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FASTHENRY: A Multipole- Accelerated 
3-D Inductance Extraction Program 

Mattan Kamon, Michael J. Tsuk, and Jacob K. White 

Abstract- A mesh analysis equation formulation technique 
combined with a multipole-accelerated Generalized Minimal 
Residual (GMRES) matrix solution algorithm is used to compute 
the 3-D frequency dependent inductances and resistances in 
nearly order n time and memory where n is the number of 
volume-filaments. The mathematical formulation and numerical 
solution are discussed, including two types of preconditioners 
for the GMRES algorithm. Results from examples are given to 
demonstrate that the multipole acceleration can reduce required 
computation time and memory by more than an order of 
magnitude for realistic integrated circuit packaging problems. 

I. INTRODUCTION 

N high performance VLSI integrated circuits and integrated I circuit packaging, there are many cases where accurate 
estimates of the coupling inductances of complicated three- 
dimensional structures are important for determining final 
circuit speeds or functionality. The most obvious examples are 
the pin-connect structures used in advanced packaging. For 
the past decade, volume-element techniques have been used 
to compute self and coupling inductances of complex three 
dimensional geometries, but the techniques were intended for 
geometries which could be represented with at most a few 
hundred volume filaments. However, to be accurately ana- 
lyzed, the complicated structures currently used in integrated 
circuit packaging can require up to ten thousand filaments. 
Existing programs become extraordinarily computationally 
expensive for such large problems, and new algorithms must 
be developed whose computational cost and memory use 
grows more slowly with problem size. 

In this paper we describe FastHenry, a program for magneto- 
quasistatic analysis of complicated three-dimensional packages 
and interconnect. The program uses a standard discretization 
of an integral formulation of magnetoquasistatic analysis, but 
then reformulates the discretized equations using a mesh anal- 
ysis approach. The mesh formulation leads to a dense system 
of equations which is solved iteratively using a preconditioned 
Generalized Minimal Residual (GMRES) algorithm, a rapidly 
converging Krylov-subspace method. Finally, since the system 
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of equations is dense, the matrix-vector products required for 
each iteration of GMRES are expensive, and to reduce their 
cost, a multipole-accelerated algorithm is used. The combina- 
tion of these techniques yields a packaging analysis program 
whose computational complexity grows nearly linearly with 
the number of filaments required to discretize the conductors. 

In this paper we describe the above algorithms in some 
detail. We start, in the next section, with background material 
on the discretization of the integral equation formulation for 
magnetoquasistatic analysis of a multiconductor system. In 
Section 111, we describe the mesh formulation and iterative 
solver, and in Section IV, we describe how to multipole- 
accelerate the GMRES iterative matrix solution algorithm. 
Section V describes approaches for accelerating GMRES con- 
vergence using several different preconditioners. Experimental 
results are given in Section VI, and they demonstrate that the 
algorithms in FastHenry are accurate and more than an order of 
magnitude faster and use an order of magnitude less memory 
than approaches based on direct factorization. 

11. BACKGROUND FORMULATION 
Inductance extraction is the process of computing the com- 

plex frequency-dependent impedance matrix of a multiterminal 
conductor, such as an electrical package, under the magneto- 
quasistatic approximation [l]. For a system with n terminal 
pairs, let Z,.(w) E CnX" denote this impedance matrix at 
frequency w. Then, 

where I,, vs E C" are the vectors of terminal current and 
voltage phasors, respectively [2]. Note @it column i of of 2,. 
can be computed by setting entry i of I, to one, thejest to 
zero, and then computing the resulting voltage vector V,. The 
ith column of 2,. is then given by V,. 

A. Integral Equation 
Several integral equation-based approaches have been used 

to derive the 2,. associated with a given package or intercon- 
nect structure [3], [4]. These integral formulations are derived 
by assuming sinusoidal steady-state, and then applying the 
magnetoquasistatic assumption that the displacement current, 
EWE, is negligible. Given this, the vector potential, A, can be 
related to the resistive current, J, by 
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Fig. 1. 
is a bundle of 35 filaments. 

Single pin of a pin-connect divided into five section, each of which 

where V x A = pH, V . A = 0, and where V' is the volume 
of all conductors. 

Also, directly from Faraday's Law and the definition of A, 
it follows that 

E = -jwA - V@ (3) 

where @ is referred to as the scalar potential. 

and combining this relation with (2) and (3) results in 
Assuming the ideal conductor constitutive relation, J = aE, 

Then, by simultaneously solving (4) with the current con- 
servation equation, 

conductor current densities and the scalar potential can be 
computed. 

B. Discretization 

Given the magnetoquasistatic assumption, the current within 
a long thin conductor can be assumed to flow parallel to its 
surface, as there is no charge accumulation on the surface. 
Thus, for long thin structures such as pins of a package or 
connector, the conductor can be divided into $laments of 
rectangular cross-section inside which the current is assumed 
to flow along the length of the filament. In order to properly 
capture skin and proximity effects in these long, thin conduc- 
tors, the cross section of the conductor can be divided into 
a bundle of parallel filaments as shown in Fig. 1. It is also 
possible to use the filament approach for planar structures, 
such as ground planes, where the current distribution is two- 
dimensional. In such cases, a grid of filaments must be used, 
as in Fig. 2. Once the conductors are discretized into filaments, 
the interconnection of the current filaments can be represented 
with a planar graph, where the n nodes in the graph are 
associated with connection points between filaments, and the b 
branches in the graph represent the filaments into which each 
conductor segment is discretized. 

If the current density inside each filament is assumed to 
be constant, then the approximation to the unknown current 
distribution can then be written as 

b 

J(r) M Iiwi(r)li 
i=l 

Fig. 2. 
width. 

Discretization of a Ground Plane. Segments are one-third actual 
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where I; is the current inside filament i, li is a unit vector 
along the length of the filament and w;(r) is the weighting 
function which has a value of zero outside filament i, and 
l/ai inside, where ai is the cross sectional area. By defining 
the inner product of two vector functions, a and b, by 

(a,b) = L a - b d v  (7) 

and following the method of moments [5 ] ,  a system of b 
equations can be generated by taking the inner product of each 
of the weighting functions with the vector integral equation, 
(4). This gives 

where Zi is the length of filament i ,  a; is the cross section, 
@ A  and @ B  are the potentials on the filament end faces, and 
V, and 5' are the volumes of filaments i and j ,  respectively. 
Note that the right hand side of (8) results from integrating 
V@ along along the length of the filament, and that the right 
hand side is effectively the average potential on face A minus 
the average on face B. 

In matrix form, (8) becomes 

where I b  E C b  is the vector of b filament currents, 

&. - li 
2 -  

(Tu; 

is the b x b diagonal matrix of filament dc resistances, 

is the b x b dense matrix of partial inductances, and &A and 
@ B  are the averages of the potentials over the cross sections 
of the filament faces [6, 31. This can also be written as 

where 2 = R + j_wL E C b x b  is called the branch impedance 
matrix and v b  = @ A  - @B is the vector of branch Voltages. 
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C. Nodal Analysis Formulation 

nodes where filaments connect. This can be written as 
Current conservation, (3, must be enforced at each of n 

AIb = I ,  (13) 

where A E RnXb is the branch incidence matrix and I ,  is 
the mostly zero vector of source currents. Each row in A 
corresponds to a filament connection node, and each column 
to a filament current. Column i in A has two nonzero entries; 
-1 in the row corresponding to the node from which filament 
i's current leaves, and +I in the row corresponding to the 
node to which filament 2's current enters. 

Since V2@ = 0, the branch voltages, 6, can be derived 
from a set of node voltages, denoted 6,, as in 

Combining (12)-( 14) yields 

A Z - ~ A % ,  =I,.  (15) 

Notice that column i of 2, can now be computed by ap- 
propriately setting the source currents, I,, that correspond to 
fst equal to one (unit current through conductor i), and then 
solving (15) to compute the node voltages, a,. %e difference 
of appropriate node voltages gives the entries of V,, the vector 
of voltages across each of the conductors. 

In most programs, the dense matrix problem in (15) is 
solved with some form of Gaussian elimination or direct 
factorization. These programs avoid forming 2-l explicitly 
by reformulating (15) into the sparse tableau form, 

[: -R'] [c] = [;]e 

(C) 

Fig. 3. 
filaments, (c) modelled as a circuit. 

One conductor, (a) piecewise-straight sections, (b) discretized into 

in the graph representing the discretized problem. Kirchoff's 
voltage law, which implies that the sum of branch voltages 
around each mesh in the network must be zero, is represented 
by 

MVb = v, (17) 

where vb is the vector of voltages across each branch except 
for the source branches, V, is the mostly zero vector of source 
branch voltages, and M E Rmxb is the mesh matrix, where 
m = b' - n + 1 is the number of meshes and b' is the number 
of current filaments plus the number of source branches. 

The relationship between branch currents and branch volt- 
ages given in (12) still holds, and the mesh currents, that is, 
the currents around each mesh loop, satisfy 

Using direct factorization to solve (16) implies that the calcula- 
tion grows at least as b3, where again b is the number of current 
filaments into which the system of conductors is discretized 
[7]. For complicated packaging structures, b can exceed ten 
thousand, and solving (16) with direct factorization will take 
days, even using a high performance scientific workstation. 

111. THE MESH-BASED APPROACH 
The obvious approach to trying to reduce the cost of 

solving (16) is to apply iterative methods. However, such 
methods converge slowly because (16) contains equations of 
two different types. Another approach is to reformulate the 
equations using mesh analysis [2], and then apply an iterative 
method. 

A. Mesh Analysis 

In mesh analysis, a mesh is any loop of branches in the graph 
which does not enclose any other branches. Also, the currents 
flowing around any mesh in the network are the unknowns, 
rather than the node voltages. Mesh analysis is easiest to 
describe if it is assumed that sources generate explicit branches 

where I, E C" is the vector of mesh currents.-Note that 
each of the entries in the terminal current vector, I,, will be 
identically equal to some entry in I,. And_ similarly, each of 
the entries in the terminal voltage vector, V,, will correspond 
to some entry in V,. Fig. 3 illustrates the definitions of the 
above quantities for a single conductor example. 

Combining (1 8) with (12) and (17) yields 

M Z M ~ I ,  = v,. (19) 

The matrix MZM' is easily constructed directly. To compute 
the ith column of the reduced admittance matrix, Y, = Z;', 
solye (19) with a V, whose only nonzero entry corresponds 
to Vsi ,  and then extract the entries of I, associated with the 
source branches. 

. 

B. Using an Iterative Solver 
The standard approach to solving the complex linear system 

in (19) is Gaussian elimination, but the cost is m3 operations. 
For this reason, inductance extraction of packages requiring 
more than a few thousand filaments is considered computa- 
tionally intractable. To improve the situation, consider using 
a conjugate-residual style iterative method like GMRES [SI. 
Such methods have the general form given in Algorithm 1. 
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Note that the GMRES algorithm can be directly applied to 
solving (19), because the matrix M Z M t  is easily constructed 
explicitly. This is not the case for the nodal formulation, (13,  
as either the Z matrix must first be inverted or the sparse 
tableau form in (16) must be used. The sparse tableau form 
is disadvantageous because it is a much larger system of 
equations and it is difficult to solve iteratively as it contains 
two types of equations. 

When applying the GMRES algorithm to solving (19), the . .  cost of each iteration of the GMRES algorithm is at least order 
m2 operations. This follows from the fact that evaluating rk 
implies computing a matrix-vector product, where in this case 
the matrix is M Z M t  and is dense. Note also that forming 
M Z M t  explicitly requires order m2 storage. 

Fig. 4. The evaluation point potentials are approximated with a multipole 
expansion, 

It is possible to approximately compute M Z M t 1 2  in order 
n, 3.. . evaluation R.: points 

P. . . *  

IV. THE MULTIPOLE AFJPROACH 

r,. * b operations using a hierarchical multipole algorithm for a. 

electrostatic analysis [9]. Such algorithms also avoid explicitly 
forming M Z M t ,  and so reduce the memory required to order 
b. 

. .  
n2 charge points 

. *  . .  
A. The Electrostatic Analogy Fig. 5. 

expansion. 
The evaluation point potentials are approximated with a local 

To show how a multipole algorithm can be applied to 
computing M Z M t I k ,  consider expanding the matrix-vector 
product by separating Z into its real and imaginary parts, 

M Z M ~ I ~  = M R M ~ I ~  + ~ W M L M ~ I ~ .  (20) 

and therefore ( I j / a j )  (lj)p can be interpreted as a charge 
density due to filament j. 

The electrostatic analogy implies that LIb can be com- 

The MRMtI& term can be computed in order m operations 
because R is the diagonal matrix derived from the filament 
resistances, and M is the sparse mesh matrix with order m 
nonzero elements. Forming M L M t I k  is more expensive, 
requiring order m2 operations as L is dense. From (8) and (1 1) 
it is clear that entry i of the portion of the product, LMtI&, 
or equivalently Lib, is 

In terms of the vector potential, 

since substituting (6) in (2) gives 

The above decomposition shows that LIb can be evaluated 
by integrating the vector potential A over each filament [lo]. 
Also, from (23), each component of the vector potential can 
be considered a scalar electrostatic potential generated by 
a collection of charges. That is, for p E {1,2,3}, the pth 
component of A(r), denoted $p(r) E C, is a scalar potential 
given by 

_ _  - 
puted by combining the results of evaluating the electrostatic 
potential along b filaments due to b filament charges for 
three separate sets of filament charges. It is the evaluation of 
these electrostatic potentials which can be accelerated with the 
hierarchical multipole algorithm [9]. That is, the electrostatic 
potential due to b charges can be evaluated at b points in 
order b operations using the hierarchical multipole algorithm. 
Therefore, by using the multipole algorithm three times, LIb 
can be computed in order b operations. 

B. The Hierarchical Multipole Algorithm 

A complete description of the fast multipole algorithm is 
quite lengthy, and can be found in [9], or in the context of 3- 
D capacitance extracation, in [ll],  [12]. To see roughly what 
the algorithm exploits to achieve its efficiency consider the 
two configurations given in Figs. 4 and 5, depicted in 2- 
D for simplicity. In either figure, the obvious approach to 
determining the electrostatic potential at the nl evaluation 
points from the n2 point-charges involves n1 * n2 operations: 
at each of the n1 evaluation points one simply sums the 
contribution to the potential from n2 charges. 

An accurate approximation for the potentials for the case of 
Fig. 4 can be computed in far fewer operations using multipole 
expansions, which exploit the fact that r << R (defined in 
Fig. 4). That is, the details of the distribution of the charges 
in the inner circle of radius R in Fig. 4 do not strongly _ _ _  

b affect the potentials at the evaluation points outside the outer 
circle of radius r. It is also possible to compute an accurate 
approximation for the potentials at the evaluation points in the 

(24) 
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Fig. 6. The steps leading to the third row of the preconditioner P (“x” 
denotes a nonzero element). Note that for illustration, P3 is drawn as a block 
along the diagonal of P. 

inner circle of Fig. 5 in far fewer than n1* n2 operations using 
local expansions, which again exploit the fact that T << R (as 
in Fig. 5). In this second case, what can be ignored are the 
details of the evaluation point distribution. 

This brief description of the hierarchical multipole algorithm 
is only intended to make clear that the algorithm’s efficiency 
stems from coalescing charges and evaluation points using 
multipole and local expansions. A few points about the al- 
gorithm’s application to computing LIb should be considered 
however. When filaments are very near each other, a multipole 
expansion representation would lead to excessive error, so the 
interaction is evaluated directly using (1 1). Direct evaluations 
are also used for small groups of distant filaments when 
the computation required to build the multipole and local 
expansions exceeds the direct evaluation cost, thus making the 
algorithm adaptive. Therefore, when the hierarchical multipole 
algorithm is used to compute Lib, the evaluation is typically 
a combination of three sets of multipole and local expansion 
evaluations for the three components of the vector potential, 
along with a single set of nearby-filament direct evaluations. 

V. ACCELERATING ITERATION CONVERGENCE 
In general, the GMRES iterative method applied to solving 

(19) can be significantly accelerated by preconditioning if there 
is an easily computed good approximation to the inverse of 
M Z M t .  We denote the approximation to (MZMt)-’ by 
P, in which case preconditioning the GMRES algorithm is 
equivalent to using GMRES to solve 

(MZMt)PX = v, (25) 

for the unknown vector x. The mesh currents are then com- 
puted with I,,, = Px. Clearly, if P is precisely ( M Z M t ) - l ,  
then (25) is trivial to solve, but then P will be very expensive 
to compute. 

An easily computed good approximation to (MZMt) - l  
can be constructed by noting that the most tightly coupled 
meshes are ones which are physically close. To exploit this 
observation, for each mesh i ,  the submatrix of M Z M t  cor- 
responding to all meshes near mesh i is inverted directly. 
Then, the row of the inverted submatrix associated with mesh 
i becomes the ith row of P. This is illustrated in Fig. 6, 
where the submatrix is drawn as a block along the diagonal 
for illustration. We refer to this preconditioner as a “local- 
inversion” preconditioner, because it is formed by inverting 
physically localized problems. 

This preconditioner works well for pin-connect and other 
similar structures for which most of the meshes are small and 
thus what is ‘local’ is obvious. The fact that most of the meshes 

V 

Fig. 7. Two ground plane meshes due to external sources. One mesh includes 
the filaments along the path from point A to B and the other from C to D. 
The filaments that make up the plane are drawn one-third their actual width 
for illustration. 

are small can be observed from Fig. 3 by noticing that most of 
the meshes, such as those associated with Im3, Im6, and Img. 
are small and consist of only two physically close filaments. 
Comparatively, there are relatively few large meshes, such 
as Imlo, each which result from the presence of an external 
source and may include many filaments which span much of 
the physical problem domain. Therefore, much of the problem 
can be physically close to these large meshes. For this reason, 
the large meshes associated with sources cannot be included 
in the preconditioner, otherwise excessively large subproblems 
will be inverted directly. Since there are relatively few of these 
large meshes in a pin-connect structure and they are physically 
separate (only one per pin), not including the large meshes 
when forming the preconditioner does not significantly slow 
convergence. 

For ground-plane problems, with possibly hundreds of ex- 
ternal sources, the performance of local-inversion is severely 
degraded. As for pin-connects, many of the meshes are small; 
in this case, most meshes require four filaments (See Fig. 
2). Each external source, however, requires the formation of 
a large mesh traversing the ground plane between its two 
contact points as shown in Fig. 7. With hundreds of these 
meshes, many of them physically close and possibly partially 
overlapping, local-inversion without large meshes becomes 
ineffective. 

Other approaches to preconditioning which might help 
account for large mesh interactions involve somehow approx- 
imately factoring M Z M t  or directly factoring an approxi- 
mation to M Z M t .  Approximately factoring M Z M t  using 
an approach like incomplete LU factorization is ineffective 
however, because the diagonals of M Z M t  are not necessarily 
greater than the sum of the off-diagonals and therefore ignored 
terms can become more significant. Another approach is to 
sparsify M Z M t ,  possibly based on the sparsity pattern of 
MRMt ,  and then directly factor the sparsified matrix to 
construct a preconditioner. This is not necessarily effective 
since by discarding terms, the matrix may become far from 
positive definite in both the high and low frequency limits. 
This would make the preconditioned product, ( M Z M t ) P ,  
also far from positive definite in those limits. Instead, we 
consider sparsifying the branch inductance matrix, L, in some 
positive-definite manner, and then generate the preconditioner 
by directly factoring the sparse result, M(R + jwL’)Mt, 
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Convergence of GMRES using the sparsified-L preconditioner on 
circuit board package at various frequencies. 

Fig. 9. Half of a cerquad package. Thirty-five pins shown. 
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Fig. 11 .  Convergence of GMRES applied to the cerquad example with 
sparsified-L preconditioning (A), local inversion preconditioning (B), and no 
preconditioning (C). 
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Fig. 12. Convergence of GMRES applied to the PCB example with spar- 
sified-L preconditioning (A), local inversion preconditioning (B), and no 
preconditioning (C). 

Fig. 10. A portion of a printed circuit board directly undemeath a PGA 
package. Two resistive reference planes sandwiching 255 copper lines. Only 
the outline of the planes is drawn. 

where L’ is the sparsified branch inductance matrix [ 131. Note 
that in the low frequency limit, the whole problem is factored 
exactly. The simplest choice for L’ is the diagonal of L. For 
the printed circuit board example described below, between the 
low and high frequency limits, the required GMRES iterations 
monotonically and asymptotically increase toward the high 
frequency limit (See Fig. 8). Other choices for positive-definite 
sparsifications of L are possible, but care must be taken since 
with additional terms other than the diagonal of L, the M L M t  
matrix quickly becomes more dense and thus more expensive 
to factor. 

To compare the relative merits of the above preconditioners, 
consider the two industrial examples in Figs. 9 and 10. Fig. 10 
is thmy-five pins of a 68-pin cerquad package and Fig. 10 is a 
portion of a printed circuit board (PCB) that would be placed 
underneath a PGA package. The PCB example consists of two 
resistive reference planes sandwiching 255 copper lines. Each 
plane in the PCB has 53 external contacts not shown in the fig- 
ure. For this experiment, the cerquad package was discretized 
into 1308 filaments which corresponds to 1125 meshes and 
each reference plane in the PCB was discretized into a 20 x 20 
grid of meshes giving a total 1099 meshes including the copper 
lines. The solution error at high frequency as a function of 
GMRES iteration is plotted in Fig. 11 for the cerquad example, 

and in Fig. 12 for PCB example. As the plots clearly show, 
preconditioning substantially accelerates convergence, but the 
cerquad package example converges slightly more rapidly 
with the local-inversion preconditioner, and the PCB example 
converges substantially more rapidly with the sparsified-L 
preconditioner. Thus, using the sparsified-l preconditioner is 
generally effective, but for problems without ground planes 
having many external contacts, local-inversion may be slightly 
more effective. 

VI. RESULTS 

In this section we demonstrate the accuracy, utility, and 
computational efficiency of our multipole-accelerated version 
of FastHenry. For an accuracy comparison, we consider the 
portion of a 68-pin package, shown previously in Fig. 9. Each 
pin consists of eight to ten conductor sections. We discretized 
each section into 2 x 2 filaments. This generated a problem 
with 1368 branches for which M Z M t  is a 1061 x 1061 dense 
matrix. Note, using only four filaments per section is hardly 
sufficient to model the skin effect, though with the coarse 
discretization, the problem is small enough to make possible 
an accuracy comparison between direct factorization, GMRES, 
and multipole-accelerated GMRES. 

For the example package, the mutual inductance between 
pins 1 and 2 (labeled clockwise from the right) is much larger 
than the mutual inductance between pins 1 and 18 which are 
perpendicular to each other except for their vertical sections. 
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TABLE I 
COMPARISON OFTHE ACCURACY OF THE COMPUTED INDUCTANCE MATRIX ENTRIES 

BETWEEN DIREC~ FACTORIZATION, GMRES WITH EXPLICTI MATRIX-V~OR 
PRODUC~S, AND THE MULTIPOLE-ACCELERATED GMRES ALGORITHM. 
pin pair direct gmres multipole 
1 to 2 5.3 1870e+00 5.3 1867e+OO 5.3 1403e+OO 
1 to 18 3.68292e-02 3.68223e-02 3.71027e-02 

Fig. 13. 
traces is through the plane. Traces are widened for illustration. 

Two Traces over a Solid Ground Plane. The return path for the 

Fig. 14. Two Traces over a Divided Ground Plane. The return parth for 
the traces is through the plane. The divided portions are connected together 
toward the edges as shown. Traces are widened for illustration. 

To show that the approximations used by the hierarchical 
multipole algorithm are sufficiently well-controlled that small 
coupling inductances are computed accurately, consider the 
results in Table I. The mutual inductance between pins 1 and 
18 is more than two orders of magnitude smaller than the 
mutual inductance between pins 1 and 2, yet the solution 
computed using the multipole-accelerated algorithm is still 
within one percent of the solution computed using direct 
factorization. 

As an example of the utility of frequency dependent in- 
ductance extraction possible with FastHenry, consider the two 
cases of computing the mutual inductance between a pair of 
PC board traces over a resistive ground plane, as shown in Fig. 
13, and the same pair of traces over a divided ground plane, 
as in Fig. 14. The traces have their return paths through the 
ground plane. For the divided plane case, the two portions are 
electrically connected with short resistive "tethers" toward the 
outer edges as shown. The traces are 8 mils wide, 1 mil thick, 
8 mils above the 1 mil thick ground plane, and their center to 
center distance is 32 mils. 

If a current source is connected to one of the traces, current 
will flow down the trace and return through the plane. For the 
solid plane case, the current in the plane with a DC source 
produces a current distribution pattern which spreads to fill 
the width of the plane. Similarly in the divided plane case, 

. . . . . . . . _ - - _ - - . . . . . . . . .  . . . .  . - - - - - - _ . . - _ _ * . . . _ . .  . . . . .  
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Fig. 15. 
frequency. . 

Current Distribution in Solid Ground Plane at DC and high 
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Fig. 16. 
frequency. 

Current Distribution in Divided Ground Plane at DC and high 
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Fig. 17. Mutual inductance between traces. 

the current spreads throughout most of the plane, but narrows 
as it crosses the tethers. The situation at a high frequency is 
quite different. For the solid plane, the ground plane return 
current is concentrated directly underneath the trace, but for 
the divided plane the current leaves the path undemeath the 
trace to cross the tethers (See Figs. 15 and 16). 

This difference has a marked effect on the mutual inductance 
between the traces as the frequency rises. For the solid plane, 
as the frequency rises, the current gathers underneath the trace 
and the mutual inductance drops by two orders of magnitude, 
however for the divided plane, little decrease is observed with 
frequency (See Fig. 17). 

To demonstrate the computational efficiency of FastHenry, 
we successively refined a coarse discretization of the ground 
plane of the example shown in Fig. 13. As the discretization 
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Fig. 18. Comparison of the CPU time to compute the reduced inductance 
matrix for two traces over a solid plane using direct factorization, GMRES, 
and GMRES with multipole acceleration. 
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Fig. 19. 
products and using the multipole algorithm. 

Comparison of the memory required using explicit matrix-vector 

of the plane is refined, the size of the problem will grow 
quickly, making the memory and CPU time advantage of the 
multipole-accelerated, local-inversion-preconditioned GMRES 
algorithm apparent (see Figs. 18 and 19). As the graphs clearly 
indicate, the cost of direct factorization grows like m3, the cost 
of explicit GMRES grows as m2, but the cost of multipole- 
accelerated GMRES grows only linearly with m. In addition, 
the memory requirement for multipole-accelerated GMRES 
algorithm grows linearly with m, but grows like m2 for either 
explicit GMRES or direct factorization. In particular, for a 
12,802 mesh problem, the multipole accelerated algorithm 
is more than two orders of magnitude faster than direct 
factorization, and uses an order of magnitude less time and 
memory than explicit GMRES. 

A significantly more complex problem and one that uses the 
sparsified- L preconditioner, is the high frequency analysis of 
a portion of a PCB described previously and shown in Fig. 
10. To properly model the current flow in the two reference 
planes surrounding the copper lines, the planes must be finely 
discretized. Here again, as the discretization is refined, the 
cost of direct factorization grows like m3, the cost of explicit 
GMRES grows as m2, but the cost of multipole-accelerated 
GMRES grows only linearly with m as shown in Fig. 20. 
For this PCB example, the associated impedance matrix is 
18 x 18, while the pair of traces over plane example has 
only a 2 x 2 impedance matrix. Thus, nine times as many 
GMRES solutions are required to compute the PCB example’s 
impedance matrix. Even so, for a 10,000 mesh problem, the 
multipole-accelerated GMRES algorithm is still over an order 
of magnitude faster in computation time. 

lo5 Number 01 Meshes 10‘ 

Fig. 20. Comparison of the CPU time to compute the reduced inductance 
matrix for the FCB package using direct factorization, GMRES, and GMRES 
with multipole acceleration. 

VII. CONCLUSION AND ACKNOWLEDGMENT 
In this paper, we show that 3-D inductance extraction can 

be substantially accelerated using the hierarchical multipole 
algorithm. Our multipole-accelerated inductance extraction 
program, FastHenry, was shown to be more than two orders 
of magnitude faster than direct factorization when used to 
extract the inductance matrix for realistic packaging examples. 
In addition, the multipole-accelerated algorithm uses an order 
of magnitude less time and memory than the explicit GMRES 
algorithm given in [ 141. Finally, the sparsified preconditioner 
insures rapid convergence even for very irregular problems, 
making FastHenry a robust program. The authors would like 
to thank Keith Nabors, Songmin Kim, Dr. Sami Ali and Joel 
Phillips for their help in understanding inductance. In addition, 
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