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An adaptive algorithm based on weighted recursive least squares is derived and implemented. The generality of the approach is
underscored by the application of the algorithm to a 42 V lead acid and a high-vd8@geV) nickel metal hydride battery

system. The algorithm is fully recursive in that the only variables required for on-line regression are those of the previous time step
and the current time step. A time-weighting technique often referred to as exponential forgetting is employed to damp exponen-
tially the influence of older data on the regression analysis. The output from the adaptive algorithm is the battery state of charge
(remaining energy state of healthrelative to the battery’s nominal ratingand power capability. Such algorithms are likely to

play a critical role in optimal operation of hybrid electric vehicles and on-board diagnostics. The behavior of the algorithm in
terms of convergence, accuracy, and robustness is examined.
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In a previous work, the challenges and motivation behind deter- greatey and a resolution of 0.03 A. \oltage measurements were
mining a battery’s state of charg800), state of healttiSOH), and made at the battery terminals using a separate high-impedance input
power capability for both discharge and charge were described. Théo the cycler to eliminate line voltage drop. Battery powsrtime
SOC corresponds to the stored charge available to do work relativéraces from actual hybrid vehicle operation were supplied to the
to that available after the battery has been fully charged, and it carcycler as command inputs for cycling the batteries. Peak power tests
be viewed as a thermodynamic quantity. SOH refers to how well thewere conducted by commanding constant voltage.
battery system is functioning relative to its nomiigedted and end

(failed) states. Results presented in this work indicate that adaptiv’fB NiMH experiments—Laboratory testing was conducted with a

igh-voltage, liquid-cooled battery pack. The pack was composed of
6 NiMH modules(SAFT version 12.}, each with a nominal volt-
Age of 12 V and a rated capacity of 96 Ah. \oltage, current, and

of the value chain for software and control processes. Reviews ori€Mmperature data were collected at 1 s intervals from the battery

the substantially interdependent fields of recursive identification,pagkocggt{;)”er' llvlqdulepvoILage was measured Witg g'l v a;]ccurath
adaptive filters, optimal estimators, and model-reference adaptivé"d *- resfo(;Jtzlc;nA ac crl:rrent was ggasurio AY as p unt wit
systems can be found in Ref. 2-7. Regarding automotive propulsiorf"! accuracy or 4. over the range oH0 to + » and an

systems, most texts covering control theory treat motor control ancfccuracy of 13 A for all other values. The pack current resolution

feedback systems associated with vehicle speed control; little attenas 0.1 A. The battery terminal temperature was measured by ther-

tion has been given to the adaptive control of battery sysfeinis mistors at several locations in the pack with an accuracy of 1°C and
work bridges two very different fields: electrochemistry and adap-a reso/l\lglgnlgé 0.2 IC C_:I_);]cllng v;/as p?rformed with an A%ro\/_lrr?n-
tive controls. The electrochemical theory is needed to construct g1t -150 cycler. The cycler voltage was measured with an
model of the plant(the battery system here in the form of an accuracy of 0.205 V, and the current was measured with an accuracy
electrical equivalent circuit. Control theory is employed to regress,°f 0-2 Afo.lr 0.25% of tr}ef(r:)(leadlng, Whlchdevgr wa;]s grea;ter. Paier
adaptively and efficiently, parameters associated with the electro!™€ dPFO |ets at intervaisfal s wereprovided to the cycler as com-
chemical model so that the state of the battery system can be estf'and INputs.

e : ; ; - Vehicle testing was performed with an S-10E electric vehicle
mated. More specifically, this paper provides a detailed examination :
of a weighted recursive least-squat®@éRLS) algorithm; unlike the powered by the same SAFT N'MH ba’gtery pack used for the labo-
is wakatory tests. The battery was dischargeid an invertey through the

algorithm described in Ref. 1, wherein a least-squares analysis w L) . . . )
completed on a fixed frame of data poiriearresponding to “Win- vehicle’'s 75 |_<W ac |nduct|or_1 motor to provide propulsion. The same
system provided regenerative braking energy to charge the battery.

dow function”), the algorithm described in this work is more so- I dtd s i Is f he b K I
phisticated in that all data points recorded are included in the on-lind?at& Was collectedtdl s intervals from the battery pack controlier
over the vehicle serial data bus.

regression, and exponential forgetfifgis incorporated to empha-
size continuously the larger influence of the most recent data points
on the SOC, SOH, and power capability regressfoiie wide-
ranging applicability of the approach is underscored by the applica- The basic structure of an adaptive transversal filter is shown in
tion of the algorithm to a 42 V lead acid battery and a high-voltage Fig. 1. Rather than store, recall, and reweight each collected data
(375 V) nickel metal hydridgNiMH) system. point to construct the filter in an on-line application, recursive for-
mulations employing only quantities from previous and present time
steps are highly preferred for embedded controfiérén this sec-
tion, we develop an electrochemical model that can be transformed

Lead acid experiments-Laboratory experiments were con- into a WRLS formulation; the final WRLS model is functionally
ducted with individual 12 V Panasonic HV1255 valve-regulated equivalent to an adaptive transversal filter but is fully recursive. In
lead-acid(VRLA) batteried GM part no. EC-HV1255 (12 V)] of addition, all ancillary calculationg.g, a skewness test of the exci-
55 Ah rated capacity. Cycling was performed with an AeroViron- tation source to determine if the data stream is appropriate for re-
ment MT30 cycler. The voltage was measured with 0.125 V accu-gression analysjsare formulated to be fully recursive.
racy and 0.03 V resolution, and the current was measured with an The model used for this estimation system consists of two parts.
accuracy of—0.175 A or 0.25% of the readingwvhichever was  An electrical circuit model is employed to describe the relationship

between the currents and voltages observed at the terminals of the
battery(giving rise to the voltage-bas&0G,, cf. Fig. 2 and 3 for
* Electrochemical Society Active Member. the VRLA batteries corresponding to the experimental results of this
Z E-mail: mark.w.verbrugge@gm.com work), and a coulomb-accumulation model is used to describe the

acquisition of the high-frequency resistance of the battery syste
can be used to assess the SOH.
For hybrid electric vehicles, algorithms represent the core piec

Model Formulation

Experimental
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Figure 1. Adaptive transversal filtérThe unit delay function is represented 2 >3
by z 1. The measured temperature and current is represented Bymodel 2 o
is used to construct the weightsere an equivalent circuit model of a battery 5 = X 2000
system. The measured voltage corresponds/{Rasured Ymodel IS the mod- ° ©
eled voltage. A recursive relation removes the need to sequentially go back ir m‘ﬂ
time beyond the previous time step in order to obtain data to extract param:
eter values. Y 0
0 01 02 03 04 05 06 07 08 09 1
State of Charge

open-circuit VQIFagéQCV) based on the history .Of currents seen by Figure 3. Parameter regression from experimental resitsThese values

the battery (giving rise to the coulomb-counting base&DC), can be used to start adaptive algorithms and set bounds on parameter values.
which can include self-discharge and current inefficiency on chargehe high-frequency resistance corresponds whinic in the plot.

The electrical circuit model is illustrated in Fig. 4. Note that even )

the more complex equivalent circuit shown in the upper schematic

of Fig. 4 constitutes a greatly simplified approach to modeling a

battery systen’l‘,"z?’ but the model is useful for the purposes of an SOG(t) = SOQt — At)

adaptive transversal filter. Because the SOC is a function of the
open-circuit potentialOCP), extraction of the OCV by least-squares _ !
regression leads to an estimate of the SOC. BR@G, and SOG ¢
yield useful information regarding the SOC; thus a composite SOC

value is calculatetf?

dt

100" So(T, SO0 7550 [2]

Ahnominal

—At

SOC= Wgod SOG) + (1 — Wgod(SOG) [1] —  Anode porous electrode Separator  Cathode porous electrode +

7 7
2

wherewggcis a weighting factorSOG: is the SOC as calculated by
coulomb integration, an8OG;, corresponds to a voltage-based SOC
to be described later. FSOG

Solid

P
2.2 ?es?:teance
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State of Charge Figure 4. Equivalent circuit for a battery and that used in the adaptive

algorithm%123The dotted arrow and oval indicate that a small portion of
Figure 2. OCP!° These data correspond to the measured OCV collected 15the larger equivalent circuit is used in the adaptive algorithm to represent the
min after a sustained discharggis) or charge(chg. For temperatures up to  battery system(Note that the more complex equivalent circuit shown in the
about 45°C, the OCV curve does not differ significantly from the 25°C upper schematic constitutes a greatly simplified approach to modeling a bat-
curves shown. tery systenf?)
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Time is represented byand| denotes current; discharge currents Implementation

are t_aken as positive. For the lead-acid module of this example, the implement the preceding system of equations, a discretized,

nominal capacityAhyomina COrresponds to the ampere-hours of ca- yecyrsive formulation is required. We begin with the coulomb inte-

pacity the battery delivered when discharged from 100% SOC to 0%gration model forSOG:

SOC at the C/3 ratd;e., at a current that discharges the nominal

capacity in 3 h.(When the algorithm is used to treat an electric SOG(t) = SOGt — At)

vehicle (EV) NiMH system, the relevant parameters are specified,;

most of this publication is based on the 42 V lead-acid battery pack. _ 100[(“l|t—1 +il)/2] ﬂ 6]

For SOC algorithms, the self-discharge rate can be tabulated as a Ahyominal D/t-At13600

function of temperature and SOC based on experimental measure-

ments. The current efficiency, is effectively unity for the condi-  Note that the integration over a time interval beginsS&G not

tions at or below 70% SOC and declines to zero as full charge isSSOG.. The difference between the present time and the last re-

obtained and secondary electrochemical reactions are initiated upogorded time is given byAt. Next, the measured voltage is corrected

further charging. Generally, current efficiencies are expected to havgor the superposition integral. First, it is helpful to note that Eq. 3

a mild temperature dependence and decrease with increasing SOGsan be recast as the following recursion relation for evaluation pur-

(See Ref. 24 and 25 for the effect of gassing in lead-acid batterieposes

and its influence on the current voltage responske factor 3600

has units of s/h, and the factor 100 is employed to keep a consistent V|, = (Vo — IR), — i+ Hioae AAL

percent basis. For all the analyses to be discussed in this work, t oc t 2

neither the self-discharge rate nor the current efficiency substantially

affects the results, and it is sufficient to vies, = 0 andy, = 1. + exp(—BADLV — (Vo = IR) Ji-at [7]
To extract the voltage-base&DG,, the model corresponding to

the equivalent circuit shown in the lower schematic of Fig. 4 is

where the subscripts andt — At denote the time at which the
gquantities are to be evaluated. This equation and its derivation are

Eglﬁ’,'%é%d' For any arbitrary current source, the voltage is glVensimilar to that presented in the Appendix of Ref. 1; however, for this
expression, the current source is averaged over the time step, giving
(=0 a more accurate approximation to Eq. 3. Note that consistent with all
V= Ve~ IR+ Af [(Q)exd —B(t — £)]d¢ (3] recursion relations, only variables calculated at the previous time
=t step are required to calculate the voltage at tinT® implement Eq.

) ) ] o ) 7 for our two-parameter algorithm, we replace the battery voltage
The first two terms on the right side give rise to an ohmic descrip-with measured values and formulate a regression voltage
tion of the battery, as the battery voltagé is related to the e+ 1]
t t—At

V. reduced by the ohmic drofR, whereR is the battery resis- yregression__ \/meastrefl
tance. Relative to the equivalent circuit in Fig. 4,= 1/C, and ! 2
X[Vmeasured_ (Voc = IR)]izat = (Voc — IR);  [8]

)AAt — exp(—BAt)

B = 1/(CpR.). The last term on the right side corresponds to a
superposition integral, through which past currents influence the

OCP beyond the first-order effect of changing the average state OJ‘I'hus, the regression analysis to determine the OCP and resistance is

Eherge chavacleriing he electiodeSecalise of e eXBonentalbased on the votage quanty appeaing o e et sice, e regres
ghting ' P p P sion voltage, and a least-squares analysis of the corrected voltage

is exponentially less than that of recent data points. Note that for the . . .
application of Eq. 3¢ is the dummy variable of integration. data(corresponding to the regression voltageould yield a good

: ; ._approximation for the ohmic resistance and OCP. Next\theand
funIanvoc is a function of temperature, SOC, and a hystere&sthe resistancek are extracted from the corrected battery voltage
regression voltag¥"9¢%%®"and measured curreht This extraction

Voecan = functionT, SOG V) = Vo T, SO0 + Vy [4] procedure is based on a recursive least-squares approach, which is
' ' now derived.

The quantityVo ceiis nearly linear for lead-acid batteriesf. Fig. 2). WRLS formulation—We intend to minimize the errdrby using
For the hysteresis contribution, we construct the following first- 3 |east-squares regression\gf, andR

order differential equation to calculate a hysteresis voltdge

j=N
oV _ £= 2 [y~ (mx + b)? [9]
= Bl — eS0)[Vimact signVy]  [5] 2 5~ (m

. ) . . whereé§ is the error and the model/(= mx + b) of the physical
This equation constructs a varying hysteresis voltage. For the leadsysiem is linear.

acid battery of this study, the hysteresis voltage is set up so that for” consistent with Eq. 8, the slope corresponds to the high-
prolonged charge currents, or short but very large charge Cu”em?requency resistanck, and the intercepb corresponds to th#,

the hysteresis voltage tends\@, na, = 16.5 mV per cell by select- - (from which we extract the SOC after the hysteresis contribution has
ing the appropriate parameter values. The exact opposite holds fof,., removex x; corresponds to the measured currents, Brubr-
dischargd(positive) currents. Note also that if the current remains at responds to thejregression voltagoression Tyo equation’s for the
Zero for. a long F‘F“e’ the hysteresis voltage tends to .the chargefwo unknownsm and b can be obtained by taking the first deriva-
decrgasmg conditiori—16.5 mV per cell throggh self-d|sgharge tives in & with respect to the two unknowns and setting the first
(providede # 0). In general, voltage hysteresis plays a minor role ya ivatives to zero

in the lead-acid system; the 16.5 mV/cell hysteresis voltage, 2.1 )

V/cell nominal OCV, and a linear variation in OCV with SOC for At 1=N

the lead-acid system can be contrasted with 50 mV/cell hysteresis P 2 (=2)(y; — mx — b) = 0 leads to
voltage, 1.3 V/cell nominal OCV, and little variation in OCV with =1

SOC for the NiMH system®2¢ For this work, all results correspond

toe = 0,m, = 1, andp = 1.12x 10~* C* (for both charge and b= —

=N

Eyj_

1 J
dischargg N=

j=N
mY, X
=1

Zl+~
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and
Siv — SiSvy
I=N R= ——— [14]
sy — (s)
= E (=2x)(y; — mx — b) = 0 leads to
- and
i=N j= j=N
2 —
- Xyj — m2, g — b2, X SiSv — SiSi
2 - M b2 Voo = 2 [15]
sy — (s)

These equations can be used to derive the following expressions for
m andb The remalnlng manipulations recast these equations into the fully

recursive form as indicated previously. Specifically, by straightfor-

N 1 . i ward algebraic manipulation, the following equations are derived; in
2Ky — NE}=1X,'E}=1VJ' application, the first equation is to be implemented prior to the fol-
m = T lowing four at each time step
S — N( I=¥%;)2 N N . N-1 »
_ _ Sy = 2 W= 2 YN T =y F Dy T =y
1[N =N =1 =1 =1
and b = N(J}_; y; — m; xj) [10] + AM(Suly_y)
1 < Iy +
To make this system fully recursive, we recognize that each sum can sy = 2 wil = ININ (Siln-1)(Swln-1)
be constructed from its previous value and its current vaug, ZJ.Nzle = (Suln)
N N—-1 N
1 12+ N(Suln—1) (Swin-1)
ijzxj+zxj S p— ijlf:VNN iIn-1) (Swin-1
=1 =1 N w = (Suln)
We now recast Eq. 9 to formulate a WRLS approach. For exponen- 1 N
tial forgetting and weighting of charge and discharge differently, we Svn = ov— E wV’e‘?”ess'On
assume that the parametemsand b change slowly with time and PHEVIIE
introduce a weighting factow;
ghiing ! 7 YNV N (Syln- 1) (Suln-1)
N
(Suln)
€= 2 wly, = (mx + b)J? [11]
=
' o . . SIV‘N = — 2 WJ| eregressmn
where preferential weighting of discharge over charge is accom- 2wy i1

lished b i
P y VNIV N (S n—1) (Swin-1)

(Swln)

N v; =1, charge
W; =y . 12
P v; > 1, discharge [12]
Thus, the far right term in each of these five equations allows one to
The exponential forgetting factor corresponds\&’ andv; is the determine the indicated sum by considering values at the time\step

charge-discharge weight factor. It can be shown that the usd df and calculated values from the previous time step: these are fully

yields an exponential decay in the influence of past points on thdecursive expressions. Another useful feature of these equations is
determination of the current value ofandb that although exponential forgetting is embedded within the system,

no exponentiation that could lead to underflow or overflow errors
ANTT = @AV gD o (NDOD) for A — 1 [13] results in the equation system. Care must be exercised in starting up
recursive routines; the following expressions are usedNor 1

The following definitions are utilized (the first time step

1 N Swlt = V1
S| = N—E WJll
22w, =1 sl = vih
1 N Suly = 'Ylli
S" = N—E lejz
Wi 1 = v,V
=1Wji Svl1 = Ya1Vi
N
1 svli = v1l1Vi
— regreSS|on
Sy = SN Z w;V;
=17 A variance test is important to determine the quality of the data for
N regression analysis and to avoid the division by zero associated with
Sy = 2 VregreSSIon singular equation systems and an excessively small determinant for
EJN W i=1 a matrix system of equations. The denominator term can be shown

to be a variancé’ thus we define

where N represents the number of recorded current-potential data 1 i _ 2= 05 A
points to be included in the extraction of thlg. and the resistance. denomtest = if s = (s)">05 A [16]
Using these expressions, we can write the following - 0 if sy — (s)2<0.5 A
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Underlined values represent suggested calibrations for the 42 \{o convert this estimate int8OG,, and for this the hysteresis volt-
lead-acid battery pack; these calibrated values were used in thigge must be treated. For the time integration, the following is
work. A value of unity reflects passage of the denominétiater- applied
minani test.

We next describe a recursive skewness test. For our purposes, we Vy(t) = wp{Vy — (AR + Spl}ioac

define skewness &s
=N + (1 = Wy)[Voecen = Vo(T, SOG)|-ar  [19]
_32 (X — x)°

1
skewness=
No®j=1

[17]

Although the subscript on the brackets and braces indicates that
values to the right of this equation can be evaluated at the previous
—. - 2. . time step, note that the current is knowneasuregfor all times, so
whzerex 1S thezaverage of thevalues & = s) ando”is avariance e ¢ rrent employethnd the current efficiengycan be taken as the

(0 = s — s7). We restrict the skewness test to the actual current-ayerage of the present and previous time steps to increase accuracy.
time values and do not incorporate the charge-discharge weightingt js also important to note that this equation is not a straightforward
Following the same logic used previously, the following summa- jime integration of Eq. 5 unless the weighting factoy is set to

tions and recursive relations are derived; the subssriptadded to unity. Thus, the quantityVoc cen — Vo(T, SOG)}_a, in Eq. 19

indicate quantities associated with the skewness calculation allows for a correction to the extraction of the hysteresis voltage

N N-1 through the recognition that the previous time step value for the
Swdn = 2 AN =1 4+ 2 N1 — 1 4 N(Swen_1) SOC can be used to calculate an OCV. This back-calculated OCV
’ =1 = ' provides a value oY that likely differs from that calculated using
N Eq. 5 alone.
_ 1 2 NV N(Sign-1)(Swen-1) The next step is to transform thé,. into a voltage-based SOC,
Sisln = _E-N = AN = (Swan) including the hysteresis voltage. Because we can now calculate
=1 ’ Vo(T, SOG) = Vo — Vi, we can simply invert/o(T, SOG)) to
N 2 extractSOG, . For lead-acid, the approximately linear relation de-
1 : IN + NSigiln- - : Ay
Sisln = —E )\N’Jlj2 =N ( "S'|N 1)(S‘N’S‘N v picted in Fig. 2 can be employed. For example, at 25°C
' SN (Swelv)
SOC
skewnesg Vdvolts/cell, 25°C)= 1.9214+ 0.294%

skewcal if denomtest< 0

(Iy = s.dw)? for the lead-acid batteries of this work. Finally, as noted initially,
N 1,sIN

‘ + (skewnedg_,)(N — 1) the combined SOC can now be calculated from Eq.i.&;

= [Susln — (SI,S|N)2]3/2’ SOC= ws5odSOG) + (1 — wWsod(SOG,). The next section ad-
N dresses the weight factovgspc andwy, .
if denomtest> 0 Specification of woc and wy.—An important topic to be clari-

fied is the weight factorsvgoc andwy; the influence of the time
The value ofskewcal represents a calibration. A large value may be step size must be addressed in the calculation of these factors as
more appropriate if it is desired to start the WRLS portion of the well. That is, if very small time steps are employed, then the weight-
algorithm soonergkewcal = 10 was used in this wojk To start ing factor should be altered so that time-dependent quantities are not

the recursive calculations for skewness, the following conditions ardost from the calculation and instead are allowed to evolve in accor-
used dance with their particular time constants. Thus the following ap-

proach is applied in this example applicafidh

Sw,s|1 =1
Wsoc = Wsoe, max— @wl(At)  and Wy = Wy mayx — ap(At)  [20]
Sidi =11
Sudy = |§ These weighting factors are to be boundedj, between 0.5 and)1
,S

We provide an overview of what must be considered in specifying
Wgoc andwy,, but application of the algorithm in an operating en-

Analogous todenomtest define vironment(algorithm tuning) must be exercised to find the appro-

0 if skewnesss skewcal priate values for a specific application. Rey,, because the lead-
skewtest = . B acid battery does not exhibit significant hysteresis effects, we set
1 if skewness< skewcal

wy = 1 throughout; that is, the hysteresis voltage is calculated and

) ) o ] included in the results, but it is not adapted. Eq. 19.

As with denomtest the regression analysis is not employed if the  \when the battery SOC exceeds about 95%, the voltage-based

skew test is not passed. When eitskewtestor denomtestor both 50C can become inaccurate due to the less predictable processes
are zero, and the regression analysis is not implemented, the OCV igssociated with the overcharge reactions discussed previously. Simi-

found by larly, for short times(i.e., before the regression analysis allows for
e+ 1 a accurate fitting_ of the resistance e_md QQ#?S_OC can be set to unity,
Voo = Vmeastrefl L (|| R, ) + (—) AAt and the SOC is calculated for this short time based solely on cou-
2 lomb integration provided the initial SOC is knowa.g, stored in

_ _ measured__ _ the embedded controller memory and corrected for self-discharge or
exp ~BAULV (Voo = IR)Ji-ar - [18] initialized prior to power excitation from the measured value of
V,d- Another special case results when the battery has been at rest
for prolonged periods. In this case, the hysteresis model returns a

value of Vy that is less than-10 mV, and the magnitude of the
Evaluation of the voltage-based SGEThe preceding discus- current is quite low(e.g, less than 0.01 A In this case, the voltage-
sion shows how to extract an estimate for the OCV; it now remainsbased SOC is likely to provide the most accurate estimate for the

where it is seen that the employed resistaRcis taken from the
previous time step value.
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combined SOC. We also desire that the voltage-based contributior 3 « Twoseccndavalabe
be further enforced when the SOC falls below a calibrated value R g Py chSCneIge poeL
(20% is suggestedo avoid undervoltage faults that can impair the

operation of devices requiring voltage values above a critical level.

Discharge { o Two-second-avallable
charge power, kW

n
oS

o Instantaneous discharge
power available after ocv|

=3

I u

diri it

Actual
pack
power, kW

.

Instantaneous charge
power available after ocv|

Adaptive power capability-The maximum discharge power can
be expressed as

DC discharge power
available, kW

Actual and available pack power (kW)
o

10 1 4+ DG charge power
P disch =1V = IV, \ Charge avallable, KW
max,discharge min 5 W .
That is, when the battery voltage obtains its lowest acceptable value N
the maximum discharge power results. First, consider an ohmic bat * (00 w0 o0 20 100 1200 1400 1800
tery, whereinV = V,. — IR, and Time, s
(Voo — Vi) Figure 5. Pack powefmeasured independent variabler the three-module
p ' = V. =-0¢ M, pack(36/42 V systemand predicted available power capabilities.
max, discharge min R min
This expression (_:orresponds_to the high-frequency power capa_bility Results and Discussion
and can be obtained by solving for the power capability associated . ) . . )
with Fig. 4 when the capacitor is shorted daffers no impedange The algorithm developed in the previous section was applied to
due to high-frequency excitation. Similarly, the high-frequency tWo types of batteries: nominally 55 Ah lead-acid batteries used to
charge power for the ohmic battery corresponds to construct GM’s 42 V parallel hybrid trucPHT) power source and
105 Ah NiMH batteries(SAFT) in an S10E EV modified for re-
search and development purposes. Most of our effort is focused on
(Moe = Vinay the hybrid electric vehicl¢HEV) application; the NiMH results are
Prmax,charge™ 1Vimax = —— 7 Vimax presented so as to determine whether the general approach can be

used for both HEV and EV applications and on lead-acid and NiMH

We shall refer to these power capabilities governed solely by thef€chnologies. _ .
resistanceR as instantaneous power capabilities. For the maximum  Pérhaps more than any other algorithm output, power capability

: : : - : is most important for HEV applications. The power capability plots
ihrgz r\?\/ﬂ:ﬁzr;i?'i soc?]}tae“gegﬁ:: e:]c;nf%rt::mhg?é;s arrfc? lgﬁ:c?] atrzg shown in Fig. 5 for the 42 V battery pack result from the application

. - S . of the algorithm using the power profile labeled “Actual pack
Fig. 3. In this low-frequency case, the power capability is associ- B . .
ated with Fig. 4 and an open-circuited capacitofinite impedance poytve][, k\t/k\f 'g. F'g' 5 (alto nghW|th a fqrgrit:clng f?fcto)\”of o?g and
due to low-frequency excitation. Thus, the ohmic battery does not!Nity for the discharge-to-charge weight factgrior all points), as

: in the base case curve of Fig. Bhe power on charge was
address transient effects such as those correlated by the superpc()ﬁhown in - .
tion integral 3. To calculate the maximum charge and discharg ept under 4 kW, while discharge power pulses reached 15 kW.

) L . . - — “"Analyzing Fig. 5, we see that after sustained chargespectively
?eocvtvsertshg\glr?g:]et ifsorog;;int:gmdefrgr:[nerl\zlglt;ncludmg capacitive ef dischargek the algorithm reports that the maximum chafgespec-

(Voc = V)i = (Alz At/2) + exp(—BAD[V — (Voo + IR) Ji-at

e= R + (AAL2)
(Voc = Vit — (Ali_aAL2) + exp(—BAt)[V — (Voo + IR) Ji—at
Pmax,dischargle = Wnin = { = o R + (Al,_,At2) = Vin [21]
(Voc = Vinadt = (Al p AU2) + exp(—BAY[V — (Vo + IR) Ji-at
Pmax,chargLI = V= R+ (Al_,At2) max

To implement these equations, the respective powers are calculatqﬂ,ew dischargg power capability declines, while the maximum dis-
immediately after the algorithm has been employed to finish thecharge(respectively chargepower capability increases. These ob-
SOCdetermination at time. In this case, quantities calculated or servations are consistent with analyses of actual batteries and are
measured at timeare then immediately stored in the variables listed directly attributable to transient irreversible losses that are simulated
in the respective power expressions at time At. Then one must by the resistor-capacitor combination shown in Fig. 4. The effects
state the duratiom\t corresponding to the desired estimate for @reé particularly evident between 200 and 300 s. o
power. (It would seem sufficiently accurate to not updtg unless The weighting of the pointsi; = y;\ per Eq. 12 is clarified in

At were to exceed tens of seconds. One could then use coulomg'g' 6. We see that for the base casg € 1 for all pointsj and

counting on the projected current to estimate a new state of chargé 0.99), po_lnts_older than about 100 s relatlve'to the current data

. - “point (1341 s in Fig.  have a smalland exponentially decreasing
and update/oc.) For example,_ if we want to know the power esti- impact on the recursive least-squares regression. The far right curve
mates 2 s from the present timethen the present measured and i, Eig. 6 shows that the relevant time window is reduced to about 10
extracted values are placed in the- At subscripted quantities, s whenh is increased to 0.9, in agreement with Eq. 13. Last, chang-
andAt are set to 2 s, and the right sides of the preceding equationsng the discharge-to-charge weight factoryto= 2 results in dis-
yield the desired maximum charge and discharge power estimates @ontinuous upper and lower weighting curves; values forming the
s from the present. upper curve correspond to discharge evéwtsich receive twice the
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Figure 6. Weight factor components for weighted recursive least-squares
formulation. Low values ol are shown to weight preferentially the influ-

ence of more recent data. Two curves are seen whenl; one for dis- ; . :

h dat int d for ch dat int hent ( tivel results from using the regressed values at time stepAt to predict the
charge data points and one for charge data points. W_ n. (respectively power at timet given the current at time vs. the actual powercurrent
v < 1), the curve for the discharge weight factor is abdxespectively multiplied onto voltageat timet.
below) the charge curve. Note that for our base case=(0.99,y = 1),
about 200 s of the most recent data are used to regress parameter values.

Figure 8. Statistics for weighted recursive least-squares regression associ-
ated with the power profile shown in Fig. 5. The power prediction error

First, as electrodes degrade upon cycling, the intimate contact be-

weighting with y = 2 and w; = 2)\), while those forming the Itween corIIQUcth(el particlesI nec?;s%ry f(l)r :Jatltery o?erqt(ijog is slowly
lower curve correspond ta; = \; on charge. ost, resulting in larger values d® Similarly, loss of acid due to

The remaining primary outputs from the algorithm are displayed sulfation(growth of inert lead sulfate crystals, removing sulfate ions
in Fig. 7. The algorithm regresses thlg, and high-frequency resis- from the electrolytgleads to an increased ohmic resistance due to
s C

tanceR. For the lead-acid battery, the hysteresis voltage is includedthe loss of acid and a concomitant drop in electrolyte conductivity

but is not adapted. as it does not play a larde role. Erom the value o long with pore blockage attributable to the covering of otherwise
u pted, play 9 . u ctive electrode reaction sites by inert lead sulfate cry$tasmilar
Vo = Voo — Vy, the voltage-basedSOG, is obtained (Eq. 4),

which, when combined with coulomb counting, yields the extractedphenornena take place in NiMB*®and lithium-ion batteriest..
' L . upon cycling, the high-frequency resistance increases. We can an-
SOC (Eq. 1). For the rather short test durations of this work, pure P yeing 9 d y

: ) ticipate that increases in high-frequency resistance upon extensive
coulomb counting can be used to access the SOC, unlike in actué P 9 q y P

: ; cling can be expected for all commercially viable EV and HEV
continuous HEV operation, and the accuracy of the regressed SO gtter?es. P Y

is reflected by the agreement between regressed SOC and the CUVe gyaiistical aspects of the algorithm behavior based on the power
labeledSOCeouiomb counting N addition, C/3 discharge of the battery prqfile displayed in Fig. 5 are plotted in Fig. 8 and 9. The error
at the end of the experiment yielded a capacity of 62% SOC, inj, representing the measured voltage using the regressed parameters
close agreement with the regressed SOC. Generally, similar results shown by the uppermost data in Fig. 8 and corresponds to
were obtained when the_ SOC was cycled as in Fig. 7 about ari,_ — (mx + b) in Eq. 11. The time per poinsil s for these data,
average .SOC value ranging from 40 to 70%. . . aJnd the power prediction error refers to the power predicted at
The high-frequency resistance may be useful in assessing thgne ¢ \when the parameters regressed from the previous timestep
health of the battery. This assertion is based on two observatlong. — At are used to calculate the battery voltage using the measured
current at time and Eq. 21. The error on charge and discharge was
generally less than 100 mV/module, yielding usually less than 1%

1000 T w 80 for both the voltage and power capability errors under these condi-
SOC coutomb counring —— tions. The immediate increase in the skewness of the current source
PO e — N —— o 8 ?E near 245 s results from a nearly constant charge power excitation
- SOC aigoritim g followed by an immediate change to discharge. The lower plot of
2 V (pack) 50 g._; Fig. 9 represents this skewed-data condition, whereas the upper plot
S 600 %i;ﬁmm w0 8& corresponds to more random power excitation around 1021 s. The
§ II Aai ' “ ' ‘W”i % % '-g clustering of charge data in the lower plekewed dataof Fig. 9,
% Ve (pack) a2 relative to the upper plot, helps to explain why the regression statis-
£ 400 R (pack) 20 gﬁ tics for the upper plot are superior to those of the lower plot.
g ! ‘ .‘ 10 E § Perhaps the most important aspect of Fig. 8 and 9 is that the plots
< - /] M\ [ e o 1o :g}.g help to explain why the algorithm works. When the parallel resistor-
g 1w i ‘wqr r (mV/eell) ¢ capacitor contribution to the impedance is removed from the mea-
3 | ‘ L i #10 ﬁ sured voltage to form the regression voltagé Eqg. 8, the lower-
5 | 4 (pack) | 50 3 E most plot of Fig. 9 shows that a substantially linear relation holds
J I U"U ® te for the resulting regression voltags. current, and one should ex-
’ pect the two-parameter linear regression to represent the data with
-200 -40 little error. Note that the 91 points used to generate the plots shown
o 20 40 8™ 11:: . 1000 1200 1400 1600 in Fig. 9 correspond to 91 s, which is on the order of the duration of

influence wher\ = 0.99, the base-case value for the forgetting fac-
Figure 7. Measured pack voltage and current and S@gpurely coulomb  tor A (cf. Fig. 6. Even when the data are skewgalwer plot of Fig.

counting. Also shown are the calculated hysteresis voltage and the regressef), the regression voltages. current is still linear; in implementa-
SOC, OCV, and high-frequency pack resistance. tion, we found that accepting all data for regression when the skew-



A340 Journal of The Electrochemical Societys2 (2) A333-A342 (2005

42 T T T T 1200 100
Recursive skewness less I P l %
than 2. .Plotte.d are the 91 SOC coptomb coming =
g data points prior to and 1000 T8 8 E
40 |n|c|ud|ngI that of‘1021 s‘. — - \\ SOC agoritim 70 5 g
N i ) S G | 8
XD YEE = (0.0143)] +38.293 é’ 80 — s 0 ;3
> / ® V (pack) 50 & i
g 38 i /. 2 gg
I ./ o L 600 W P 40 Q8
° " Dad 2 Al 0 58
£ a ‘@5 7 \V,. (pack) Sz
8 36 s 8 400 20 ES
a h o r R (pack) G0
3 < : 10 B8
g 200 4 ki m | b, Vu 1o ¢ g
34 © Regression voltage vs. current at 1021 s 2 Qﬁ 8 T fl / 4 b (mV/cell) g E
-10
\ gg
@ Pack voltage vs. current at 1021 s ,J E
0 H I (pack) } 20 2§
N N (BRI TWIIPT, = 5 =
32 + -
-150  -100 -50 0 50 100 150 200 250 300 350 -200 -40
Current, A 0 200 400 600 800 1000 1200 1400 1600
Time, s
42 T T T T
Recursive skewness greater
than 2. Plotted are the 91
. data points prior to and 1000 80
40 +V (pack) including that of 245 s. — SOC coutomb counting l_ 70
. s
800 Sa Sty ~—~ |\ | 8%
® % T SOC agoritim 88
>~ Vreg;ression @ -2 9
g 38 =4 V (pack) 5 82
8 o - o 58
s . 8 801 W V4 0 &%
14 b+l A g8
o <] B 3 08
& - = Ve (pack) 3¢
] £ 400 20 I
3 R (pack) S=
a s i 10 E=
" < g8
4 @ Regression voltage vs. current at 245 s © £ 200 \~ / vy " " Vu 1o E E
& / y ,q n (mV/cell) 3]
@ Pack voltage vs. current at 245 s 5 r a2 | 10 2 3
[&] 'J [ 3 {
PO EE e S E—— o Jill- | [ @ack) |0 §E
-150  -100 -50 0 50 100 150 200 250 300 350 u il “ “Ul T g
Current, A B 80
-200 -40
Figure 9. Recursive skewness analysis. The lower plot shows that at 245 s 0 200 400 800 80 1000 1200 1400 1600
(see Fig. 7 for the measured currerthe current is skewed, as a longer Time, s

duration of dominantly constant charge currents are followed by a discharge.

The clustering of currents at100 A (chargé shown in the lower plot yields ~ Figure 10. Algorithm convergence test. For the upper plot, the initial SOC
a skewed data set for linear regression. The maximum in the recursive skewwas set to 90%the correct value being 60% as in Fig. For the lower plot,
ness curve of Fig. 8 corresponds to the lower plot. In contrast, the morethe initial SOC was set to 30%. A comparison with Fig. 7 shows that the

random current history associated with the upper plot yields good regressio@lgorithm converges to the correct SOC within about 200 s. Note that the
statistics. regressed value for the high-frequency resistance value is not affected sub-

stantially.

ness in the current excitation source is less than 10 worked well.
The convergence of the algorithm is highly dependent on the

value of the weight factowsoc. The voltage-based portion of the  cajculations are sensitive to the value of the SOC, as the driving
SOC calculationSOG, , converges rapidly, but it is highly sensitive force for discharge(respectively chargepower is the difference

to variations in the battery voltage; such variations can be attribut-hetween the minimurfrespectively maximuinvoltage allowed and
able to both measurement and model errors, and these errors C3he V,., andV,, is obtained from the value BOC Last, we note
give rise to unwanted instabilities iBOG,. Conversely, the that the regressed high-frequency resistaRcis not sensitive to
coulomb-counting-based portion of the SOC calculat®@C, isa  erroneous values foBOC (compare Fig. 7 and 20which bodes
much more stable integral quantity, but it can steadily become inacwell for the use of an adapted high-frequency resistance as a diag-
curate due to current efficiencies that are not known with enoughnostic for a battery SOH.

certainty to be included in the model reference adaptive system. A 25°C discharge power test of the algorithm for the PHT appli-
Thus, SOG, contains the more adaptive portion of the algorithm, cation is shown in Fig. 11. First, the powes.time trace in the PHT
whereasSOG; provides stability. For the base-case conditions cho- over a drive similar to that of the Federal Test ProcedEfeP) was

sen, the algorithm converges smoothly from intentionally erroneousrecorded. Then, in a separate laboratory test, six different max dis-
starting values for the SOC in about 200 s, as indicated in Fig. 10charge power pulses were enforced at various times throughout the
The initial value ofSOCwas 64%(cf. Fig. 7); the initial value for recorded FTP-like power cycle by setting the pack voltage to 30 V
SOC was arbitrarily set to 90 and 30% for the upper and lower plots(10 V/modulg, indicated by the arrows in Fig. 11. Generally the
of Fig. 10, respectively. The results of Fig. 10 help to explain why a predictel 2 s and instantaneous power calculations bounded the im-
coulomb-counting SOC method cannot be used in actual vehiclenediate discharge power availablef. ovalg, and the available
applications. Any error in the SOC is not removed adaptively, andpower always exceededéal? s predicted power capability. These
the pure coulomb-counting value for the SOC maintains at a valueresults are promising for vehicle integration, and similar results were
close to the erroneous initial starting value in each case. The poweobtained at-20 and 0°C.
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Figure 11. Discharge power test. Over an FTP-representative cycle recordec 0 2000 4000 5000 000 10000 12000

from a (GM) PHT drive, the pack voltage was set abruptly to 3020
V/module at six different times, as indicated by the arrows. Generally, the
predicted 2 s and instantaneous power calculations bounded the immediatgigure 13. Algorithm applied to an S10E drive with the same battery pack
discharge power availablef. ovaly, and the available power always ex- as shown in Fig. 12. Parameters correspond to those of Fig. 12, with the
ceeded th 2 s predicted power capability. exception thah = 0.9; the value ok was lowered to account for the larger
time per point(30 s for this profilevs.1 s in Fig. 12 and the corresponding
need to reduce the impact of earliee., relatively older than in Fig. J2ata

As mentioned previously, the equivalent circuit shown in Fig. 4 POINs:
should suffice to represent all known batteries for EV and HEV
applications. The results shown in Fig. 12 and 13 support this asser-

r
. i ; known prior to every drive, so an adaptive SOC algorithm is re-
tion, as the data correspond to a high-voltage EV NiMH battery quired.(The pack capacity can be estimated and updated adaptively

system. Because the SOC varies over a wide range in EV applic dri i which th W is initiall full ) dth
tions, in contrast to HEV applications, the high-frequency resistancg.Or rives in which the pack is initially near full capacity and the

R also shows variations, and the variationRris generally consis- 1nal SOC and pack voltage are 1.
tent with published measurements of this quantity for NiMH EV

batt duled® Thus if Ris to b d to determi batt
Ay mocue US 111 13 10 D€ USEC fo determine a par =ry Efficient HEV and EV operation requires knowledge of the bat-

SOH in application, one must normalize the regressed valletof e h h is left in the b dn h
nominal values which are a function of both temperature and SOC!€'Y Statej.e., how much energy is left in the battery and how muc

For Fig. 12 and 13, thé\h capacity was determined before the power the battery can discharge or accept. The algorithm derived

discharges for the EV battery pack, so the coulomb-counting value"’lnOI implemented in this paper represents a potential means to ad-

for the SOC is accurate, and the difference between the regress qi'ess these issues in an efficient manner consistent with the compu-
SOC and that obtained’by coulomb counting corresponds to th ational capabilities of embedded controllers employed by the auto-

algorithm error, which is sufficiently small for application purposes. motive industry. The algorithm can be used on both lead-acid and

S . . NiMH traction battery systems and should work for other battery
In actual applications, théh capacity of the battery pack is not systems as well. It is suggested that the high-frequency resistance be

used as a proxy for the SOH of the battery modules; determining the
module SOH adaptively is important for optimal energy manage-

Time, s
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ment and on-board diagnostics.
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€ 20 1 125 & A 1/Cp, F(EQ. 3
° 4 LALLM A A 100 b Regressed intercefEqg. 10

soc B 1/(R«Cp), 1/s(Eq. 3
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40 \L_____N 50 | current, A
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Figure 12. Weighted recursive least-squares algorithm applied to an electric

Time, s

Rct
SOC

effective interfacial resistance, ohfof. Fig. 4
percent state of chargenergy content in the battery relative to the energy con-

tent upon full charge
s sum
t time, s
V system voltage, V

vehicle (NiMH) battery pack of 26 modules. The pack was discharged
through a resistor to yield the desired current excitation. For these data,
Ahpomina = 105,A = 0.95,\ = 1, a, = 0.001 s, anda, = 0.005 s,
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Vy hysteresis voltage, \cf. Eq. 5 and Fig. 4
V,. open-circuit voltage, Mcf. Fig. 4

wy hysteresis weight factdiEqg. 19
Wsoc Weighting factor(Eq. 1

Greek

B hysteresis paramet€Eq. 5
e self-discharge hysteresis parametég. 5
v, current efficiencyEq. 2
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