DEVELOPING 3D LAYOUT AUTOMATION

12/07/2007

Myung Soo Jang, Visiting Researcher, CS Dept., UCLA
Contents

- 3D IC Technology Background
- 3D IC Placement Via Transformation
- 3D IC Routing & Thermal Via Planning
- Conclusions & Future Works
What is the 3D Stacked IC

- 3D wafer/die stacking using through silicon-vias (TS-Vias)
 - Pros: area/performance/power, heterogeneous integration
 - Cons: manufacturing cost/yield, thermal/noise issues

Some contents were quoted from the presentation material of Prof. Sung Kyu Lim (GIT)
What is the 3D Stacked IC

- Manufacturing Technology

Some contents were quoted from the presentation material of Prof. Sung Kyu Lim (GIT)
Currently Samsung Offers...

- Multi Chip Package (Wire-bonding): Memory & System LSI
- Wafer Stack Package (TS-Via): Memory (Engineering Sample)

- 8 stacks of 2GB NAND Flash (each die 50um thick)

<table>
<thead>
<tr>
<th>Via Type</th>
<th>Via Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Via</td>
<td>About 0.5um</td>
</tr>
<tr>
<td>WSP TS-Via</td>
<td>About 5um</td>
</tr>
<tr>
<td>MCP Bonding Pad</td>
<td>Larger than 50um</td>
</tr>
</tbody>
</table>

Some contents were quoted from the presentation material of Prof. Sung Kyu Lim (GIT)
3D Stacked IC of Near Future

- T-Vias can be used to connect any dies together
- T-Vias can be located anywhere in the chip
- Stacking Approaches: F2F / F2B / B2B

Some contents were quoted from the presentation material of Prof. Sung Kyu Lim (GIT)
Implementing 3D Layout

- **Target**
 - Minimizing manufacturing cost / Increasing yield
 - Making TS-vias is still high cost / low yield manufacturing technique
 - Minimizing thermal problem
 - Vertical stacked multi-layers of active devices causes big power density
 - Thermal conductivity of dielectric layer between silicon is very low

- **Approaches**
 - Try Folding Existing Designs
 - Start with an existing design, Partition it into 2 or 4 parts
 - Stack & connect them and evaluate
 - IBM/Intel: tried, know it works, found many issues
 - Start from Scratch: 3D-Aware
 - Design each die with stacking in mind
 - Stack them and evaluate
 - Takes longer, but better quality

<table>
<thead>
<tr>
<th>Materials</th>
<th>Thermal Conductivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy</td>
<td>0.05W/mK</td>
</tr>
<tr>
<td>Silicon</td>
<td>150W/mK</td>
</tr>
<tr>
<td>Copper</td>
<td>285W/mK</td>
</tr>
</tbody>
</table>

Some contents were quoted from the presentation material of Prof. Sung Kyu Lim (GIT)
Motivation of 3D IC Layout Automation

- Thermal problem is aggravated in 3D IC
 - The devices are more packed, which results in higher power density
 - The insulating dielectric layers much lower thermal conductivities than silicon

- Existing 2D metrics not so efficient
 - a “bounding-cube” might not have enough accuracy for wirelength estimation because of the existence of huge obstacles in z-direction
 - 3D IC physical design problem is usually of higher complexity, with a much enlarged solution space due to the multiple device layer structure

- New thermal aware 3D Implementation tools are under developing
3D IC Physical Design Project in UCLA

- MEVA (Microarchitecture EVAluation)-3D
 - An automated physical design and architecture performance estimation flow for 3D architectural evaluation
 - Including 3D floorplanning, routing, interconnect pipelining and automated thermal via insertion, and associated die size, performance, and thermal modeling capabilities
3D IC - Thermal Modeling

- Assumptions for simplicity
 - Only consider the steady-state heat & heat generated by transistor switches
 - Macro blocks: heat sources with constant power densities.
 - Heat sink is attached to the substrate → Constant room temperature, 27°C
 - The four side walls and top of the chip are treated as adiabatic

- Duality between heat transfer and electrical current flow
 - Heat flow passes a thermal resistance / temperature at any point is analogous to the voltage at that point / heat source is analogous to a fixed current source

- Compact Resistive Thermal Model to speedup run time
 - Can be solved by a linear solver such as SPICE (Modeling error rate is smaller than 2%)

![Diagram of 3D IC thermal modeling with assumptions and models including tiles, resistance, current source, and voltage source.]
Contents

- 3D IC Technology Background
- 3D IC Placement Via Transformation
- 3D IC Routing & Thermal Via Planning
- Conclusions & Future Works
3D IC Placement Via Transformation

- Generating 3D thermal-aware placement from existing 2D placement
 - 3D transformation
 - Local stacking transformation, Folding-based transformation
 - Window-based stacking/folding transformation
 - The layer assignment refinement
 - Relaxed conflict-net (RCN) graph representation

- The advantages
 - The existing high-quality 2D placement core engine can be easily reused
 - A discrete layer assignment algorithm based on graph representation
 - No rounding for layer assignment is necessary as in some previous approach
 - A simple yet effective thermal cost
 - No time-consuming thermal profiling is needed during the optimization process
 - Different transformation schemes and the parameter settings in the RCN graph-based layer
 - Enables flexible TS via number and wirelength tradeoff
Local Stacking Transformation (LST)

Stacking
- For K device layer, $(x, y) \rightarrow (x', y')$ where $x' = x / \sqrt{K}$, and $y' = y / \sqrt{K}$

Tetris-style Legalization
1. Sort all cells by x-coordination
2. Starting from left most cell, determine layer and exact location by minimizing relocation cost R

$$R = \alpha \cdot d + \beta \cdot v + \gamma \cdot t$$
where d is the cell displacement, v is the TS-via number and t is the thermal cost

Drawback: May generate a great number of TS vias when the cells of local nets are put on top of one another

Figure 3 Local Stacking Transformation
Local Stacking Transformation (LST) – Cont’d

- **Thermal Optimization**
 - Z location tile stacks are considered for faster process
 - Lateral heat flow can be considered during initial thermal aware 2D place
 - Each tile stack is viewed as an independent thermal resistive chain
 - The maximum temperature
 \[
 T = \sum_{i=1}^{k} (R_i \sum_{j=1}^{k} P_{ij}) + R_b \sum_{i=1}^{k} P_i = \sum_{i=1}^{k} P_i (\sum_{j=1}^{k} R_j + R_b)
 \] (2)
 - Thermal cost of assigning cell \(j \) to layer \(i \)
 \[
 t_{i,j} = P_j (\sum_{k=1}^{i} R_k + R_b)
 \]

(a). Tiles Stack Array (b). Single Tile Stack (c). Tile Stack Analysis
3D IC Placement Via Transformation

- **Transformation through Folding**
 - Fold the original 2D placement like a piece of paper
 - The distance between any two cells will not increase
 - TS vias are only introduced to the nets crossing the folding line
 - Drawback: May not achieve as much as wirelength reduction as LST because only the length of global net go across the folding lines are reduced

![Diagram of folding transformations](image)

(a) folding-2 transformation (b) folding-4 transformation

Figure 4 Two Folding-based Transformation Schemes
Window-based Stacking/Folding

Procedure
- Divide the 2D placement into N X N windows (solid lines)
- Apply stacking or folding in every window
- Each window is again divided into four squares (dotted lines)
- The number in each square indicates the layer number

Total Wirelength is reduced than Folding only
- wirelength of nets inside the square is preserved
- wirelength of nets inside the same window & cross the different windows is most likely reduced

Number of TS-vias can be reduced than LST
- Assign layer to minimize Inter-window transition \(\Rightarrow \) Reduce #TS-via

of windows controls Wirelength vs. #TS-vias tradeoff

Figure 5 2×2 windows with different layer assignments
Refinement: RCN Graph-based Layer Assignment

- Relaxed Conflict-net (RCN) graph: directional acyclic graph.
 - Nodes: Both the cells and the vias (One via node is assigned for each net)
 - Net edges: all cells are connected to the via node by net edges
 - Conflict edges: cells that overlap with each other if they are placed in the same layer

- Costs
 - Conflict edge \Rightarrow If two cells are assigned to the same layer than cost is Infinity, else 0
 - Via node \Rightarrow total TS-via number in that net = height of via in Z direction
 - Cell node \Rightarrow thermal cost $t_{i,j}$ of assigning node v_j to layer l
 - Cost of path = sum of edge & node cost along the path

- Solve (Use algorithm in [9])
 - Construct a sequence of maximal induced sub-tree of the graph
 - Apply linear time optimal algorithm (Dynamic Programming) to refine the layer assignment

Figure 6 Relaxed Conflict-Net Graph
Refinement: Relaxed Non-Overlap Constraint

- Non-overlap constraints can be relaxed so that a small amount of overlap “r” is allowed → Affect making conflict edge in RCN graph
- In exchange for more freedom in layer reassignment of the cells
- to further reduce the TS via number

Figure 7 Relaxation of Non-overlap Constraint
Experimental Results

Procedures

- Generate initial legalized wirelength driven 2D global placement
- Apply 3D transformation and refinement
- Run 2D detailed placer for each device layers

Compared with 2D, wirelength reduction about 2X with 4 device layer

Among the 3D transform methods, window based stacking shows best result considering both of WL and via#

Table 1 Benchmark characteristics and Wirelength Comparison of T3Place and 2D mPL5 [5]

<table>
<thead>
<tr>
<th>circuit</th>
<th>cell #</th>
<th>net #</th>
<th>2D mPL5</th>
<th>LST (r=10%)</th>
<th>LST (r=20%)</th>
<th>Folding-2</th>
<th>Folding-4</th>
<th>LST (8x8 win)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WL</td>
<td>via #</td>
<td>WL</td>
<td>via #</td>
<td>WL</td>
</tr>
<tr>
<td>ibm01</td>
<td>12282</td>
<td>11507</td>
<td></td>
<td>5.19E+06</td>
<td>2.52E+06</td>
<td>18519</td>
<td>2.68E+06</td>
<td>14102</td>
</tr>
<tr>
<td>ibm03</td>
<td>22207</td>
<td>21621</td>
<td></td>
<td>1.37E+07</td>
<td>6.62E+06</td>
<td>30434</td>
<td>7.29E+06</td>
<td>21406</td>
</tr>
<tr>
<td>ibm04</td>
<td>26633</td>
<td>26163</td>
<td></td>
<td>1.67E+07</td>
<td>8.45E+06</td>
<td>37414</td>
<td>9.20E+06</td>
<td>26871</td>
</tr>
<tr>
<td>ibm06</td>
<td>32185</td>
<td>33354</td>
<td></td>
<td>2.20E+07</td>
<td>1.10E+07</td>
<td>50139</td>
<td>1.52E+07</td>
<td>32939</td>
</tr>
<tr>
<td>ibm07</td>
<td>45135</td>
<td>44394</td>
<td></td>
<td>3.73E+07</td>
<td>1.83E+07</td>
<td>65093</td>
<td>2.07E+07</td>
<td>44715</td>
</tr>
<tr>
<td>ibm08</td>
<td>50977</td>
<td>47944</td>
<td></td>
<td>3.94E+07</td>
<td>1.98E+07</td>
<td>70317</td>
<td>2.13E+07</td>
<td>49844</td>
</tr>
<tr>
<td>ibm09</td>
<td>51746</td>
<td>50393</td>
<td></td>
<td>3.46E+07</td>
<td>1.72E+07</td>
<td>72787</td>
<td>1.95E+07</td>
<td>50755</td>
</tr>
<tr>
<td>ibm13</td>
<td>81508</td>
<td>83806</td>
<td></td>
<td>6.58E+07</td>
<td>3.24E+07</td>
<td>121135</td>
<td>3.60E+07</td>
<td>85103</td>
</tr>
<tr>
<td>ibm15</td>
<td>158244</td>
<td>161196</td>
<td></td>
<td>1.65E+08</td>
<td>8.26E+07</td>
<td>246509</td>
<td>9.11E+07</td>
<td>176018</td>
</tr>
<tr>
<td>ibm18</td>
<td>210323</td>
<td>200565</td>
<td></td>
<td>2.43E+08</td>
<td>1.76E+08</td>
<td>297771</td>
<td>1.34E+08</td>
<td>208564</td>
</tr>
<tr>
<td>Avg</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>0.50</td>
<td>1.00</td>
<td>0.56</td>
<td>0.71</td>
</tr>
</tbody>
</table>
Experimental Results – Cont’d

Thermal aware result vs. no temperature optimization

- Can reduce the maximum on-chip temperature by 37% on average with 6% more TS vias and 8% longer wirelength

Comparing with a other 3D placement algorithm in [10]

- Over 5X reduction

Table 2 Thermal-Aware T3Place Results

<table>
<thead>
<tr>
<th>circuit</th>
<th>LST, r = 10% Temp. (°C)</th>
<th>LST, r = 10%, w/ temp optimization Temp. (°C)</th>
<th>WL</th>
<th>via #</th>
<th>Temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ibm01</td>
<td>276.5</td>
<td>2.81E+06</td>
<td>19020</td>
<td>159.8</td>
<td></td>
</tr>
<tr>
<td>ibm03</td>
<td>196.7</td>
<td>7.13E+06</td>
<td>31780</td>
<td>121.6</td>
<td></td>
</tr>
<tr>
<td>ibm04</td>
<td>159.6</td>
<td>9.11E+06</td>
<td>40219</td>
<td>96.0</td>
<td></td>
</tr>
<tr>
<td>ibm06</td>
<td>160.4</td>
<td>1.23E+07</td>
<td>50576</td>
<td>103.5</td>
<td></td>
</tr>
<tr>
<td>ibm07</td>
<td>107.5</td>
<td>2.01E+07</td>
<td>69111</td>
<td>66.4</td>
<td></td>
</tr>
<tr>
<td>ibm08</td>
<td>97.7</td>
<td>2.05E+07</td>
<td>75397</td>
<td>63.2</td>
<td></td>
</tr>
<tr>
<td>ibm09</td>
<td>96.1</td>
<td>1.94E+07</td>
<td>78102</td>
<td>60.6</td>
<td></td>
</tr>
<tr>
<td>ibm11</td>
<td>249.3</td>
<td>3.47E+07</td>
<td>127520</td>
<td>156.2</td>
<td></td>
</tr>
<tr>
<td>ibm15</td>
<td>136.5</td>
<td>8.58E+07</td>
<td>260681</td>
<td>90.1</td>
<td></td>
</tr>
<tr>
<td>ibm18</td>
<td>89.4</td>
<td>1.31E+08</td>
<td>332012</td>
<td>58.7</td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td></td>
<td></td>
<td>1.06</td>
<td>0.54</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Table 3 Comparisons with Existing 3D Placement [13]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ibm01</td>
<td>13.3</td>
<td>18519</td>
<td>13.7</td>
<td>63.8</td>
</tr>
<tr>
<td>ibm03</td>
<td>29.6</td>
<td>30434</td>
<td>30.2</td>
<td>115.9</td>
</tr>
<tr>
<td>ibm04</td>
<td>32.5</td>
<td>37414</td>
<td>33.2</td>
<td>144.5</td>
</tr>
<tr>
<td>ibm06</td>
<td>43.3</td>
<td>50139</td>
<td>44.3</td>
<td>183.2</td>
</tr>
<tr>
<td>ibm07</td>
<td>53.1</td>
<td>65093</td>
<td>54.4</td>
<td>277.7</td>
</tr>
<tr>
<td>ibm08</td>
<td>54.2</td>
<td>70317</td>
<td>55.6</td>
<td>278.9</td>
</tr>
<tr>
<td>ibm09</td>
<td>46.3</td>
<td>72787</td>
<td>47.7</td>
<td>252.5</td>
</tr>
</tbody>
</table>
Contents

- 3D IC Technology Background
- 3D IC Placement Via Transformation
- 3D IC Routing & Thermal Via Planning
- Conclusions & Future Works
Overview

Thermal through the silicon (TTS) vias should be additionally placed to exhaust heat into heat sink

- Although thermal-driven floorplan/place was performed, max. temperature is too high to operate properly (150 °C or 302 °F)
- TTS via size (5~10um) affects routing resource and overall chip size

Multilevel routing framework with TTS-via planning

- Formulate the TTS via minimization problem with temperature constraints as a constrained nonlinear programming problem (NLP)
- Develop heuristic algorithm, m-ADVP (Alternative Direction TTS-Via Planning)
 - Solves a sequence of simplified via planning subproblems in alternating direction in a multilevel framework
 - Vertical via distribution is formulated as a convex programming problem
 - Horizontal via planning uses path counting and heat propagation
3D IC Routing & Thermal Via Planning

- 3 Stages of Multilevel routing framework
 - Recursive coarsening
 - Initial Solution Generation
 - First call ADVP on the coarsest level to estimate the number of TTS-vias
 - Level to level Refinement
 - ADVP repeatedly refines TS-via distribution

Figure 2: Multilevel Routing and TS-Via Planning Framework
3D IC Routing & Thermal Via Planning

- **Defines**
 - Design is divided into a 3D array of tiles, \(\{tile_{i,j,k} | 1 \leq i \leq X, 1 \leq j \leq Y, 1 \leq k \leq Z \} \)

- **Inputs**

 - \(T_0 \): room temperature at the heat sink
 - \(T_{input} \): user required temperature
 - \(P_{i,j,k} \): power density at \(tile_{i,j,k} \), which is determined by the macro blocks that overlap with \(tile_{i,j,k} \)
 - \(s_{i,j,k} \): STS-via number at \(tile_{i,j,k} \), which is determined by the router
 - \(c_{i,j,k} \): TS-via capacity of \(tile_{i,j,k} \)

- **Process technology related constraints (calculated using thermal simulation tool and can be used any design which has the same tech.)**

 - \(\gamma \): thermal resistance of one TS-via, which is a technology-related constant
 - \(R_{t_{i,j,k}} \): thermal resistance of \(tile_{i,j,k} \) without TS-vias, which is determined by the technology and the tile size
 - \(t_{i,j,k} \): equivalent TS-via number of a \(tile_{i,j,k} \), \(t_{i,j,k} = \gamma / R_{t_{i,j,k}} \). If we assume all tiles are of same shape and size, all device layers are fabricated using the same technology, then all \(t_{i,j,k} = t \) will be the same.
 - \(R_l \): fixed lateral resistances between tiles
3D IC Routing & Thermal Via Planning

Defines

- \(v_{i,j,k} \): temperature at \(tile_{i,j,k} \)
- \(I_{i,j,k} \geq 0 \): the vertical heat flow from \(tile_{i,j,k+1} \) to \(tile_{i,j,k} \)
- \(a_{i,j,k} \in Z^* \): total TS-via number at \(tile_{i,j,k} \)
- \(R_{v_{i,j,k}} \): thermal resistance of all TS-vias in \(tile_{i,j,k} \), \(R_{v_{i,j,k}} = \gamma / a_{i,j,k} \)
- \(R_{i,j,k} \): the vertical thermal resistance between \(tile_{i,j,k+1} \) and \(tile_{i,j,k} \), which is the effective resistance of \(R_{t_{i,j,k}} \) and \(R_{v_{i,j,k}} \) connected in parallel

\[
R_{i,j,k} = \frac{1}{1/R_{t_{i,j,k}} + 1/R_{v_{i,j,k}}} = \frac{1}{\gamma + a_{i,j,k}/\gamma} = \frac{1}{\gamma + a_{i,j,k}}
\]

Duality between heat transfer and electrical current flow

- Heat flow passes a thermal resistance / temperature at any point is analogous to the voltage at that point / heat source is analogous to a fixed current source

\[
\frac{1}{R_{i,j,k}} = \frac{I_{i,j,k}}{\Delta V} = \frac{I_{i,j,k}}{(v_{i,j,k} - v_{i,j,k-1})}
\]
NLP Problem Formulation Based on Resistive Model

Minimize Total # of TS-via \(f(V, I) = \sum_{k \geq 2} \alpha_{i,j,k} = \sum_{k \geq 2} \left(\frac{\gamma I_{i,j,k}}{v_{i,j,k} - v_{i,j,k-1}} - t \right) \) \(\) (2)

Subject to equation (3),(4),(5) and (6)

a. Temperature constraints.
\(T_0 \leq v_{i,j,k} \leq T_{\text{input}} \) \(\) (3)

b. Tile capacity constraints. The amount of TS-vias assigned to each tile should not exceed the capacity of the tile.
\(\frac{\gamma I_{i,j,k}}{v_{i,j,k} - v_{i,j,k-1}} - t \leq c_{i,j,k} \) \(\) (4)

c. Minimum TS-via number constraints. In order to avoid wirelength increase, \(a_{i,j,k} \) should be larger than or equal to \(s_{i,j,k} \), so that the STS-vias will not be moved to a position where detours will be introduced.
\(\frac{\gamma I_{i,j,k}}{v_{i,j,k} - v_{i,j,k-1}} - t \geq s_{i,j,k} \) \(\) (5)

d. Kirchoff's current law (KCL). For each node \(j \) in \(V \) except the ground, the sum of incoming heat flows should be the same as the sum of outgoing heat flows. For node \(j \), let \(B(j) \) be the set of edges that connect with \(j \), \(d_i \) be the direction of the heat flow on edge \(i \), \(I_i \) is 1 when \(I_i \) is incoming and -1 otherwise.
\(\sum_{i \in B(j)} d_i I_i = 0 \) \(\) (6)
3D IC Routing & Thermal Via Planning

- **m-ADVP: Alternating Direction TTS-via Minimization**
 - Two-step relaxation of the original problem.
 1) Fix the \((x, y)\) locations of the TS-vias and only move the TS-vias in the \(z\) direction
 2) Fix the layers of the TS-vias and move them horizontally within each layer
 3) Iterate between step 1 and step 2 to search for a solution

![Diagram of 3D IC routing with thermal vias](image)

Figure 4: Alternating Direction Via Planning
3D IC Routing & Thermal Via Planning

- **Vertical TTS-via Distribution**
 - Vertical thermal resistance R_k

 Let $a_k = \sum_{1 \leq i \leq M, 1 \leq j \leq N} (a_{i,j,k} + t)$ be the total TS-via number in layer k of Ω, then R_k can be calculated as follows.
 \[
 R_k = \frac{\gamma}{\sum_{1 \leq i \leq M, 1 \leq j \leq N} (a_{i,j,k} + t)} = \frac{\gamma}{a_k} \tag{7}
 \]
 - Temperature of node k (Similar as Elmore Delay)

 \[
 v_k = \sum_{i=1}^{k} R_i \sum_{j=i}^{Z} P_j' + T_0 \tag{8}
 \]
 - Convex programming problem
 \[
 \begin{align*}
 \min & \quad \sum_{k=2}^{Z} a_k \\
 \text{s.t.} & \quad v_Z = \sum_{k=1}^{Z} R_i \sum_{l=k}^{Z} P_l' + T_0 \\
 & \quad \sum_{k=1}^{Z} \frac{\gamma}{a_k} \sum_{l=k}^{Z} P_l' + R_b \sum_{k=1}^{Z} P_k' + T_0 \\
 & \quad s_k \leq a_k \leq c_k, \quad k = 2, \ldots, Z
 \end{align*}
 \tag{9}
 \]

Figure 5: Vertical TS-Via Planning Models

- a_k: Total TS-via#
- t: Equiv. TS-via#
- γ: Thermal Res. Of one TS-via
- P_j: Heat source at layer j
- T_0: Room temp. at heat sink
- S_k: Signal TS-via#
- C_k: TS-via capacity
3D IC Routing & Thermal Via Planning

- **Horizontal TTS-Via Distribution**
 - **Challenge**
 - TS-vias cannot be placed directly at the hottest spots since those places are occupied by macro blocks or cells
 - **Mitigation: “Heat propagation”**
 - Initial even distribution of TS-vias
 - The heat generated by the "hot blocks" will then flow to the neighboring whitespace with TS-vias
 - Distribute the TS-vias according to the vertical heat flow at each tile
 - The heat flow of layer k depends on that of the upper layer
 - Algorithm starts from the top layer and ends at bottom layer

The two hottest places, shown with dark colors, are blocked by macros.
Horizontal TTS-Via Distribution – Cont’d

“Path Counting” & Heat Flow Computation

- In order to speedup, we calculate the heat flow through path counting and also assume the temperature at the lower layer is uniform.
- Total thermal resistance of each path is calculated by adding the resistances on the path together.
- Heat will generally flow to the lower layers due to the heat sink. There are many dissipating paths from a layer k tile to the tiles at layer $k-1$.
- By the experimental, the shortest paths less than 10 are enough.

\[
H_{i,j,k} = I_{i,j,k+1} + P_{i,j,k}
\]

Figure 6: Horizontal TS-Via Planning Models
Horizontal TTS-Via Distribution — Cont’d

Heat Flow Computation Example

Assume we count the five shortest paths p1, ..., p5

\[R(p_1) = R_{i \cdot distance} + R_{i-1,j+1,k} = R_{i \cdot distance} + \gamma/(a_{i-1,j+1,k} + t) \] (17)

The heat flow on \(p_1 \) is then calculated as

\[I(p_1) = H_{i,j,k} \frac{1}{\sum_{j=1}^{5} 1/R(p_j)} \] (18)

TS-via assignment

After path counting for every tile, we can calculate \(I_{i,j,k} \), where \(I_{i,j,k} \) is the sum of the heat flow on all paths ending at \(tile_{i,j,k-1} \). Then, TS-vias will be assigned to tiles proportional to \(I_{i,j,k} \).

Iteration

After horizontal TS-via distribution at each layer, the heat flow map will be updated and used by the following vertical TS-via distribution as well.
3D IC Routing & Thermal Via Planning

- Pseudo code

<table>
<thead>
<tr>
<th>Table 1: ADVP Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: $\Omega = M \times N \times Z$, $I_{i,j,k}$, $A_0[k]$ from the previous planning result</td>
</tr>
<tr>
<td>Output: assigned TS-via number for each tile $a_{i,j,k}$</td>
</tr>
</tbody>
</table>

for every device layer k, starting from the top

{
 set initial distribution = even distribution of $A_0[k]$,
 heat propagation for layer k to update $\{I_{i,j,k}\}$
}

while not converged

{
 for each i, j, $1 \leq i \leq M$, $1 \leq j \leq N$,
 vertical TS-via distribution for $\{tile_{i,j,k} | 1 \leq k \leq Z\}$
 for every device layer k, starting from the top

 {
 horizontal TS-via distribution for $\{tile_{i,j,k} | 1 \leq i \leq M, 1 \leq j \leq N\}$
 heat propagation for layer k to update $\{I_{i,j,k}\}$
 }
}

}
3D IC Routing & Thermal Via Planning

- **Experimental Results**
 - m-ADVP algorithm is more than 200X faster than the direct solution to the NPL formulation for via planning with very similar solution quality (within 1% of TS-vias count)
 - Success to meet the temperature constraint by adding 2X~4X TTS-vias

<table>
<thead>
<tr>
<th>circuits</th>
<th>#nets</th>
<th>init T (°C)</th>
<th>flat level #tile</th>
<th>#STS-via</th>
</tr>
</thead>
<tbody>
<tr>
<td>ami33</td>
<td>133</td>
<td>157.9</td>
<td>22×22×4</td>
<td>500</td>
</tr>
<tr>
<td>ami49</td>
<td>407</td>
<td>191.8</td>
<td>60×59×4</td>
<td>889</td>
</tr>
<tr>
<td>n100</td>
<td>884</td>
<td>208.1</td>
<td>44×40×4</td>
<td>1510</td>
</tr>
<tr>
<td>n200</td>
<td>1584</td>
<td>195.7</td>
<td>42×40×4</td>
<td>2744</td>
</tr>
<tr>
<td>n300</td>
<td>1892</td>
<td>190.2</td>
<td>50×60×4</td>
<td>3559</td>
</tr>
</tbody>
</table>

Table 2: 3-D Routing Examples

<table>
<thead>
<tr>
<th>circuits</th>
<th>T (°C)</th>
<th>TS -via #</th>
<th>planning time(s)</th>
<th>T (°C)</th>
<th>TS -via #</th>
<th>planning time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ami33</td>
<td>77.0</td>
<td>1282</td>
<td>1.55</td>
<td>77.0</td>
<td>1192</td>
<td>942.2</td>
</tr>
<tr>
<td>ami49</td>
<td>77.0</td>
<td>20956</td>
<td>13.5</td>
<td>77.2</td>
<td>21138</td>
<td>1850</td>
</tr>
<tr>
<td>n100</td>
<td>77.0</td>
<td>11887</td>
<td>7.66</td>
<td>77.2</td>
<td>11707</td>
<td>874.4</td>
</tr>
<tr>
<td>n200</td>
<td>77.0</td>
<td>13980</td>
<td>12.24</td>
<td>77.2</td>
<td>13961</td>
<td>799.9</td>
</tr>
<tr>
<td>n300</td>
<td>77.0</td>
<td>17646</td>
<td>20.44</td>
<td>77.0</td>
<td>18044</td>
<td>1583.6</td>
</tr>
<tr>
<td>Avg.</td>
<td>77.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.99</td>
<td>200.4</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Comparison of m-ADVP and Solving NLP
Contents

- 3D IC Technology Background
- 3D IC Placement Via Transformation
- 3D IC Routing & Thermal Via Planning
- Conclusions & Future Works
Conclusions

- 3D Implementation Tools are developing
 - Thermal aware features are essential
 - Transform existed 2D design to 3D design
 - Build the algorithms to handle 3D issues on the top of leading edge 2D layout framework
 - 3D Placement and TS-via assignment techniques are presented

Future Works

- 3D De-cap Planning
 - 3D Floorplans have more whitespace
 - Insert/size de-caps, allow inter-layer access
- 3D Buffered Clock Routing
 - FFs located in multiple layers / Buffers inserted in multiple layers
 - Through vias can reduce wirelength
 - Skews change due to temperature change
References

Home page: http://cadlab.cs.ucla.edu/three_d/3dic.html