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Abstract: 
Fall is the prevalent issue among the elderly, and fall risk assessment and prevention are very 
important. Recent research discovers that bio-signal can be used to forecast falls via the 
pre-warning information. However, assistive devices for fall prevention are fully customized 
and difficult to implement in terms of wearability. In the paper, we will introduce the framework 
to design and implement wearable systems. Also we will present three case studies: smart 
insole, smart cane and smart headset to verify the feasibility of our proposed method. To the 
best of our knowledge, it is the first comprehensive literature for the discussion about fall 
prevention technology.  

1. Introduction 

Many elder people over 65 are at a high risk of falling because of their general frailty and 
multiple pathologies. Specifically, falls are reported by one-third of all people 65 and older, and 
have become a leading cause of deaths due to injury among elderly people. And the number 
of elderly people with fall-induced injury is increasing at a greater rate. Correspondingly, 
related health costs for fall-related medical treatments, such as fractures, open wounds and 
head traumas, which totaled $20 billion in 2006, has risen to $23 billion in 2010. As such, 
injuries due to falls also account for large healthcare costs and need to be cut off with low-cost 
solution based on novel biomedical technology. Therefore, falls among the elderly have 
become a growing concern, and preventative measures that cut fall hazards or reduce the 
probability of a fall are being urgently sought. 
 The most promising approach for fall prevention is the wearable assistive system which 
could detect and forecast the falling risk, since over 4 million individuals in the United States 
own the heath-care support with the wearable assistive system in their daily lives. However, 
the use of these assistive systems also introduces negative influence, such as additional 
cognitive burden to people who suffer from cognitive disability due to age or other causes. 
Fortunately, the limitations can be overcome with the advance of sensing technology, 
especially the emerging “wearable” sensors. The novel sensing technology can dramatically 
reduce the footprint of traditional sensors, and thereby integrate them into plastic, paper or 
even fabric materials. As such, when coupled with wireless communication and computing 
technology, these wearable assistive systems are possible to be used by individuals 
comfortably and invasively. 



In this paper, we describe the development of several new wearable assistive systems that 
addresses the risks associated with falling. Specifically, the Smart-Headset system can detect 
the fall risk by monitoring the EEG signals of users, and release the warning before the real 
falling happens. In addition, fall risk is highly associated with physical gait parameters such as 
underfoot pressure distribution, cadence, and stride length. As such, the Smart-Insole system 
is capable of monitoring the underfoot pressure continuously and providing the fall risk 
assessment. Moreover, the Smart-Cane system can forecast the potential falling by 
investigating the improper usage of the canes by the elderly and disabled.  
The remaining of the paper is as follows. Section 2 will introduce the general system design 
framework and design criteria. Section 3 will present a compressed sensing based bio-signal 
processing. After that, three case studies, including smart headset, smart insole and smart 
cane, will be introduced in details in Section 4 to valid the method we proposed. The 
conclusion is included in Section 5. 

2. System Framework 

In this section, we will state the system design framework of wearable system for fall 
prevention. In general, the system could include two parts, client end and server end. The 
client end will be taken with the user for bio-signal sensing, computing and transmitting. The 
server end is to mine the receiving data. Fig. 1 shows the stacked-layer architecture of client 
and server, where Fig. 1 (a) is the structure of the client, and Fig.1 (b) is the structure of the 
server. 
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Figure 1: (a) Client Structure (b) Server Structure 

2.1 Client End  
The client part consists of four layers: sensing layer, actuating layer, middleware layer and 
communication layer. Sensing and Actuating layers are at the bottom to interact with users 
directly. Some sensors are included in sensing layer to acquire miscellaneous of bio-signals 
from users. With the sensed data, middleware implemented on microcontroller will perform 
preliminary processing such as signal filtering, sorting, compression and lightweight data 
analysis for feature extraction. Some of the expected results are urgent to report, and they will 
be sent to actuating layer to notice users, such as fall risk. Otherwise, the data will be sent 
through communication layer to server end for further data mining. The most common solution 
for communication layer is Zigbee, Bluetooth or WiFi, which highly depends on the specific 
applications. 
2.2 Server End 



For the server part, there are two layers. The first layer is the communication layer for 
receiving the data from client, and the secondary layer is signal processing layer. Data mining 
algorithm will be implemented in signal processing layer to analyze the fall risk of the user. 
After the calculation, the server end will send the feedback to client side for actuating. 
2.3 Problem Analysis 
In the whole structure, there are two time-consuming procedures. One is the wireless data 
transmission between client and server; the other is the data mining on the server side. It is 
known that the time response time is critical for fall prevention. To alleviate this problem, in this 
paper, we will present an innovative method for high-efficiency data processing. Furthermore, 
we developed several wearable fall prevention systems for elderly people, which is affordable, 
lightweight and long life. Our solution is to leverage the recently established theory of 
Compressed Sensing (CS) [5]. 

3. CS Based Bio‐Signal Processing 

Before discussing our proposed method in detail, we would like to revisit the classical signal 
processing paradigm. The traditional signal processing sequence includes data acquisition, 
data compression, data mining and information retrieval. Most scenarios are as follows: Firstly 
we get an over-completion signal through an ADC under the intuition ‘the more data we collect, 
the more information we have’. The temporal sampling rate is determined by the 
Shannon/Nyquist theorem. However, most computer processors are not sufficient to process 
the large volume of information. The most straightforward way to reduce the data volume is to 
compress the data by removing redundancies. For example, the energy located in image data 
in the high frequency regions is usually small and can be neglected, without lowering the 
quality of the image too much. Well-known encoding methods, such as MPEG, JPEG and MP3, 
are based on this fact. Afterwards, algorithms are executed on the trimmed dataset to retrieve 
the information we originally wanted. In short, we collect a large amount of information, 
abandon a large part of it, and then examine whether the rest is useful. It is not intelligent in the 
sense that we have done a lot of unnecessary work in this procedure. Is it possible to collect 
only the necessary information we need? The answer is that it is not trivial, but possible. 
3.1 Bio-Signal Projections 
It has been proven that structured signal characteristics reside in a much lower-dimensional 
space compared to the original dimension N and thus such signals are compressible. This 
motivates us to use recently developed compressive sensing principles by Candes and 
Donoho [4], [5] which allow us to make K << N measurements (i.e., heavily under-sample the 
true data) and still be able to estimate x with high fidelity. For illustrative purposes, we consider 
a real-value, fine-length and discrete-time bio-signal x, which can be represented as an N×1 
column vector with elements x[n]. Also, it can be projected into another orthogonal space 
spanned with a set of orthogonal basis vectors. In other words, the BIO-SIGNAL signal can be 
represented in terms of a basis of N×1 vectors {ψi} (i =1…N). Thereby, using the N×N basis 
matrix ψ= [ψ1, ψ2, …, ψN] with the basis vectors {ψi} as columns, the BIO-SIGNAL signal x can 
be expressed as linear combination of basis vectors with coefficients { αi    } 
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Where αi the vector of weighting coefficients and is equivalent to x as the representation of 
the bio-signal. Clearly, x is in the time or space domain while αi  is in the orthogonal space or 
ψ domain. Usually, the representation of bio-signal in ψ domain is K-sparse (K << N), which 
implies that αi  vector has only K large coefficients and thus signal x is compressible. 
3.2 Bio Signal Representations 
As we mentioned above, compressive sensing can directly acquire a compressed signal 
representation (useful information) without having to acquire all N samples. In this section, we 
briefly explain the measurement operations that acquire the compressed representation while 
keeping the salient information. 
Consider a general linear measurement process that computes M<N inner product between x 
and measurement vector as: 
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As such, the original bio-signal x can be represented by a set of compressed measurements 
{yj}, and there exists a one-to-one relationship between them, which means the original signal 
x can be uniquely reconstructed by measurements {yj}. This also provides the foundation for 
fall prevention analysis, and makes it possible to detect fall risk by investigating only the 
small-scale measurements {yj} rather than the large amount of original signal information.  
3.3 CS Based System Design 
Based on the foregoing analysis of the above, we can propose a bio signal processing system 
based on compressive sensing, and the system overview can be plotted as shown in Fig. 2. 
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Figure 2: Overview of bio‐ signal acquisition system based on compressive sensing 

It can be observed that the original bio signals from the input need to go through projection and 
measurement stages, where the original signal will be transformed into the ψ domain and 
further measured with matrix Φ. As such, the data y is a small-scale yet equivalent 
representation of the raw bio-signal x. Therefore, signal y is sparse. [6] theoretically proved 
that if y is explicitly-sparse with only M non-zero elements in the transform space, selecting K ≥ 
M log N/M samples at random from y provides sufficient information. It is with high probability 
that we can then enable signal reconstruction with the minimal error [6]. 
Therefore, the ADC in this application can use low sampling rates and generate small-volume 
yet complete data for the information analysis. The most challenging steps in the acquisition 
system are the designs of projection matrix ψ and measurement matrix Φ. First, the projection 
matrix ψ should make the signal x become much sparser in the constructed orthogonal space, 
which depends on the specific signal structure under study. Second, the measurement matrix 
Φ should be stable, incoherent and satisfy the restricted isometry property (RIP) [6] to 
guarantee the one-to-one mapping between the original bio signal and corresponding 
measurement y. 
Therefore, valid pattern recognition can be conducted on the low-rate measurements, rather 
than on the original rapidly sampled signal, to detect the signature of an impending fall from 



bio-signal data. Then, a forecast of the potential fall risk can be provided based on results from 
pattern recognition, and corresponding preventive measures can be taken to help the elderly 
individual to regain the physical balance. 

4. Prototype 

To empirically prove the feasibility of the design framework we proposed the above, we will 
introduce three implementations for fall prevention technology. The pilot experiments show 
that CS-based signal processing strategy could reserve the fidelity of the data but dramatically 
reduce the size of the raw data. For the sake of the page limit, more detailed experimental 
results can be found in the supplemental materials. 
4.1 Smart Insole System 
Considering that gait signal is the bio-parameter most related to fall, we prototyped a Smart 
Insole system to analyze the gait of the users. [9] lists the most ten gait parameters needed for 
fall risk assessment from our medical professionals. 
To address these ten criteria, it is necessary to analyze the underfoot pressure distribution and 
fully motion tracking during walking. In the implementation, we put 40 pressure sensors, 3D 
accelerometer, 3D gyroscope and 3D magnetometer in the insole. Fig. 3(a) shows the circuit 
prototype of the insole. We use TI MSP430 as the central controller to sample and transmit the 
sensing data. In order to achieve the fully motion tracking for gait parameter calculation, the 
sampling rate should be 100Hz. The sampling is 12 bit, and the data transmitting rate is 58800 
bps. Note that 40 pressure sensors is the minimal requirement to analyze the comprehensive 
weight distribution. The data rate should be much higher if the more accuracy is required. 
Considering the real-time response requirement, we implemented the above proposed 
strategy in the system. In the insole (client) part, the microcontroller will sample and compress 
the sensor data via compressed sensing. After that, the cooked data will be transferred 
through Zigbee network. Therefore, the data for transmitting is much less than raw data. In the 
server part, the receiver will get the data for decoding. 
Fig. 2(b) is the smart insole with good packaging. The total thickness of the system is with 1cm, 
which is comfortable to wear for the human being. Fig. 2(c) shows the smart insole in demo. 
The server part is implemented in the laptop. As shown in the scan, the 3D fully motion and 
pressure distribution can be calculated and illustrated on the screen. 

 

Figure 3: (a) Insole Circuit Structure (b) Smart Insole in Packaging (c) Smart Insole in Demo 

4.2 Smart Cane System 



In this section, we present the Smart-Cane system [8] that utilizes commercially available 
micro sensor, computing, and wireless technologies to address the falling risks for elderly 
people. Specifically, the Smart-Cane system is designed to detect and classify cane usage 
patterns, such as orientation, motion and rotational forces. As such, it can predict possible 
outcomes such as high risk of falling so that to alert the patient, caregiver, and clinician about 
the potential falling of the patient. We will discuss the hardware and software designs of the 
Smart-Cane as follows: 
4.2.1 Hardware Architecture 

In order to enable daily usage for common people, the Smart-Cane system is developed 
with low cost, long operating lifetime embedded computing systems, such as six motion 
sensors including a 3-axis accelerometer, three single-axis gyroscopes, and two pressure 
sensors. These sensors can acquire motion, rotation, force, strain, and impact signals, and 
further calculate the orientation with respect to the gravity and swing characteristic of the cane.  

The 16-bit, 0-5 volt data from the sensors can be acquired up to 300 samples per second 
(Hz) and streamed in real-time to a personal devices (e.g. cell phones and PDA) or severs (e.g. 
laptop/desktop computers) by Bluetooth data acquisition modules continuously for over 20 
hours. In our experiment, we interfaced the Smart-Cane system with a standard PDA.  

The entire system is shown in Fig. 4 (a) where six sensors are marked in the figure. Also, 
the interfaced PDA device showing the acquired signals is shown in Fig. 4 (b). 

 
Fig 4: (a) The Smart‐Cane system; (b) Acquired data analysis in PDA device. 
4.2.2 Software Design 

With the acquired sensor signals received from Bluetooth Serial Port, the computing 
server can generate the low-pass filtered raw sensor signals so that to track the cane’s 
orientation, motion and rotational forces. First, the Smart-Cane system can formulate the cane 
usage patterns across a large group of patients and develop statistical models that can identify 
and detect the improper usage behavior leading to instability and falls in the elderly. Then, 
when the Smart-Cane system is engaged, it can recognize the improper usage patterns 
accurately and alert the falling risk in the real-time to avoid the potential injuries. 
4.3 Smart Headset System 
As stated in the above, from an ergonomic point of view, fall risk is highly associated with 
physical gait parameters such as underfoot pressure distribution, cadence, and stride length. A 
number of remarkable discoveries have been made by investigating these physical gait 
parameters for fall risk assessment in recent years [1, 2]. More importantly, the research 



reveals that physical gait parameters can forecast fall risk up to 0.3 seconds before the fall 
really happens. However, 0.3 second is insufficient to take any action to prevent the fall. 
Recent studies empirically prove that many mental and physiological signals, such as 
Electro-encephalogram (EEG), Electro-cardiogram (EKG) and Electro- myography (EMG), are 
also related to falls and surprisingly discover that EEG signals can offer much earlier forecast 
of a potential fall risk compared to physical gait parameters [3]. As shown in Fig. 5, there is a 
significant anomaly in EEG signals about 3 seconds prior to the fall. Therefore, it is possible to 
assess fall risk and activate fall prevention measures through warning patterns from EEG 
signal. 

 

Figure 5: EEG signal including: (1) original time series in falling trial; (2) evolution of mean values of 
EEG  signal;  (3)  time‐frequency  plot  of  EEG  shows  the  power  changes  during  transition‐to‐falling 
stage. 

Fig. 6 (a) illustrates the EEG acquisition system, called Smart Headset. There are two 
main parts: ADC module and data processing module. ADC used in our system is a kind of 
adaptive sampling module from Neurosky Inc [7]. This ADC has a low-sampling noise, high 
accuracy and configurable data rate. The other part is the data processing module. The key 
chip on the module is a ultra low power microcontroller, MSP430 from TI. The proposal CS 
based algorithm is hosted on this module for compressed data analysis. Additionally, Fig. 6 (b) 
shows that the whole system with good package is very tiny compared to the size of a quarter, 
in the mean while the signal accuracy is as accurate as those from the conventional scalp EEG 
device. Fig. 6(c) shows the smart headset in use.  

 
(a)                              (b)                       (c) 

Figure 6: (a) Circuit Structure (b) Smart Headset for Fall Prevention (c) Smart Headset in Use 



5. Conclusion 

In this paper, we introduced three innovative assistive systems for fall prevention via bio-signal 
analysis. We proposed the design framework for wearable system design. In proposed method, 
the physiological data can be reduced significantly within the minimal data loss, where the 
optimality of data reconstruction is theoretically guaranteed. Furthermore, we prototyped 
several CS-based bio-signal analysis system and empirically verified that bio-signal is 
structurally sparse. Our wearable systems for fall prevention could keep high accuracy in the 
pilot study. 
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