EE 201C
Homework 1

Wei Wu

Submit code and report to:
Xiao shi(xshi2091@gmail.com)
Email Subject: EE201C_HW1_Name_UID
1. References

Capacitance Calculation:

- **Formula based**

- **Table based**

- **Field solver**
1. References

Inductance Calculation:

- Table based
 - Norman Chang, Shen Lin, O. Sam Nakagawa, Weize Xie, Lei He, “Clocktree RLC Extraction with Efficient Inductance Modeling”. DATE 2000

- Circuit model and inductance screening
1. References

Inductance Calculation (cont.):

- PEEC model and Susceptance model

- Formulas

- Field solver

2. Further Readings

3. Example for L_{eff}

- Calculation effective loop inductance (L_{eff}) of signal trace T2

Also, two ground traces have the same voltage drop
- Assume all current returns in this block

- KCL: \[i_1 + i_2 + i_3 = 0 \]

- \(L_{\text{eff}} \) can be solved as a function of partial inductances

\[
L_{\text{eff}} = L_{p_{22}} - 2L_{p_{23}} + \frac{L_{p_{11}}}{2} + \frac{L_{p_{13}}}{2}
\]

3. Homework (due Feb 1, 2016)

[1] Given three wires, each modeled by at least 2 filaments, find the 3x3 matrix for (frequency-independent) inductance between the 3 wires, along with the capacitance and resistance. We assume that the ground plane has infinite size and is 10 um away for the purpose of capacitance calculation.

- wire width: \(W = 9 \text{um} \), wire thickness: \(T = 6 \text{um} \), wire length: \(l = 9000 \text{um} \),
- wire spacing: \(S = 15 \text{um} \), distance to ground: \(H = 10 \text{um} \),
- Copper electrical resistivity \(0.0175 \, \Omega \text{mm}^2/\text{m} \) (room temperature),
- \(\mu = 1.256 \times 10^{-6} \text{H/m} \),
- free space \(\varepsilon_0 = 8.85 \times 10^{-12} \text{F/m} \)
Discretization and L calculation

- Discretize 3 wires into 6 filaments.
- For each filament, calculate its self-inductance with (e.g.)

\[
L_{self-L} = \frac{\mu l}{2\pi} \left[\ln \left(\frac{2l}{W' + T} \right) + \frac{1}{2} + \frac{(W' + T)}{4l} \right]
\]

\[
W' = \frac{W}{2}
\]

- For each pair of filament, calculate the mutual inductance with (e.g.)

\[
L_{mutual-L} = \frac{\mu l}{2\pi} \left[\ln \left(\frac{2l}{D} \right) - 1 + \frac{D}{l} \right]
\]

- Different filaments and formulae may be used for better accuracy.
Step 1.2

Calculate inductance matrix of three wires

- **Mutual Inductance**

 \[L_{p_{km}} = \frac{1}{P \cdot Q} \sum_{i=1}^{P} \sum_{j=1}^{Q} L_{p_{ij}} \]

 - \(L_{p_{km}} \) is the mutual inductance between conductor \(T_k \) and \(T_m \)
 - \(L_{p_{ij}} \) is the mutual inductance between filament \(i \) of \(T_k \) and filament \(j \) of \(T_m \)
 - \(L_{p_{ij}} \) can be negative to denote the inverse current direction.

- **Self Inductance**

 - If \(k=m \), \(L_{p_{km}} \) is the self \(Lp \) for one conductor
Step 1.3

Capacitance Calculation

\[C_1 \text{ and } C_5 \text{ equals to average of those for the following two cases:} \]

- single wire over ground
- three parallel wires over ground

Total cap below needs to be split into ground and coupling cap

\[C = \varepsilon \left\{ \frac{w}{h} + 2.977\left(\frac{t}{h}\right)^{0.232} + \left[0.229\left(\frac{w}{s}\right) + 1.227\left(\frac{t}{s}\right)^{1.384} \right]\left(\frac{h}{t}\right)^{0.398} \right\} \]
Step 1.4

- **Resistance Calculation**
- **Copper electrical resistivity** $0.0175 \ \Omega\text{mm}^2/\text{m}$ (room temperature),

\[
R = \rho \frac{l}{A}
\]

- l is length of wire
- A is area of wire’s cross section
[2] Build the RC and RCL circuit models in SPICE netlist for the above wires. (suggest to use matlab script to generate matrix and thus SPICE netlist)

This is RC circuit

VDD 1 0 PULSE(0 10 10ps)

C11 3 0 XXXXX
C12 4 0 XXXXX
C21 1 0 XXXXX
C22 2 0 XXXXX
C31 5 0 XXXXX
C32 6 0 XXXXX
C33 4 2 XXXXX
C23 6 2 XXXXX
R1 3 4 XXXXX
R2 1 2 XXXXX
R3 5 6 XXXXX

.op
.TRAN 1ps 50ps
.print all
.plot all
.END
[3] Assume a step function applied at end-end, compare the four waveforms at the far-end for the central wire using SPICE transient analysis for (a) RC and RLC models and (b) rising time is 50ps, or try to use longer rising time.

Suggested Input:
VDD 1 0 PULSE(0 1 0 50ps)
Due on Feb 1, 2016

Submit code and report to:
Xiao shi(xshi2091@gmail.com)
Email Subject: EE201C_HW1_Name_UID