Simultaneous Shield Insertion and Net Ordering for Capacitive and Inductive Coupling Minimization

Lei He Kevin M. Lepak University of Wisconsin, Madison (Mr. Lepak is supported by an Intel Corp. Fellowship) http://eda.ece.wisc.edu

- 1. Previous net ordering and shielding work
- 2. SINO problem formulations
- 3. SINO problem properties
- 4. SINO algorithms
- 5. Experimental results
- 6. Conclusions

Interconnect Model

 Assume coplanar parallel interconnect structures (termed a "placement"),

- Noise avoidance techniques:
 - Net ordering
 - Shield insertion

Previous Net Ordering Work

- Gao, Liu: ICCAD 1993, 1994
 - ILP-based track assignment for channel and switchbox routing
- Xue, Kuh: IEEE TCAD (1997)
 - ILP-based track assignment for global routing
- Yim, Kyung: DAC 1999
 - SA-based track assignment for datapath design

Does not consider coupling to non-adjacent nets (no Lx but only Cx coupling)

Characteristics of Coupling

Characteristics of Inductance

Net Sensitivity

Two nets are considered sensitive if a switching event on signal s₁ happens during a sample time window for s₂

A New Formulation

- Simultaneous shield insertion and net ordering (SINO)
 - Net ordering eliminates Cx noise
 - Shield insertion removes Lx noise

- 1. Previous net ordering and shielding work
- 2. SINO problem formulations
- 3. SINO problem properties
- 4. SINO algorithms
- 5. Experimental results
- 6. Conclusions

SINO/NF Problem Formulation

- Given: An initial placement P
- Find: A new placement P' via simultaneous shield insertion and net ordering such that:
 - P' is capacitive noise free
 - Sensitive nets are not adjacent to each other
 - P' is inductive noise free
 - Sensitive nets do not share a block
 - P' has minimal area

SINO/NB Problem Formulation

- Given: An initial placement P
- Find: A new placement P' via simultaneous shield insertion and net ordering such that:
 - P' is capacitive noise free
 - All nets in P' have inductive noise less than a given value
 - P' has minimal area

- 1. Previous net ordering and shielding work
- 2. SINO problem formulations

3. SINO problem properties

- 4. SINO algorithms
- 5. Experimental results
- 6. Conclusions

Properties of SINO Problems

- Theorem: The optimal SINO/NF problem is NP-hard
- Theorem: The optimal SINO/NB problem is NP-hard
- Theorem: The maximum clique in the sensitivity graph is a lower bound on the number of blocks required for all SINO/NF solutions

Lower Bound for SINO/NF

 Sensitivity graph: Graph indicating which nets are sensitive to one-another (vertices=nets, edges=nets are sensitive)

Lei He and Kevin M. Lepak, University of Wisconsin

- 1. Previous net ordering and shielding work
- 2. SINO problem formulations
- 3. SINO problem properties
- 4. SINO algorithms
- 5. Experimental results
- 6. Conclusions

Model for Inductive Coupling

 We consider inductive coupling coefficient defined as

$$K = Lij / \sqrt{L_i \bullet L_j}$$

- We use a formula-based Keff model
 - High fidelity between formula and noise voltage [He-Xu, 2000]

Greedy Shield Insertion

- Shield Insertion (SI)
 - Insert shield when a Cx or Lx violation occurs
 - Results depend strongly on the initial placement
- Net Ordering + Shield Insertion (NO+SI)
 - First remove Cx coupling by net ordering, then perform shield insertion for Lx
 - Results depend weakly on the initial placement

Graph Coloring SINO (GC)

- Our implementation: Greedy-based GC
- Can solve with other GC methods as well
- Main contributions of SINO-GC:
 - Provide lower bound measurements for SINO/NF
 - Comparative reference point

Simulated Annealing SINO (SA)

- Cost Function is a weighted sum of:
 - Number of Cx violations
 - Number of Lx violations
 - Inductance Violation Figure (quantizes level of inductive noise)
 - Area of Placement
- Random Moves
 - Combine two random blocks in placement P
 - Swap two (arbitrary) random s-wires in P
 - Move a single random s-wire in P
 - Insert a shield wire at a random location in P

- 1. Previous net ordering and shielding work
- 2. SINO problem formulations
- 3. SINO problem properties
- 4. SINO algorithms
- 5. Experimental results
- 6. Conclusions

Shield Traces Required

						. # of shields
	SINO/NF		SINO	required		
K _{thresh}	GC	SI	NO+SI	GC	SA	
1.0	3.2	5.0	2.8	2.0	1.8	
2.0		4.2	1.2	2.0	1.0	
1.0	6.0	13.2	4.4	4.2	3.0	
2.0		13.2	2.8	3.8	2.0	
1.0	13.6	22.4	5.4	8.2	5.0	
2.0		22.4	4.0	8.2	3.4	

SA always achieves the best result, with up to 78% improvement vs SI, 35% vs NO+SI, and 59% vs GC

Lower Bound Comparison

		-				Max clique in
	SINO/NF		SINO	the sensitivity		
K _{thresh}	GC	SI	NO+SI	GC	SA	graph
1.0	3.2	5.0	2.8	2.0	1.8	
2.0	(2.0)	4.2	1.2	2.0	1.0	
1.0	6.0	13.2	4.4	4.2	3.0	
2.0	(3.8)	13.2	2.8	3.8	2.0	
1.0	13.6	22.4	5.4	8.2	5.0	
2.0	(8.2)	22.4	4.0	8.2	3.4	

SA is even better than the SINO/NF lower bound

Lei He and Kevin M. Lepak, University of Wisconsin

- 1. Previous net ordering and shielding work
- 2. SINO problem formulations
- 3. SINO problem properties
- 4. SINO algorithms
- 5. Experimental results

6. Conclusions

Conclusions

- Net-ordering is no longer sufficient when inductive coupling is considered
- We formulate the simultaneous shield insertion and net ordering (SINO) problem to minimize noise for GHz+ designs
- We present algorithms to efficiently and effectively solve the SINO problem

Ongoing Works

- SINO considering explicit noise computation in place of K_{eff} model
- Simultaneous buffer insertion, shield insertion, and net ordering

. . .

Lei He and Kevin M. Lepak, University of Wisconsin

Simulated Annealing SINO

- Temperature Adjustment
 - Set initial temperature T (experimentally)
 - Temperature steps are a simple multiplicative constant of current temp.
- Stopping Criterion
 - At a given T, stability is determined by cost variance over the last m moves
 - Stopping T (freezing point) determined experimentally