the quality. Our experience has shown that this optimization significantly improves

the runtime of FM without affecting the overall quality of the produced partitionings. The second optimization aborts

each pass of the FM algorithm before actually moving all the vertices. The motivation behind this is that only a small

fraction of the vertices being moved actually lead to a reduction in the cut, and after some point, the cut tends to

increase as we move more vertices. When FM is applied to a random initial partitioning, it is quite likely that after a

long sequence ofbadmoves, the algorithm will climb-out of a local minima and reach to a better cut. However, in the

context of a multilevel scheme, long sequence of cut-increasing moves rarely leads to a better local minima. For this

reason, we stop each pass of the FM algorithm as soon as we have performedk vertex moves that did not improve the

cut. We choosek to be equal to 1% of the number of vertices in the graph we are refining. This modification to FM,

calledearly-exit FM (FM-EE), does not significantly affect the quality of the final partitioning, but it dramatically

improves the run time (see Section 3).

Hyperedge Refinement (HER) One of the drawbacks of FM (and other similar vertex-based refinement schemes)

is that it is often unable to refine hyperedges that have many nodes on both sides of the partitioning boundary. How-

ever a refinement scheme that moves all the vertices that belong to a hyperedge can potentially solve this problem.

For example, Figure 6 shows an initial partitioning of the given hypergraph. The gain for each node is either 0 or -1.

There is no sequence of moves which FM can select to reduce the size of the cutset (FM always select a vertex with

highest gain first to move). Whereas, if we move all the vertices of hyperedgeb from partitionP0 to P1, we can save

one hyperedge without affecting the required balance factor of 40/60. We have developed such a refinement algorithm

that focuses on the hyperedges that straddle partitioning boundary and tries to move them so that they are interior to

either one of the partitions.

Our hyperedge refinement(HER) works as follows. It randomly visits all the hyperedges and for each one that

straddles the bisection, it determines if it can move a subset of the vertices incident on it, so that this hyperedge

will become completely interior to a partition. In particular, consider a hyperedgee, that straddles the partitioning

boundary, and letV 0
e andV 1

e be the vertices ofe that belong to partition 0 and partition 1, respectively. Our algorithm

computes the gaing0→1, which is the reduction in the cut achieved by moving the vertices inV 0
e to partition 1, and
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the gaing1→0, which is the reduction in the cut achieved by moving the vertices inV 1
e to partition 0. Now, depending

on these gains and subject to balance constraints, it may move one of the two setsV 0
e or V 1

e . In particular, ifg0→1 is

positive andg0→1 > g1→0, it movesV 0
e , and if g1→0 is positive andg1→0 > g0→1, it movesV 1

e .

Note that unlike FM, HER is not a hill-climbing algorithm, as it does not perform moves that can lead to a larger

cut (i.e., negative cut reduction). Hence, this algorithm lacks the capability of being able to climb-out of local minima

by allowing moves that increase the cut. It is possible to develop an FM-style refinement algorithm that moves entire

hyperedges. This algorithm will maintain the gain of each hyperedge, and in each iteration, will move the hyperedge

that leads to the highest gain. However, the computation of updating gain for each hyperedge is much more expensive

than the computation of updating gain for each vertex in the original FM algorithm. The reason is that every time we

move a subset of vertices we need to update the gains of not only the hyperedges that are incident on the hyperedge

moved, but also of all the hyperedges that are incident on the incident hyperedges. On the other hand, our HER scheme

does not need to perform such computations to update the gains, since it does not prioritize the moves according to the

cut-reduction they perform. This considerably reduces the runtime of the HER algorithm.

In general, the partitioning obtained by iterative HER refinement can be further improved by FM refinement. The

reason is that HER forces movement of an entire group of vertices that belongs to a hyperedge, whereas FM refinement

allows movements of individual vertices across partitioning boundary. On our experiments (see Section 3) we found

that the final partitioning obtained by HER refinement can be substantially improved by a round of FM refinement.

Benchmark No. of vertices No. of hyperedges
balu 801 735
p1 833 902
bm1 882 903
t4 1515 1658
t3 1607 1618
t2 1663 1720
t6 1752 1541
struct 1952 1920
t5 2595 2750
19ks 2844 3282
p2 3014 3029
s9234 5866 5844
biomed 6514 5742
s13207 8772 8651
s15850 10470 10383
industry2 12637 13419
industry3 15406 21923
s35932 18148 17828
s38584 20995 20717
avq.small 21918 22124
s38417 23849 23843
avq.large 25178 25384
golem3 103048 144949

Table 1: The characteristics of the various hypergraphs used to evaluate the multilevel hypergraph partitioning algorithms.

3 Experimental Results

We experimentally evaluated the quality of the bisections produced by our multilevel hypergraph partitioning algo-

rithm on a large number of hypergraphs that are part of the widely used ACM/SIGDA circuit partitioning benchmark

suite [9]. The characteristics of these hypergraphs are shown in Table 1. We performed all our experiments on an SGI

Challenge that has MIPS R10000 processors running at 200Mhz, and all reported run-times are in seconds. All the

reported partitioning results were obtained by forcing a 45–55 balance condition.
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As discussed in Sections 2.1, 2.2, and 2.3, there are many alternatives for each of the three different phases of a

multilevel algorithm. It is not possible to provide an exhaustive comparison of all these possible combinations without

making this paper unduly large. Instead, we provide comparisons of different alternatives for each phase after making

a reasonable choice for the other two phases.

3.1 Coarsening Schemes

Table 2 shows the quality of the partitionings produced by the three coarsening schemes, edge-coarsening (EC),

hyperedge coarsening (HEC), and modified hyperedge coarsening (MHEC) for all the hypergraphs in our experimental

testbed. These results are the best of ten different runs using ten different random initial partitionings and FM during

refinement. The column labeled “Best” in Table 2 shows the minimum of the three cuts produced by EC, HEC, and

MHEC. To compare the relative performance of the three coarsening schemes, we computed the percentage by which

each scheme performs worse than the “Best”. We will refer to these percentages as QRBs (Quality Relative to the

Best). These results are shown in the last three columns of Table 2. Furthermore, for each coarsening scheme we also

computed the average QRB over all 23 test hypergraphs, and these averages are shown in the last row of the table.

Number of Hyperedge Cut Quality Relative to Best
Circuit EC HEC MHEC Best EC HEC MHEC
19ks 104 106 106 104 1.9 1.9
avq.large 130 127 138 127 2.4 8.7
avq.small 134 130 132 130 3.1 1.5
baluP 27 27 27 27
biomedP 88 89 83 83 6.0 7.2
bm1 51 52 51 51 2.0
golem3 1848 1614 1445 1445 27.9 11.7
industry2P 174 173 167 167 4.2 3.6
industry3 260 255 254 254 2.4 0.4
p1 50 50 51 50 2.0
p2 143 155 145 143 8.4 1.4
s9234P 41 40 40 40 2.5
s13207P 58 55 64 55 5.5 16.4
s15850P 52 42 44 42 23.8 4.8
s35932 42 43 42 42 2.4
s38417 57 54 51 51 11.8 5.9
s38584 49 47 48 47 4.2 2.1
structP 35 33 33 33 6.0
t2 92 90 88 88 4.5 2.3
t3 58 58 59 58 1.7
t4 51 54 51 51 5.9
t5 78 73 71 71 9.9 2.8
t6 60 60 63 60 5.0
Agg. Cut 3682 3427 3253 3219
Avg. QRB 4.97 2.37 1.98

Table 2: The size of the hyperedge cut produced by edge-coarsening (EC), hyperedge-coarsening (HEC), and modified hyperedge-
coarsening schemes (MHEC). The column label “Best” shows the minimum of the cuts produced by EC, HEC, and MHEC. The last
three columns show how much worse is a particular cut relative to the “Best”. For example, for 19ks, the “Best” cut is 104; thus,
the cut produced by MHEC (which is 106) is 1.9% worse than the “Best”.

From the average QRBs, we see that all three coarsening schemes have similar performance. The difference be-

tween the average performance of any two of them is less than 3%, with EC performing worse than either HEC or

MHEC. Another qualitative comparison that also takes into account the size of the problems can be performed by

comparing the aggregate cuts over all 23 problems produced by the three coarsening schemes. These aggregates are

also shown in Table 2. EC cuts a total of 3682 hyperedges whereas MHEC cuts only 3253, a 13% improvement.
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Comparing the results in Table 2 with those in Table 8, we see that the overall performance of any of these three

schemes is, on the average, better than any of the previously known state-of-the-art algorithms [15, 21, 22, 23] for

hypergraph partitioning. This demonstrates the power and robustness of the multilevel paradigm for hypergraph par-

titioning. However, looking at the individual problems, we see that performance of the three schemes differs signif-

icantly on some of the problems. This is partly due to the random nature of the coarsening process in any of these

schemes, and partly due to the suitability of some coarsening scheme for specific hypergraph structures present in

some of these benchmarks. Another very interesting trend visible in Table 2 is the striking complementarity of the

HEC and MHEC. On nearly every benchmark either both of these schemes or one of them has the best performance.

It is clear that an algorithm that runs both of these schemes, and chooses the best cut, would be a very robust and high

quality hypergraph partitioning algorithm.

The results in Table 2 also show that the EC coarsening scheme generally performs worse than the other two

schemes. The reason is that, in general, EC does not produce as much reduction in the hyperedge-weight as the other

two schemes. Hence, the size of the hyperedge cut of the initial bisection of the coarsest graph tends to be much higher

for the EC coarsening scheme compared with the HEC and MHEC coarsening schemes. The quality of these initial

bisections of the coarsest hypergraphs for some of the larger circuits is shown in Table 3, for each one of the three

coarsening schemes. From these results we can see that MHEC leads to initial bisections that are 35% to 90% better

than those produced by EC.

Circuit EC HEC MHEC
avq.large 730 577 507
avq.small 818 623 599
golem3 5848 4074 3945
industry2P 871 655 565
industry3 1156 845 787
s38584 275 165 145

Table 3: The size of the hyperedge cut produced at the coarsest hypergraph by the region growing algorithm for each one of the
three coarsening schemes.

3.2 Initial Partitioning Schemes

Table 4 shows the quality of the bisections produced by the random and the region growing algorithms for computing

initial bisections. The results are shown for all three different coarsening schemes, and for the FM refinement scheme.

The results produced by each initial partitioning algorithm for the corresponding coarsening schemes are in general

similar. Looking at the aggregate cuts, we see that random partitioning outperforms region growing for both EC

and MHEC by 1.7% and 0.6%, respectively. However, for HEC, region growing outperforms random partitioning

by 0.6%. These results show that there is no significant difference between the two initial partitioning algorithms,

and either one performs reasonably. These results are consistent with those for multilevel graph partitioning of regular

graphs [33]. In either case, the initial partitioning of a highly compressed graph has little effect on the overall quality of

the final partition. The reasons are two-fold. First, the coarsening process reduces the number of exposed hyperedges

in the coarsest hypergraph substantially. For example, for the coarsest hypergraph for “golem3”, the sum of exposed

hyperedge weight is only 14368, whereas, the original graph has 144949 hyperedges. As a result, even a random

partitioning is a reasonably good partitioning of the original hypergraph. Second, any partitioning of the coarsest

hypergraph has plenty of opportunity to be refined at the different uncoarsening levels.
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Random Region Growing
Circuit EC HEC MHEC EC HEC MHEC
19ks 104 106 106 104 106 106
avq.large 130 127 138 134 128 138
avq.small 134 130 132 127 129 133
baluP 27 27 27 27 27 27
biomedP 88 89 83 83 83 83
bm1 51 52 51 52 47 52
golem3 1848 1614 1445 1927 1600 1484
industry2P 174 173 167 178 176 166
industry3 260 255 254 260 255 241
p1 50 50 51 47 51 47
p2 143 155 145 144 148 140
s9234P 41 40 40 42 40 42
s13207P 58 55 64 56 60 58
s15850P 52 42 44 50 43 49
s35932 42 43 42 41 44 42
s38417 57 54 51 55 52 52
s38584 49 47 48 48 47 48
structP 35 33 33 33 33 33
t2 92 90 88 88 91 89
t3 58 58 59 58 58 60
t4 51 54 51 50 54 50
t5 78 73 71 77 74 72
t6 60 60 63 65 60 61
Aggregate Cut 3682 3427 3253 3746 3406 3273

Table 4: The size of the hyperedge cut produced when “Random” and “Region Growing” initial partitioning algorithms are used in
conjunction with the EC, HEC, and MHEC coarsening schemes. FM refinement is used in all cases.

3.3 Refinement Schemes

Table 5 shows the quality of the bisections produced by four different refinement schemes for the edge-coarsening

(EC) and the modified hyperedge-coarsening (MHEC) schemes. The refinement schemes reported are: early-exit

Fiduccia-Mattheyses (EE-FM), Fiduccia-Mattheyses (FM), hyperedge refinement (HER), and hyperedge-refinement

followed by FM. Again, the reported bisections are the smallest out of ten different runs each using ten random initial

partitionings.

Comparing EE-FM with FM we see, as expected, that FM performs consistently better than EE-FM. Looking at

the aggregate cuts of all 23 hypergraphs, we see that for the EC coarsening scheme, EE-FM cuts a total of 3851

hyperedges while FM cuts only 3682, a difference of 4.6%. Similar results hold for the MHEC coarsening scheme;

however, the difference is much smaller (1.2%). The reason that EE-FM does better for MHEC than for EC is that

during coarsening, MHEC removes more hyperedge-weight than EC. Consequently, the bisection obtained initially is

quite good and requires less refinement (see Table 3). On the other hand, the initial bisection of the coarsest hypergraph

obtained by EC, is much worse and requires significantly more refinement. Since, EE-FM performs less refinement,

the produced bisections are worse for EC than they are for MHEC.

Comparing FM and HER refinement schemes, we see that HER performs significantly worse than FM for all

coarsening schemes. In the case of EC, HER is 14.5% worse than FM, and in the case of MHEC it is 6.7% worse.

Again, the quality degradation is smaller for MHEC than it is for EC because the bisections produced by MHEC

require less refinement. The quality of the bisection though, improves when HER is coupled with FM. For both EC

and MHEC, the bisections produced by HER+FM tend to be better than those produced by any other refinement

scheme.

Comparing the last column of Table 5 that corresponds to the minimum cut of the four refinement schemes and the

two coarsening schemes, we see that the MHEC coupled with either FM or HER+FM performs very well. MHEC
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EC HEC MHEC
Circuit EE-FM FM HER HER+ EE-FM FM HER HER EE-FM FM HER HER+ Best

FM FM FM
19ks 105 104 105 104 109 106 112 105 107 106 109 107 104
avq.large 143 130 139 134 129 127 144 128 147 138 144 135 127
avq.small 139 134 153 128 138 130 139 128 136 132 141 136 128
baluP 27 27 30 27 27 27 27 27 27 27 27 27 27
biomedP 108 88 101 85 85 89 84 83 83 83 83 83 83
bm1 53 51 54 51 52 52 52 52 51 51 52 51 51
golem3 1950 1848 2276 1843 1624 1614 1774 1580 1447 1445 1570 1451 1445
industry2P 174 174 183 175 179 173 203 193 174 167 189 170 167
industry3 262 260 262 260 255 255 255 255 257 254 255 241 241
p1 50 50 48 47 52 50 53 52 53 51 51 49 47
p2 149 143 149 144 156 155 156 155 148 145 146 143 143
s9234P 42 41 43 41 40 40 46 40 40 40 46 40 40
s13207P 61 58 74 62 55 55 65 55 65 64 72 62 55
s15850P 52 52 50 50 42 42 48 42 44 44 46 44 42
s35932 41 42 48 42 44 43 97 44 42 42 55 42 42
s38417 58 57 64 53 54 54 63 52 52 51 68 52 51
s38584 49 49 49 49 47 47 52 47 48 48 57 48 47
structP 35 35 34 34 33 33 33 33 33 33 33 33 33
t2 93 92 94 93 91 90 94 90 93 88 90 89 88
t3 60 58 59 58 58 58 58 58 60 59 58 59 58
t4 51 51 50 50 54 54 55 53 51 51 52 48 48
t5 78 78 79 77 73 73 73 71 71 71 74 72 71
t6 71 60 72 66 65 60 65 60 62 63 63 62 60
Aggregate
Cut 3851 3682 4216 3673 3462 3427 3748 3403 3291 3253 3481 3244 3198

Table 5: The size of the hyperedge cut produced by different refinement schemes for EC and HEC coarsening schemes. The
refinement schemes are: early-exit Fiduccia-Mattheyses (EE-FM), Fiduccia-Mattheyses (FM), hyperedge refinement (HER), and
hyperedge refinement followed by FM (HER+FM).

with FM is only 1.7% worse than the “Best”, and MHEC with HER+FM is only 1.4%.

4 Multi-Phase Refinement with Restricted Coarsening

Although the multilevel paradigm is quite robust, randomization is inherent in all three phases of the algorithm. In

particular, the random choice of vertices to be matched in the coarsening phase can disallow certain hyperedge-cuts

reducing refinement in the uncoarsening phase. For example, consider the example hypergraph in Figure 7(a), and

its two possible condensed versions (Figure 7(b) and 7(c)) with the same partitioning. The version in Figure 7(b)

is obtained by selecting hyperedgesa andb to be compressed in the hyperedge coarsening phase and then selecting

pairs of nodes (4,5), (6,7), and (8,9) to be compressed in modified hyperedge coarsening phase. Similarly, version

in Figure 7(c) is obtained by selecting hyperedgec to be compressed in the hyperedge coarsening phase and then

selecting pairs of nodes (6,7) and (8,9) to be compressed in modified hyperedge coarsening phase. In the version of

Figure 7(b) vertexA(4,5) can be moved from partitionP0 to P1 to reduce the hyperedge-cuts by 1, but in Figure 7(c)

no vertex can be moved to get reduce the hyperedge-cuts.

What this example shows is that in a multilevel setting a given initial partitioning of hypergraph can be potentially

refined in many different ways depending upon how the coarsening is performed. Hence, a partitioning produced

by a multilevel partitioning algorithm can be potentially further refined if the two partitions are again coarsened in a

manner different than the previous coarsening phase (which is easily done given the random nature of all the coarsening

schemes described here). The power of iterative refinement at different coarsening levels can also be used to develop

a partitioning refinement algorithm based on the multilevel paradigm.

The idea behind thismulti-phase refinementalgorithm is quite simple. It consists of two phases, namely a coars-
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Figure 7: Effect of Restricted coarsening. (a) example hypergraph with a given partitioning with required balance of 40/60, (b) a
possible condensed version of (a), and (c) another condensed version of hypergraph.

ening and an uncoarsening phase. The uncoarsening phase of the multi-phase refinement algorithm is identical to

the uncoarsening phase of the multilevel hypergraph partitioning algorithm described in Section 2.3. The coarsening

phase however is somewhat different, as it preserves the initial partitioning that is input to the algorithm. We will refer

to this asrestricted coarseningscheme. Given a hypergraphH and a partitioningP, during the coarsening phase a

sequence of successively coarser hypergraphs and their partitionings is constructed. Let(Hi , Pi ) for i = 1,2, . . . ,m,

be the sequence of hypergraphs and partitionings. Given a hypergraphHi and its partitioningPi , restricted coars-

ening will collapse vertices together that belong only to one of the two partitions. That is, ifA and B are the two

partitions, we only collapse together vertices that either belong to partitionA or partition B. The partitioningPi+1

of the next level coarser hypergraphHi+1 is computed by simply inheriting the partition fromHi . For example, if a

set of vertices{v1, v2, v3} from partitionA are collapsed together to form vertexui of Hi+1, then vertexui belong to

partition A as well. By constructingHi+1 and Pi+1 in this way we ensure that the number of hyperedges cut by the

partitioning is identical to the number of hyperedges cut byPi in Hi . The set of vertices to be collapsed together in

this restricted coarsening scheme can be selected by using any of the coarsening schemes described in Section 2.1,

namely edge-coarsening, hyperedge-coarsening, or modified hyperedge-coarsening.

Due to the randomization in the coarsening phase, successive runs of the multi-phase refinement algorithm can lead

to additional reductions in the hyperedge cut. Thus the multi-phase refinement algorithm can be performed iteratively.

Note that during the refinement phase, we only propagate a single partitioning; thus, multi-phase refinement is quite

fast.

In the context of our multilevel hypergraph partitioning algorithm, this new multi-phase refinement can be used in

a number of ways. In the rest of this section we describe three such approaches.
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Figure 8: Multilevel Partitioning followed by a V-cycle.

V-Cycle In this scheme we take the best solution obtained from the multilevel partitioning algorithm (Pb) and we

improve it using multi-phase refinement repeatedly. We stop the multi-phase refinement when the solution quality

cannot be improved further. The number of multi-phase refinement steps performed is problem dependent and in

general increases as the size of the hypergraph increases. This is because of the larger solution space of the large

hypergraphs. Figure 8 shows multilevel partitioning followed by a V-cycle.

v-Cycle Our experience with the multilevel partitioning algorithm has shown that refining multiple solutions is

expensive, especially during the final uncoarsening levels when the size of the contracted hypergraphs is large. One

way to reduce the high cost of refining multiple solutions during the final uncoarsening levels is to select the best

partitioning at some point in the uncoarsening phase and further refine only this best partitioning using multiphase

refinement. This is the idea behind the v-cycle refinement.

In particular, letHm/2 be the coarse hypergraph at the midpoint betweenH0 (original hypergraph) andHm (coarsest

hypergraph). LetPm/2 be the best partitioning atHm/2. Then we use (Hm/2, Pm/2) as the input to multi-phase

refinement. This is illustrated in Figure 9. SinceHm/2 is relatively small as compared toHm, multi-phase refinement

converges in a small number of iterations. By using v-cycles, we can significantly reduce the amount of time spent in

the refinement phase, especially for large hypergraphs. However, the overall quality can potentially decrease because

we may have not picked up the best overall partitioning atHm/2.

vV-Cycle We can combine both V-cycles and v-cycles in the algorithm to obtain high quality partitioning in small

amount time. In this scheme we use v-cycles to partition the hypergraph followed by the V-cycles to further improve

the partition quality. V-cycles used in this way are particularly effective in significantly improving the hyperedge cut.

4.1 Experimental Results with Multi-Phase Refinement Schemes

Table 6 shows the effect of the V-cycles and vV-cycles on the results of the three coarsening schemes, namely, edge-

coarsening (EC), hyperedge coarsening (HEC), and modified hyperedge coarsening (MHEC). The experiments were

run on all the benchmarks. For each coarsening scheme we ran two sets of experiments. In the first set we selected the

best result out of the ten runs from the multilevel partitioning and used the V-cycles to further improve the partitioning.

The results are shown in the Table 6 under the column “V”. In the second experiment, we ran ten runs of the multilevel

partitioning with v-cycles embedded in them. The best result out of these 10 runs is passed through the V-cycles. The
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Figure 9: Multilevel Partitioning with two embedded v-cycles.

results from these experiments are shown in Table 6 under the column “vV”.

The number of v-cycles and V-cycles in these experiments are determined dynamically. When there is no refinement

in 3 consecutive cycles, the program exits after reporting the current result. During these experiments, we saw that the

number of V-cycles performed depends on the problem size. For the large hypergraphs such as “golem3”, it required

about 7-8 V-cycles, whereas, for the small hypergraphs such as “bm1”, it required only about 3-4 V-cycles.

For all these experiments, we used the random initial partitioning and FM refinement. The column labeled “Best”

in Table 6 shows the minimum of the six cuts produced by EC, HEC, and MHEC for both V-cycles and vV-cycles.

To compare relative performance of the six schemes, we computed the “quality relative to best”, as was done in

Section 3.1. The row labeled “Aggregate Cut” shows the total number of hyperedges cut for all the benchmarks.

Comparing aggregate cuts in Tables 2 and 6, we see that the use of multi-phase refinement improves the quality of

the solution. When vV-refinement is used, the total number of hyperedges being cut reduces by 2.28%, 2.07% and

1.66% for EC, HEC and MHEC coarsening schemes, respectively. At the same time, the use of vV-refinement results

in reduction of overall amount of time by about 30% to 50%. Thus, the use of vV-cycles improves both the solution

quality as well as the runtimes. Comparing the schemes that use V- and vV-cycles, we see that vV-cycles perform

better, since it cuts fewer hyperedges and requires less time. Also note that the MHEC coarsening scheme performs

better for both V- and vV-cycles. The complementarity of the performance of HEC and MHEC quite visible in Table

2, is still present in Table 6, but the spread is much smaller. This is because multi-phase refinement eliminates some

of the variability inherent in the multilevel framework.

Table 7 shows the effect of the V-cycles and vV-cycles on the results of the two refinement schemes namely, Early-

Exit FM (EE-FM) and FM. For each of the refinement schemes we ran two experiment with V-cycles and vV-cycles as

explained above. For all the experiments, we choose MHEC as the coarsening scheme and random initial partitioning.

Quality relative to best is also reported, where “Best” is the best of the 4 schemes using the combinations of EE-FM

and FM with V-cycles and vV-cycles. By looking at the “Aggregate Cut” we see that FM produces partitioning that

cut fewer hyperedges. In particular, FM cuts 2.49% and 0.81% fewer hyperedges as compared to EE-FM for V-cycles

and vV-cycles respectively. However, EE-FM requires half the amount of time compared to that required by FM.

Note also that in the case of EE-FM there is no difference between the runtimes of vV-cycles and V-cycles. This is

because EE-FM is very fast which reduces the total time required to refine multiple solutions all the way to the top

when no v-cycles are employed. Hence, the increase in runtime due to the v-cycles offsets the reduction due to the

propagation of only one partitioning. In general, EE-FM with vV-cycles is a very good choice when runtime is the

major consideration.
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Number of Hyperedge Cut Quality Relative to the Best
EC HEC MHEC EC HEC MHEC

Circuit V vV V vV V vV Best V vV V vV V vV
19ks 104 104 104 109 105 105 104 4.8 1.0 1.0
avq.large 127 127 127 129 127 127 127 1.6
avq.small 127 127 127 127 132 130 127 3.9 2.4
baluP 27 27 27 27 27 27 27
biomedP 84 84 83 83 83 83 83 1.2 1.2
bm1 49 49 52 52 51 51 49 6.1 6.1 4.1 4.1
golem3 1750 1801 1607 1576 1422 1424 1422 23.1 26.7 13.0 10.8 0.1
industry2P 176 179 177 175 169 168 168 4.8 6.5 5.4 4.2 0.6
industry3 260 262 255 241 249 244 241 7.9 8.7 5.8 3.3 1.2
p1 47 47 49 49 51 51 47 4.3 4.3 8.5 8.5
p2 142 142 144 145 145 145 142 1.4 2.1 2.1 2.1
s9234P 40 40 40 40 40 40 40
s13207P 57 62 54 53 58 58 53 7.5 17.0 1.9 9.4 9.4
s15850 46 44 42 42 41 42 41 12.2 7.3 2.4 2.4 2.4
s35932 40 40 44 44 42 42 40 10.0 10.0 5.0 5.0
s38417 50 52 53 50 53 52 50 4.0 6.0 6.0 4.0
s38584 48 48 47 48 48 48 47 2.1 2.1 2.1 2.1 2.1
structP 34 34 33 33 33 33 33 3.0 3.0
t2 92 92 90 88 88 88 88 4.5 4.5 2.3
t3 57 57 58 58 59 59 57 1.8 1.8 3.5 3.5
t4 49 49 54 54 48 48 48 2.1 2.1 12.5 12.5
t5 71 71 73 73 71 71 71 2.8 2.8
t6 60 60 60 60 63 63 60 5.0 5.0
Aggregate Cut 3537 3598 3400 3356 3205 3199 3165
Average QRB 2.9 3.6 3.2 2.8 2.3 2.2
Total Time 1263 814 1094 731 1150 781

Table 6: The Effect of the V-cycles and vV-cycles on the coarsening schemes

5 Comparison With Other Partitioning Algorithms

In this section, we will compare our scheme with other partitioning schemes available in the literature. We compare our

complete framework with other partitioning schemes rather than the coarsening or the refinement schemes. Complete

framework gives us the complete picture, unlike the comparison of only the coarsening or the refinement schemes.

To compare the performance of the bisections produced by our multilevel hypergraph bisection and multi-phase

refinement algorithms, both in terms of bisection quality as well as runtime, we created Table 8. Table 8 shows the

size of the hyperedge cut produced by our algorithms (hMETIS) and those reported by various previously developed

hypergraph bisection algorithms. In particular, Table 8 contains results for the following algorithms: PROP [22],

CDIP-LA3 f and CLIP-PROPf [23], PARABOLI [15], GFM [18], GMetis [21], and Optimized KLFM (scheme by

Hauck and Borriello [17]). Note that for certain circuits, there are missing results for some of the algorithms. This

is because no results were reported for these circuits. The column labeled “Best” shows the minimum cut obtained

for each circuit by any of the earlier algorithms. Essentially, this column represents the quality that would have been

obtained, if all the algorithms have been run and the best partition was selected.

The last four columns of Table 8 shows the partitionings produced by our multilevel hypergraph bisection and

refinement algorithms. In particular, the column labeled “hMETIS-EE20” corresponds to the best partitioning produced

from 20 runs of our multilevel algorithm that uses early-exit FM during refinement (FM-EE). Of these twenty runs,

ten runs are using hyperedge coarsening (HEC) and ten runs are using modified hyperedge coarsening (MHEC). The

column labeled “hMETIS-FM20” corresponds to the best partitioning produced from 20 runs when FM is used during

refinement and coarsening is performed similarly to “hMETIS-EE20”. In both of these schemes, we used random initial

partitionings during the initial partitioning phase.

The column labeledhMETIS-EE10vV corresponds to the best partitioning produced from 10 runs of our multilevel
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Number of Hyperedge Cut Quality Relative to the Best
EE-FM FM EE-FM FM

Circuit V vV V vV Best V vV V vV
19ks 106 106 105 105 105 1.0 1.0
avq.large 127 134 127 127 127 5.5
avq.small 128 128 132 130 128 3.1 1.6
baluP 27 27 27 27 27
biomedP 83 83 83 83 83
bm1 51 51 51 51 51
golem3 1497 1425 1422 1424 1422 5.3 0.2 0.1
industry2P 168 169 169 168 168 0.6 0.6
industry3 252 252 249 244 244 3.3 3.3 2.0
p1 49 49 51 51 49 4.1 4.1
p2 148 148 145 145 145 2.1 2.1
s9234P 40 40 40 40 40
s13207P 58 61 58 58 58 5.2
s15850 42 42 41 42 41 2.4 2.4 2.4
s35932 41 42 42 42 41 2.4 2.4 2.4
s38417 54 54 53 52 52 3.8 3.8 1.9
s38584 48 48 48 48 48
structP 33 33 33 33 33
t2 92 92 88 88 88 4.5 4.5
t3 59 59 59 59 59
t4 48 48 48 48 48
t5 71 71 71 71 71
t6 63 63 63 63 63
Aggregate Cut 3285 3225 3205 3199 3191
Average QRB 0.9 1.3 0.6 0.4
Total Time 409 408 1150 781

Table 7: The Effect of the V-cycles and vV-cycles on the refinement schemes

partitioning algorithm that uses the vV-cycle refinement scheme. These results were obtained using the modified

hyperedge coarsening scheme (MHEC) and EE-FM for refinement. Finally, the column labeledhMETIS-FM20vV

corresponds to the best partition produced from 20 runs that uses the vV-cycles refinement scheme. Out of these runs

ten used HEC and ten used MHEC for coarsening and the refinement was done using FM.

To make the comparison with previous algorithms easier, we computed the total number of hyperedges cut by each

algorithm, as well as the percentage improvement in the cut achieved by our algorithms over previous algorithms. This

cut improvement was computed as the average improvement on a circuit-by-circuit level. Looking at these results, we

see that all four of our algorithms produce partitionings whose quality is better than that produced by any of the

previous algorithms. In particular,hMETIS-EE20 is 4.1% better than CLIP-PROPf , 5.3% better than CDIP-LA3f ,

6.2% better than PROP, 7.8% better than GFM, 9.9% better than Optimized KLFM, 10.0% better than GMetis, and

21.4% better than PARABOLI. If all these algorithms are considered together,hMETIS-EE20 is still better by 0.3%.

ComparinghMETIS-EE20 with hMETIS-FM20 we see thathMETIS-FM20 is about 1.1% better thanhMETIS-EE20, and

about 1.4% better than all the previous schemes combined. In particular,hMETIS-FM20 was able to improve the

best-known bisections for 8 out of the 23 test circuits.

Looking at the quality of the partitionings produced by the two schemes that use the multilevel hypergraph re-

finement (vV-cycles) we see that these schemes are able to produce very good results. In particularhMETIS-FM20vV

is about 2.0% better thanhMETIS-EE20 and 0.9% better thathMETIS-FM20. hMETIS-FM20vV seems to be the overall

best scheme producing partitionings whose quality is better than any of the previous schemes and 2.3% better that the

“Best”.

The last subtable of Table 8 shows the total amount of time required by the various partitioning algorithms. These

run-times are in seconds on the respective architectures. Because of the difference in CPU speed at the various

machines, it is hard to make direct comparisons. However, we tested our code on Sparc5 and we found that it requires
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Benchmark PROP CDIP- CLIP- PARABOLI GFM GMetis Opt. Best hMETIS- hMETIS- hMETIS- hMETIS-
LA3 f PROPf KLFM EE20 FM20 EE10vV FM20vV

balu 27 27 27 41 27 27 – 27 27 27 27 27
p1 47 47 51 53 47 47 – 47 52 50 49 49

bm1 50 47 47 – – 48 – 47 51 51 51 51
t4 52 48 52 – – 49 – 48 51 51 48 48
t3 59 57 57 – – 62 – 57 58 58 59 58
t2 90 89 87 – – 95 – 87 91 88 92 88
t6 76 60 60 – – 94 – 60 62 60 63 60

struct 33 36 33 40 41 33 – 33 33 33 33 33
t5 79 74 77 – – 104 – 74 71 71 71 71

19ks 105 104 104 – – 106 – 104 107 106 106 105
p2 143 151 152 146 139 142 – 139 148 145 148 145

s9234 41 44 42 74 41 43 45 41 40 40 40 40
biomed 83 83 84 135 84 102 – 83 83 83 83 83
s13207 75 69 71 91 66 74 62 62 55 55 61 53
s15850 65 59 56 91 63 53 46 46 42 42 42 42

industry2 220 182 192 193 211 177 – 177 174 167 169 168
industry3 – 243 243 267 241 243 – 241 255 254 252 241
s35932 – 73 42 62 41 57 46 41 42 42 42 42
s38584 – 47 51 55 47 53 52 47 47 47 48 48

avq.small – 139 144 224 – 144 – 139 136 130 128 127
s38417 – 74 65 49 81 69 – 49 52 51 54 50

avq.large – 137 143 139 – 145 – 137 129 127 134 127
golem3 – – – 1629 – 2111 – 1629 1447 1445 1425 1424

Sum of Hyperedge-cuts
5 circuits 251 237 226 226 233 225
13 circuits 1129 1033 1050 1036 1048 1021
16 circuits 1245 1132 1145 1127 1142 1121
16 circuits 3289 2938 2762 2738 2735 2699
22 circuits 1890 1880 1786 1806 1778 1800 1756
23 circuits 4078 3415 3253 3223 3225 3180

hMETIS Quality improvement
EE20 6.2% 5.3% 4.1% 21.4% 7.8% 10.0% 9.9% 0.3%
FM20 7.2% 6.4% 5.2% 22.4% 8.7% 11.0% 9.9% 1.4% 1.1%

EE10vV 6.4% 5.4% 4.1% 21.3% 7.5% 10.1% 7.6% 0.3% -0.1% -1.2%
FM20vV 7.9% 7.3% 6.1% 23.1% 9.4% 11.9% 10.1% 2.3% 2.0% 0.9% 2.0%

Runtime Comparison. The times are in seconds on the specified machines
Sparc5 Sparc5 Sparc5 Dec3000 Sparc10 Sparc5 Sparc SGI SGI SGI SGI

500AXP IPX R10000 R10000 R10000 R10000
5 circuits 5606 95 125 62 180
13 circuits 46376 283 390 173 508
16 circuits 2383 158 224 103 303
16 circuits 37570 874 1593 382 1442
22 circuits 15850 16206 445 637 249 733
23 circuits 3357 913 1654 409 1513

Table 8: Performance of our multilevel hypergraph bisection algorithm (hMETIS) against various previously developed algorithms.
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about four times more time than when it is running on R10000. Taking into consideration a scaling factor of four,

we see that bothhMETIS-EE20 andhMETIS-FM20 require less time than either PROP, CDIP-LA3f , CLIP-PROPf ,

PARABOLI, or GFM. In particular,hMETIS-EE20 is about four times faster than PROP, nine times faster than CDIP-

LA3 f and CLIP-PROPf , and much faster than PARABOLI, GFM and Optimized KLFM. Comparing against GMetis,

we see thathMETIS-EE20 requires roughly the same time, whereashMETIS-FM20 is about twice as slow. Note that

GMetis runsMETIS 100 times on each graph but each of these runs is substantially faster thanhMETIS, partly because

METIS is a highly optimized code for graphs, and partly because coarsening and refinement on hypergraphs is more

complex than the refinement schemes used inMETIS for graphs. However, bothhMETIS-EE20 and hMETIS-FM20

produce bisections that cut substantially fewer hyperedges than GMetis.

Looking at the amount of time required byhMETIS-EE10vV andhMETIS-FM20vV , we see that by using multi-phase

refinement we were in general able to further reduce the amount of time required by our partitioning algorithms. In

particular,hMETIS-EE10vV requires only 409 sec to partition all 23 circuits whereashMETIS-FM20vV requires 1513

seconds.

6 Conclusions and Future Work

As the experiments in Section 3 show, the multilevel paradigm is very successful in producing high quality hypergraph

partitionings in relatively small amount of time. The multilevel paradigm is successful because of the following

reasons. The coarsening phase is able to generate a sequence of hypergraphs that are good approximations of the

original hypergraph. Then, the initial partitioning algorithm is able to find a good partitioning by essentially exploiting

global information of the original hypergraph. Finally, the iterative refinement at each uncoarsening level is able to

significantly improve the partitioning quality because it moves successively smaller subsets of vertices between the

two partitions. Thus, in the multilevel paradigm, a good coarsening scheme results in a coarse graph that provides a

global view that permits computations of a good initial partitioning, and the iterative refinement performed during the

uncoarsening phase provides a local view to further improve the quality of the partitioning.

The multilevel hypergraph partitioning algorithm presented here is quite fast and robust. Even a single run of the

algorithm is able to find reasonably good bisections. With a small number of runs (e.g., 20) our algorithm is able to

find better bisections than those found by all previously known algorithms for many of the well-known benchmarks.

Our algorithm scales quite well for large hypergraphs. Due to the multilevel paradigm, the number of runs required

to obtain high quality bisections does not increase as the size of the hypergraph increases. High quality bisections

of hypergraphs with over 100,000 vertices are obtained in a few minutes on today’s workstations. Also, since the

coarsening phase runs in time proportional to the size of the hypergraph, the runtime of the scheme increases linearly

with hypergraph size. Furthermore, the scheme appears to be more powerful relative to the other schemes for larger

hypergraph (please refer to Figure 10). Restricting to only the larger hypergraphs (with 10K or more nodes) in the

benchmark set, we find thathMETIS-FM20vV performs 29.5%, 15.8%, 11.3%, 20.4%, 14.6%, 16.3%, and 8.4% better

than PROP, CDIP-LA3f , CLIP-PROPf , PARABOLI, GFM, GMetis, and Optimized KLFM, respectively. Note that

hypergraph-based multilevel scheme as presented in this paper significantly outperforms the graph based multilevel

scheme GMetis [21] that usedMETIS [27] to compute bisections of graph approximations of hypergraph. The reasons

for this performance difference are as follows. First hypergraph-based coarsening cause much greater reduction of the

exposed hyperedge-weight of the coarsest level hypergraph, and thus provides much better initial partitions than those

obtained with edge-based coarsening. Second, the refinement in the hypergraph-based multilevel scheme directly

minimizes the size of hyperedge-cut rather than the edge-cut of the inaccurate graph approximation of the hypergraph.

The power ofhMETIS over GMetis is much more visible on the largest benchmark golem3 on which even the best

of 100 different runs produced a cut that is 50% worse than 10 runs ofhMETIS-FM20vV . hMETIS also significantly

outperforms Optimized KLFM [17] by Hauck and Borriello even though they used powerful refinement schemes (FM
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Figure 10: The relative performance of hMETIS-FM20vV compared to rest of the schemes on the large benchmarks (with 10K or
more nodes).

with LA3 [4]). This is primarily due to the more powerful hyperedge coarsening schemes used inhMETIS.

It may be possible to improve the quality of the bisection produced by this algorithm in many ways. Further research

may identify better coarsening schemes that are suitable for a wider class of hypergraphs. New powerful variants of

the FM refinement schemes have been developed recently by Duttet al., [22, 23]. It will be instructive to include such

a refinement scheme during the uncoarsening phase to see if it makes the multi-level scheme more robust. However,

it is unclear if the added cost of these more powerful refinement schemes will result in a cost effective improvement

in the size of the bisection, because additional trials of the multilevel scheme can be made to potentially improve the

bisection.

A version ofhMETIS is available on the WWW at the following URL:http://www.cs.umn.edu/˜metis.
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