SINO/SPR: SIGNAL AND POWER NET SYNTHESIS UNDER RLC MODEL

Project Director: Lei He Authors: Kevin Lepak, James Ma, Irwan Luwandi, and Min Xu

VLSI Design and Design Automation Laboratory <u>http://eda.ece.wisc.edu</u> ECE Department, University of Wisconsin-Madison

Outline

Overview of RLC Noise Avoidance Techniques

Interconnect Design Considering On-Chip Inductance

- ◆ Figure of Merit of Inductive Coupling Keff Model
- ♦ SINO Problem
- ◆ SPR Problem
- Extension of SINO/SPR under Explicit Noise Model

Noise Avoidance Techniques

□ Net Ordering (track assignment / net placement)

- ◆ Effective to reduce Cx coupling
 - **Cx** only exists between adjacent wires short range effect
 - Place sensitive nets far away from each other can reduce/eliminate Cx noise
- ◆ Not effective to reduce Lx coupling a long-range effect

□ Shield Insertion

- Shield is a wire directly connected to Vdd or Gnd
- ◆ Effective to reduce both Cx and Lx coupling

Figure of Merit of Inductive Coupling

A formula-based Keff model has been developed

 High fidelity between formula and noise voltage for SINO solutions

Problem Formulations

- □ Given: A set of signal nets
- Find: A minimal area track assignment P via simultaneous shield insertion and net ordering such that:
 - For SINO/NF problem:
 - P is capacitive noise freeP is inductive noise free

♦ For SINO/NB problem

📼 P is capacitive noise free

All nets in P have inductive noise less than a given value in terms of weighted sum of Keff

Greedy Shield Insertion

□ Shield Insertion (SI)

- Insert shield when a Cx or Lx violation occurs
- Results depend strongly on the initial net placement
- □ Net Ordering + Shield Insertion (NO+SI)
 - First remove Cx coupling by net ordering, then perform shield insertion for Lx
 - ◆ Results depend weakly on the initial net placement

Separated NO+SI—simultaneous algorithm works better

Simulated Annealing SINO (SA)

□ Cost Function is a weighted sum of:

- Number of Cx violations
- Number of Lx violations
- Inductance Violation Figure (quantizes level of inductive noise)
- Area of Placement
- □ Random Moves
 - Combine two random blocks in placement P
 - Swap two (arbitrary) random s-wires in P
 - ◆ Move a single random s-wire in P
 - ◆ Insert a shield wire at a random location in P

Experimental Results

		Noise Bounded					
K _{thresh}	SINU/NF	Greedy SI	NO+SI	SINO/SA			
Net Sensitivity Rate: 40%							
1.0	8.5	15.9	5.3	4.4			
2.0	6.0 *	13.8	3.2	3.2			
Net Sensitivity Rate: 50%							
1.0	11.0	18.4	5.7	5.4			
2.0	8.0 ⊭	17.5	4.4	3.8			
Net Sensitivity Rate: 60%							
1.0	12.0	22.1	6.0	5.8			
2.0	9.0	21.5	4.3	4.1			

Max. clique size in the sensitivity graph

of shields is fewer than lower bound for SINO/NF CPU time is much less than existing net ordering algorithms

Motivation of SPR — p-SINO Problem

□ SINO problem

- Shield can be inserted randomly at any place without prerouted P/G wires
- ◆ Not consider pre-routed P/G structure that are shields as well
- ♦ How to estimate routing congestion?

□ p-SINO problem

- ◆ P/G wires are pre-routed and are shields as well
- Signal and shielding nets are assigned to tracks not occupied by P/G wires
- Readily solved by enhanced SA algorithm

Number of Shields in p-SINO

Sensitivity rate	Pitch size of P/G structures						
	7	8	9	10	11	12	
30%	7.6/3.6	7.0/3.0	8.4/5.4	6.2/3.2	<u>4.0/2.0</u>	4.8/2.8	
50%	8.2/4.2	7.4/3.4	6.6/3.6	<u>5.4/2.4</u>	5.8/3.8	5.2/3.2	
70%	8.8/4.8	<u>6.2/2.2</u>	8.8/5.8	7.8/4.8	7.4/5.4	6.6/4.6	

- □ Average cases for 48-bit buses
- **Different P/G structures lead to different areas**
- □ How to estimate the optimal P/G structure?

SPR Problem

□ Given a number of signal nets and an inductive noise constraint

- ♦ decides a regular P/G structure
- assigns signal nets and shields to routing tracks
- □ The resulting solution has
 - ♦ a minimum area
 - shields fewer than P/G wires
 - Any signal net is free of capacitive noise and its inductive noise is less than the given bound

SPR Algorithm

Brute force solution

- Enumerate all possible P/G structures using p-SINO algorithm
- ◆ SPR solution is p-SINO solution w/ minimum area

□ Two-phase SPR algorithm based on the interconnect estimation

- ◆ Speculate a P/G structure based on interconnect estimation
- Search the 1st-order neighborhood of the speculated P/G structure

Pre-SINO Estimations

♦ The number of shields (Ns) is a function of sensitivity rates (S), K_{th}, and number of nets (N)

Speculate Optimal P/G Structure according to pre-SINO estimations

• Optimal P/G pitch space is estimated as:

$$PS = \left[\alpha \cdot \frac{N}{N_s} \right], (\alpha = 1.70)$$

- \Box α is insensitive to noise bound
- Estimated optimal P/G structure is within 1st-order neighborhood of optimal P/G structure

SPR Solutions (48 Nets, Kthresh=1.0)

Sensitivity rate		P/G pitch space			Shields/g-wires	
		Estimation	SPR	Uniform P/G structure (UPG)	SPR	UPG
Uniform	30%	13	12	4	6.2/2.2	13/0
	50%	10	9	3	8.2/3.2	17/0
	70%	8	8	2	11.4/5.4	25/0
Non-uniform	Case 1	9	8	4	7.2/3.2	13/0
	Case 2	10	10	4	5.6/2.6	13/0
	Case 3	11	10	4	5.8/2.8	13/0

□ SPR saves up to 1/3 area compared with UPG

Conclusions

Developed SINO and SPR solutions under Keff models (He-Lepak, ISPD'00), [Ma-He,SLIP'01]

□ Extended SINO to explicit noise model

- ♦ The noise bound is given in terms of voltage
- ◆ [Lepak-et al, DAC'01]

□ Initial extension of SPR to explicit noise model

□ Incorporating SPR into a global router

 Min-area solution under constraints of routability and RLC signal integrity