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Abstract—We present a design-space feasibility region, as
a function of magnetic tunnel junction (MTJ) characteristics
and target memory specifications, to explore the design margin
of a one-transistor-one-MTJ (1T-1MTJ) memory cell for spin-
transfer torque random access memories (STT-RAMs). Data
from measured devices is used to model the statistical variation
of an MTJ’s critical switching current and resistance. The
sensitivity of the design space, to different design parameters,
is also analyzed for scaling of both the MTJ and the underlying
transistor technology. A design flow, leveraging a sensitivity-based
analysis and a Landau-Lifshitz-Gilbert equation (LLGE) based
MTJ switching model, is proposed to optimize design margins for
gigabit-scale memories. Design points for improved yield, density,
and memory performance are extracted from MTJ-compatible
CMOS technologies for 90nm, 65nm, 45nm, and 32nm processes.

Index Terms—Magnetic Tunnel Junction (MTJ), Magnetore-
sistive Random Access Memory (MRAM), Spin-Transfer Torque
(STT), Spin-Transfer Torque Random Access Memory (STT-
RAM), Variability, PVT.

I. INTRODUCTION

MAGNETORESISTIVE Random Access Memories
(MRAMs) have attracted a significant amount of in-

terest as a commercially viable universal memory technology.
With the density of DRAM, the speed of SRAM, and the non-
volatility of Flash it is easy to see why [1]. MRAMs require
zero standby power and boast a nearly unlimited program-
ming endurance (> 1015 cycles) [2]. Such a memory would
eliminate the need for multiple application-specific memories,
improving system performance and reliability, while also low-
ering cost and power consumption in everything from mobile
devices to datacenters [3] (see Fig. 1).

The non-volatile storage element of an MRAM is the
Magnetic Tunnel Junction (MTJ). Structurally, an MTJ is a
pair of ferromagnets separated by a thin insulating layer. Data
storage is achieved by exploiting the magnetic orientation of
these ferromagnetic layers [4]. Only two magnetic states are
stable: the parallel combination (Fig. 2(a)) and the antiparallel
combination (Fig. 2(b)). The parallel configuration leads to
a low resistive state (RP ), while the antiparallel configuration
leads to a high resistive state (RAP ). Tunnel magnetoresistance
(TMR), the ratio of the difference between RP and RAP ,
is a metric for determining the efficiency of the spintronic
operation of an MTJ [5]. TMR is defined as:

TMR =
RAP −RP

RP
. (1)

Spin-transfer torque (STT) based switching has been the
primary method to exploit the magnetic hysteresis of MTJs.
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Fig. 1. Performance of various memory technologies (Source: Wolf et al.
[3])
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Fig. 2. MTJ ferromagnetic layers in (a) parallel and (b) antiparallel
configurations.

Rather than using an indirect current to generate a magnetic
field, STT uses a spin-polarized current through the MTJ
to accomplish device switching [6]. Toggling of the MTJ is
roughly determined by the current density [7]. As the area of
the MTJ device decreases, so does the writing current. Spin-
Transfer Torque Random Access Memories (STT-RAMs) have
the added benefit of being architecturally much simpler than
conventional MRAMs [8]. The simplest of STT-RAM archi-
tectures uses the one-transistor-one-MTJ (1T-1MTJ) structure.

Despite the importance of the 1T-1MTJ structure for the
future success of STT-RAM, very little comprehensive anal-
ysis has been done on the subject. Analysis in work by
Raychowdhury et al. [9], [10] considers MTJs, but not the
underlying transistor technology. In fact, the design of the
MTJ and the access transistor are intertwined. A given CMOS
technology constrains the design space of the MTJ due to the
overhead and impact of the access transistor in each memory
cell. This, in turn, affects the performance of the MTJ, which
further impacts the design of the access transistor. Ono et
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TABLE I
MEASURED DEVICE STATISTICS

X Y Z

TMR [%] 105.7 107.3 105.3
σTMR [%] 4.7 2.7 4.6
RA [Ω·µm2] 4.88 5.51 5.22
σRA [Ω·µm2] 0.342 0.297 0.311

al. [11] used a stochastic MTJ model, later verified with on-
chip measurements, to optimize the design of a 32Mbit test
chip in the presence of asymmetric access transistor behavior.
Similarly, Chen et al. [12] discuss how a statistical model for
the MTJ, which ignores the role of the access device, produces
a suboptimal memory cell in both area and yield. Furthermore,
the feasibility and yield of the memory depend on the design
space and the variation of the MTJs [13].

In this work, we present a comprehensive analysis of the
design space of a 1T-1MTJ memory cell for STT-RAMs. We
use a precessional-based switching model, modified to include
thermally-activated switching, to capture the dynamic nature
of the MTJ. The effects of both CMOS and MTJ device
variability across Process-Voltage-Temperature (PVT), which
is notably absent in prior works, are demonstrated with our
analysis.

II. MODELING MTJ VARIABILITY AND SCALING

This section describes the MTJ model and characteristics
that are used in the subsequent sections to explore the design
space for several scaled CMOS technologies.

A. MTJ Device Variability

While statistical variation of CMOS is generally well un-
derstood, similar characteristics for MTJs have not been well
documented. This work uses a combination of fundamental
equations and measured device characteristics to model the
statistical behavior of MTJs.

1) Resistance: Variations in MTJ resistance and TMR are
due to the small geometric differences between fabricated
nanopillars. These typically arise from a combination of litho-
graphic variations in the physical dimensions of the nanopillar,
as well as minute fluctuations in the thicknesses of the up
to 20 different layers in state-of-the-art MTJ processes [14].
Fig. 3(a) contains a plot of measured RP vs. RAP for 105
MTJ nanopillars of varying size and target resistance-area
(RA) products. The cumulative effects of random geometric
variation on MTJ resistance can be condensed into random
Gaussian variation on RA and TMR [15]. Fig. 3(b) and
Table I show the calculated statistics for our MTJ nanopillars.
Variation on TMR is on the order of 3-5% and variation in
RA is on the order of 0.3Ωµm2.

2) Switching Current: Variation in the MTJ critical switch-
ing current is the result of two different mechanisms. The first
is thermal agitation, which leads to probabilistic switching in
MTJ nanopillars at finite temperatures [16]. An example of
this probabilistic switching behavior can be seen in Fig. 4(a)
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Fig. 3. Measured (a) RAP vs. RP and (b) TMR vs. RA for MTJ nanopillars
measuring 150 × 45nm2 (X), 130 × 50nm2 (Y), and 170 × 45nm2 (Z) at
room temperature (300K).

for several MgO-based MTJ nanopillars. The second cause of
switching current variation in MTJs is due to process related
geometric variation [17]. The effects of geometric variation
are clearly evident in Fig. 4(a) as the varying offsets between
the probability of switching curves for each MTJ. The general
shape of the probability of switching curve for an MTJ has
been shown, both theoretically and experimentally, to depend
upon the thermal stability (∆) of the MTJ [18], [19].

To study the effects that geometric variation has on the
critical switching current, measurements were obtained from
MTJ nanopillars that have purposefully been fabricated with
large geometric variation. In these measurements, several
critical layers in the MTJ were deposited as a wedge, with
their thickness systematically varying by several nanometers
from chip edge to chip edge. The resulting induced geometric
variation is more than 10 times greater than typical random
process variation. A strong correlation (ρ = −0.929) was
found to exist between the RA and the switching current of
each device (see Fig. 4(b)). This allowed us to use fewer
devices to measure the statistical variation of the critical
switching current. Based on device measurements, the σ of the
switching current due to geometric variation was estimated to
be 7µA, or about 2% of the critical switching current. This is
in good agreement with measurements from Driskill-Smith et
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Fig. 4. Measurements of (a) probability of switching vs. current and (b)
RA vs. current (at 50% switching probability) for MTJ nanopillars measuring
135× 65nm2.

w
l

d

Fig. 5. MTJ free layer dimensions.

al. (3% variation) [20], Huai et al. (3% variation) [16], and
Pakala et al. (3.5% variation) [18].

B. Scaling of MTJ Current and Resistance
The resistance and switching current can be modeled using

a precessional-based switching model, modified to include
thermally-activated switching [21]. The switching current of
an MTJ in the precessional region, for a constant pulse of
duration τ , is given by:

IC = IC0

[
1− ln (τ/τ0)

∆

]
, (2)
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Fig. 6. 1T-1MTJ cell architecture showing MTJ switching current for (a)
AP to P and (b) P to AP.

where τ0 is the natural time constant and IC0 is the critical
switching current. This critical switching current [22] is given
by:

IC0 =
α4πe

ηh̄
M2
SV, (3)

where α is the Gilbert damping constant, η is the factor of
spin polarization, h̄ is the reduced Planck’s constant, e is
the elemental charge of an electron, MS is the magnetization
saturation of the free layer, and V is the volume of the free
layer.

For an MTJ with free layer dimensions l > w >> d [23],
[24], as shown in Fig. 5, the thermal stability of an MTJ is
approximately:

∆ =
E

kBT
=
HKMS

2kBT
V ≈ d

(
1

w
− 1

l

)
M2
S

kBT
V, (4)

where kB is Boltzmann’s constant, T is the absolute temper-
ature in Kelvin, HK is the out-of-plane uniaxial anisotropy,
and E is the energy of anisotropy [25], [26].

In this work, dimensional scaling is performed to maintain
a constant ∆ in order to ensure the long-term non-volatility
of the STT-RAM. Therefore, dimensions l and w of the MTJ
are scaled by a factor λ to manipulate IC0 and RP/AP , then
to keep ∆ constant, d must scale by λ−1/2. This results in
IC0 ∝ lwd→ λ3/2 and RP/AP ∝ l−1w−1 → λ−2.

III. DESIGN SPACE

The analysis in this work uses a conventional 1T-1MTJ cell
architecture as shown in Fig. 6. The minimum writing currents,
to ensure a target write error rate (WER), for flipping the cell
resistance are defined as IC(P → AP ) and IC(AP → P ).
The design space of a single STT-RAM memory cell can be
illustrated using an RAP vs. RP plot as shown in Fig. 7. The
feasibility region is indicated by the shaded region. It contains
all points (RP , RAP ) in the design space so that a memory
cell made with such an MTJ is functional. In the design space,
the two lower bounds are set by the read margin of the cell,
while the two upper bounds are set by the write margin of the
cell.

The lower bound RP,MIN is dependent on the implemen-
tation of the sense amplifier, and represents the minimum
resistance required for reliable circuit operation. Parasitic
resistances from the access transistor and column-mux, as
well as the bit- and source-lines, all contribute to RP,MIN .
Additionally, RAP,MIN is determined by TMRMIN (Fig.
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sensing read circuit with ideal reference resistance 2(RP ‖ RAP ).

8), the minimum TMR required for the read amplifier to
differentiate between RP and RAP . Regardless of the specifics
of the implementation, all sense amplifiers are either a voltage-
or current-sensing topology. For a generic current-sensing read
circuit, a read margin of ∆Iref results in:

(Current) TMRMIN =
2∆Iref/Iref

1−∆Iref/Iref
. (5)

For Iref flowing through the reference resistance Rref ,
Iref + ∆Iref,1 flows through RP and Iref −∆Iref,2 through
RAP . When ∆Iref,1 = ∆Iref,2 = ∆Iref , TMRMIN is
minimized. Under this condition, Rref = 2(RP ‖ RAP ) and
we can express TMRMIN as a function of the normalized
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fractional sensing current (∆Iref/Iref ). In Eq. 5, ∆Iref must
be chosen so that the read amplifier correctly evaluates across
all transistor PVT variations.

Similarly, TMRMIN for a generic voltage-sensing topol-
ogy is:

(Voltage) TMRMIN =
2∆V

RP Iref
=

∆R

RP
, (6)

where ∆V , the voltage reading margin, is the minimum dif-
ference in sensing voltage between the MTJ and the reference
resistance, and ∆R = 2∆V/Iref is the minimum difference
in resistance between RP and RAP . The difference between
voltage- or current-sensing topologies can be seen in Fig. 9.
Voltage-sensing is better suited for devices with larger RAs,
where a small TMR can still translate into a large resistance
difference. Alternatively, current-sensing topologies are better
able differentiate low RA MTJs. It should be noted that the
lower bounds RP,MIN and RAP,MIN , while critical to the
readability of the cell, are almost completely independent of
the MTJs used. The only requirement is that sensing time and
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Fig. 10. (a) RP,MAX and (b) RAP,MAX at nominal VDD for a 65nm
process (IC contours are in µA).

current (Iref ) be small enough so as not to disturb the cell
during the read operation.

The upper bounds, RP,MAX and RAP,MAX , are the maxi-
mum allowable resistances such that the access transistor, in a
1T-1MTJ configuration, is still able to provide the minimum
critical writing currents IC(P → AP ) and IC(AP → P ).
These upper bounds are subsequently very sensitive to the
specific characteristics of the MTJ device used. As such, to en-
sure a sufficiently low WER, the effects of stochastic thermal
fluctuations [27], self-induced heating [28], and backhopping
[29] on the probability of switching should not be overlooked.
Transistor-level simulations are used to determine the rela-
tionship between RP/AP,MAX , IC , and cell size (transistor
width WN ) for a technology. Fig. 10 shows an example of
such a simulation in a 65nm process. Using the conventional
configuration from Fig. 6, WN is swept along with RMAX .
The contours of the simulated current are shown.

Fig. 7 shows a specific MTJ cell and its associated statistical
variation (the concentric ovals around point B) overlaid on
the design space. The design-space margin can be defined as
the number of σ’s of MTJ variation before crossing any of
the previously defined bounds. Defining design-space margin
(DSM) in terms of σ simplifies feasibility characterization to a
single variable and thus allows yield to be quickly calculated.
To a first order, 3σ, 4σ, 5σ, and 6σ of design margin roughly
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Fig. 11. Design space, in a 65nm process, for WN = 750nm, IC(P →
AP ) = 300µA, IC(AP → P ) = 300µA, with an overlay of device X from
Table I, for SS, TT, and FF corners.

correspond to being able to reliably produce 1kbit, 32kbit,
4Mbit, and 1Gbit memory arrays.

Fig. 11 highlights the effects of CMOS variability on the
design space bounds. To illustrate the effects more clearly, a
35F 2 cell in a 65nm process is chosen. As expected, the more
stringent constraints of the SS corner causes the design space
to shrink. This shift is caused by an increase in the threshold
voltage of the access transistor. Environmental variables, like
temperature, also have a significant effect on the design space.
A consumer grade STT-RAM is expected to operate over a
range of more than 100°C in which TMR can drop by more
than 30% [30], degrading the DSM for readability. These
sources of technological and environmental variability must
also be considered in the design process.

IV. 1T-1MTJ CELL OPTIMIZATION USING A SENSITIVITY
ANALYSIS

Many variables, at both the circuit and device levels, affect
the design space. In order to optimize all variables for a target
memory specification, we must determine how each variable
impacts the design space. This section introduces a design-
space sensitivity (DSS) as a metric to quantify the behavior of
the change in design space as a function of various design
parameters (VDD, λ, JC , RA, TMR, WN , etc.). We then
present a sensitivity-based design flow that leverages DSS to
optimize the DSM of a 1T-1MTJ memory cell. A short design
example using a 65nm CMOS technology is provided.

A. Design-Space Sensitivity Analysis

First consider the points A, B, and C in Fig. 7. Points A
and C correspond to the corner values of RP and RAP in the
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feasible design space. Point B represents the nominal MTJ at
the center of the MTJ device distribution. For a positive design
margin to exist, point B must fall somewhere between points
A and C.

A “better” design space can be achieved from altering a
design parameter, when a larger distribution of the MTJs (the
number of σ) falls within the feasible region. Note that the

improved design space is not simply increasing the area of the
feasibility region, but increasing the number of sigma enclosed
by the feasible region. Recall that point A depends only
slightly on the MTJ parameters. Therefore, the improvement
(or deterioration) of the design space depends mostly on the
change in DSM between points B and C as a function of a
particular design variable.

Therefore, we define the design-space sensitivity to the
parameter X as:

DSS(X) =
∂(RC−RB

σ )P/AP

∂X
, (7)

where RB and RC are taken as either RP or RAP at points
B and C, thus defining the DSS along each dimension of
the design space. RC−RB

σ is the normalized distance between
points B and C in the design space along the RP/AP dimen-
sion. Intuitively, the DSS(X) describes the instantaneous rate
of change in DSM to a particular design parameter X . The
derivative loses positional information, and so we used the
DSS in conjunction with the original plot of the design space
to determine the benefit of tuning the design parameter X . For
both the RP and RAP dimensions, if DSS(X) > 0, then the
DSM is improved by increasing X , and if DSS(X) < 0, then
DSM is improved by decreasing X . When the design-space
sensitivities for the two dimensions conflict, the DSM in each
dimension should then be taken into account.

B. Design Example

In this section we use the sensitivity analysis to design
a 4Mbit STT-MRAM with a 30F 2 cell size (comparable to
eDRAM) in a 65nm technology. Device X from Table I with
IC(P → AP ) = 450µA and IC(AP → P ) = 300µA is the
nominal MTJ and can be scaled by λ. Also, approximately 5σ
of design margin is required for reasonable yield.

Fig. 12(a) shows the design space for a nominal VDD =
1.0V and λ = 1.0. The inner red oval is the 3σ variation
of the MTJ, while the dashed, black oval represents the 5σ
variation of the MTJ. Clearly, with nominal VDD and λ, the
memory is not functional. Fig. 13 shows that the design space
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is much more sensitive to VDD than it is to λ. Therefore, we
choose to scale VDD to 1.4V . It should be noted that at 1.4V ,
most of the voltage is dropped across the MTJ, leaving the
VGS and VDS of the access transistor below 1V . Fig. 12(b)
shows the new design space, with the 3σ bound at the edge
of the design boundary.

Scaling VDD alone proves insufficient to meet the 5σ design
margin required, and so we simultaneously scale λ. Fig. 13(b)
shows that scaling λ results in conflicting DSS. The RAP
margin improves more by scaling λ up, while the RP margin
improves by scaling λ down. However, Fig. 12(b) indicates
that RAP dimension has considerable margin and we can trade
off some of that margin for improved margin in RP . Therefore,
we choose to scale λ down to 0.7. As we can see in Fig. 12(c),
the desired 5σ bound on MTJ variation is essentially enclosed
within the design space.

V. CONCLUSION

We have introduced a modeling methodology to accurately
model the device behavior of MTJs, which forms the basis
of our work. In this work we have shown that the joint
optimization of multiple design parameters is essential in the
design of an STT-RAM memory array. We have also derived
the necessary framework to allow for such a systematic design
procedure.
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