
DAC.COM KNOWLEDGE CENTER ARTICLE 
www.dac.com  

 

 

This document has been submitted to, and reviewed and posted by, the editors of DAC.com. Please recycle if printed. 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Parametric Yield Estimation for SRAM Cells: 
Concepts, Algorithms and Challenges 

Fang Gong1, Yiyu Shi2, Hao Yu3 and Lei He1 
1 EE Department, University of California, Los Angeles, CA, USA 
2 ECE Department, Missouri University of Science and Technology, Rolla, MO, USA 
3 EEE Department, Nanyang Technological University, Singapore 

 

Notice of Copyright 

This material is protected under the copyright laws of the U.S. 
and other countries and any uses not in conformity with the 
copyright laws are prohibited. Copyright for this document is 
held by the creator — authors and sponsoring organizations — 
of the material, all rights reserved. 



DAC.COM KNOWLEDGE CENTER ARTICLE 
www.dac.com  

Page 2 of 12 

 
 

 

ARTICLE:  Yield Estimation 
 
Parametric Yield Estimation for SRAM Cells: Concepts, Algorithms and 
Challenges 
 

Fang Gong1, Yiyu Shi2, Hao Yu3 and Lei He1 
 1 EE Department, University of California, Los Angeles, CA, USA 
       2 ECE Department, Missouri University of Science and Technology, Rolla, MO, USA 
 3 EEE Department, Nanyang Technological University, Singapore 
 

 
 

Abstract— With technology scaling down to 90nm and below, process variation has become a 
major challenge for both design and fabrication. Among all types of circuits, Static Random 
Access Memory (SRAM) is particularly vulnerable to process variation, as it contains a large 
number of nearly minimum-sized devices with ever-decreasing supply voltage and reduced 
noise margin. To determine the performance of the SRAM cell under process variation, we need 
to estimate its parametric yield efficiently and accurately. Existing parametric yield estimation 
methods can be classified into two categories: performance domain methods which require 
extensive Monte Carlo simulation, and parameter domain methods which require the 
characterization of a yield boundary defined by performance constraints without using Monte 
Carlo simulations. In this article, we review the pros and cons of these methods, and use a six-
transistor (6T) cell as a basis for evaluation and quantitative comparison.  

 
 
 

Index Terms— Parametric yield estimation, 6T SRAM bitcell, Monte Carlo method, parameter domain. 
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I. INTRODUCTION 
   
As integrated circuits enter the nanometer era, process variation has become a major challenge 

for both design and fabrication. Many uncertainties can be introduced during manufacturing process 
steps such as lithography, chemical mechanical polishing (CMP), etching, etc. Consequently, circuit 
parameters such as effective channel length Leff and threshold voltage Vth can deviate significantly 
from their nominal values. This in turn will cause circuit performance-determining parameters, such as 
maximum clock frequency and leakage power, to differ from design specifications. For example, Intel 
has observed 30% variation in chip frequency and 20X variation in chip leakage in 1,000 sample chips 
fabricated in 180nm technology [1].  

Static Random Access Memory (SRAM) is among the circuits that are particularly vulnerable to 
process variation, as it contains a large number of nearly minimum-sized devices with ever-
decreasing supply voltage and reduced noise margin [2]. These transistors constitute cells in an array 
structure as shown in Figure 1. Each cell is used to store one memory bit, and a typical 
implementation involves six transistors: the four transistors Mn1, Mn3, Mp5 and Mp6 have two stable 
states, i.e., either a logic ‘0’ or ‘1’, and the two additional access transistors Mn2 and Mn4 serve to 
control the access to the cell during read and write operations. The word line is used to determine 
whether the cell should be accessed (connected to bit line) or not, and the bit line is used to read/write 
the actual data from/to the cell. The quality (i.e., electrical robustness) of SRAM cells can be assessed 
using either the butterfly curve (Figure 2(a)) or the N-curve (Figure 2(b)). The butterfly curve can be 
used to measure the static noise margin (SNM) [2], while the N-curve provides information on both the 
read-stability and the write-ability based on static noise margin and write-trip voltage (WTV) [2]. If the 
width W, effective channel length Leff and threshold voltage Vth of the transistors are altered by 
process variation, the noise margin, read-stability and write-ability can be affected, causing potential 
read/write failure. In light of this, we need to estimate the parametric yield of the SRAM cells, which is 
defined as the percentage of the cells that can function correctly and is a common measure to 
evaluate design robustness in the presence of process variation. 

 
                     (a)                                                     (b)  

Figure 1: (a) SRAM array structure and (b) a 6T SRAM cell. 
 
Compared with other circuits, yield estimation for SRAM cells is particularly challenging. Without 

redundancy implementation, the failure of any individual cell can result in the failure of the entire 
SRAM. If each cell fails independently with probability ρ and the total number of cells is N, then the 
failure probability of the SRAM is 

 NP N  )1(1 , 

where the approximation holds for small ρ. In other words, the failure probability for an SRAM is N 
times that of its individual cells. For example, a 1M SRAM with cell failure probability 1e-9 has a 
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failure probability of 0.001. It is therefore critical to design cells that have extremely low failure 
probability. This brings significant challenges to accurate yield estimation of SRAM: typically, it is 
necessary to be able to predict yield higher than 0.9999, which is at the tail of the distribution (3σ-4σ 
for Gaussian distributions).  

                
  (a)                                                                        (b) 
 Figure 2: (a) butterfly curve and (b) N-curve [3]. 

 
In the literature, yield estimation of SRAM cells is performed in either the performance domain or 

the parameter domain, as shown in Figure 3. The performance domain contains all possible 
performance metrics of interest (e.g., static noise margin, write-trip voltage) which can be obtained by 
circuit simulations over different parameter samples. By comparing against performance constraints, 
the parametric yield can be estimated as the percentage of successful samples among all samples. 
On the other hand, the parameter domain is defined as the space bounded by the min and max of all 
process parameters with consideration of their correlations; each combination of parameters 
corresponds to one performance point in the performance domain. As such, the boundary separating 
the success and failure regions can be located in the parameter space. If the parameters are each 
uniformly distributed, then the yield can be further estimated as the ratio of the hyper-volume of the 
success region to that of the entire parameter space.  

 
Figure 3: Yield estimation in (a) parameter domain and (b) performance domain. 

    
To illustrate the difference between the two types of approaches, we use the example of a typical 

6T SRAM cell design in 90nm technology. The parameters of the transistors are shown in Table 1. In 
this example, we estimate the yield based on the read failure, as read noise margin is typically a more 
stringent constraint than write noise margin. To read from the SRAM bitcell, both BL_B and BL are 
precharged to Vdd. We assume that Q_B stores ‘0’ and Q stores ‘1’. While reading the SRAM cell (WL 
is charged to high), BL starts to discharge from Vdd and produces a voltage difference ΔVBL between 
itself and BL_B. Because ΔVBL is sensed by a sense amplifier connected to the end of the bit lines, 
ΔVBL should be larger than a certain threshold ΔVth at a specific time ts, which is determined by the 
performance of the sense amplifier. In our experiment, we assume that ts = 10ps and ΔVth = 450mV. 
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We then introduce process variations to the threshold voltages Vth of Mn1 and Mn2, since these two 
MOSFETs are critical for read operation. We assume the variations to be uncorrelated Gaussian with 
a 0.1 standard-deviation-to-mean ratio1. 

 
     
 
 
 
 
 
 
 

 
Table 1: Parameters of the transistors in the 6T cell as shown in Figure 1(b). 

 
 To estimate the yield (probability of successful read operations) in performance domain, we 
first run 1,000 Monte Carlo simulations. The voltage difference ΔVBL over time is depicted in Figure 
3(a), with successful samples marked with blue and failure samples marked with red according to the 
constraint that at ts = 10ps, and ΔVth ≥ 450mV. As such, the yield can be approximated as the ratio of 
the number of blue curves over the total number of curves (908/1000). To estimate the yield in 
parameter domain, we further plot Figure 3(b), which captures the deviations in Vth of both Mn1 and 

Mn2 from their nominal values by a large range (σ=10% of nominal value). Again, the successful 

samples are marked with blue, and the failure samples are marked with red. For purposes of this 
illustration, we have converted the Gaussian distributed samples to uniformly distributed ones so that 
the reader can directly infer the yield from the ratio of the red area to the entire area. The yield can 
also be calculated as the ratio of the number of blue points to the total number of samples (908/1000). 
It should be anticipated that the yield calculated from the parameter domain should be identical with 
that from the performance domain, given the same design and parameter variation. While it seems 
that there is no difference between those two methods, as Monte Carlo simulations are used for both, 
we emphasize that for actual parameter domain methods, the boundary can be obtained without 
Monte Carlo simulations. This will be detailed in Section III.  

 
       (a)                                                                  (b) 

Figure 4: Yield estimation using Monte Carlo method in (a) performance domain and (b) parameter 
domain for a 6T SRAM cell (908 success points and 92 failure points). 

 
1 In actual applications, these parameters are correlated, and can be decorrelated with independent component 
analysis (ICA) (for non-Gaussian distributions) or principal component analysis (PCA) (for Gaussian distributions).  

 
Width  
(um) 

Length  
(um) 

Source Region 
Area (um2) 

Drain Region 
Area (um2) 

Threshold  
Voltage (V) 

Mn1 0.375 0.1 0.10125 0.10125 0.2607 
Mn2 0.175 0.1 0.06125 0.06125 0.2607 
Mn3 0.375 0.1 0.10125 0.10125 0.2607 
Mn4 0.175 0.1 0.06125 0.06125 0.2607 
Mp5 0.225 0.1 0.08 0.08 -0.303 
Mp6 0.225 0.1 0.08 0.08 -0.303 
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II. PERFORMANCE DOMAIN YIELD ESTIMATION 
In this section, we discuss the yield estimation methods in performance domain, which mainly 

involve Monte Carlo methods and their derivations. For purposes of illustration, we set the yield of the 
SRAM cell to around 90% to generate all the figures in this section. A quantitative comparison 
between different performance domain methods is presented at the end of the section, where we set 
the yield to 99.9% to more closely approximate actual contexts.  

A. Direct Monte Carlo 

One straightforward way to estimate the yield is to perform Monte Carlo simulations in the 
performance domain. The direct Monte Carlo method [4, 5] usually involves hundreds of thousands 
samplings and simulations, especially when analytical solutions of stochastic problems are  not 
available. In general, Monte Carlo approaches first perform sampling within the entire parameter 

domain according to the probability distributions ( )p x . Then, circuit simulation is conducted with each 

set of sampled parameters ~ ( )iX p x  to obtain a performance merit value ( )ig X . Accordingly, 

Monte Carlo can estimate the expectation of performance merit 

( ) ( ) ( )I g g x p x dx   

with       
1

1
( ) ( )

n

i
i

I g g X
n 

  . 

Moreover, with given performance constraints, the yield can be estimated as the percentage of 
samplings with successful or acceptable performance. 

 The advantages of the direct Monte Carlo method are its simplicity and generality; it can be 
applied to arbitrary distributions of parameters and performance functions without any a priori 
information. On the other hand, direct Monte Carlo is very time-consuming to achieve high accuracy, 

since its convergence rate to the exact value is only  1 N , where N is the total number of 

samples or simulations. Therefore, direct Monte Carlo is not suitable for practical yield estimation. 

 

B. Quasi-Monte Carlo 
An alternative to the direct Monte Carlo approach is quasi-Monte Carlo (QMC) [6], which uses 

quasi-random sequences rather than random samplings. QMC starts with the generation of quasi-
random numbers (or representative samples), such as Faure (1982), Neiderreiter (1987), Sobol 
(1967) or Halton (1960) sequences. It then converts the samples following those specific distributions 
to ones following the desired distribution. For example, the Sobol sequence follows a uniform 

distribution ~ (0,1)u U  and can be converted to Gaussian distribution using 

1( )Xx F u  

where 1
XF   is the inverse cumulative distribution function (inverse CDF) of the Gaussian distribution. 

The resultant sequence x follows the Gaussian distribution. Circuit simulation can then be performed 

with each sampling of parameters to obtain performance merit values, and the yield is estimated as 
the percentage of successful samples.  

Note that quasi-random numbers are deterministic samples rather than pure random numbers. 
Thus, QMC can cover the entire parameter space evenly with fewer samplings – and can therefore 
potentially improve both accuracy and efficiency – compared with direct Monte Carlo. For comparison, 
we apply QMC to the same example in Figure 4 to estimate the yield of the SRAM cell considering 
read failure. All settings remain the same, and the results in the performance and parameter domains 
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are shown in Figures 5(a) and 5(b), respectively. As in Figure 4, we convert the samples to follow 
uniform distributions so that the ratio of the blue area to the entire area represents the yield. It can be 
seen that QMC can achieve similar yield estimation (180/200) with only 200 samples; compared with 
908/1000 in Figure 4, the relative error is about 0.9%. For the same number of samples, direct Monte 
Carlo has larger error in Figures 5(c) and 5(d) (177/200). The relative error is about 2.5%.  

 

 
                                    (a)                                                                     (b) 

 
        (c)      (d) 

Figure 5: Yield estimation with quasi-Monte Carlo in (a) performance domain and (b) parameter 
domain for a 6T SRAM cell (180 success points and 20 failure points), and with direct Monte Carlo in  
(c) performance domain and (d) parameter domain (177 success points and 23 failure points). 

The convergence rate of QMC can be  1 N  in optimal cases, much faster than that of direct 

Monte Carlo. However, the upper bound of estimation error (or the worst-case error) for multi-

dimensional QMC is   ln /dN N  where d is the number of dimensions [7]. Thus the performance 

of QMC can decrease with the dimension. 
 

C. Importance Sampling 
Even though quasi-Monte Carlo can cover the entire parameter space evenly with fewer 

samplings, it is still possible to miss failure regions that are very small, and hence obtain misleading 
yield estimates. To avoid such cases, importance sampling (IS) has been proposed to estimate the 
SRAM yield [8] by shifting the sampling distribution to the failure region as shown in Figure 6 [8].  
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Figure 6: Shifting sampling distribution in Importance Sampling [8] 

For the purpose of illustration, we take ( )p x  as the probability density function (PDF) of variable 

parameter distribution, and assume that the failure region is located at the right tail of ( )p x  

around s . The Monte Carlo method will generate more random samples around   rather than s , 

which does not improve the accuracy of yield estimation. To cure this, importance sampling tries to 

find a distorted sampling function ( ) ( )g x p x    which can increase the probability of sampling 

within the failure region. Readers are referred to [8] for more details.  
When importance sampling is applied in the same context as in Figures 4 and 5, we can shift the 

sampling function around the failure region. As shown in Figure 7(a) and 7(b), more samples are 
scattered around the failure region and separation boundary so as to achieve higher accuracy. Since 
the right-down corner is a “safe” region wherein all parameters can lead to successful performance, 
fewer samples are needed to achieve the desired accuracy. In this case, 400 samples are used to 
achieve 0.4% relative error. For the same number of samples, quasi-Monte Carlo yields larger error in 
Figure 7(c) and Figure 7(d) (360/400). The relative error is about 0.8%. 

  
          (a)      (b) 

 
          (c)      (d) 
Figure 7: Yield estimation with importance sampling in (a) performance domain and (b) parameter 

domain for 6T SRAM cell (463 success points and 49 failure points after conversion), and with quasi-
Monte Carlo in (c) performance domain and (d) parameter domain (360 success points and 40 failure 
points). 



DAC.COM KNOWLEDGE CENTER ARTICLE 
www.dac.com  

Page 9 of 12 

 

 

Importance sampling can reduce the number of samples required to achieve a desired accuracy, 
especially in the case where the failure region is small for rare failure events. However, it is always 

challenging to obtain an optimal sampling distribution ( )g x  efficiently, since this depends on the 

actual distribution of the performance merit and is unknown beforehand. 
 
In the above examples, we have set the yield to 90% for purposes of illustration. To indicate how 

the various methods might behave in a more realistic context, Table 2 shows the number of circuit 
simulations required by different methods when the yield is close to 99.9%. We can see that the 
previous conclusions can still hold: quasi-Monte Carlo can reduce the number of samplings by 
covering the entire space with deterministic sequences, and importance sampling can further reduce 
the number of samplings required. 

 
# of parameters Monte Carlo Quasi-MC Importance Sampling 

1 1.0e+5 (1X) 2.5e+4 (3.8X) 1.5e+3 (67X) 
2 1.8e+5 (1X) 4.6e+4 (3.9X) 2.5e+3 (72X) 
3 3.5e+5 (1X) 9.6e+4 (3.6X) 5.8e+3 (61X) 
4 3.5e+5 (1X) 9.6e+4 (3.6X) 5.8e+3 (61X) 
5 3.5e+5 (1X) 9.6e+4 (3.6X) 5.8e+3 (61X) 
6 3.5e+5 (1X) 9.6e+4 (3.6X) 5.8e+3 (61X) 

Table 2: Number of circuit simulations required to achieve the same accuracy for SRAM cell yield 
estimation using performance-domain methods. 

  
From the table, we see that the number of simulations required remains the same for more than 

three parameters. The reason is as follows: among all possible sources of process variations, the 
threshold voltage Vth is dominant due to random dopant effect [9], and the effects of other parameters 
are significantly masked. In addition, even though all six transistors are subject to Vth variations, not all 
of them are critical to the performance metric under study. For the read failure in this example, only 
Vth variations of Mn1, Mn2 and Mp6 will have significant impact on the yield.  

 

III. PARAMETER DOMAIN YIELD ESTIMATION 
To avoid the large number of simulations required for performance domain estimation, several 

approaches have been proposed to estimate the yield in parameter domain. Here we discuss two 
state-of-the-art techniques, nonlinear surface sampling and the surface-point finding strategy method. 
 

A. Nonlinear Surface Sampling 
Nonlinear surface sampling  [10, 11] considers non-Monte-Carlo parametric yield estimation with 

fully nonlinear performance constraints. The key idea is to locate the yield boundary in the parameter 
domain, which can be approximated by connected boundary points as shown in Figure 8(b). For 
example, the performance surface can be defined with each point on the surface corresponding to a 
sampling point in the parameter domain, as shown in Figure 8(a). With the given performance 
constraint, the surface can be divided into success and failure regions, and the separation boundary 
projected into parameter domain as shown in Figure 8(b). As such, the yield can be estimated by the 
area (or, volume) ratio of the bounded region to that of the entire parameter domain2. 

 
2 For techniques in parameter domain, the variable parameters are assumed to follow uniform distributions, 
because the yield estimation makes use of the area ratio of success region and entire parameter domain.  Other 
distributions can be converted into uniform distribution based on the cumulative distribution function (CDF). 
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      (a)                                                                     (b) 
Figure 8: (a) Performance surface over parameter domain, and (b) the yield boundary in the 

parameter domain [11]. 
 
To locate a point on the yield boundary, nonlinear surface sampling starts with the nominal 

parameters P0, and searches along the tangent of the performance surface to approach the surface 
boundary points P4.  As such, nonlinear surface sampling searches along the path as shown in 
Figure 7(a), and performs circuit simulations with the sampling parameters corresponding to P1, P2, 
P3 and P4. Sensitivity analysis is used to calculate the derivative of the performance merit function 

mf  with respect to each parameter ip , so as to obtain the tangent direction at each sampling point. 

This method can provide high accuracy without resorting to Monte Carlo. However, surface point 
samplings and corresponding expensive simulations are still required to locate each point, so further 
efficiency  improvements are still needed. 

 

B. Surface-Point Finding Strategy 
 Another approach, the so-called surface-point finding strategy [12], is a truly non-Monte-Carlo 

method because it can locate each boundary point using “one-shot” simulation without sampling. Per 
our discussion so far, previous methods mostly share a common yield estimation framework: 
generating samples, performing simulations at all samples, and then comparing with the given 
performance constraints to estimate the yield.  

 The work in [12] breaks the traditional framework by switching the role of performance constraints 

( ; )p mH f and variable parameters p , where mf  is the performance merit function of interest. This 

method treats the parameter p  as an unknown, while introducing ( ; )p mH f  as an extra equation 

into the simulation system. It first combines the differential algebraic equation (DAE) 

 ( ( )) ( ( )) 0
d

q x t f x t b
dt

    

with the performance constraint ( ; )p mH f  as 

( ( )) ( ( )) 0

( ; ) ( ) 0p m m p worst

d
q x t f x t b

dt
H f f f 

   

   

 

 The objective of the simulation is to find the value of p  that can satisfy the performance 

constraint ( ; )p mH f exactly. Therefore, the simulator needs to solve one augmented nonlinear 

system with Newton’s method. With the obtained parameter values, the points on the surface 
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boundary can be located in the parameter domain, and the parametric yield can be evaluated 
accordingly. Therefore, the method provides both high accuracy and better efficiency, at the same 
time. Experiments show that this method can achieve up to 519X speedup over direct Monte Carlo 
and 4.7X over nonlinear surface sampling. 

 We must point out that parameter domain methods cannot handle – or at least are extremely 
challenged by – high-dimensional problems (more than 3 variables). This is because they 
approximate yield using the ratio of area or volume of the success region to that of the entire 
parameter space. It is challenging to calculate the hyper-volume of the success region in the high-
dimensional space induced by multiple parameters of variation. 

  
 As for the yield optimization task, it usually estimates the yield of the initial design and then tries 

to improve yield by moving the design point (or tuning the design parameters in nominal case), with 
several iterations of yield estimation being required. For this purpose, Monte Carlo methods are not 
suitable, if not completely infeasible, since they usually need to conduct a huge number of (typically 
expensive) circuit simulations at each design point. Therefore, yield optimization methods should 
mainly deploy efficient parameter-domain techniques, such as those discussed in this section, to 
achieve efficiency.  

  

IV. UPCOMING CHALLENGES AND CONCLUSIONS 
In the foregoing, we have introduced the parametric yield estimation problem and discussed 

existing approaches in the context of SRAM yield.  SRAM yield estimation still faces a number of 
challenges. First, none of the existing methods can be embedded into the yield optimization 
framework while retaining both efficiency and accuracy. Performance-domain methods cannot provide 
any sensitivity information to guide the optimization, and also require a large number of simulations. 
On the other hand, parameter-domain methods cannot efficiently handle multiple parameters and 
constraints.  

Second, with the yield estimation of one SRAM cell, efficient optimization techniques are required 
to optimize the entire SRAM. Variations within each cell are spatially correlated, and accordingly the 
yields of each cell in an SRAM array are also correlated. It is still open how to answer such questions 
as: how many redundant cells will be enough to achieve a specific yield rate, how should the cells be 
tuned, and where they should be placed. This may involve joint architecture- and circuit-level 
optimization.  
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