
1204 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

Power Grid Analysis Using Random Walks
Haifeng Qian, Sani R. Nassif, Senior Member, IEEE, and Sachin S. Sapatnekar, Fellow, IEEE

Abstract—This paper presents a class of power grid analyzers
based on a random-walk technique. A generic algorithm is first
demonstrated for dc analysis, with linear runtime and the desir-
able property of localizing computation. Next, by combining this
generic analyzer with a divide-and-conquer strategy, a single-level
hierarchical method is built and extended to multilevel and “vir-
tual-layer” hierarchy. Experimental results show that these algo-
rithms not only achieve speedups over the generic random-walk
method, but also are more robust in solving various types of indus-
trial circuits. Finally, capacitors and inductors are incorporated
into the framework, and it is shown that transient analysis can
be carried out efficiently. For example, dc analysis of a 71 K-node
power grid with C4 pads takes 4.16 s; a 348 K-node wire-bond dc
power grid is solved in 93.64 s; transient analysis of a 642 K-node
power grid takes 2.1 s per timestep.

Index Terms—Capacitance, inductance, physical design, power
grid, random walk, simulation, supply network.

I. INTRODUCTION

POWER grid analysis is an indispensable step in high-per-
formance very large scale integrated circuit (VLSI) de-

sign. In successive technology generations, the voltage
decreases, resulting in narrower noise margins. Meanwhile, IR
drops on power grids become worse as wire resistances increase
due to the reduced interconnect wire widths, and the currents
through the grid increase. Since power grids play an important
role in determining circuit performance, it is critical to analyze
them accurately and efficiently to check for signal integrity.

A typical power grid may be represented by the model in
Fig. 1, consisting of wire resistances, wire inductances, wire
capacitances, decoupling capacitors, pads, and current
sources that correspond to the currents drawn by logic gates
or functional blocks. There are two subproblems to power grid
analysis: dc analysis to find steady-state node voltages, and
transient analysis, which is concerned with finding voltage
waveforms considering effects of capacitors, inductors, and
time-varying current waveform patterns.

The dc analysis problem is formulated as

(1)

where is the conductance matrix for the interconnected re-
sistors, is the vector of node voltages, and is a vector of

Manuscript received November 29, 2003; revised October 8, 2004. This work
was supported in part by the Semiconductor Research Corporation (SRC) under
Contract 2003-TJ-1092, by the National Science Foundation (NSF) under award
CCR-0205227, and by an IBM Faculty Award.

H. Qian and S. S. Sapatnekar are with the Department of Electrical and
Computer Engineering, University of Minnesota, Minneapolis, MN 55455
USA (e-mail: qianhf@ece.umn.edu; sachin@ece.umn.edu).

S. R. Nassif is with the IBM Austin Research Laboratory, Austin, TX 78758
USA (e-mail: nassif@us.ibm.com).

Digital Object Identifier 10.1109/TCAD.2005.850863

Fig. 1. Part of a typical power grid model.

independent sources. Traditional approaches exploit the sparse
and positive definite nature of to solve this system of linear
equations for . However, the cost of doing so can become pro-
hibitive for a modern-day power grid with hundreds of millions
of nodes, and this will only become worse as the circuit size is
ever growing from one technology generation to the next. Fur-
thermore, in recent technologies, inductive effects in the top few
metal layers can no longer be ignored. The transient analysis
problem involves the solution of an equation similar to (1) at
each time point in the analysis. Especially when mutual induc-
tances are taken into consideration, the left-hand-side matrix,
which contains the contribution of capacitors and inductors, is
significantly denser than that for dc analysis, making it even
more expensive even at a single time point.

Different circuit models and simulation techniques have been
developed for power grid analysis, to handle large problem size,
and to incorporate capacitances and inductances efficiently [2],
[4], [5], [8], [16], [19], [23], [29], [30], [33], [34], [39]. Among
them, several methods are proposed to achieve a lower time
and space computational complexity by sacrificing a certain de-
gree of accuracy. For example, [19] proposes a grid-reduction
scheme to coarsen the circuit recursively, solves a coarsened cir-
cuit, and then maps back to find the solution to the original cir-
cuit. The approach in [39] utilizes the hierarchical structure of a
power grid, divides it into a global grid and multiple local grids,
and solves them separately.

In this paper, we apply a statistical approach based on random
walks to solve the problem of power grid analysis. Random
walks correspond to a classical problem in statistics, and their
use in solving linear equations dates back to as early as [10] and
[37]. Subsequently, several other solvers have been developed

0278-0070/$20.00 © 2005 IEEE

QIAN et al.: POWER GRID ANALYSIS USING RANDOM WALKS 1205

[12], [32], [35]. The work in this paper is inspired by [9]. A
brief overview of these works is provided in Section II-A.

This paper is organized as follows. Based on the above mathe-
matical foundation, we apply random walks for power grid anal-
ysis and develop a basic dc analysis algorithm in Section II that
we call the generic method. Next, in Section III, we combine
the divide-and-conquer idea of [39] with this generic random-
walk method and present a hierarchical random-walk method.
These algorithms are extended to handle RKC transient anal-
ysis (where is the inverse inductance, or susceptance, ma-
trix) with capacitors and inductors in Section IV. We use test
results to show that the proposed algorithms provide good ac-
curacy–runtime tradeoffs and are faster than traditional methods
with acceptable error levels in Section V. We demonstrate that
the proposed algorithms have the feature of localizing computa-
tion, which makes them especially useful when only part of the
grid is to be analyzed. Finally, we present concluding remarks
in Section VI. This paper is an extended description of the work
in [25] and [26].

II. THE GENERIC RANDOM-WALK METHOD

This section focuses on dc analysis only and is organized as
follows. Section II-A provides a summary of previous works
that use random walks to solve linear equations, Section II-B
presents the theoretical basis of the generic algorithm, followed
by a simple illustrative example in Section II-C. The time com-
plexity and limitations of the generic method are discussed in
Section II-D and Section II-E, respectively.

A. A Brief History

A random walk, also viewed as a discrete abstraction of the
physical phenomenon of Brownian motion, is one category of
the general Monte Carlo methods of numerical computation. In
this paper, we employ this method to solve systems of linear
equations that are diagonally dominant. Historically, the theory
that underlies this work was developed on two seemingly inde-
pendent tracks, related to the analysis of potential theory [6],
[12], [13], [17], [18], [22] and to the solution of systems of
linear equations [10], [12], [32], [35], [37]. However, the two
applications are closely related, and research on these tracks
has resulted in the development of analogous algorithms, some
of which are equivalent. These mathematical works have found
meaningful applications in electrical engineering [1], [3], [20],
[28].

Along the first track, the goal has been to solve Laplace’s
equation in a closed region with given boundary values (i.e.,
under Dirichlet conditions), and it was proven that the value at
a location can be estimated by observing a number of Brownian
particles that start from this location and travel until they hit
the boundary, and taking the average of the boundary values at
the end points [6], [13], [18]. An important improvement was
proposed in [22], which proved that, instead of simulating tiny
movements of a Brownian particle, the particle can leap from a
location to a random point on a sphere that is centered at this lo-
cation, and that shapes other than a sphere can be used, given

the corresponding Green function.1 Another important devel-
opment [17] extended the theory to solving Poisson’s equation
under Dirichlet conditions and more general elliptic differential
equations (under certain restrictions).

The second parallel track, which considered the solution of
systems of linear equations, will be discussed in greater de-
tail here, since it is directly related to our algorithm. The first
work that proposed a random-walk-based linear solver is [10],
although it was presented as a solitaire game of drawing balls
from urns. It was proven in [10] that, for any matrix such that

, where denotes the eigenvalue
of a matrix, a game can be constructed and a random variable2

can be defined such that , where
is an entry of the inverse matrix of . In [10], the variable
is a “payment” when exiting the game. Under certain settings,
the algorithm of [10] is equivalent to the “home” and “award”
concepts in our theory, which is presented in the next section.

Two years later, the work in [37] continued this discussion
in the formulation of random walks and proposed the use of
another random variable3 to replace . A “mass” value was
defined for every step in a walk, and was defined as the total
amount of “mass” carried through a walk. It was proven in [37]
that , and it was argued that, in certain special
cases, has a lower variance than , and hence is likely to
converge faster. Under certain settings, the algorithm of [37] is
equivalent to the “motel” concept in our method.

Both [10] and [37] have the advantage of being able to com-
pute part of an inverse matrix without solving the whole system,
in other words, localizing computation. Over the years, various
descendant stochastic solvers have been developed [12], [32],
[35]. Some of them, e.g., [32] and [35], do not have the prop-
erty of localizing computation.

From a different perspective, the work in [9] aimed at inves-
tigating random walks by using electrics. It drew a parallel be-
tween resistive networks and random walks and interpreted the
relationship between conductances and probabilities. With un-
derlying rules similar to [10], [9] proved many insightful con-
clusions linking statistics and electrics.

In summary, the theory of our proposed generic random-walk
algorithm is directly inspired by [9] but is mathematically a
combination of [10] and [37], and it inherits the property of lo-
calizing computation. Not surprisingly, in potential theory, there
is a method that can be viewed as roughly parallel to our basic
framework: the counterpart is [17]. Besides these legacies, our
algorithm also includes efficiency-improving techniques, which
are not seen in previous works, and which play a crucial role in
obtaining a performance that is practically useful.

B. Principles

We will focus our discussion on the analysis of a grid,
pointing out the difference for a ground grid where applicable.
For the dc analysis of a power grid, let us look at a single node

in the circuit, as illustrated in Fig. 2. Applying Kirchoff’s

1Many years later, this evolved to [20], a successful Monte Carlo algorithm
in VLSI design automation.

2The notation that is used in [10] forX isG, but we have changed the notation
since we use G to signify another quantity in our discussion.

3Again, the notation is changed for clarity: [37] referred to this asM .

1206 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

Fig. 2. Representative node in the power grid.

Current Law, Kirchoff’s Voltage Law, and the device equations
for the conductances, we have

(2)

where the nodes adjacent to are labeled degree ,
is the voltage at node , is the voltage at node , is the

conductance between node and node , and is the current
load connected to node . Equation (2) can be rewritten as

(3)

We can see that this implies that the voltage at any node is a
linear function of the voltages at its neighbors. We also observe
that the sum of the linear coefficients associated with the ’s is
1. For a power grid problem with non- nodes, we have

linear equations similar to the one above, one for each node.
Solving this set of equations gives the exact solution.

Now let us look at a random walk “game,” given a finite
undirected connected graph (for example, Fig. 3) representing
a street map. A walker starts from one of the nodes and goes
to an adjacent node every day with probability for

degree , where is the current node, and degree
is the number of edges connected to node . These probabilities
satisfy the following relationship:

(4)

The walker pays an amount to a motel for lodging everyday
until he/she reaches one of the homes, which are a subset of the
nodes. If the walker reaches home, he/she will stay there and be
awarded a certain amount of money . We will consider the
problem of calculating the expected amount of money that the
walker has accumulated at the end of the walk, as a function of

Fig. 3. Instance of a random-walk “game.”

the starting node, assuming he/she starts with nothing. This gain
function is therefore defined as

total money earned walk starts at node (5)

It is obvious that

one of the homes (6)

For a nonhome node , assuming that the nodes adjacent to
are labeled degree , the variables satisfy

(7)

For a random-walk problem with nonhome nodes, there are
linear equations similar to the one above, and solving this set

of equations gives the exact values of at all nodes.
It is easy to draw a parallel between this problem and power

grid analysis. Equation (7) becomes identical to (3), and (6) re-
duces to the condition of perfect nodes if

degree

(8)

The formulation for ground net analysis is analogous; the
major differences are that 1) the ’s have negative values and
2) is replaced by zero. As a result, the walker earns money
in each step but gets no award at home.

In other words, for any power grid problem, we can construct
a random-walk problem that is mathematically equivalent, i.e.,
characterized by the same set of equations. It can be proven that
such an equation set has, and only has, one unique solution [9].
It is both the solution to the random-walk problem and the solu-
tion to the power grid problem. Therefore, if we find an approx-
imated solution for the random walk, it is also an approximated
solution for the power grid.

QIAN et al.: POWER GRID ANALYSIS USING RANDOM WALKS 1207

A natural way to approach the random-walk problem is to
perform a certain number of experiments and use the average
money left in those experiments as the approximated solution.
If this amount is averaged over a sufficiently large number of
walks by playing the “game” a sufficient number of times, then
by the law of large numbers [38], an acceptably accurate so-
lution can be obtained. This is the idea behind the proposed
generic algorithm that forms the most basic implementation.

According to the Central Limit Theorem [38], the error is a
0-mean Gaussian variable with variance inversely proportional
to , where is the number of experiments. Thus, we have
an accuracy–runtime tradeoff. Instead of fixing , we use a
stopping criterion driven by a user-specified error margin :

99 (9)

where is the estimated voltage from experiments. If the
variance of these results is , the above criterion becomes

(10)

where is the standard normal complementary cumulative dis-
tribution function, defined as

According to condition (10), is decided on the run and has
different values for different nodes. It is worth noting that for
each node, for a fixed confidence level, .

In (9), (10), and in our implementation, the 99% confidence
level is used for illustrative purpose. In practice, the stopping
criterion (9) can be adaptive to different node voltages: for a
node with high estimated voltage drop, i.e., a dangerous node,
we can switch the criterion to a higher confidence level, a lower

, or both; for a node with low estimated voltage drop, i.e., a
safe node, the computation stops after satisfying a relaxed cri-
terion with lower confidence level or larger . In other words,
the computation for a node voltage starts with a low-accuracy
criterion; when this accuracy level is met, a decision is made
based on the estimated voltage drop at this time: if this value
is below a certain threshold, the computation stops; otherwise,
the algorithm switches to a higher accuracy criterion and con-
tinues; when the new accuracy level is met, another decision is
made based on the new estimated voltage drop, and even higher
accuracy can be used if necessary, and so on. Using this adap-
tive strategy, more runtime would be spent on potential failure
nodes, to get more accurate voltages, while safe nodes only get
coarse estimation.

A desirable feature of the proposed algorithm is that it local-
izes the computation, i.e., it can calculate a single node voltage
without having to solve the whole circuit. This is especially
meaningful when the designer knows which part of the power
grid is problematic, or when the designer makes a minor change
in the design and wishes to see the impact. For example, if

the objective of the analysis is to find the voltage at a single
node, then this approach can perform a number of random walks
starting from that node. In a typical power grid that has a suffi-
cient number of pads that are reasonably close to any node, such
a walk is likely to terminate soon at a home. As compared with
a conventional approach that must solve the full set of matrix
equations to find the voltage at any one node, the computational
advantage of this method could be tremendous, and we validate
this in Section V.

When solving for multiple node voltages, an efficiency-en-
hancing technique can be used. Since the voltage at each already
calculated node is known, it becomes a new home in the game
with an award amount equal to its calculated voltage. In other
words, any later random walk that reaches such a node termi-
nates and is rewarded a money amount equal to the calculated
voltage. This operation speeds up the algorithm dramatically, as
there are more terminals to end a walk, and therefore the av-
erage number of steps in each walk is reduced. At the same
time, this operation improves accuracy without increasing ,
because each experiment that ends at such a node is equivalent
to multiple experiments. A cost of this speedup is that the error at
a calculated node also affects later computation, in other words,
this speedup technique is not 100% positive, but another accu-
racy-runtime tradeoff. Practically, it is such a good deal that we
can almost ignore the cost: errors tend to cancel each other, and
the impact on accuracy is minor, while the speedup is dramatic.

Due to this speedup technique, the nodes computed early in
the algorithm and those computed late are treated differently.
For the first node, random walks are carried out in the original
game where home nodes correspond to voltage sources only. As
more and more nodes are calculated, they all become new homes
in the game, and random walks from later nodes are carried out
in a game with a larger and larger number of homes. Therefore,
the ordering of nodes could potentially affect the performance.
In the implementation, we use the read-in ordering without any
processing, which is close to a random ordering; a truly random
ordering can be easily obtained by permuting the read-in or-
dering if necessary. We prefer a random ordering, because as
computation proceeds, the density of home nodes is increased
evenly throughout the whole circuit, and the performance of the
algorithm is stable. Finally, we want to point out that, stopping
criterion with the same error margin is applied to all nodes,
regardless of their positions in the ordering, and that we only
need to compute nodes that are of interest, which, in the context
of the generic algorithm, refer to the bottom-metal-layer nodes
only.

C. A Simple Example

In order to show how the proposed algorithm works, let us
look at a simple circuit, as shown in Fig. 4. The true voltages
at node A, B, C, and D are 0.6, 0.8, 0.7, and 0.9, respectively.
Applying (8) to this circuit, we construct an equivalent random-
walk game, as shown in Fig. 5, where numbers inside circles
represent motel prices and home awards, and numbers beside
the arrows represent the transition probabilities from each node
to a neighboring node.

To find out the voltage of node A, we start the walker at node
A with zero balance. He/she pays the motel price of $0.2, then

1208 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

Fig. 4. Simple circuit example.

Fig. 5. Random-walk game corresponding to the circuit in Fig. 4.

TABLE I
CONVERGENCE OF THE SIMPLE EXAMPLE. � IS THE ERROR MARGIN IN

(9), V IS THE ESTIMATED VOLTAGE AT NODE A, M IS THE

ACTUAL NUMBER OF WALKS USED

either goes up with probability 0.33 to the terminal and ends this
walk, or goes down with probability 0.67 to node C, then pays
$0.022, and continues from there. Such a walk could be very
short: for example, the walker may directly go up and end up
with $0.8. Alternatively, the walk could be very long if it keeps
going back and forth between A, B, C, and D, and the walker
could end up with very little money; however, the probability of
such a walk is low. We perform such experiments and take
the average of the results as the expected gain during one
walk and change the units from dollars to volts to obtain the
estimated voltage of node A.

Table I shows how the estimated voltage converges to the true
value of 0.6 V. The five columns in the table represent five dif-
ferent runs of the proposed algorithm, corresponding to different
seeds for the random number generator.

Finally, as discussed in Section II-B, when we move on to
other nodes after computing node A, node A can be used as a
new home node, with an award equal to its estimated voltage.

D. Runtime Trends

Due to the speedup technique at the end of Section II-B,
the number of walks for a node decreases as computa-
tion proceeds. However, for flip-chip power grids (designs
with C4 packaging) with similar structures, it is practically
upper-bounded by certain constant , which corresponds
to the number of walks needed to compute the node with the
maximum , according to (10). Such a “difficult” node is
likely to be the one that is the most faraway from C4 pads, for
example, at the center of a square outlined by four adjacent C4
pads. If we consider two imaginary flip-chip circuits with the
same structure around each C4 pad, one having a certain size
and the other being infinitely large (infinitely many C4 pads),
and if we consider the center node of a square outlined by
four adjacent C4 pads in each of the two circuits, the two
values would be roughly the same. Therefore, the maximum

is independent of the circuit size, and consequently is
independent of the circuit size.

In the implementation, we will impose a constant limit on
the number of steps in a walk; details are provided in Section V.
Thus, for a power grid with non- nodes, we can estimate
worst-case time complexity as , where each unit cor-
responds to one random-number generation, a few logic opera-
tions, and one addition. Therefore, the worst-case runtimes are
linear in the circuit size for flip-chip designs.

Because of the fact that decreases as computation pro-
ceeds, the above worst-case discussion is an overestimate, and
we will now look at the actual runtime, which can be viewed as
the average-case runtime or the typical runtime. In order to argue
that the average runtime per node is independent of the circuit
size, let us consider two circuits with sizes and , which are
each solved with random ordering of nodes. At the same stage
of the computation, for example, when 5 nodes are solved
in the first circuit and 5 nodes are solved in the second cir-
cuit, because the densities of “homes” are the same (roughly
5%) in both circuits, the average lengths of walks are the same
in both circuits, and the typical values are also the same
in both circuits, which means that the typical values are the
same in both circuits at this time. Therefore, the CPU time for
the 5 node in the first circuit is the same as the CPU
time for the 5 node in the second circuit, in the av-
erage sense, and this is true for other percentage values as well.
Therefore, the overall average runtime per node, which is equal
to the average over all percentages, should be the same value
for both circuits and independent of circuit sizes. Therefore, for
flip-chip designs with similar structures, the overall runtime is
linear in circuit size. This point is validated by the following
simulations.

Four artificial circuits are constructed to verify the linearity
of the average runtime in the case of flip-chip designs, and the
results are listed in Table II. They are made with the same node-
count to pad-count ratio. They all have a regular two-dimen-
sional (2-D) grid structure, with the nodes forming a 2-D array
of size 50 50, 100 100, 500 500, and 1000 1000, re-
spectively, each edge of the grid being a 1 resistor, and each
node having a current load of 0.05 mA. The perfect voltage
sources are at the intersections of the horizontal

QIAN et al.: POWER GRID ANALYSIS USING RANDOM WALKS 1209

TABLE II
TIME COMPLEXITY OF THE GENERIC ALGORITHM FOR

ARTIFICIAL FLIP-CHIP DESIGNS

Fig. 6. Isolated low resistance forms a “trap.”

wires and the vertical wires, where and are non-
negative integers. (This structure is not realistic, but serves the
purpose of time-complexity study.) The range of voltage drop
is roughly the same 0–0.1 V, for all four circuits, and they are
solved with the same accuracy 5 mV error 5 mV
99 , and with random ordering of nodes. The metric of com-
plexity is the total step number of all the walks, where each
step corresponds to one random-number generation, a few logic
operations, and one addition. Table II shows a sublinear com-
plexity for small sizes and more strictly linear complexity for
larger sizes. These results agree with the earlier discussion of
linear runtime.

For wire-bond power grids, however, the time complexity of
the generic algorithm is superlinear.

E. Limitations of the Generic Method

In Section V, we will use simulation results to show that the
generic method has good performance for some industrial cir-
cuits. However, it also has been found that the generic method
requires large runtimes for certain types of circuits.

One issue is shown in Fig. 6. If a single low resistance is
isolated by other high resistances, because the random walker
is more likely to choose the direction with lower resistance,
he/she could spend many steps oscillating between nodes and
. Our algorithm employs a preprocessing step to detect such

isolated low resistances and uses the transformation [27]
to remove them without losing accuracy. In general, a subgraph
formed by several low resistances can be isolated by other high
resistances and form a “trap,” and the corresponding discussion
is provided in Appendix III.

Although the above problem can be taken care of inside the
generic random-walk framework, the following are two other
major problems that cannot.

1) In wire-bond power grids, a small number of perfect
voltage sources are located on four sides of the top
metal layer, and a walk from a central node takes a very
large number of steps to terminate. Fig. 7 illustrates this
power grid structure. In general, for a large graph with
very few homes, the runtime is high.

2) In certain power grids, wire resistances in a metal layer
are significantly larger than the resistances of the vias
connecting the layer to the next metal layer beneath
it. Because the random walk is more likely to choose

Fig. 7. Schematic of a wire-bond power grid structure with peripheral V
pins.

Fig. 8. Barrier effect. Gray rectangles represent high wire resistances, white
rectangles represent low via resistances, and curves show the route of the
random walker when he/she attempts to approach the top metal layer.

a direction with lower resistance, this structure forms
a barrier that makes it difficult for the walker to go
up to the top layer and reach a perfect voltage source.
Fig. 8 illustrates this effect. Note that this is different
from the isolated-resistor problem in Fig. 6. These vias
are not isolated by high resistances but are located be-
tween relatively well-connected lower layers and rel-
atively bad-connected upper layers. Even if the vias
are shorted, or removed by the transformation,
random walks are still likely to stay in the lower layers.
In real-life circuits, this is the situation where the pitch
of power wires in one metal layer is much larger than
the pitch in the next layer beneath it.

It is worth noting the fundamental reason for the first problem.
The way that random walks estimate a node voltage drop is to
capture the significant paths of current supply. Therefore, the de-
tailed structure and current demand distribution of a power grid
affect the runtime of random walks. For most flip-chip designs,
the current load at a node is mainly supplied by several nearby
voltage pads; therefore, random walks only account for these
relatively short paths, and random walks are relatively short. For
chips where there exists long-distance current delivery, which is
true for wire-bond power grids, random walks try to capture all
devices that significantly affect the target node, and hence can
be very long.

In the next section, we will introduce the hierarchical
random-walk method that overcomes these problems naturally
and speeds up solutions to industrial circuits.

1210 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

Fig. 9. Hierarchical strategy in [39].

III. HIERARCHICAL RANDOM-WALK METHODS

This section begins with a mathematical derivation of the
single-level hierarchical method in Section III-A; the advan-
tages of this method are discussed in Section III-B. Section III-C
applies this concept to develop two variations, the multilevel
method and the virtual-layer method, which are proven to be
effective on industrial circuits. The discussion will be focused
on dc analysis only.

A. Principles

The hierarchical strategy in [39] is illustrated in Fig. 9. The
whole power grid is divided into a global grid and multiple local
grids, and interfacing nodes are defined as ports. From the global
perspective, the behavior of a local grid is completely described
by the following equation:

(11)

where is the vector of currents flowing from the global
grid into this local grid, is the vector of port voltages,
is a square matrix, and is a constant vector. In dc analysis, ma-
trix represents the effective conductances between the ports,
and vector represents local current sources.

The algorithmic flow of [39] is shown in Fig. 10. First, macro-
models, i.e., the matrices and vectors, are extracted from
local grids. Next, the set of linear equations for the global grid is
solved and port voltages obtained. Finally, local grids are solved
individually. For realistic power grids, compared with a direct
solver that solves (1), this algorithm solves a smaller equation
set in each step. When the number of ports is reasonably small,
and the matrices are reasonably sparse, a speedup is achieved.

1) Constructing and : An exact method for calculating
and is provided in [39], and 0–1 integer linear programming

(ILP) is used to make sparse, at the expense of a bounded loss
in accuracy. We will now demonstrate a random-walk approach
to build and and to achieve sparsity naturally as a part of
this procedure.

The proposed macromodeling approach is based on the fol-
lowing lemma, which allows us to symbolically estimate one
node voltage as a linear function of voltages at an arbitrary set
of nodes. Its proof is provided in Appendix I.

Lemma 1: If we define nodes to be the home
nodes, i.e., terminals where random walks end, then for any
node , the estimated using random walks is in the form

(12)

Fig. 10. Algorithm flow in [39].

Fig. 11. Branches of I .

where is a constant, is the voltage at terminal node , and
coefficients have the format

number of walks ending at
(13)

satisfying the relationship

(14)

This lemma states that, given any set of nodes ,
and for any node , we can find the values and
by running random walks such that the symbolical equation (12)
is approximately true for any possible voltages at those nodes.
The meaning of is given by (13), while is the average motel
expense in one walk.

To construct and , we look at the ports one by one. Fig. 11
illustrates an example of a port that has several connections to
the global grid and to a local grid. The current flowing from the
global grid through into the local grid is

(15)

where the neighbors of inside the local grid are labeled
, and are the currents flowing from

port to each of them.
Now consider node , one of the neighbors of : this could be

either an internal node or a port node. If node is a port

(16)

where and are voltages at node and node , respec-
tively, and is the conductance between and . On the other
hand, if node is an internal node, we may run random walks
from node , with the ports being the terminals at which walks
end, and estimate symbolically. Since there is usually no in-
ternal pads in a local grid, the set of all possible

QIAN et al.: POWER GRID ANALYSIS USING RANDOM WALKS 1211

terminals is .
By Lemma 1, the following equation can be constructed.

(17)

Returning to the scenario in Fig. 11, we see that for any node
, one of the ports in (17) is itself. The current from port

to an internal node is

(18)

Equation (16) can be viewed as a special case of (18). Substi-
tuting (16) and (18) into (15), we obtain

where

node for

node

node (19)

This is what we need: is a row in matrix , and
the term is an element in vector . So far, we have found the
entries in and that correspond to port . For every port node
of a local grid, we do the same thing, i.e., we construct (17) and
(18) by running random walks from every internal neighbor of
the port node and then obtain (19) by adding up (18)’s. This
way, we can construct matrix row by row and vector entry
by entry.

The sparsity of the matrix is controlled by the number of
random-walk experiments . When (17) is constructed, it is an
approximation to the real relation between and port voltages,
which would be a full equation; in other words, would
be all nonzero values in the exact equation. However, due to the
relationship shown in (13), any coefficient below cannot
appear in the constructed equation (17). Therefore, effectively,
insignificant terms are automatically dropped in the process of
Lemma 1. This eventually leads to the sparsity of . can be
viewed as the resolution of the estimation. The larger is, the
more entries in (17) are nonzero, and the denser is.

Although the number provides a control over the spar-
sity–accuracy tradeoff, and can be dynamically determined
by a stopping criterion similar to (9) defined on , there is not
an analytical formulation of the relation between and the ac-
curacy of matrix . In our implementation of the hierarchical
method reported in Section V, is predetermined and fixed in
each run, and different tradeoff points are found by changing .
It is worth noting that our approach is compatible with [39], i.e.,
our three steps and the three steps of [39] are interchangeable
and can form a hybrid scheme; the ILP method in [39] can also
be used as a postprocessing step to make our constructed ma-
trix sparser. There is, however, a difference between the two

Fig. 12. Imaginary circuit interpretation of a macromodel in dc analysis.

that gives our method an advantage over [39] for not-easily-par-
titionable designs, and this will be discussed in Section III-B.

Lemma 2: The sum of each row of the estimated matrix is
zero.

From (19), all weights of the port voltages are negative except
for . For any row in matrix , from (14) and (19), we get

node

node

node

applying equation (14) (20)

Thus, we have proven Lemma 2. In general, will not be
symmetric even though the exact matrix has this property;
however, it is preferable to leave it this way in order to preserve
accuracy. As we will show in the next section, this is not a barrier
to solving the global grid.

2) Solving the Global Grid: Now we move on to Step 2 in
Fig. 10, solving the global grid based on the extracted macro-
models. In order to do so using random walks, we interpret each
macromodel as an imaginary circuit. Due to Lemma 2, (19) can
be converted to

(21)

Equation (21) can be viewed as a circuit, in which
conductance connects node and node , and an independent
current source flows out of node . This is an imaginary cir-
cuit, because each resistor only exists for one direction (corre-
sponding to the asymmetry of the computed matrix), i.e., the
conductance from node to node could be different from the
conductance from node to node . Fig. 12 illustrates this imag-
inary circuit composed of directed resistors.

Based on this imaginary circuit interpretation, the global grid
can be solved by running random walks from each port nodes,
and the port voltages may be obtained.

3) Solving the Local Grids: Next, we move on to Step 3 in
Fig. 10, solving the bottom-metal-layer nodes in each local grid,
based on the port voltages computed in Step 2. The ports cor-
respond to “homes” in this random-walk game, and each walk

1212 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

Fig. 13. Random walks in the hierarchical algorithm are shorter than those in
the generic algorithm.

from the bottom layer typically ends within a reasonably small
number of steps.

B. Benefits of Hierarchy

The approach in [39] requires the demarcation of partitions
corresponding to small cuts between partitions, since this would
lead to small port matrices. In our approach, such partitioning is
not necessary, and the algorithm only needs to distinguish local
nodes, global nodes, and ports. Therefore, multiple local grids
are not needed, and only the boundary between the global grid
and the local grid needs to be decided. This can be done in var-
ious ways, and we recommend the following natural approach:
given a power grid, we choose a layer of vias as the border be-
tween the global grid and the local grid and define the upper
ends of these vias as ports and the lower ends as the internal
neighbors of the ports.

Choosing this layer of vias is a new degree of tradeoff: if a
lower layer is chosen, the global grid size is larger, the number
of ports is larger, and consequently solving the global grid takes
more runtime; on the other hand, the local grid is smaller and
there are more terminals, i.e., solved ports, and therefore solving
the local grid takes less time. In practice, we choose a layer of
vias such that the global grid is roughly 10% of the entire circuit
size.

Compared with the generic random-walk algorithm, the hier-
archical algorithm has two major advantages.

1) The hierarchical method is faster. The reason is il-
lustrated in Fig. 13. When solving the global grid,
each random walk starts from a port and ends at a
perfect voltage source; when solving the local grid,
each random walk starts from a bottom-layer node and
ends at a port. In either case, a walk has fewer steps
than a walk in the generic method that starts from a
bottom-layer node and has to reach a perfect voltage
source at the top metal layer. Also, when random
walks are shorter, the variance of the results of walks
tends to be lower, and consequently, a higher accuracy
can be achieved with the same number of walks, or
fewer walks are needed to achieve the same accu-
racy level. Although we pay the overhead of building
macromodels, the overall savings typically dominate

this cost. We will validate this by our experimental
results in Section V.

2) The hierarchical method is more robust. As illustrated
in Fig. 8, in certain power grids, a highly resistive
metal layer forms a barrier that makes it difficult for
the walker to go up to the top layer, and the runtime of
the generic method is therefore very long. The hierar-
chical method solves these circuits simply by defining
ports right on this barrier. In other words, instead of
relying on the random walker to pass this barrier, we
cut a walk into two segments and preserve the barrier
nature in the macromodel. This can also be viewed as
an extreme case of the speedup shown in Fig. 13. Cor-
responding results can be found in Section V. If there
exist more than one such barrier structure in a power
grid, they can all be handled by multilevel hierarchy,
which is presented in the next section.

As mentioned in Section II-E, a more general problem of
the generic random-walk method is that in a large graph with
very few homes, the runtime is high. One example is wire-bond
power grids with pads at the periphery, shown in Fig. 7. In the
next section, we will show how such graphs can be handled
when the idea of hierarchy evolves to the virtual-layer concept.

Finally, we want to point out a defect of hierarchy. In the
hierarchical algorithm, we can no longer solve a single node
only: the overhead of building and solving the hierarchy has
to be paid first. In other words, the algorithm does not have
the complete locality anymore. One way to maintain a partial
locality is to use multiple local grids: when a change is made
in the design, only the macromodel of the local grid containing
the change needs to be rebuilt and re-solved. Note that this is not
included in our implementation, which uses a single local grid,
as discussed at the beginning of this section.

C. Variations of Hierarchy

A natural extension of the algorithm in Section III-A is
to use multilevel hierarchy. Making use of all available vias,
we can build macromodel on top of macromodel. After this
bottom-up traversal, the circuit is reduced to a global grid,
then port voltages are solved in a top-down order, and the
bottom-layer voltages are obtained in the end. Compared with
the single-level method, the extra cost of the multilevel method
is building multiple macromodels, while the benefit is shorter
walks in each level. Hence, there is a tradeoff in choosing the
number of levels. Since the single-level hierarchical method is
better than the generic method, we expect the multilevel method
to be even faster and more robust. Test results in Section V
show that the multilevel method has a similar accuracy–runtime
tradeoff as the single-level method.

Another extension leads to the concept of a “virtual-layer,”
when we choose ports such that the global grid physically does
not exist. In other words, there are no direct connections be-
tween these ports in the original circuit: this can be considered to
be similar in flavor to grid coarsening in [19]. When we abstract
all connections of these ports into a macromodel, this macro-
model provides imaginary connections between ports, and the
global grid is totally composed of such virtual connections, as
shown in Fig. 14.

QIAN et al.: POWER GRID ANALYSIS USING RANDOM WALKS 1213

Fig. 14. Original graph with ports marked, and the extracted virtual layer.

For example, in a large graph where the number of homes is
very limited and all homes are located at periphery, a random
walk from a center node typically needs a very large number of
steps. We may traverse the graph (for example, a breadth-first
search in our implementation), and mark one port in every
nodes. For , the sampling rate is 1/10; this number
cannot be too low, because we have to guarantee that the virtual
layer will be a connected graph. Special arrangements must be
made such that each home is surrounded by ports, because edges
leading to a home should not be abstracted into the macromodel.
Then all connections of these ports are abstracted into a macro-
model, except for those leading to a home. Thus, the virtual layer
is constructed, and the size is 10% of the original graph. After
solving it, we go back to the local grid, i.e., the original graph,
and because there are solved ports all over the graph, it can be
solved efficiently.

This virtual-layer method will be shown useful when solving
a wire-bond power grid in Section V

IV. RKC TRANSIENT ANALYSIS

In this section, we extend the random-walk algorithms to
transient analysis, where voltage waveforms are to be found
while considering the effects of capacitances, inductances, and
time-varying current waveforms. Throughout this section, and
in the implementation, the backward Euler approximation with
a constant timestep is used to convert differential equations
to linear equations. We assume that the timestep size is kept
constant in a transient analysis.

A. Capacitors

Let us first incorporate capacitors into the proposed frame-
work. The equations to be solved are as follows [14]:

(22)

where is a conductance matrix, is the matrix introduced
by capacitors, is the vector of node voltages, and is
the vector of independent sources. Applying the backward Euler
formula with a timestep of , the equations become

(23)

This transformation translates the problem to solving a linear
equation set. As before, we consider one single node , at one
timestep at time , and we have

(24)
where , , , and are as defined in (2), and is the
capacitance between node and ground.

Fig. 15. Rules for the transient analysis “game.”

For an RC network with capacitors between two nonground
nodes, those capacitors can be replaced by resistors and cur-
rent sources, while a current source between two nodes can be
replaced by two current sources between the two nodes and
ground. Then, the following algorithm is applicable. Here, we
only discuss the case described in (24).

Equation (24) can be converted to the following form:

(25)

The rules of the random-walk game are changed to accom-
modate the changes in the above equation. As shown in Fig. 15,
each node has an additional connection, and the walker could
end the walk and be awarded the amount with prob-
ability

Intuitively, this rule is equivalent to replacing each capacitor by
a resistor and a voltage source.

Under this new rule, the random-walk game is mathemati-
cally equivalent to the equation set (23), and both the generic
method and the hierarchical method can perform transient anal-
ysis of a RC network, timestep by timestep. In each timestep,
the values are updated with the node voltage values
solved from the previous timestep.

The complete locality of the dc generic algorithm is still valid
in the RC generic algorithm: we can compute a single node
voltage at a single time point without solving any other nodes or
any other timesteps. If we want to compute the voltage at node

at time , the walks start at node in the random walk game
for time ; some walks may reach terminals, and then
they continue in the random walk game for time ; some
of these may reach terminals, and then they continue
in the random walk game for time , and so on. The

1214 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

real terminals where walks end are those from physical voltage
sources, which are present at all times. The farthest a walk can
go in time is the time point zero, which is a dc analysis game.
In short, “traveling back time” makes the complete locality fea-
sible, and this is inspired by [1].

The hierarchical method is affected by the additional
terminals in various ways, and we will now take a close look.
When we build macromodels as described by Lemma 1, the
set of possible terminals not only contains ports, but also the

terminals inside the local grid. Consequently, instead
of (17), we get

(26)

where are the terminals inside the local
grid. Since the ’s are known values, they can be lumped
into a constant

(27)

and we get

(28)

With (28), we can continue the macromodeling and construct
equations (18) and (19). However, the sum of is no
longer one, and that relation is replaced by

(29)

As a consequence of (29), Lemma 2 is replaced by the fol-
lowing lemma in transient analysis.

Lemma 3: The estimated matrix in transient analysis is
diagonally dominant.

To prove Lemma 3, we rewrite (29) as

(30)

Applying this inequality and (19), we get

node

node

(31)

This inequality holds for any row of matrix , and thus we have
proven Lemma 3.

Fig. 16. Imaginary circuit interpretation of a macromodel in transient analysis.

Also because of inequality (29), as well as Lemma 3 replacing
Lemma 2, the formulation of the imaginary circuit (21) becomes
the following in transient analysis:

(32)

There are many ways to split into and . One of them is
very meaningful: is a weighted average of some ’s
inside this local grid, and is a weighted sum of some current
loads inside this local grid, as follows:

(33)

(34)

where the neighbors of inside the local grid are labeled
; is capacitance between port and ground;

is conductance between and ; is the number
of terminals inside the local grid, and they are

; is the number of walks from that end at
terminal ; is the current load flowing out of the node at
the step of the walk from node ; and is the sum
of the conductances connected to the node at the step of the

walk from node . The proof of (33) and (34) is provided in
Appendix II.

Due to Lemma 3, the term is nonneg-
ative, and (32) can still be interpreted as a circuit. Fig. 16 illus-
trates this new imaginary circuit: conductance connects
node and node ; conductance connects

to a voltage source with voltage equal to ; and an indepen-
dent current source flows out of node .

B. Inductors

Inductances include self-inductances and mutual induc-
tances. Under the backward Euler approximation, a self-induc-
tance becomes a resistor and a current source in parallel and can
be easily handled by the random-walk algorithms. However,

QIAN et al.: POWER GRID ANALYSIS USING RANDOM WALKS 1215

Fig. 17. Companion model of a pair of inductors, adapted from [15].

mutual inductances are difficult to incorporate into the proposed
framework, because of their induced extra unknown variables:
the currents through the inductors.

Therefore, we use the inverse inductance, or susceptance, ma-
trix [7], [15] to model inductors. It has also been shown that
the matrix has better locality than the partial inductance ma-
trix , and hence reduces the problem size of circuit simulation
[7], [15]. The matrix is defined as the inverse of the matrix,
and the device equations under the backward Euler approxima-
tion are

(35)

where is the vector of voltage drops over the inductors,
is the vector of known currents through the inductors

from the previous timestep, is the vector of unknown cur-
rents through the inductors in the present timestep, and is the
timestep size. Equation (35) can be written as

(36)

and the corresponding companion model is illustrated in Fig. 17,
where only a pair of coupled inductors are shown.

In our circuit model, each wire segment is a model, which is
composed of a resistor and an inductor in series, and capacitors
at two ends. Fig. 18(a) shows this model, where capacitors are
not drawn. By substituting the companion model of the inductor,
we obtain the circuit in Fig. 18(b), where the inductor is replaced
by a resistor and two current sources in parallel. One of the two
current sources is equal to the current from the last timestep,
which is a known constant; the other source is a voltage-con-
trolled current source that corresponds to the current induced by
other inductors, i.e., a function of ’s and ’s from a number
of other wire segments. The model in (b) can be further con-
verted to (c) and then to (d), which is a circuit form that can be
handled by our random-walk algorithms.

One complication caused by mutual inductances is that the
current sources in Fig. 18(d) is a function of not only ’s and

’s, but also ’s, while ’s are not among the system vari-
ables when we solve the circuit in form (d). In other words,

Fig. 18. Wire segment model.

the voltage-controlled current sources cannot be expressed as
a linear function of node voltages.

To resolve the above problem, we propose an iterative ap-
proach to compute node voltages in each timestep, and in each
iteration, we assume the voltage-controlled current sources to
have constant values. First, we use ’s and ’s of all wire
segments from the previous timestep as the initial guess and
compute the values of the current sources in Fig. 18(b)–(d).
Next, by assuming these current sources to be constant, we use
random walks to solve the circuit in form (d) and obtain new
and values. Then, we update ’s and hence current sources
in (b)–(d) and solve in form (d) again. This process iterates until
voltages converge.

In the hierarchical algorithm, if we only consider mutual in-
ductances inside the global grid, i.e., the top few metal layers,
then the above iteration is only done in the stage of solving the
global grid. However, if we consider the general case, where
mutual inductances exist in the local grid and between the local
and global grids as well, then one iteration in the above iterative
process includes all three stages: macromodeling, solving the
global grid, and solving the local grid. Note that with the book-
keeping technique presented in the next section, these compu-
tations can be done efficiently without running random walks.

The above iterative approach is guaranteed to converge, and
the proof is provided in Appendix IV. In our simulations, the
convergence criterion is maximum voltage difference being less
than V, and the iterative process always converges within
three iterations. The results are reported in Section V.

C. Bookkeeping

For transient analysis, traditional direct linear equation
solvers are efficient in computing solutions for succeeding
timesteps after initial matrix factorization since only a for-
ward/backward substitution step is required for each additional
timestep. Analogously, our random-walk algorithm employs a
speedup mechanism.

In the generic method, we first perform a dc analysis that is
used as the initial condition; next, when computing the first tran-
sient timestep, we keep a record for each node. This record keeps
a count of, in these walks, how many times the walker ends at

, how many times the walker ends at some , how
many times the walker pays for a motel at some node, and so
on. Then, in the follow-up timesteps, we do not perform random
walks any more, and simply use these records recursively and
assume that the walker gets awards at same locations and pays

1216 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

for same motels, and only the award amounts and motel prices
have changed. Thus, with bookkeeping, new voltages can be
computed by some multiplications and additions efficiently.

This bookkeeping technique is based on the observation that
the routes taken by the walks are decided solely by the resistor
values corresponding to the resistances in the original circuit
and the resistances that arise from the companion models for
the capacitors and inductors. Under a constant timestep size,
these are all unchanged from one timestep to the next, and there-
fore, using the same routes is justifiable. The task of book-
keeping maintains the set of nodes visited in these walks and
the frequency with which they are visited. From one timestep
to the next, however, the current source values in the circuit
will change, and the voltage/current sources from companion
models will change, since at a capacitor will be dif-
ferent from , and through a inductor will be
different from , etc. This implies that the motel prices
and reward values will change. With the help of the bookkeeping
information, the voltage at each node can simply be found as a
weighted sum of values at nodes visited, which are maintained
in the bookkeeping record.

In the hierarchical methods, we also keep a record for solving
the global grid, as well as building the vector , because needs
to be updated whenever the current sources or sources
in the local grid change.

The space complexity demanded by this bookkeeping is ap-
proximately linear in the number of nodes and is not worse than
the space complexity of a traditional direct solver. This will be
shown in Section V. Another concern is whether using the same
record repeatedly could cause error accumulation. Our simu-
lation results show that the error level is acceptable even after
1000 timesteps.

Finally, the values that need to be repeatedly updated in tran-
sient analysis are listed in the following.

1) values in Fig. 15, for every timestep.
2) Current source values in Fig. 18(b)–(d), for every iter-

ation in every timestep.
3) Hierarchical methods update vector , which is a func-

tion of current sources and sources in the local
grid, for every timestep;

4) In the case of the hierarchical method where there are
mutual inductances in the local grid and between the
local and global grids, vector needs to be updated,
for every iteration in every timestep, as described in
the previous section.

V. RESULTS

In this section, we use three industrial benchmarks to evaluate
the proposed algorithms for dc analysis. Then, RC and RKC
circuits generated based on structures of real-life circuits are
used to test the performance of transient analysis. Computations
are carried out on a Linux workstation with 2.8 GHz CPU fre-
quency.

The three industrial power grids are listed hereafter.

1) Industry1 is a 70 729-node circuit, and we solve for
the 15,876 bottom-metal-layer nodes and 15 625

Fig. 19. Estimated voltages at a single node for various values ofM .

bottom-metal-layer ground nodes. The voltage range
of bottom layer is 1.1324–1.1917 V.

2) Industry2 has 218 947 nodes, in which 25 137 bottom-
metal-layer nodes and 18 803 bottom-metal-layer
ground nodes are to be solved. The voltage range of
the bottom layer is 1.612 48–1.798 22 V, that of
ground bottom layer being 0.000 334–0.066 505 V.

3) Industry3 is a wire-bond ground net with 347 566
nodes, and the bottom layer has a voltage range of
0.024 347–0.110 860.

One implementation issue is the choice of random number
generator. A random number uniformly distributed between 0
and 1 is needed for making a decision at each step in a random
walk. The higher the required quality is for random numbers,
the longer the runtime is. In all our implementations, we use
the generator of [24, p. 279]. The simulation results show that it
provides sufficient quality for power grid analysis application.

Fig. 19 shows the results of computing the solution for only
one node in Industry1, using the generic algorithm. The markers
are estimated voltage values for different ’s, and the dashed
line is the true voltage. The ultra-accurate right-most point, for
which is 4000, only takes 0.42-s runtime, and thus shows
the efficiency of using our algorithm to solve individual nodes
without solving the whole circuit. This is ideal in the scenario
of incremental design, where the designer makes a change and
wants to see the effect on a node voltage. Note that in the hierar-
chical algorithms, we can no longer solve a single bottom-metal-
layer node only: the overhead of building and solving the hier-
archy has to be paid first. For example, if we use the single-level
hierarchical method to solve one bottom-metal-layer node in In-
dustry2, this overhead is 15 s. In the scenario of incremental de-
sign, this is still better than solving the whole linear equation
set.

As indicated in Section II-B, one implementation issue is that,
in order to avoid any possible deadlock, we need to set a limit

on the number of steps in a walk. Any walk that fails to end
within steps will be forced to end, and be awarded if in-
side the net, and be awarded 0 if inside the ground net. This
operation is optimistic and will result in a bias in the estimated
voltage; however, if the limit is chosen appropriately, the error

QIAN et al.: POWER GRID ANALYSIS USING RANDOM WALKS 1217

Fig. 20. Runtime–� tradeoff for the computation of all bottom-metal-layer
nodes in Industry1.

will be very small as the probability of a walk of this length is
minute. Thus, a new degree of accuracy–runtime tradeoff is in-
troduced, and we empirically set this limit to be 10 000 steps as
a good tradeoff point, where the bias error is acceptable and not
much runtime is wasted. For example, when the generic method
solves Industry1 with being 4 mV, there are 2.5 K walks that
violate this step limit and are forced to end, and the starting
nodes of these 2.5 K walks are 1.6 K nodes; for these 1.6 K
nodes, the average error is 1.86 mV, and the maximum error is
5.97 mV. (For reference, the overall average error is 1.64 mV,
and the overall maximum error is 8.86 mV. Thus, the impact of
the step limit is minor.) For hierarchical methods, there are typ-
ically no or only a few violations.

The above tradeoff only affects runtime indirectly, while the
error margin in (9) decides , which is directly proportional
to runtime and needs careful investigation. Fig. 20 plots the rela-
tion between and runtime for solving the complete Industry1,
i.e., finding all bottom-metal-layer voltages, using the generic
random-walk method. The runtime is always larger than 8 s be-
cause the minimum value of is set to be 40. The lower part
of this curve shows the quadratic relation between and :

. For example, the runtime is around 15 s when
is 4 mV, and roughly 60 s when is 2 mV.

Fig. 21 plots the tradeoff between average error and runtime
solving Industry1, where the three curves are for the generic
random-walk method, the single-level hierarchical method, and
a two-level hierarchical method, respectively. All hierarchies are
divided at vias. All three methods use predetermined and fixed

in each run, and points on the curves correspond to different
values. Both hierarchical methods achieve roughly three to

four times speedup over the generic method, with the same av-
erage error.

In practice, the user decides the tradeoff point by choosing
values according to the needs of the analysis. Here, for runtime
comparison purpose, we choose a reasonable tradeoff point on
each of the three curves, and list them in Table III.

Fig. 22 plots the tradeoff between average error and runtime
solving Industry2, using the single-level hierarchical method
and a three-level hierarchical method. All hierarchies are di-

Fig. 21. Accuracy–runtime tradeoff curves for solving Industry1 using the
generic random-walk method, the single-level hierarchical method, and a
two-level hierarchical method.

TABLE III
dc ANALYSIS COMPARISON. N IS CIRCUIT SIZE, E1 IS AVERAGE ERROR, E2 IS

MAX ERROR, T IS RUNTIME, NT IS NORMALIZED RUNTIME, DEFINED AS

RUNTIME PER THOUSAND NODES, P IS PEAK MEMORY, AND NP IS

NORMALIZED PEAK MEMORY, DEFINED AS PEAK MEMORY PER

THOUSAND NODES. G DENOTES THE GENERIC RANDOM-WALK

METHOD, S DENOTES THE SINGLE-LEVEL HIERARCHICAL

METHOD, AND M DENOTES THE MULTILEVEL

HIERARCHICAL METHOD

vided at vias. Both methods use predetermined and fixed
in each run, and points on the curves correspond to different

values. The curve for the generic random-walk method is
omitted because its runtime is unacceptably high for this circuit.
The reason has been discussed in Section II: a highly resistive
metal layer on top of low-resistance vias forms a barrier struc-
ture. This circuit shows an example of the robustness introduced
by hierarchy. Again, the tradeoff point should be decided by the
designer. Here, we choose a reasonable tradeoff point on each of
the curves for Table III. One tradeoff point of the generic method
is also listed.

The runtime comparison is shown in Table III. The three rows
Industry2-G, Industry3-G, and Industry3-S are results with ro-
bustness problems, as discussed in Section II-E, while the bold-
face rows are results without the problems, or with them over-
come. The numbers for chip2 in [39] are listed as a baseline. In

1218 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

Fig. 22. Accuracy–runtime tradeoff curves for solving Industry2, using the
single-level hierarchical method and a three-level hierarchical method.

viewing the numbers, it is important to note that our computer
is approximately three times faster than those used by [39], ac-
cording to SPEC benchmarks [31]. Runtimes reported by [39]
show superlinear time complexity; chip2 is their smallest cir-
cuit and therefore has the smallest normalized runtime. Since
the time complexity of random-walk algorithms is linear in cir-
cuit size (for circuits with similar structure), as power grid size
increases, they will outperform [39] more. Note that due to fac-
tors such as benchmark structure, coding, compiling, and plat-
form difference, this is only an approximate comparison, even
after considering the 3 factor.

For Industry1, both hierarchical methods show a 4 speedup
over the generic method. For Industry2, the speedup is dramatic
and shows the robustness introduced by hierarchy.

The multilevel hierarchical method does not show a runtime
advantage over the single-level method for Industry2. The
reason is that the benefit of the multilevel hierarchy, which is
easier access to home nodes, is not worth the cost of building
multiple macromodels, for the Industry2 case with C4 pack-
aging. However, it is worthwhile for Industry3, a similar-sized
circuit with wire-bond packaging.

Industry3 is a wire-bond power grid, a difficult circuit type to
solve. Even after it is reduced to its top metal layer only, there
are still 80 K nodes, yet there are only 20 perfect voltage sources
distributed on four sides of the top metal layer. Thus, it requires
high runtimes if using the generic method or the single-level
method, as listed in Table III. We employ a two-level hierar-
chical method, the top level being a virtual layer, as discussed
in Section III-C. This scheme solves this benchmark in a reason-
able amount of time, with acceptable error. The results are listed
in Table III, and the normalized runtime is seen to be higher than
solving other circuit types.

In order to evaluate the transient analysis, since we were un-
able to obtain real-life RC/RLC power grid circuits, we gener-
ated four circuits with realistic parameters. RC1 and RC2 listed
in Table IV are RC networks based on the structure of Industry1.
RKC1 and RKC2 listed in Table V are RKC networks based on
the structure of Industry2. Inductances are assumed to be only in

TABLE IV
RC TRANSIENT ANALYSIS RESULTS. N IS THE CIRCUIT SIZE, TS IS THE

NUMBER OF TIMESTEPS, T IS CPU TIME PER TIMESTEP FOR

SUBSEQUENT TIMESTEPS, E1 IS THE AVERAGE ERROR, E2
IS THE MAX ERROR, AND P IS THE PEAK MEMORY. G
DENOTES THE GENERIC RANDOM-WALK METHOD, AND

S DENOTES THE SINGLE-LEVEL HIERARCHICAL METHOD

TABLE V
RKC TRANSIENT ANALYSIS RESULTS. N IS THE CIRCUIT SIZE, TS IS

THE NUMBER OF TIMESTEPS, T IS CPU TIME PER TIMESTEP

FOR SUBSEQUENT TIMESTEPS, E1 IS THE AVERAGE ERROR,
E2 IS THE MAX ERROR, AND P IS THE PEAK MEMORY

the top two metal layers and are estimated using formulas pro-
vided by [11]. Then matrices are constructed by the method
proposed by [7], using 7 7 and 7 5 window sizes for the two
metal layers. Current-load waveforms are designed such that
inductive effect is visible: the simulation using a direct solver
shows that if inductors in circuit RKC1 are ignored, the induced
error is up to 21 mV.

The results of RC analysis using both the generic method and
the hierarchical method are shown in Table IV. CPU times are
measured for the timesteps that follow the initial dc analysis
and the first transient step. The solution for circuit RC1 is com-
pared with HSPICE, while circuit RC2 is too large to be sim-
ulated in HSPICE. Note that E1 is the average over all nodes
at all timesteps, and E2 is the maximum over all nodes at all
timesteps. The peak memory numbers are small for RC1 and are
omitted. The runtimes are several times faster than traditional di-
rect solver runtimes reported in [39], even after normalization by
the speed factor of 3. The space complexity is higher for the hi-
erarchical method, because bookkeeping is needed not only for
the bottom-metal-layer nodes, but also for building and solving
the global grid. However, the peak memory of the hierarchical
method is still lower than that of traditional methods reported in
[39], in terms of memory consumption per million nodes.

The results of RKC analysis are shown in Table V. The single-
layer hierarchical method is used, and the algorithm discussed
in Section IV-B is used when solving the global grid with in-
ductors. Note that inductances are assumed to be only in the top
two metal layers, and hence only in the global grid. CPU times
are measured for the timesteps that follow the initial dc anal-
ysis and the first transient step. The solution for circuit RKC1
is compared with a traditional direct solver, while circuit RKC2
is too large to be simulated by a direct solver. Note that E1 is
the average over all nodes at all timesteps, and E2 is the max-
imum over all nodes at all timesteps. The peak memory is small
for RKC1 and is omitted. Comparing with Table IV, we can see
that RKC analysis has higher time and space complexity than

QIAN et al.: POWER GRID ANALYSIS USING RANDOM WALKS 1219

RC analysis. This is due to the extra storage for mutual induc-
tances and the extra iterations of computation.

When viewing Tables IV and V, one common concern is error
accumulation: although the error of one timestep is low, it could
add up to large error over many timesteps. This concern drives
us to measure E1 and E2. Note that E1 is the average over
all timesteps, and E2 is the maximum over all timesteps. They
suggest that the errors are acceptable after 500/1000 timesteps.
Practically, they suggest that errors tend to cancel each other and
that the accumulation has a very slow rate.

VI. CONCLUSION AND EXTENSION

This paper presents a random-walk based power grid ana-
lyzer. A generic algorithm is first developed, and then several
hierarchical methods are built to make the algorithm faster and
more robust in solving various types of circuits. Capacitors and
inductors are incorporated, and an RKC transient analysis algo-
rithm is proposed. Experimental results show that these algo-
rithms reach good runtime–accuracy tradeoffs.

A. Potential Applications

Possible scenarios that the proposed algorithms offer advan-
tages over traditional methods are summarized as follows.

1) dc analysis of a whole circuit: Random-walk algo-
rithms provide a solution with runtime linear in circuit
size. Although existing iterative solvers also have
linear runtime, the random-walk solvers provide an
alternative that allow users to tradeoff between speed
and accuracy, and this tradeoff can be naturally tuned
by changing the number of walks or the error margin.
This is useful when ultra-accurate solution is not nec-
essary, for example, early-stage performance analysis.

2) Transient analysis of a whole circuit: Iterative solvers
are inefficient for transient analysis. Compared with di-
rect-solver-based techniques, simulation results show
that, with acceptable errors, random-walk algorithms
have the following advantages: linear runtime for the
initial timestep, as opposed to superlinear runtime of a
direct solver, and hence they are better suited for large
designs; lower memory consumption; and lower run-
time for the follow-up timesteps. Again, the tradeoff
between accuracy and runtime/memory consumption
can be easily tuned.

3) Solving a small number of nodes: The generic algo-
rithm can compute any single node voltage without
solving the whole circuit and can be very useful in in-
cremental design. This advantage holds for all chips
with C4 packaging. For wire-bond packaging, it is par-
tially compromised: a hierarchical method needs to be
used, and there is an overhead of building and solving
hierarchy.

4) Parallel computing: Random-walk based algorithms
are inherently compatible with parallel computing.
The computations for different nodes, and even
random walks for the same node, can be carried
out independently on different processors. The only

communication needed between parallel processors is
to share the voltages of already computed nodes, to
take advantage of the speedup technique at the end of
Section III-B.

B. Potential Extension to AWE/PRIMA

The proposed algorithm can also be used to perform moment
generation for power grid transient analysis in the frequency
domain using asymptotic waveform evaluation (AWE) or
passive reduced-order interconnect macromodeling algorithm
(PRIMA). An existing stochastic moment generation approach
is [21], which, in each step, randomly samples one or two
capacitors and removes all others, in order to facilitate compu-
tation for large RC networks. Our method is different.

For transient analysis formulated by (22) (note that in RLC
analysis, includes entries of inductor currents, and in-
cludes inductance entries), the moment generation is solving the
following equation sets one by one [30]:

for (37)

where are the moment vectors to be solved. In
each iteration, the moment generation is equivalent to replacing
each capacitor with a constant current source, replacing each in-
ductor with a constant voltage source, and performing dc anal-
ysis.

The above computation can be carried out using our
random-walk algorithms, with one extension to handle the
voltage sources induced by inductors. In dc analysis of a circuit
with a voltage source between two nonground non-
nodes and , such that , we combine and
into one single supernode in the random-walk game, and
use as its nominal voltage. By Kirchoff’s Current Law

(38)

where is the set of nodes adjacent to excluding , is
the set of nodes adjacent to excluding , is the conduc-
tance between node and node , and and are the current
loads connected to node and . The new rule is that if the
random walker goes from node to a neighbor of , he/she
has to pay extra money ; correspondingly, if he/she walks
from a neighbor of to node , he/she gains . Note that if
and has a common neighbor, it is considered as two different
directions from node ’s point of view. Under this new rule,
we can perform moment computation in AWE/PRIMA using
random walks. The bookkeeping technique in Section IV-C is
applicable, and after solving and , the follow-up com-
putations can be done efficiently.

1220 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

APPENDIX I
PROOF OF LEMMA 1

Consider the random-walk game that has terminals
. For each individual walk in the game, the

money earned at the end of the walk is composed of an award,
which is a terminal voltage, minus a sequence of motel ex-
penses. The result of the walk from node is

(39)

where is the index of the walk,
is the voltage at the terminal where the

random walk ends, and is the sum of all motel expenses.
When we take the average of the results from the random

walks, we obtain an estimated in the form

(40)

where

and (41)

where is the number of walks that end at terminal . Be-
cause every random walk stops at a terminal, ’s must satisfy
the following condition:

(42)

Therefore

(43)

APPENDIX II
PROOF OF EQUATIONS (33) AND (34)

In RC transient analysis, considering the general case where
there exists capacitance between port and ground, then
(15) becomes

(44)

where the neighbors of inside the local grid are labeled
, and are the currents flowing from

port to each of them. By (19) and (27), and considering the
extra term introduced by , the term in (32) can be expanded
as follows:

(45)

where is the conductance between and , and
are the corresponding coefficients

defined in (26) and (27) constructed for .
From (26), we know that is the number of
terminals inside the local grid and that they are .
From (41), we have

(46)

(47)

where is the number of walks from that end at terminal
, and is the sum of expenses paid at motels during the

walk from node . Substituting (46) and (47) into (45), we get

(48)

Define

(49)

(50)

Then

(51)

By (8), can be further expanded, and becomes

(52)

where is the current load flowing out of the node at the
step of the walk from node , and is the sum of the

conductances connected to the node at the step of the
walk from node .

So far, we have derived (49) and (52), which are (33) and (34),
respectively. These two equations have their physical meanings:

is a weighted average of some ’s inside this local
grid, and is a weighted sum of some current loads inside this
local grid. Now we need to show that (32) is true; in other words

(53)

To do so, we look at (26) constructed for . By
Lemma 1, we have

(54)

QIAN et al.: POWER GRID ANALYSIS USING RANDOM WALKS 1221

Fig. 23. Isolated subgraph formed by low resistances and isolated by high
resistances.

Substituting (46) into the above equation, we get

(55)

By (19), and considering the extra coefficient introduced
by as shown in (44),

by (55)

(56)

By (51) and (56), (53) must be true, and our proof is complete.

APPENDIX III
REMEDIES FOR ISOLATED LOW-RESISTANCE SUBGRAPHS

As the general case of Fig. 6, a subgraph formed by several
low resistances can be isolated by other high resistances and
form a “trap,” and random walks may spend many steps inside
this subgraph. Fig. 23 shows an example.

It is worth pointing out that a preprocessing step to remove
such a subgraph is only necessary when the ratio between the
surrounding high resistances and the inside low resistances is
extremely high. For example, if at every node in the subgraph,

, then according to (8), at every
step, the random walk stays in the subgraph with probability

. However,
; in other words, the probability that a random walk stays in

the subgraph for more than 20 steps is less than 0.36. Therefore,
in this example, removing this subgraph may not be necessary.

None of the three industrial benchmarks contains a subgraph
that needs to be removed, and our implementation only removes
single isolated low resistances as shown in Fig. 6, by the

transformation. Therefore, the following discussion has not
been implemented or tested. If removing a subgraph is indeed
necessary, the following techniques may be employed.

1) If this subgraph is a tree: The transformation
can be iteratively applied on leaf nodes. In each trans-
formation, an edge of the subgraph, i.e., a low resis-
tance, is removed. In the end, the subgraph disappears
without any loss of accuracy.

2) If this subgraph is not a tree, or if the previous tech-
nique introduces overly complex connectivity: Then,
using Fig. 23 as an example, we can define the sub-
graph as a local grid, and nodes A, B, C, and D as ports.
Then, the subgraph can be replaced by a macromodel,
which provides connections between A, B, C, and D
without trapping random walks. This macromodeling
can be carried out either by the algorithm from [39] or
by our approach in Section III-A-1, without excessive
loss of accuracy.

APPENDIX IV
PROOF OF CONVERGENCE FOR THE ITERATIVE

APPROACH IN SECTION IV-B

The modified nodal equation set for the circuit in the form of
Fig. 18(b) can be written as

(57)

where matrix contains the contributions of resistors and
companion models for capacitors and self-inductances, ma-
trix contains the contributions of the companion models
(voltage-controlled current sources) for mutual inductances,

is the vector of node voltages, and is the vector of
independent sources, which include original current/voltage
sources, the voltage sources from the companion models for
capacitors, and the current sources from the companion models
for self-inductances [14]. Note that, because the modified nodal
equations are constructed for the circuit form of Fig. 18(b),
includes both the end nodes of wire segments (nodes ’s and

’s in Fig. 18), and the middle nodes (’s in Fig. 18), which
do not exist physically.

The iterative algorithm in Section IV-B can be written as

(58)

where is the solution vector from the previous iteration, and
is the updated solution vector. Note that our algorithm

does not perform the matrix computation of (58), and instead,
it converts the circuit to the form of Fig. 18(d) and uses random
walks to carry out the computation. However, our underlying
iteration is (58).

Therefore, the necessary and sufficient condition for our iter-
ative algorithm to converge is

(59)

where denotes the eigenvalue of a matrix [36]. In order
to prove condition (59), the following lemma is needed.

Lemma 4: Matrices , , and are positive
definite.

1222 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

Matrix is an irreducibly diagonally dominant matrix with
positive diagonal entries, for any connected power grid, and
therefore is positive definite [36].

Let matrix be the component of that corresponds to the
contributions of resistors and companion models for capacitors,
and let matrix be the contributions of self-inductances. Then

. Let be any real-valued nonzero vector. We have

(60)

Because is a diagonally dominant matrix with positive diag-
onal entries (maybe reducible, i.e., representing an unconnected
network), and hence must be nonnegative definite

(61)

Let be the number of inductors, and they are labeled
. Let and be the nodes at the two ends

of inductor ; in other words, they are the nodes and in
Fig. 18; let them be defined with consistent direction; in other
words, for parallel wire segments, ’s always point to the
same direction. In the matrix, is the self-inductance
of inductor , and , , is the mutual inductance be-
tween inductor and inductor . From [7], [15], we know that

, and that

(62)

The contribution of inductor to matrix is shown below,
with the row and column indices marked outside [14].

Hence, the contribution of inductor to is

Therefore

(63)

The contribution of the mutual inductances between inductor
and inductor to matrix is shown below, with the row and

column indices marked outside the matrix, and these entries cor-
respond to the voltage-controlled current sources in Fig. 17 and
Fig. 18(b) [14].

Hence, the contribution of and to is

Therefore

(64)
This leads to

QIAN et al.: POWER GRID ANALYSIS USING RANDOM WALKS 1223

applying equation (62)

applying equation (63) (65)

which in turn implies

(66)

Substituting (61) and (66) into (60), we get

(67)

Now we need to show that (61) and (66) cannot both be equal-
ities. Note that, in order for (65) to be an equality after applying
inequality (62), vector must satisfy the condition

for

For such a vector , we can merge and into one node
and obtain a shortened vector . In other words, nodes and

in Fig. 18 are merged into one node. Correspondingly, the
rows for and in matrix are merged into one row by
adding entries, and columns for and in matrix are
merged into one column by adding entries. Thus, we obtain a
new matrix , which is the same as the modified nodal left-
hand-side matrix if all inductors are ignored. Because is an
irreducibly diagonally dominant matrix with positive diagonal
entries, for any connected power grid, we have

It follows that (61) and (66) cannot both be equalities.
Thus, (67) can never be equality and can be replaced by

(68)

This is true for any real-valued nonzero vector . Therefore,
matrix is positive definite.

Similarly, by (61) and (66), and the fact that they cannot both
be equalities,

(69)

This is true for any real-valued nonzero vector . Therefore,
matrix is positive definite. Lemma 4 is proven.

Now we move on to use Lemma 4 to prove condition (59),
which is replicated as follows.

Lemma 5:
Let be any eigenvalue of matrix , and let be the

corresponding eigenvector. By Lemma 4, is positive
definite, and we have

(70)

By Lemma 4, must be a positive scalar, and therefore

(71)

Similarly, from being positive definite, we get

(72)

Therefore

(73)

This is true for any eigenvalue of matrix . Therefore
Lemma 5 is true, and our iterative algorithm in Section IV-B
is guaranteed to converge.

ACKNOWLEDGMENT

The authors would like to thank H. Su for help with the bench-
mark circuits, N. Shenoy for introducing the last author to the
Doyle and Snell monograph many years ago, and the six re-
viewers for their contributions in revising this manuscript.

REFERENCES

[1] R. M. Bevensee, “Probabilistic potential theory applied to electrical en-
gineering problems,” Proc. IEEE, vol. 61, no. 4, pp. 423–437, Apr. 1999.

[2] S. Bodapati and F. N. Najm, “High-level current macro-model for
power grid analysis,” in Proc. Design Automation Conf. (DAC), 2002,
pp. 385–390.

[3] A. Brambilla and P. Maffezzoni, “Statistical method for the analysis
of interconnects delay in submicron layouts,” IEEE Trans. Computer-
Aided Design Integr. Circuits Syst., vol. 20, no. 8, pp. 957–966, Aug.
2001.

[4] H. H. Chen and D. D. Ling, “Power supply noise analysis methodology
for deep-submicron VLSI chip design,” in Proc. Design Automation
Conf. (DAC), 1997, pp. 638–643.

[5] T. Chen and C. C. Chen, “Efficient large-scale power grid analysis based
on preconditioned Krylov-subspace iterative methods,” in Proc. Design
Automation Conf. (DAC), 2001, pp. 559–562.

[6] J. H. Curtiss, “Sampling methods applied to differential and difference
equations,” in Proc. IBM Seminar on Scientific Computation, 1949, pp.
87–109.

[7] A. Devgan, H. Ji, and W. Dai, “How to efficiently capture on-chip induc-
tance effects: Introducing a new circuit element K,” in Proc. Int. Conf.
Computer Aided Design (ICCAD), 2000, pp. 150–155.

[8] A. Dharchoudhury, R. Panda, D. Blaauw, R. Vaidyanathan, B. Tutuianu,
and D. Bearden, “Design and analysis of power distribution networks in
PowerPC microprocessors,” in Proc. Design Automation Conf. (DAC),
1998, pp. 738–743.

1224 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 8, AUGUST 2005

[9] P. G. Doyle and J. L. Snell, Random Walks and Electric Net-
works. Washington, DC: Mathematical Assn. of America, 1984.

[10] G. E. Forsythe and R. A. Leibler, “Matrix inversion by a Monte Carlo
method,” Math. Tables Other Aids Computation, vol. 4, no. 31, pp.
127–129, Jul. 1950.

[11] F. W. Grover, Inductance Calculations. New York: Dover, 1954.
[12] J. M. Hammersley and D. C. Handscomb, Monte Carlo

Methods. London, U.K.: Methuen & Co., Ltd., 1964.
[13] R. Hersh and R. J. Griego, “Brownian motion and potential theory,” Sci.

Amer., pp. 67–74, Mar. 1969.
[14] C. Ho, A. E. Ruehli, and P. Brennan, “The modified nodal approach to

network analysis,” IEEE Trans. Circuits Syst., vol. CAS-22, no. 6, pp.
504–509, Jun. 1975.

[15] H. Ji, A. Devgan, and W. Dai, “KSim: A stable and efficient RKC simu-
lator for capturing on-chip inductance effect,” in Proc. Asia South Pacific
Design Automation Conf., 2001, pp. 379–384.

[16] R. Jiang, T. Chen, and C. C. Chen, “PODEA: Power delivery efficient
analysis with realizable model reduction,” in Proc. Int. Symp. Circuits
Systems, vol. 4, 2003, pp. 608–611.

[17] C. N. Klahr, “A Monte Carlo method for the solution of elliptic par-
tial differential equations,” in Mathematical Methods for Digital Com-
puters. New York: Wiley, 1962, ch. 14.

[18] A. W. Knapp, “Connection between Brownian motion and potential
theory,” J. Math. Anal. Appl., vol. 12, pp. 328–349, 1965.

[19] J. Kozhaya, S. R. Nassif, and F. N. Najm, “A multigrid-like technique
for power grid analysis,” IEEE Trans. Computer-Aided Design Integr.
Circuits Syst., vol. 21, no. 10, pp. 1148–1160, Oct. 2002.

[20] Y. L. Le Coz and R. B. Iverson, “A stochastic algorithm for high speed
capacitance extraction in integrated circuits,” Solid-State Electron., vol.
35, no. 7, pp. 1005–1012, Jul. 1992.

[21] Y. L. Le Coz, D. Krishna, D. M. Petranovic, W. M. Loh, and P. Bendix,
“A sum-over-paths impulse-response moment-extraction algorithm for
IC-interconnect networks: Cerification, coupled RC Lines,” in Proc. Int.
Conf. Computer Aided Design (ICCAD), 2003, pp. 665–670.

[22] M. E. Muller, “Some continuous Monte Carlo methods for the Dirichlet
problem,” Annals Math. Statistics, vol. 27, pp. 569–589, 1956.

[23] R. Panda, D. Blaauw, R. Chaudhury, V. Zolotov, B. Young, and R. Rama-
raju, “Model and analysis for combined package and on-chip power grid
simulation,” in Proc. Int. Symp. Low Power Electronics Design, 2000,
pp. 179–184.

[24] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Nu-
merical Recipes in C: The Art of Scientific Computing, 2nd ed. New
York: Cambridge Univ., 1994.

[25] H. Qian, S. R. Nassif, and S. S. Sapatnekar, “Random walks in a supply
network,” in Proc. Design Automation Conf. (DAC), 2003, pp. 93–98.

[26] H. Qian and S. S. Sapatnekar, “Hierarchical random-walk algorithms
for power grid analysis,” in Proc. Asia South Pacific Design Automation
Conf., 2004, pp. 499–504.

[27] Z. Qin and C. Cheng, “Realizable parasitic reduction using generalized
Y-� transformation,” in Proc. Design Automation Conf. (DAC), 2003,
pp. 220–225.

[28] G. M. Royer, “A Monte Carlo procedure for potential theory problems,”
IEEE Trans. Microw. Theory Tech., vol. 19, no. 10, pp. 813–818, Oct.
1971.

[29] S. S. Sapatnekar and H. Su, “Analysis and optimization of power grids,”
IEEE Design Test Computers, vol. 20, no. 3, pp. 7–15, May/Jun. 2003.

[30] J. C. Shah, A. A. Younis, S. S. Sapatnekar, and M. M. Hassoun, “An al-
gorithm for simulating power/ground networks using Padé approxima-
tions and its symbolic implementation,” IEEE Trans. Circuits Syst. II:
Analog Digit. Signal Processing, vol. 45, no. 10, pp. 1372–1382, Oct.
1998.

[31] SPEC CPU2000 Results [Online]. Available: http://www.specbench.
org/cpu2000/results/cpu2000.html

[32] A. Srinivasan and V. Aggarwal, “Stochastic linear solvers,” presented at
the SIAM Conf. Applied Linear Algebra, Williamsburg, VA, Jul. 15–19,
2003.

[33] G. Steele, D. Overhauser, S. Rochel, and S. Z. Hussain, “Full-chip veri-
fication methods for DSM power distribution systems,” in Proc. Design
Automation Conf. (DAC), 1998, pp. 744–749.

[34] H. Su, K. H. Gala, and S. S. Sapatnekar, “Fast analysis and optimization
of power/ground networks,” in Proc. Int. Conf. Computer-Aided Design
(ICCAD), 2000, pp. 477–480.

[35] C. J. K. Tan and M. F. Dixon, “Antithetic Monte Carlo linear solver,” in
Proc. Int. Conf. Computational Science, 2002, pp. 383–392.

[36] R. S. Varga, Matrix Iterative Analysis. Englewood Cliffs, NJ: Prentice-
Hall, 1962.

[37] W. Wasow, “A note on the inversion of matrices by random walks,”
Math. Tables Other Aids Computation, vol. 6, no. 38, pp. 78–81, Apr.
1952.

[38] R. D. Yates and D. J. Goodman, Probability and Stochastic Processes:
A Friendly Introduction for Electrical and Computer Engineers. New
York: Wiley, 1999.

[39] M. Zhao, R. V. Panda, S. S. Sapatnekar, and D. Blaauw, “Hierarchical
analysis of power distribution networks,” IEEE Trans. Computer-Aided
Design Integr. Circuits Syst., vol. 21, no. 2, pp. 159–168, Feb. 2002.

Haifeng Qian received the B.E. degree in microelec-
tronics from Tsinghua University, Beijing, China, in
2000, and the M.S. degree in electrical engineering
from the University of Texas at Dallas in 2002. Since
August 2002, he has been working toward the Ph.D.
degree at the University of Minnesota, Minneapolis.

In summer 2004, he worked at Synopsys, Sunny-
vale, CA.

Mr. Qian received a Best Paper Award at the De-
sign Automation Conference (DAC) 2003.

Sani R. Nassif (S’81–M’83–SM’03) received the
Ph.D. from Carnegie Mellon University, Pittsburgh,
PA, during the 1980s.

He worked for ten years at Bell Laboratories on
various aspects of design and technology coupling,
including device modeling, parameter extraction,
worst-case analysis, design optimization, and circuit
simulation. In 1996, he joined the IBM Austin Re-
search Laboratory, Austin, TX, where he is presently
managing the Tools and Technology Department,
which is focused on design/technology coupling,

timing simulation and analysis, testing, low-power design, and thermoelectric
cooling.

Sachin S. Sapatnekar (S’86–M’93–SM’99–F’03)
received the B.Tech. degree from the Indian Institute
of Technology, Bombay, in 1987, the M.S. degree
from Syracuse University, Syracuse, NY, in 1989,
and the Ph.D. degree from the University of Illinois
at Urbana–Champaign in 1992.

From 1992 to 1997, he was an Assistant Professor
in the Department of Electrical and Computer Engi-
neering at Iowa State University, Ames. He is cur-
rently the Robert and Marjorie Henle Professor in the
Department of Electrical and Computer Engineering

at the University of Minnesota, Minneapolis. He is an author of four books and
a coeditor of one volume, and has published mostly in the areas of timing and
layout.

Dr. Sapatnekar has held positions on the editorial board of the IEEE
TRANSACTIONS ON VLSI SYSTEMS, and the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS II, the IEEE TRANSACTIONS ON CAD, and has been a Guest
Editor for the latter. He has served on the Technical Program Committee
for various conferences, and as Technical Program and General Chair for
the Tau workshop and for the International Symposium on Physical Design.
He has been a Distinguished Visitor for the IEEE Computer Society and a
Distinguished Lecturer for the IEEE Circuits and Systems Society. He is a
recipient of the NSF Career Award, three best paper awards at the Design
Automation Conference (DAC) and one at the International Conference on
Computer Design (ICCD), and the Semiconductor Research Corporation
(SRC) Technical Excellence award.

	toc
	Power Grid Analysis Using Random Walks
	Haifeng Qian, Sani R. Nassif, Senior Member, IEEE, and Sachin S.
	I. I NTRODUCTION

	Fig.€1. Part of a typical power grid model.
	II. T HE G ENERIC R ANDOM -W ALK M ETHOD
	A. A Brief History
	B. Principles

	Fig.€2. Representative node in the power grid.
	Fig.€3. Instance of a random-walk game.
	C. A Simple Example

	Fig.€4. Simple circuit example.
	Fig.€5. Random-walk game corresponding to the circuit in Fig.€4
	TABLE€I C ONVERGENCE OF THE S IMPLE E XAMPLE . $% \Delta$ I S THE
	D. Runtime Trends

	TABLE€II T IME C OMPLEXITY OF THE G ENERIC A LGORITHM FOR A RTIF
	Fig.€6. Isolated low resistance forms a trap.
	E. Limitations of the Generic Method

	Fig.€7. Schematic of a wire-bond power grid structure with perip
	Fig.€8. Barrier effect. Gray rectangles represent high wire resi
	Fig.€9. Hierarchical strategy in [39] .
	III. H IERARCHICAL R ANDOM -W ALK M ETHODS
	A. Principles
	1) Constructing A and ${\bf S}$: An exact method for calculati
	Lemma 1: If we define k nodes h_{1},h_{2},\cdots,h_{k} to be

	Fig.€10. Algorithm flow in [39] .
	Fig. 11. Branches of I_{x} .
	Fig.€12. Imaginary circuit interpretation of a macromodel in dc
	Lemma 2: The sum of each row of the estimated A matrix is zero
	2) Solving the Global Grid: Now we move on to Step 2 in Fig.€10,
	3) Solving the Local Grids: Next, we move on to Step 3 in Fig.€1

	Fig.€13. Random walks in the hierarchical algorithm are shorter
	B. Benefits of Hierarchy
	C. Variations of Hierarchy

	Fig.€14. Original graph with ports marked, and the extracted vir
	IV. RKC T RANSIENT A NALYSIS
	A. Capacitors

	Fig.€15. Rules for the transient analysis game.
	Lemma 3: The estimated A matrix in transient analysis is diago

	Fig.€16. Imaginary circuit interpretation of a macromodel in tra
	B. Inductors

	Fig.€17. Companion model of a pair of inductors, adapted from [
	Fig.€18. Wire segment model.
	C. Bookkeeping
	V. R ESULTS

	Fig.€19. Estimated voltages at a single node for various values
	Fig.€20. Runtime Δ tradeoff for the computation of all bo
	Fig.€21. Accuracy runtime tradeoff curves for solving Industry1
	TABLE€III dc A NALYSIS C OMPARISON . N I S C IRCUIT S IZE, E1 I
	Fig.€22. Accuracy runtime tradeoff curves for solving Industry2,
	TABLE€IV RC T RANSIENT A NALYSIS R ESULTS . N I S THE C IRCUIT S
	TABLE€V RKC T RANSIENT A NALYSIS R ESULTS . N I S THE C IRCUIT S
	VI. C ONCLUSION AND E XTENSION
	A. Potential Applications
	B. Potential Extension to AWE/PRIMA

	P ROOF OF L EMMA 1
	P ROOF OF E QUATIONS (33) AND (34)

	Fig.€23. Isolated subgraph formed by low resistances and isolate
	R EMEDIES FOR I SOLATED L OW -R ESISTANCE S UBGRAPHS
	P ROOF OF C ONVERGENCE FOR THE I TERATIVE A PPROACH IN S ECTION
	Lemma 4: Matrices F, $(F+H)$, and $(F-H)$ are positive definit
	Lemma 5: $\max_{r}\vert\lambda_{r}(F^{-1}H)\vert<1$

	R. M. Bevensee, Probabilistic potential theory applied to electr
	S. Bodapati and F. N. Najm, High-level current macro-model for p
	A. Brambilla and P. Maffezzoni, Statistical method for the analy
	H. H. Chen and D. D. Ling, Power supply noise analysis methodolo
	T. Chen and C. C. Chen, Efficient large-scale power grid analysi
	J. H. Curtiss, Sampling methods applied to differential and diff
	A. Devgan, H. Ji, and W. Dai, How to efficiently capture on-chip
	A. Dharchoudhury, R. Panda, D. Blaauw, R. Vaidyanathan, B. Tutui
	P. G. Doyle and J. L. Snell, Random Walks and Electric Networks
	G. E. Forsythe and R. A. Leibler, Matrix inversion by a Monte Ca
	F. W. Grover, Inductance Calculations . New York: Dover, 1954.
	J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods . Lond
	R. Hersh and R. J. Griego, Brownian motion and potential theory,
	C. Ho, A. E. Ruehli, and P. Brennan, The modified nodal approach
	H. Ji, A. Devgan, and W. Dai, KSim: A stable and efficient RKC s
	R. Jiang, T. Chen, and C. C. Chen, PODEA: Power delivery efficie
	C. N. Klahr, A Monte Carlo method for the solution of elliptic p
	A. W. Knapp, Connection between Brownian motion and potential th
	J. Kozhaya, S. R. Nassif, and F. N. Najm, A multigrid-like techn
	Y. L. Le Coz and R. B. Iverson, A stochastic algorithm for high
	Y. L. Le Coz, D. Krishna, D. M. Petranovic, W. M. Loh, and P. Be
	M. E. Muller, Some continuous Monte Carlo methods for the Dirich
	R. Panda, D. Blaauw, R. Chaudhury, V. Zolotov, B. Young, and R.
	W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flanne
	H. Qian, S. R. Nassif, and S. S. Sapatnekar, Random walks in a s
	H. Qian and S. S. Sapatnekar, Hierarchical random-walk algorithm
	Z. Qin and C. Cheng, Realizable parasitic reduction using genera
	G. M. Royer, A Monte Carlo procedure for potential theory proble
	S. S. Sapatnekar and H. Su, Analysis and optimization of power g
	J. C. Shah, A. A. Younis, S. S. Sapatnekar, and M. M. Hassoun, A

	SPEC CPU2000 Results [Online] . Available: http://www.specbench.
	A. Srinivasan and V. Aggarwal, Stochastic linear solvers, presen
	G. Steele, D. Overhauser, S. Rochel, and S. Z. Hussain, Full-chi
	H. Su, K. H. Gala, and S. S. Sapatnekar, Fast analysis and optim
	C. J. K. Tan and M. F. Dixon, Antithetic Monte Carlo linear solv
	R. S. Varga, Matrix Iterative Analysis . Englewood Cliffs, NJ: P
	W. Wasow, A note on the inversion of matrices by random walks, M
	R. D. Yates and D. J. Goodman, Probability and Stochastic Proces
	M. Zhao, R. V. Panda, S. S. Sapatnekar, and D. Blaauw, Hierarchi

