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Review of Elmore Delay

50% Delay for lumped RC model
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How about more complex circuits?




Example

. Elmore delay at node i is =
o = 0.69(R;,C, +R,C, +R;C; +R,C, +R,C)
=0.69(R,C, +RC, + (R, +R,)C, + (R, +R;)C, + (R, +R; +R)C.)
=0.69(R,(C,+C, +C, +C, +C)+R;(C; +C, +C) +RC)



Elmore Delay Approximation

Elmore Delay Approximation
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The Elmore delay is the metric of choice for performance-

driven design applications due to its simple, explicit form and
ease with which sensitivity information can be calculated

However, for deep submicron technologies (DSM), the
accuracy of the Elmore delay is insufficient
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Alternative solution: S2P Algorithm

Second Order Analysis (Stable 2-Pole Delay Algorithm)

General Idea: MOR

Original RC network: q

H@ﬁﬂ@zﬁstL4mo
— MN

n=1
2 poles Model: (Model Order Reduction: AWE)
tbs ko k
1—I—8.15+a252 S_pl S_p2
Generate the time domain single from 2P model:
eg:
Impulse Response: h(t) = (kje S koe p2t) x U(t)

h(s) =

Emrah Acar, Altan Odabasioglu, Mustafa Celik, and Lawrence T. Pileggi. 1999. “S2P: A Stable 2-
Pole RC Delay and Coupling Noise Metric”. In Proceedings of the Ninth Great Lakes Symposium on
VLSI(GLS '99).
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Moments of H(s)

Moments of H(s) are coefficients of the
Taylor's Expansion of H(s) about s=0
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Driving Point Admittance

Let Y(s)be an driving point admittance
function of a general RC circuit. Consider its
representation in terms poles and residues

g

Y(s) = E S k”p +kg Where ¢gis the exact order of the circuit
— MNn
n=1

Moments of Y(s)can be written as:
g

Kn :
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S2P Algorithm

Compute ml, m2, m3 and m4 for Y(s)

Find the two pboles at the drivina boint admittance as follows:
mzmj—mlfn“ mzmd—mi

3 » s — 3 P P
mlﬂﬁ'_‘,;—ﬂf;_p mlm_;:—m;_, 2

2 2
a, = B (—a]+ a1—4a2) B (—al— 51—4:12}

2

2a,

To match the voltage moments at the response nodes, choose

(my*/ py—m*)
I/ py=1/p,

ky = P ky = (=mg* —ky/ py)p,

and the S2P approximation is then expressed as:

) k k
h(s) = —— + —=

S§—P1 S—P> Note that my* and m,*
are the moments of H(s).
my* is the Elmore delay.

Emrah Acar, Altan Odabasioglu, Mustafa Celik, and Lawrence T. Pileggi. 1999. “S2P: A Stable 2-

Pole RC Delay and Coupling Noise Metric”. In Proceedings of the Ninth Great Lakes Symposium on
VLSI(GLS '99).
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Voltage
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Gate Delay

Overall flow of delay calculation
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General Model of a Gate

R
i e A —s
i +
C, ™ v, () = B
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Gate/Cell

Definitions

Output Transition Time

Vout

Vin

—X

/

Time

Gate Delay
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Gate Delay and Output Transition Time

Gate/Cell 1

/Icload

Gate Delay = f (Ti;,,Cioag)

Output  Transition  Time= f(T;;,Cioag)

The gate delay and the output transition time are
functions of both input slew and the output load
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Output Response for Different Loads

Ouput Response with different t.oad Capacitance
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ASIC Cell Delay Model

o Three approaches for gate propagation delay

computation are based on:
- Delay look-up tables
- K-factor approximation

# Effective capacitance

o Delay look-up table is currently in wide use especially
in the ASIC design flow

o Effective capacitance promises to be more accurate
when the load is nhot purely capacitive
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Table Look-Up Method

CIoad (ﬂ:)
0 5 10 500 505 510

50

" e 115pS
T,.(pS) %
110 — |

310 —
330 —

s What is the delay when ¢J,.,is 505f Fand T, is 90p5?
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K-factor Approximation
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We can fit the output transition time v.s. input
transition time and output load as a polynomial
function, e.g.

2
Toutput =K1 +k2Cjoad + Tin (k3 +k4Cjload ) —k5Cload
A similar equation gives the gate delay

20



How to calculate the C, 4??

Gate/Cell

N\

1

/Icload

Gate Delay = f (Ti;,,Cioag)

Output  Transition Ti

me = f (Tin, Cigag)

The gate delay and the output transition time are
functions of both input slew and the output load
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Second-order RC-n Model

= Using Taylor Expansion around s = O

AT AW—>—
T |71
- TN
N R
To /TN T —| Gate /Cell T '\/V\,—__
—| Gate /Cell '\/\/\, ATV C C
el ’1\ ! 1\ 2
e
Vi (S) = AS + Ays® + Ags® + ... Yin(s) = (C+Cp)s—R C,28% + R 2C, %% 4.
2 2 2
Cl:p&_i Rﬂ:—% szi
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Second-order RC-m Model (Cont'd)

—| Gate /Cell __r/\/\/\/j_
T T

Gate Delay = f (T;,,C,R,,C))

= This equation requires creation of a four-
dimensional table to achieve high accuracy

!

» This is however costly in terms of memory
space and computational requirements
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Effective Capacitance Approach

TN
n R
—| Gate /Cell M

3

—| Gate /Cell —1
IC

eff

The "Effective Capacitance” approach attempts to
find a single capacitance value that can be replaced
instead of the RC-n load such that both circuits
behave similarly during transition

What's the value of Ceff, C1+C2???
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Output Response for Effective Capacitance

Voitage(Volt)

Effective Capacitance

T T T T T
25 AR __.L__._-._._.,:*:‘...__..___.__._ T i - ——
— : ;
oF — input
Pl | | —= real :
== Ctotal
© Ln=Lp=0.25um
. trin =100ps
- R =500chm
- 50% delay error=0.9%
~ 20%-80% rise time error=7%
0 y
'u'ﬁu 0.5 1 1.5 2 2.5 3 3.5
Time(s) x107"®

25



Voltage(volt)

Effective Capacitance (Cont'd)

Effecive Capacitance 2
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Effective Capacitance (Cont'd)

—_L—’\/\/\/—_L —| Gate /Cell

—| Gate /Cell

™

L

l\c eff

Ceff = Cl + kC2 O<k<1

» Because of the shielding effect of the interconnect resistance ,
the driver will only "see” a portion of the far-end capacitance C2

R == (0 nmmmp k=1
R == o0 nmmp k=0
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Effective Capacitance Tor Different
Resistive Shield

Ing

-13  Effecive Capacitance with Different Resistive Shieiding
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Macy's Approach

Tinl _\_ R Tin2 _\_ R

—| GATE 1 —| GATE 2

Assumption: If two circuits have the same loads and
output transition times, then their effective
capacitances are the same

=> the effective capacitance is only a function of the
output transition time and the load

R. Macys and S. McCormick, “A New Algorithm for Computing the “Effective Capacitance” in Deep
Sub-micron Circuits”, Custom Integrated Circuits Conference 1998, pp. 313-316
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Macy's Tterative Solution

1. Compute a from Cyand &, ... 1\ e
2. Choose an initial value for To TS
Ceff
3. Compute T,,for the given _ G = o
Ceff and T;’n R,C,
4. Compute f
5. Compute y from o and S
6. Find new C .
7. Go to step 3 until C 4
converges ) Ce
C,+C,

R. Macys and S. McCormick, “A New Algorithm for Computing the “Effective Capacitance” in Deep
Sub-micron Circuits”, Custom Integrated Circuits Conference 1998, pp. 313-316
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Summary

ODelay model

- Elmore Delay model

- S2P model
# Reduce the RC network to a 2-pole model
# AWE is adopted for MOR

- Gate delay:
# look-up table, k-factor approximation,
# effective capacitance

—«/J\’/»——'vv»—|>—
il

3
_/_AI: B 'VJ\’/\; AMA C[
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