ECE 298

Modeling and Optimization of VLSI Circuits and Systems

Instructor:	Lei He
Email:	LHE@EE.UCLA.EDU
Office:	Eng. IV, 68-117
Telephone:	206-2037
Office hour:	4-5pm

References

- Cong-He-et al, Performance Optimization of VLSI Interconnect Layout, *Integration, the VLSI Journal* 21 (1996) 1--94.
- Selected papers from major circuit and CAD conferences and journals
- Raminderpal Singh, "Signal Integrity Effects in Custom IC and ASIC Designs," IEEE Press, 2002.

Related VLSI CAD Conferences and Journals

- ACM IEEE Design Automation Conference (DAC)
- International Conference on Computer Aided Design(ICCAD)
- IEEE International Symposium on Circuits and Systems (ISCAS)
- Design, Automation and Test in Europe (DATE)
- Asia and South Pacific Design Automation Conference (ASP-DAC)
- International symposium on physical design (ISPD)
- IEEE Transactions on CAD of Circuits and systems (TCAD)
- ACM Trans. on Design Automation of Electronic Systems (TODAES)
- IEEE Transactions on Circuits and Systems (TCAS)
- IEEE Trans. on VLSI Systems (TVLSI)

Homework	20%
Quiz and Midterm	20%
Paper presentation	10%
Use transparencies or video projectorGraded by fellow students	
Term project	50%
Bonus points	
♦ For active participation	
Grade A for score > 85	

Course Outline

- Overview and Introduction (1 lecture)
- Interconnect Extraction and Modeling (3 lectures)
- Timing models, Delay Calculation, and Timing Analysis (2 lectures)
- Wireload model, logic effort and fanout optimization (2 lectures)
- Interconnect Synthesis and Routing Optimization (2 lectures)

Skills to Learn

- Interconnect modeling and design
 A course parallel to EE216M
- Algorithm / Programming / writing / presentation

Course Web Site

- **Examples of previous projects**
 - http://eda.ece.wisc.edu/ece902.html
- Course website
 - http://eda.ee.ucla.edu/ee298.html

Overview

- Moore's Law
- CMOS scaling theory
- Interconnect performance implied by NTRS'97
- Need for a new design paradigm

Moore's Law and NTRS

Moore's Law

- The min. transistor feature size decreases by 0.7X every three years (Electronics Magazine, Vol. 38, April 1965)
- True in the past 30 years!

National Technology Roadmap for Semiconductors (NTRS'97)

Technology (um)	0.25	0.18	0.15	0.13	0.10	0.07
Year	1997	1999	2001	2003	2006	2009
# transistors	11M	21M	40M	76M	200M	520M
On-Chip Clock (MHz)	750	1200	1400	1600	2000	2500
Area (mm ²)	300	340	385	430	520	620
Wiring Levels	6	6-7	7	7	7-8	8-9

Parameter	Scaling Factor
Cross sectional Dimensions $(W_{int}, H_{int}, W_{sp}, t_{ox})$	1/S
Resistance per unit length $(R_{int} = \tilde{n}_{int} \frac{1}{W_{int}H_{int}})$	S^2
Capacitanc e per unit length ($C_{int} = \varepsilon_{ox} \frac{W_{int}}{t_{ox}}$)	1
RC constant per unit length ($R_{int}C_{int}$)	\mathbf{S}^2
Local interconnection length (<i>l</i> _{loc})	1/S
Local interconne ction RC delay $(R_{int}C_{ind}l_{loc}^2)$	1
Die size (<i>D c</i>)	Sc
Global interconnection length (<i>l</i> int)	Sc
Global interconne ction RC delay ($R_{int}C_{int}l_{int}^2$)	$S^{2}(S_{C})^{2}$
Transistor line time of flight (l_{int}/v_c)	Sc

Parameter	Ideal Scaling	Qussi-Ideal Scaling	Constant-R Scaling	Generalized Scaling
Thickness (Hint)	1/S	1/√S	$1/\sqrt{S}$	1/S н
Width (Wint)	1/S	1/S	1∕√ <u>S</u>	1/Sw
Separation (Wsp)	1/S	1/S	$1/\sqrt{S}$	1/Ssp
Insulator thickness (tox)	1/S	$1/\sqrt{S}$	$1/\sqrt{S}$	1/Sox
Length (loc)	1/S	1/S	$\approx 1/S$	1/S
Resistance (Rnt)	S	$\sqrt{\mathbf{S}}$	1	SwSH/S
Capacitance to substrate	1/S	1/S ^{3/2}	≈ 1/S	Sox/SSw
Capacitance between lines	1/S	$1/\sqrt{S}$	≈ 1/S	Ssp/SSH
RC delay (T)	1	$\approx 1/\sqrt{S}$	≈ 1/S	$\approx SwSH/S^2$
Voltage drop (IR)	1	1/√ <u>S</u>	1/S	SwSH/S ²
Current density (J)	S	$\sqrt{\mathbf{S}}$	1	SwSH/S
		not goo	↑ d for packir	ıg density

Local Interconnects under Different Scaling Rules

Global Interconnects under Different Scaling Rules Table 5.2 Scaling of Global Interconnections Ideal Constant Constant Generalized Parameter Scaling Dimension Delay Scaling **1/S**н Thickness (Hint) 1/S 1 Sc Width (Wint) 1/S Sc 1/S w 1 Separation (Wsp) 1/S Sc 1/S sp 1 Insulator thickness (tox) 1/S 1 Sc 1/S ox Length (loc) sc Sc \mathbf{Sc} Sc $s^2 s c$ Sc 1/S C Resistance (Rnt) SwShSc $\approx Sc$ Capacitance (Cint) sc Sc Sc $S^{2}(SC)^{2}$ RC delay (T) (Sc)² 1 SwSh(Sc)² S: Scaling factor for device dimensions. Sc:Scaling factor for chip size

Technology (um)	0.25	0.18	0.15	0.13	0.10	0.07
Res. r (u W /cm)	3.3	2.2	2.2	2.2	2.2	1.8
Dielectric constant	3.55	2.75	2.25	1.75	1.75	1.5
Min. wire width	0.25	0.18	0.15	0.13	0.10	0.07
Min. wire spacing	0.34	0.24	0.21	0.17	0.14	0.10
Metal aspect ratio	1.8:1	1.8:1	2.0:1	2.1:1	2.4:1	2.7:1
Via aspect ratio	2.2:1	2.2:1	2.4:1	2.5:1	2.7:1	2.9:1
Vdd (V)	2.15	1.65	1.35	1.35	1.05	0.75

	erconnec	ια	Dev	vice	Pai	ame	elers
Techi	Technology (um)		0.18	0.15	0.13	0.10	0.07
2X min.	Ca (aF/um)	29.0	21.2	16.2	12.0	14.4	8.56
width &	Cf (aF/um)	41.8	30.2	24.8	18.3	14.1	14.8
spacing	Cx(aF/um)	71.0	58.3	49.4	42.8	45.3	41.6
5X min.	Ca (aF/um)	73.5	53.6	40.6	30.0	26.6	19.5
width &	Cf (aF/um)	63.5	47.3	38.4	28.5	28.2	23.6
spacing	Cx(aF/um)	18.3	16.9	15.4	14.8	16.5	16.7
Buffer in	out cap. (fF)	0.17	0.12	0.11	0.085	0.070	0.042
Buffer Rd	l (x10K₩)	1.71	1.86	2.26	2.25	2.39	2.42
Buffer int	rin. delay (ps)	70.5	51.1	48.7	45.8	39.2	21.9

Impact of Interconnect Optimization on Future Technology Generations

Technology (um)	0.25	0.18	0.15	0.13	0.10	0.07
1mm (ns)	0.059	0.049	0.051	0.044	0.052	0.042
2cm DS (ns)	2.589	2.48	2.65	2.62	3.73	4.67
2cm BIS (ns)	1.779	1.55	1.59	1.51	1.74	1.55
2cm BISWS (ns)	0.895	0.793	0.77	0.7	0.77	0.672

Summary

- Technology scaling according to Moore's Law has been the driving force behind the exponential growth of the semiconductor industry
- Interconnect (esp. global interconnect) performance and noise have become the bottleneck of the overall system design
- Interconnect modeling and optimization has become very important, yet difficult
- A new design paradigm is needed for interconnectdriven (or interconnect-centric) design

