13.1

A Fast Hierarchical Algorithm for 3-D Capacitance Extraction

Weiping Shi, Jianguo Liut, Naveen Kakani and Tiejun Yuf
Dept. of Computer Science, Univ. of North Texas, Denton, TX 76203
1 Dept. of Mathematics, Univ. of North Texas, Denton, TX 76203
i Dept. of Mathematics, Univ. of North Carolina, Charlotte, NC 28223

Abstract

‘We present a new algorithm for computing the capacitance
of three-dimensional perfect electrical conductors of complex
structures. The new algorithm is significantly faster and
uses much less memory than previous best algorithms, and
is kernel independent.

The new algorithm is based on a hierarchical algorithm

for the n-body problem, and is an acceleration of the boundary-

element method for solving the integral equation associated
with the capacitance extraction problem. The algorithm
first adaptively subdivides the conductor surfaces into pan-
els according to an estimation of the potential coefficients
and a user-supplied error bound. The algorithm stores the
potential coefficient matrix in a hierarchical data structure
of size O(n), although the matrix is size n® if expanded ex-
plicitly, where n is the number of panels. The hierarchical
data structure allows us to multiply the coeflicient matrix
with any vector in O(n) time. Finally, we use a general-
ized minimal residual algorithm to solve m linear systems
each of size n x n in O(mn) time, where m is the number of
conductors.

The new algorithm is implemented and the performance
is compared with previous best algorithms. For the k x k
bus example, our algorithm is 100 to 40 times faster than
FastCap, and uses 1/100 to 1/60 of the memory used by
FastCap. The results computed by the new algorithm are
within 2.7% from that computed by FastCap.

1 Introduction

In this paper, we study the capacitance extraction problem
of three-dimensional perfect electrical conductors of complex
structures. Fast and accurate capacitance estimation is im-
portant in the design of high-performance integrated circuits
[8, 9,10, 11, 12, 13, 15]. Two examples of three-dimensional
complex structures for which capacitance strongly affects
performance are DRAM cells and chip carriers used in high
density packaging [10].

Permission to make digital/hard copy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage, the copyright notice, the title of the publi-
cation and its date appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 98, San Francisco, California

©1998 ACM 0-89791-964-5/98/06..$5.00

212

1.1 Integral Equation Approach

‘We assume the conductors are embedded in a homogeneous
dielectric medium, though our techniques can be extended to
multiple dielectrics by using multi-layered Green functions.
Since our algorithm is kernel independent, there is no need to
introduce dielectric-dielectric interface conditions and addi-
tional variable, as required by kernel-dependent algorithms
such as FastCap [11].

The capacitance of an m-conductor geometry can be
summarized by an m x m capacitance matrix C. The di-
agonal entries Cj; of C are positive, representing the self-
capacitance of conductor i, and the non-diagonal entries Cj;
are negative, representing the coupling capacitance between
conductors ¢ and j. To determine the j-th column of the ca-
pacitance matrix, we need only solve for the surface charges
on each conductor produced by raising conductor j to unit
potential while grounding rest of the conductors. Then C;;
is numerically equal to the charge on conductor i. This pro-
cedure is repeated m times to compute all columns of C.

Each of the m potential problems can be solved using
an equivalent free-space formulation where the conductor-
dielectric interfaces are replaced by a charge layer of density
o. Assuming a homogeneous dielectric, the charge layer in
the free-space problem will be the induced charge in the
original problem if o satisfies the integral equation

! 1 !
= z)—————da’,
w(w) \/su‘l‘faces U()47‘.60”"’6 - .’L"” ¢

where t(z) is the known conductor surface potential, da’ is
the incremental conductor surface area, z, ' € ®®, and ||z —
z'| is the Euclidean distance between z and z’. The kernel
of the integral equation is 1/|lz — z'||. For simplicity, we will
temporarily omit the scale factor 1/4meg and reintroduce it
later in Section 4.
‘We use Galerkin scheme to numerically solve (1) for o.
In this approach, the conductor surfaces are divided into n
small panels, and it is assumed that on each panel A;, a
charge ¢; is uniformly distributed. Then for each panel A;,
an equation is written which relates the known potential on
A;, denoted by v;, to the sum of the contribution of potential
from charges on all n panels A;,...,A,. The result is a
dense linear system
2

where q € R" is the vector of panel charges, v € R" is
the vector of known panel potentials, and P € R"*" is the

1)

Pq=v,

potential coefficient matrix where each entry

/ ! dajdai,
z;€A; ”x’v - 2:.7”

®)
for panels A; and A;. Matrix P is known to be positive,
symmetric and positive definite.

The linear system of (2) has to be solved to compute
panel charges, and the capacitances are derived by summing
the panel charges. Direct methods based on triangulariza-
tion of matrix P, such as Gaussian elimination and Cholesky
factorization, require O(n®) operations. Iterative algorithms
normally require O(n?) operations per iteration. These ap-
proaches are inefficient if the number of panels is more than
several thousands. In fact, any algorithm that uses the ex-
plicit representation of matrix P must use at least Q(n?)
time and memory since the matrix is size n2.

Several algorithms have been proposed to solve (2) in
sub-quadratic time. The FastCap algorithm of Nabors and
White [10, 12] uses O(n) time, and is based on the O(n)
time multipole algorithm for the n-body problem [6]. In this
paper we propose a different O(n) time algorithm, which is
based on a different O(n) time hierarchical algorithm for the
n-body problem by Appel [1]. Efficient algorithms that are
not based on the n-body problem include an FFT algorithm
of Phillips and White [13], and the singular value decompo-
sition (SVD) algorithm of Kapur and Zhao [9, 8]. The FFT
algorithm and the SVD algorithm are about twice as fast as
FastCap for test examples {13, 8], though the running time
of both algorithms are O(nlogn).

. 1
Y7 area(A:) 2i€A; area(A;)

1.2 The n-Body Problem

In the n-body problem, each of the n particles exerts a force
on all the other n — 1 particles, implying ('2') pairwise in-
teractions [1, 6]. The capacitance extraction problem shares
many similarities with the n-body problem. Both the gravi-
tational force and the electro-magnetic field decreases as the
distance increases, and the principle of superposition applies
to both problems. The principle of superposition states that
the potential due to a cluster of particles is the sum of the
potential due to each individual particle.

There are two types of algorithms for the n-body prob-
lem: the hierarchical algorithm of Appel [1] (1985) and the
multipole algorithm of Greenberg and Rohklin [5] (1987).
When Appel first published his paper, he thought the time
complexity was O(nlogn). Later, a careful analysis shows
the time complexity is O(n) [3]. At about the same time,
Greengard and Rohklin [5] proposed the multipole algo-
rithm, and proved its time complexity is O(n). The capac-
itance extraction algorithm FastCap is related to the mul-
tipole algorithm, while our algorithm is related to Appel’s
algorithm [1}, and a radiosity algorithm [7]. Hanrahan, Salz-
man and Aupperle [7] used the ideas in Appel’s algorithm to
compute the reflection of light among a set of objects in com-
puter graphics. Their experience shows Appel’s algorithm
is not only fast, but also very easy to implement.

The hierarchical algorithm of Appel [1] uses the follow-
ing two key ideas to compute all the forces on a particle: 1)
For practical considerations, the forces acting on a particle
need only be calculated to within the given precision. 2) The
force due to a cluster of particles at some distance can be ap-
proximated, within the given precision, with a single term.
However, there are several differences between the capaci-
tance extraction problem and the n-body problem, which
prevent us from blindly adopting the n-body solution. One

213

major difference is that in the n-body problem the objects
are particles, while in the capacitance extraction problem,
the objects are continuous conductor surfaces. Therefore,
the hierarchical data structures are formed differently. The
n-body algorithm begins with n particles and clusters them
into larger and larger groups. Our algorithm begins with
a set of panels and subdivides the panels into smaller and
smaller panels. (We can also start with a set of given small
panels and build a hierarchical data structure using the same
idea.) Another difference is that the self-capacitance is very
important in our problem while there is no such concept in
the n-body problem.

1.3 OQur Contribution

In Section 2, we show how to build a hierarchical data struc-
ture for the potential coefficient matrix by adaptively sub-
dividing the conductor surfaces into subpanels according to
the estimation of the coefficient and a user-supplied error
bound. This is different from the multipole algorithm where
the conductor surfaces are divided in a pre-processing stage
according to the geometry of each conductor individually.
Our new algorithm subdivides the surfaces into panels of
variable sizes, and it is guaranteed that all coefficients are
calculated to the same precision. More importantly, the co-
efficient matrix contains O(n) block entries, where n is the
number of panels.

In Section 3, we show how to multiply the potential co-
efficient matrix P with any vector in O(n) time, using the
hierarchical data structure. The hierarchical data structure
is of size O(n), but it implicitly stores the whole n x n poten-
tial coefficient matrix. As a result, the multiplication can be
done in O(n) time through three traversals of the hierarchi-
cal data structure. Then we use the Generalized Minimum
Residual (GMRES) method to solve the linear systems.

In Section 4, we present the experimental results that
show the new algorithm is significantly faster than the mul-
tipole algorithm FastCap and uses significantly less memory,
with a small difference in the result compared with FastCap.

2 Potential Matrix Approximation

This section describes the recursive refinement procedure
which decomposes a large panel into a hierarchy of small
panels, and builds a hierarchical representation of the poten-
tial matrix. We first describe the procedure, then estimate
the number of interactions that need to be considered, and
finally analyze the error in the resulting potential matrix.

Refine(Panel Ai, Panel Aj)

{
Pij = PotentialEstimate(Ai, Aj);
Ri = longest side of Ai;
Rj = longest side of Aj;

if ((Pij*Ri < Peps) AND (Pij*Rj < Peps))
RecordInteraction(Ai, Aj);

else if (Ri > Rj) {
Subdivide(Ai);
Refine(Ai.left, Aj);
Refine(Ai.right, Aj):

} else {
Subdivide(Aj);
Refine(Ai, Aj.left);
Refine(Ai, Aj.right);

}

}

C C
A B E
NP FlG
X
ik M[N
I L
H
J J
(a) (b) (c) (d) (e)

Figure 1: Partition conductor surfaces into panels.

& \A
-
/
" \A

Figure 2: Potential coefficient matrix stored as links.

4
D]

4
"
GlF GO

Procedure PotentialEstimate returns an estimate of
the potential factor from panel Ai to panel Aj defined by
(3). We use the closed form expressions derived by Wilton,
et al [16] and numerical integration to compute the poten-
tial factor. If the estimated potential factor is less than
the user provided error bound Peps (P.), then the panels
are allowed to interact at this level of detail. The recursion
is terminated and the interaction is recorded between the
two panels. However, if the potential factor estimate is too
large, then the estimate may not be accurate. In this case,
the panel with the larger area, say Ai, is to be subdivided
into Ai.left and Ai.right. The procedure Refine is called
recursively. Procedure Subdivide subdivides a panel into
two new panels. The subdivision hierarchy is stored in a
binary tree with each node having two pointers left and
right pointing to the two subpanels. Since a panel may
be refined against many panels, the actual subdivision of a
panel may have occurred previously. When this happens,
Subdivide does not perform any task.)

Figure 1 shows the refine process of two conductor sur-
faces. We start with two conductor surfaces A and H in
(a). Assume the coefficient estimates between A and H are
greater than the user provided error bound P., we subdivide
A into BUC, and then subdivide H into U J in (b). Now
assume the estimates BJ, CI and CJ are less than P, but
estimate BJ is greater than P.. Therefore, we record inter-
actions BJ,CI and CJ at this level, while further subdivide
panels B and I. The final panels are shown in (e). We also
compute the self-capacitance at this time. Note that if we
use uniform grid partition, then there would be a total of 16
panels. Also note that we consider mainly the interaction
with other panels, instead of the geometry.

214

| A Il
/
L B]

&]
T

c J_1I

] @ 2],) I
B 3]4 g 13014 18
6 | 7 16 | 17
A
c 9 10 19 20
i l 2122 31]32
K= 25 35
I/‘l 2324 0g 3334 33
/ 26 | 27 36 | 37
H\;
J 29 30 39 40

Figure 3: Potential coefficient matrix with block entries.

Figure 2 shows the hierarchical data structure produced
by Refine, and associated potential coefficients stored as
links between the nodes in the hierarchy. Each binary tree
represents one conductor surface, and each leaf node rep-
resents one final panel that is not further divided in the
discretization. The combination of all the leaf nodes com-
pletely cover all surfaces of the conductors. Each horizontal
link represents one pair of potential coefficients defined in
(3). Each self-link represents one self-potential coefficient.

Figure 3 shows the block matrix represented by the links
of Figure 2. Each block entry represents one interaction
between panels. Note that there are total 8 panels for the
two conductors, so a traditional coefficient matrix would
require 64 entries. However, the block matrix has only 40
block entries, each stored as one floating-point number.

We now show the block matrix always contains O(n)
block entries, while the traditional matrix that explicitly
lists all pairwise interactions must contain n? entries. For
simplicity, consider n panels of about the same size on the
surface, and a binary tree constructed above the panels by
merging adjacent panels recursively. Therefore, panels on
the same level of the tree are of the same size. The error
criterion in Refine says that two panels can interact directly
only if Pij*R < Peps where R is the length of the longest side
of the two panels. Since P;; is asymptotically 1/r where r
is the distance between the two panels, the two panels can
interact only if R/r < P, or r > R/P.. For any fixed P,
this criterion is equivalent to the criterion that two panels
at the same level in the tree can interact only if there are k
other panels between them on that level, for some fixed con-
stant k. On the other hand, if panels A; and A; are too far,
the ancestor of A; would have interacted with the ancestor
of A;. Therefore, A; and A; cannot interact either. This
argument applies to any level of the tree. Therefore, each
node in the tree interacts with a constant number of other

nodes, and the total number of block entries is O(n). Es-
selink did a detailed analysis on the number of interactions
by Appel’s algorithm for the general case, and compared it
with the multipole algorithm [3].

In Figure 2, it shows that each panel undergoes a con-
stant number of interactions with other panels, regardless
of their level in the tree. Large panels that are far apart in-
teract directly, in the same way that small panels near each
other interact directly.

Finally, we analyze the relationship between the termi-
nation criteria and the accuracy of the computed potential
factors. The termination criteria causes the potential co-
efficient corresponding to each interaction to have approxi-
mately the same magnitude. This is because if an estimated
potential factor were larger, the panels would be subdivided.
More importantly, the termination criteria also places an up-
per bound on the error associated with the potential factor
integral between any two interacting panels.

Consider a panel A which contains two sub-panels A; and
As of similar shape and size. Let the radius of the smallest
sphere that contains both A; and A2 be R. Consider a point
2’ of distance r from the center of the sphere, for some r > R.
The potential at ' due to the charge on panels A; and A,,
with uniform charge densities o; and o2 respectively, is

02

/ Loy + / g,
ren 7=l T [en, T =2l

If we treat A; and Az as a single panel A with uniform
charge density (o1 + 02)/2, then the potential at ' will be:

/ o1+ 02 1
—_— —-—/——_—da.
cea 2 &' ==l

Assume without loss of generality o2 > o1, then the differ-
ence between (4) and (5) is

03 — 03 (/ U o _/ ;da‘z)
2 Ay ”1",—-771” Ao ||£I," _1'2”

02—0'1/ 1 _ 1 day
2), \lT—all @ ==+ &

1
/ 7 dal.
Ap ”.’I) _xlll

Therefore the relative error is at most a constant times
R/r. Since P;; is in proportion with 1/r, the condition
Pij*R < Peps in procedure Refine implies that the error
of the approximation for every entry is bounded by a con-
stant times P.. Therefore, as P goes to 0, the error goes to 0.
Also, all entries in the coefficient matrix are approximated
to the same precision, which is a constant times Fe.

In summary, our algorithm computes the potential fac-
tor matrix to within a fixed error tolerance. In the process
it organizes the potential factor matrix into blocks. The es-
timated potential factor associated with each block has the
same error as other blocks. Purthermore, the total number
of blocks grows linearly in the number of elements.

4

(5)

IN

(72—-0'15
- 2 r

3 Solve Linear Systems

3.1 Fast Matrix-Vector Multiplication

To solve the linear system Pq = v, an iterative algorithm
requires the multiplication of the coefficient matrix P with a

215

vector, which normally takes O(n?) time. However, because
our P is represented by O(n) blocks, each matrix-vector
multiplication can be done in O(n) time. The multiplication
proceeds in three steps. To help understand the algorithm,
please keep in mind P is the coeflicient matrix, q is the given
charge vector, and the product Pq is the potential vector
which we want to compute, though the algorithm works for
any matrix and vector.

In the following pseudo-codes, each panel A has two point-
ers left and right, pointing to the two sub-panels, and two
fields charge and potential. For readers not familiar with
recursive tree traversal, please see [2].

The first step computes the charge for all interior nodes
in the tree. The charge of an interior node is the sum of
charges of its children panels. The charge of a leaf node
Ai is given by Qi from q. This calculation can be done in a
single depth-first traversal of the tree propagating the charge
upward. To compute the charge for each node, the charges
of its children are computed first, and then the charge of the
node equals the sum of the charge of its children’s. The time
for computing the charge for all nodes is linear in terms of
the number of nodes in the tree.

AddCharge (Panel Ai)
{

if (Ai is leaf)
Ai.charge = Qi;
else {
AddCharge (Ai.left);
AddCharge (Ai.right);
Ai.charge =
Ai.left->charge + Ai.right->charge;
}
X

The second step computes for each panel A; the potential
due to its interacting panels. This can be computed by
adding up the product of potential coefficient P;; and charge
at Aj, for all A; that has interaction with A;. The time for
computing the charge for all nodes is linear in terms of the
number of blocks in the coefficient matrix.

CollectPotential (Panel Ai)
{
for all Aj such that AiAj has interaction {
Ai.potential = Ai.potential + Aj.charge*Pij;
if (Ai is not leaf) {
CollectPotential (Ai.left);
CollectPotential (Ai.right);
}
}
}

The third step distributes the potential from the interior
nodes to the leaves. This is done by another depth first
traversal of the tree which propagates potential down to
the leaf nodes. Each interior node adds its accumulated
potential to its children’s potential, recursively. The time
of this step is linear in terms of the number of nodes in the
tree.

DistributePotential (Panel Ai)
{
if (Ai is not leaf) {
Ai.left->potential =
Ai.left->potential + Ai.potential;
Ai.right->potential =

Ai.right->potential + Ai.potential;
DistributePotential (Ai.left);
DistributePotential (Ai.right);

}
}

The total time for the matrix-vector product is linear in
terms of the number of nodes and links. It is well known
that for any binary tree with n leaves, there are exactly n—1
interior nodes. Therefore, the time is O(n), where n is the
number of panels that are not further subdivided.

3.2 Generalized Minimum Residual Method

We use the Generalized Minimum Residual (GMRES) method

with restart [14] to solve the system of equations. The basic
idea behind the GMRES method for solving an n x n linear
system is to project the problem onto a Krylov subspace Ki
of dimension k < n using the orthonormal basis constructed
by a scheme due to Arnoldi [4], solve the k-dimensional sub-
problem using a standard approach, and then recover the
solution of the original problem from the solution of the pro-
jected problem. The Arnoldi scheme involves the coefficient
matrix only multiplicatively. The dimension of the Krylov
subspace is usually small. Since we can multiply P with any
vector in O(n) time, each iteration can be computed in O(n)
time.

4 Experimental Results

The new algorithm is implemented and simulation results
are reported in Tables 1 to 3. Both the new algorithm and
the FastCap algorithm (for expansion order 0 and 2) are
compiled and executed on a SUN Ultra SPARC Enterprise
4000. FastCap(0) is the fastest in the FastCap package, and
is about twice as fast as FastCap(2). However FastCap(0)
has 5% to 10% relative error with respect to FastCap(2).

The test examples are k x k bus crossing conductors for
k = 2 to 6, taken from the FastCap paper [10]. Each bus in
kx k example is scaled to 1m x 1m x (2k+1)m. The distance
between buses on the same layer is 1m, and the distance
between layers is 1m. The constant 4mep is 111.27pF/m,
according to [10]. Our GMRES reduces the two-norm of
the residual to 1% of the initial residual, the same condition
used by the conjugate residual algorithm in FastCap.

The difference or error of capacitance matrices is defined
as follows. Let the capacitance matrix computed by FastCap
(2) be C and the capacitance matrix computed by another
program be C’. Then the difference is estimated in the
Frobenius norm [4]: ||C -~ C'||/||C||. This is the standard
way to measure the difference between two matrices.

Table 1 compares the new algorithm with FastCap, and
Table 2 and 3 show the first row of the capacitance matrix
computed by the new algorithm and by FastCap. Here is a
summary of the comparison:

1) P. = 0.01. Compared with FastCap(2),
the new algorithm is 100 to 40 times faster, and
uses 1/100 to 1/60 of the memory. The error is
less than 2.7% with respect to FastCap(2). Com-
pared with FastCap(0), our algorithm is 40 to 14
times faster, and is three times more accurate.
(The memory usage for FastCap(0) appears to
be incorrect.)

2) P. = 0.003 and compared with FastCap(2).
the new algorithm is 5 to 3 times faster, and uses

216

Table 1: Comparison for the bus problem. Time is seconds,
memory is MB, and error is with respect to FastCap(2).

Test Problems

2x2 3x3 4x4 5x5 6x6
FastCap (0)
Time 4.3 11.0 413 39.0 84.4
Memory 12 16 86 24 97
Panel 792 1620 2736 4140 5832
Error 86% 50% 52% 85% 10.0%
FastCap (2)

Time 101 229 51.1 161.8 2319
Memory 5.6 16 26 46 62
Panel 792 1620 2736 4140 5832

New Algorithm (P. = 0.01)
Time 0.1 0.4 0.9 2.2 5.8
Memory 0.06 0.2 0.3 0.5 0.9
Panel 160 408 576 720 1584
Error 21% 1.7% 1.8% 1.7% 2.7%

New Algorithm (P. = 0.003)

Time 2.0 7.0 19.2 45.2 83.6
Memory 0.9 2.0 3.9 6.4 9.4
Panel 1888 3504 6720 10960 13152
Error 04% 02% 0.8% 0.6% 0.4%

1/6 to 1/8 of the memory. The error is less than
0.8% with respect to FastCap(2).

We do not have access to the precorrected FFT algorithm
[13], the MEI algorithm [15), and the SVD algorithm [8].
However, based on their relative performance to FastCap
for the k x k bus problem, our algorithm is much faster than
these algorithms as well.

5 Conclusion

This paper presents a hierarchical algorithm that is signifi-
cantly faster than previous best algorithms, and uses much
less memory. The new algorithm is kernel independent,
and therefore, is even more efficient when applied to multi-
layered dielectrics. The new algorithm does not require pre-
processing to partition the conductor surface into panels,
instead, it automatically partitions the panels according to
a user supplied error bound. The new algorithm provides
continuous tradeoff of time with precision by changing the
error bound P.. The new algorithm is very simple, and pro-
vides many rooms for further improvements.

There are several major differences between our hierar-
chical algorithm and the multipole algorithm FastCap. 1)
‘We partition the conductor surfaces according to an estima-
tion of the coefficients for the actual problem, while FastCap
considers the geometry of each conductor separately. As a
result, we use fewer panels than FastCap does, yet our pre-
cision is higher for the same expansion order. 2) To achieve
high precision, we divide the conductor surfaces into smaller
panels, while FastCap uses high order expansion terms. Ex-
perimental results show that it is less expensive to use more
panels than to use more expansion terms. 3) We organize

Table 2: Comparison for 4x4 bus problem. Error is with respect to FastCap(2).

First Row of Capacitance Matrix (pF) Error | Time | Memory
Cn Ciz Cis Cus 15 Cie Ci7 Cis (sec) (MB)
FastCap
=0 394.5 | -124.0 | -0.175 | -2.471 | -52.15 | -43.39 | -43.08 | -52.92 || 5.2% | 41.3 86
=2 405.2 | -137.8 | -11.91 | -8.079 | -48.36 | -40.09 | -40.01 | -48.45 51.1 26
New Algo
P. =0.01 |[401.6 | -139.6 | -9.180 | -6.480 | -48.46 | -37.80 | -37.53 | -48.46 || 1.8% | 0.9 0.3
P, =0.003 || 407.9 | -135.7 | -13.08 | -8.720 | -48.79 | -41.20 | -41.21 | -48.72 || 0.8% | 19.2 3.9
Table 3: Comparison for 5x5 bus problem. Error is with respect to FastCap(2).
First Row of Capacitance Matrix (pF) Error | Time | Mem
Cu | Ciz | Cis | Cu | Cis | Cis Cir | Cis | Cio | Crio (sec) | (MB)
FastCap
=0 505.5 | -142.8 | -10.48 | -20.31 | 2.21 | -54.51 | -50.13 | -46.04 | -50.32 | -55.01 || 8.5% | 39.0 24
=2 484.5 | -166.1 | -13.62 | -6.17 | -6.54 | -48.84 | -40.12 | -40.12 | -40.21 | -48.90 161.8 | 46
New Algo
P.=0.01 |[476.5 | -168.2 | -12.97 | -1.91 | -4.48 | -47.37 | -38.52 | -37.36 | -38.41 | -47.69 || 1.7% 2.2 0.5
P. =0.003 || 486.3 | -165.5 | -15.05 | -6.77 | -6.01 | -48.78 | -40.49 | -40.52 | -40.52 | -48.83 || 0.6% | 45.2 6.4

the coefficient matrix more efficiently using the hierarchical
data structure. Some feathers, such as the adaptive evalua-
tion defined in FastCap [12], is free under our data structure.

Acknowledgment The authors wish to thank Weishi Sun,
Steve Tate and Dian Zhou for discussions and references,
and anonymous referees for improving the presentation.

References

[1] A. A. Appel, “An efficient program for many-body sim-
ulation,” SIAM J. Scientific and Statistical Computing,
Vol. 6, No. 1, 1985, 85-103.

[2] T. H. Corman, C. E. Leiserson, and R. L. Rivest, In-
troduction to Algorithms, MIT Press, 1990.

[3] K. Esselink, “The order of Appel’s algorithm,” Infor-
mation Processing Letters, Vol. 41, 1992, 141-147.

[4] G.H. Golub and C. F. Van Loan, Matriz Computations,
2nd ed., Johns Hopkins University Press, 1989.

[5] L. Greengard and V. Rohklin, “A fast algorithm for
particle simulations,” J. Comp. Phys., Vol. 73, 1987,
325-348.

L. Greengard, The Rapid Evaluation of Potential Fields
in Particle Systems, MIT Press, Cambridge, Mas-
sachusetts, 1988.

P. Hanrahan, D. Salzman, L. Aupperle, “A rapid hierar-
chical radiosity algorithm,” Computer Graphics (Proc.
SIGGRAPH’91), Vol. 25, No. 4, July 1991, 197-206.

(7]

S. Kapur and D. E. Long, “IES®: A fast integral equa-
tion solver for efficient 3-dimensional extraction,” Proc.
1997 ICCAD, 448-455.

217

[9] S. Kapur and J. Zhao, “A fast method of moments
solver for efficient parameter extraction of MCMs,”
Proc. 84th DAC, June 1997, 141-146.

[10] K. Nabors and J. White, “FastCap: A multipole ac-
celerated 3-D capacitance extraction program,” IEEE

Trans. CAD, Vol. 10, No. 11, Nov. 1991, 1447-1459.

K. Nabors and J. White, “Multipole-accelerated 3-D
capacitance extraction algorithms for structures with
conformal dielectrics,” Proc. 29th DAC, 1992, 710-715.

(11]

[12] K. Nabors, et al., “Preconditioned, adaptive, multipole-
accelerated iterative methods for three-dimensional
first-kind integral equations of potential theory,” STAM

J. Sci. Comput., Vol. 15, No. 3, May 1994, 713-735.

J. R. Phillips and J. White, “A precorrected FFT
method for capacitance extraction of complicated 3-D
structures,” Proc. 1994 ICCAD, 268-2T71.

Y. Saad and M. H. Schultz, “GMRES: A generalized
minimal residual algorithm for solving nonsymmetric
linear systems,” SIAM J. Sci. Stat. Comput., Vol. 7,
No. 3, July 1986, 856-869.

W. Sun, W. W.-M. Dai, and W. Hong, “Fast param-
eters extraction of general 3-D interconnects using ge-
ometry independent measured equation of invariantce,”
Proc. 33rd DAC, 1996.

(13]

(14]

(15]

[16] D. R. Wilton, et al., “Potential integration for uniform
and linear source distributions on polygonal and poly-
hedral domains,” IEEE Trans. Antennas and Propaga-

tion, Vol. AP-32, No. 3, March 1984, 276-281.

