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Adaptive Energy Management of Electric and Hybrid Electric
Vehicles
Mark Verbrugge, * ,z Damon Frisch, and Brian Koch

General Motors Corporation, Warren, Michigan 48090, USA

An adaptive algorithm based on weighted recursive least squares is derived and implemented. The generality of the approach is
underscored by the application of the algorithm to a 42 V lead acid and a high-voltage~375 V! nickel metal hydride battery
system. The algorithm is fully recursive in that the only variables required for on-line regression are those of the previous time step
and the current time step. A time-weighting technique often referred to as exponential forgetting is employed to damp exponen-
tially the influence of older data on the regression analysis. The output from the adaptive algorithm is the battery state of charge
~remaining energy!, state of health~relative to the battery’s nominal rating!, and power capability. Such algorithms are likely to
play a critical role in optimal operation of hybrid electric vehicles and on-board diagnostics. The behavior of the algorithm in
terms of convergence, accuracy, and robustness is examined.
© 2004 The Electrochemical Society.@DOI: 10.1149/1.1847658# All rights reserved.
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In a previous work,1 the challenges and motivation behind de
mining a battery’s state of charge~SOC!, state of health~SOH!, and
power capability for both discharge and charge were described
SOC corresponds to the stored charge available to do work re
to that available after the battery has been fully charged, and
be viewed as a thermodynamic quantity. SOH refers to how we
battery system is functioning relative to its nominal~rated! and end
~failed! states. Results presented in this work indicate that ada
acquisition of the high-frequency resistance of the battery sy
can be used to assess the SOH.

For hybrid electric vehicles, algorithms represent the core p
of the value chain for software and control processes. Review
the substantially interdependent fields of recursive identifica
adaptive filters, optimal estimators, and model-reference ada
systems can be found in Ref. 2-7. Regarding automotive propu
systems, most texts covering control theory treat motor contro
feedback systems associated with vehicle speed control; little
tion has been given to the adaptive control of battery systems.8 This
work bridges two very different fields: electrochemistry and a
tive controls. The electrochemical theory is needed to constr
model of the plant~the battery system!, here in the form of a
electrical equivalent circuit. Control theory is employed to regr
adaptively and efficiently, parameters associated with the ele
chemical model so that the state of the battery system can be
mated. More specifically, this paper provides a detailed examin
of a weighted recursive least-squares~WRLS! algorithm; unlike the
algorithm described in Ref. 1, wherein a least-squares analysi
completed on a fixed frame of data points~corresponding to ‘‘Win
dow function’’!, the algorithm described in this work is more
phisticated in that all data points recorded are included in the on
regression, and exponential forgetting2-7 is incorporated to emph
size continuously the larger influence of the most recent data p
on the SOC, SOH, and power capability regressions.9 The wide-
ranging applicability of the approach is underscored by the app
tion of the algorithm to a 42 V lead acid battery and a high-vol
~375 V! nickel metal hydride~NiMH ! system.

Experimental

Lead acid experiments.—Laboratory experiments were co
ducted with individual 12 V Panasonic HV1255 valve-regula
lead-acid~VRLA ! batteries@GM part no. EC-HV1255 V~12 V!# of
55 Ah rated capacity. Cycling was performed with an AeroVir
ment MT30 cycler. The voltage was measured with 0.125 V a
racy and 0.03 V resolution, and the current was measured wi
accuracy of20.175 A or 0.25% of the reading~whichever wa
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greater! and a resolution of 0.03 A. Voltage measurements
made at the battery terminals using a separate high-impedance
to the cycler to eliminate line voltage drop. Battery powervs. time
traces from actual hybrid vehicle operation were supplied to
cycler as command inputs for cycling the batteries. Peak power
were conducted by commanding constant voltage.

NiMH experiments.—Laboratory testing was conducted with
high-voltage, liquid-cooled battery pack. The pack was compos
26 NiMH modules~SAFT version 12.1!, each with a nominal vol
age of 12 V and a rated capacity of 96 Ah. Voltage, current,
temperature data were collected at 1 s intervals from the b
pack controller. Module voltage was measured with 0.1 V accu
and 0.01 V resolution. Pack current was measured by a shun
an accuracy of 0.25 A over the range of240 to 140 A, and an
accuracy of 13 A for all other values. The pack current resolu
was 0.1 A. The battery terminal temperature was measured by
mistors at several locations in the pack with an accuracy of 1°C
a resolution of 0.2°C. Cycling was performed with an AeroVir
ment ABC-150 cycler. The cycler voltage was measured wit
accuracy of 0.25 V, and the current was measured with an acc
of 0.2 A or 0.25% of the reading, whichever was greater. Powevs.
time profiles at intervals of 1 s wereprovided to the cycler as com
mand inputs.

Vehicle testing was performed with an S-10E electric veh
powered by the same SAFT NiMH battery pack used for the l
ratory tests. The battery was discharged~via an inverter! through the
vehicle’s 75 kW ac induction motor to provide propulsion. The s
system provided regenerative braking energy to charge the b
Data was collected at 1 s intervals from the battery pack contro
over the vehicle serial data bus.

Model Formulation

The basic structure of an adaptive transversal filter is show
Fig. 1. Rather than store, recall, and reweight each collected
point to construct the filter in an on-line application, recursive
mulations employing only quantities from previous and present
steps are highly preferred for embedded controllers.2-7 In this sec
tion, we develop an electrochemical model that can be transfo
into a WRLS formulation; the final WRLS model is functiona
equivalent to an adaptive transversal filter but is fully recursiv
addition, all ancillary calculations~e.g., a skewness test of the ex
tation source to determine if the data stream is appropriate fo
gression analysis! are formulated to be fully recursive.

The model used for this estimation system consists of two p
An electrical circuit model is employed to describe the relation
between the currents and voltages observed at the terminals
battery~giving rise to the voltage-basedSOCV , cf. Fig. 2 and 3 fo
the VRLA batteries corresponding to the experimental results o
work!, and a coulomb-accumulation model is used to describ
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open-circuit voltage~OCV! based on the history of currents seen
the battery ~giving rise to the coulomb-counting basedSOCC),
which can include self-discharge and current inefficiency on ch
The electrical circuit model is illustrated in Fig. 4. Note that e
the more complex equivalent circuit shown in the upper schem
of Fig. 4 constitutes a greatly simplified approach to modelin
battery system,14-23 but the model is useful for the purposes of
adaptive transversal filter. Because the SOC is a function o
open-circuit potential~OCP!, extraction of the OCV by least-squa
regression leads to an estimate of the SOC. BothSOCV andSOCC
yield useful information regarding the SOC; thus a composite
value is calculated1,12

SOC5 wSOC~SOCC! 1 ~1 2 wSOC!~SOCV! @1#

wherewSOC is a weighting factor,SOCC is the SOC as calculated
coulomb integration, andSOCV corresponds to a voltage-based S
to be described later. ForSOCC

Figure 1. Adaptive transversal filter.4 The unit delay function is represent
by z21. The measured temperature and current is represented byxl . A model
is used to construct the weights~here an equivalent circuit model of a batt
system!. The measured voltage corresponds toymeasured; ymodel is the mod-
eled voltage. A recursive relation removes the need to sequentially go b
time beyond the previous time step in order to obtain data to extract p
eter values.

Figure 2. OCP.10 These data correspond to the measured OCV collecte
min after a sustained discharge~dis! or charge~chg!. For temperatures up
about 45°C, the OCV curve does not differ significantly from the 2
curves shown.
SOCC~ t ! 5 SOC~ t 2 Dt !

2 E
t2Dt

t F100
h II

Ahnominal
1 SD~T, SOC!G dt

3600
@2#

-

Figure 3. Parameter regression from experimental results.10,11 These value
can be used to start adaptive algorithms and set bounds on parameter
The high-frequency resistance corresponds to RIohmic in the plot.

Figure 4. Equivalent circuit for a battery and that used in the adap
algorithm.10,12,13The dotted arrow and oval indicate that a small portio
the larger equivalent circuit is used in the adaptive algorithm to represe
battery system.~Note that the more complex equivalent circuit shown in
upper schematic constitutes a greatly simplified approach to modeling
tery system.22!
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Time is represented byt and I denotes current; discharge curre
are taken as positive. For the lead-acid module of this exampl
nominal capacityAhnominal corresponds to the ampere-hours of
pacity the battery delivered when discharged from 100% SOC t
SOC at the C/3 rate;i.e., at a current that discharges the nom
capacity in 3 h.~When the algorithm is used to treat an elec
vehicle ~EV! NiMH system, the relevant parameters are speci
most of this publication is based on the 42 V lead-acid battery p!
For SOC algorithms, the self-discharge rate can be tabulated
function of temperature and SOC based on experimental mea
ments. The current efficiencyh I is effectively unity for the cond
tions at or below 70% SOC and declines to zero as full char
obtained and secondary electrochemical reactions are initiated
further charging. Generally, current efficiencies are expected to
a mild temperature dependence and decrease with increasing
~See Ref. 24 and 25 for the effect of gassing in lead-acid bat
and its influence on the current voltage response.! The factor 3600
has units of s/h, and the factor 100 is employed to keep a cons
percent basis. For all the analyses to be discussed in this
neither the self-discharge rate nor the current efficiency substan
affects the results, and it is sufficient to viewSD 5 0 andh I 5 1.

To extract the voltage-basedSOCV , the model corresponding
the equivalent circuit shown in the lower schematic of Fig.
employed. For any arbitrary current source, the voltage is g
by12,13,26

V 5 Voc 2 IR 1 AE
z5t

z50

I ~z!exp@2B~ t 2 z!#dz @3#

The first two terms on the right side give rise to an ohmic des
tion of the battery, as the battery voltageV is related to th
Voc reduced by the ohmic dropIR, whereR is the battery resis
tance. Relative to the equivalent circuit in Fig. 4,A 5 1/CD and
B 5 1/(CDRct). The last term on the right side corresponds
superposition integral, through which past currents influence
OCP beyond the first-order effect of changing the average sta
charge characterizing the electrodes.~Because of the exponent
weighting function, the impact of older current-potential data po
is exponentially less than that of recent data points. Note that fo
application of Eq. 3,z is the dummy variable of integration.!

The Voc is a function of temperature, SOC, and a hyster
function

Voc,cell 5 function~T, SOC, VH! 5 V0,cell~T, SOC! 1 VH @4#

The quantityV0,cell is nearly linear for lead-acid batteries~cf. Fig. 2!.
For the hysteresis contribution, we construct the following fi
order differential equation to calculate a hysteresis voltageVH

1

]VH

]t
5 2b~h II 2 «SD!@VH,max 1 sign~ I !VH# @5#

This equation constructs a varying hysteresis voltage. For the
acid battery of this study, the hysteresis voltage is set up so th
prolonged charge currents, or short but very large charge cur
the hysteresis voltage tends toVH,max 5 16.5 mV per cell by selec
ing the appropriate parameter values. The exact opposite hol
discharge~positive! currents. Note also that if the current remain
zero for a long time, the hysteresis voltage tends to the ch
decreasing condition~216.5 mV per cell! through self-discharg
~provided« Þ 0). In general, voltage hysteresis plays a minor
in the lead-acid system; the 16.5 mV/cell hysteresis voltage
V/cell nominal OCV, and a linear variation in OCV with SOC
the lead-acid system can be contrasted with 50 mV/cell hyste
voltage, 1.3 V/cell nominal OCV, and little variation in OCV w
SOC for the NiMH system.13,26For this work, all results correspo
to « 5 0, h I 5 1, andb 5 1.123 1024 C21 ~for both charge an
discharge!.
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Implementation

To implement the preceding system of equations, a discre
recursive formulation is required. We begin with the coulomb i
gration model forSOCC

SOCC~ t ! 5 SOC~ t 2 Dt !

2 F100
@~h II t21 1 h II t!/2#

Ahnominal
1 ~SD! t2DtG Dt

3600
@6#

Note that the integration over a time interval begins atSOC, not
SOCC . The difference between the present time and the las
corded time is given byDt. Next, the measured voltage is correc
for the superposition integral. First, it is helpful to note that E
can be recast as the following recursion relation for evaluation
poses

Vu t 5 ~Voc 2 IR! t 2 S I u t 1 I u t2Dt

2 DADt

1 exp~2BDt !@V 2 ~Voc 2 IR!# t2Dt @7#

where the subscriptst and t 2 Dt denote the time at which th
quantities are to be evaluated. This equation and its derivatio
similar to that presented in the Appendix of Ref. 1; however, for
expression, the current source is averaged over the time step,
a more accurate approximation to Eq. 3. Note that consistent w
recursion relations, only variables calculated at the previous
step are required to calculate the voltage at timet. To implement Eq
7 for our two-parameter algorithm, we replace the battery vo
with measured values and formulate a regression voltage

Vregression5 Vmeasuredut 1 S I u t 1 I u t2Dt

2 DADt 2 exp~2BDt !

3@Vmeasured2 ~Voc 2 IR!# t2Dt 5 ~Voc 2 IR! t @8#

Thus, the regression analysis to determine the OCP and resista
based on the voltage quantity appearing on the left side, the re
sion voltage, and a least-squares analysis of the corrected v
data~corresponding to the regression voltage! should yield a goo
approximation for the ohmic resistance and OCP. Next theVoc and
the resistanceR are extracted from the corrected battery volt
regression voltageVregressionand measured currentI. This extraction
procedure is based on a recursive least-squares approach, w
now derived.

WRLS formulation.—We intend to minimize the errorj by using
a least-squares regression ofVoc andR

j 5 (
j51

j5N

@yj 2 ~mxj 1 b!#2 @9#

wherej is the error and the model (y 5 mx 1 b) of the physica
system is linear.

Consistent with Eq. 8, the slopem corresponds to the hig
frequency resistanceR, and the interceptb corresponds to theVoc
~from which we extract the SOC after the hysteresis contribution
been removed!; xj corresponds to the measured currents, andyj cor-
responds to the regression voltageVregression. Two equations for th
two unknownsm and b can be obtained by taking the first deri
tives in j with respect to the two unknowns and setting the
derivatives to zero

]j

]b
5 (

j51

j5N

~22!~yj 2 mxj 2 b! 5 0 leads to

b 5 2
1

N (
j51

j5N

yj 2
1

N
m(

j51

j5N

xj
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and

]j

]m
5 (

j51

j5N

~22xj!~yj 2 mxj 2 b! 5 0 leads to

0 5 (
j51

j5N

xjyj 2 m(
j51

j5N

xj
2 2 b(

j51

j5N

xj

These equations can be used to derive the following expressio
m andb

m 5

( j51
j5Nxjyj 2

1

N
( j51

j5Nxj( j51
j5Nyj

( j51
j5Nxj

2 2
1

N
~( j51

j5Nxj!
2

and b 5
1

N S (
j51

j5N

yj 2 m(
j51

j5N

xjD @10#

To make this system fully recursive, we recognize that each sum
be constructed from its previous value and its current value,e.g.

(
j51

N

xj 5 xj 1 (
j51

N21

xj

We now recast Eq. 9 to formulate a WRLS approach. For expo
tial forgetting and weighting of charge and discharge differently
assume that the parametersm and b change slowly with time an
introduce a weighting factorwj

j 5 (
j51

N

wj@yj 2 ~mxj 1 b!#2 @11#

where preferential weighting of discharge over charge is ac
plished by

wj 5 g jl
N2j H g j 5 1, charge

g j . 1, discharge
@12#

The exponential forgetting factor corresponds tol,2-7 andg j is the
charge-discharge weight factor. It can be shown that the use oflN2j

yields an exponential decay in the influence of past points o
determination of the current value ofm andb

lN2j 5 eln lN2j
5 e~N2j!ln l ' e~N2j!~l21! for l → 1 @13#

The following definitions are utilized

sI 5
1

( j51
N wj

(
j51

N

wjI j

sII 5
1

( j51
N wj

(
j51

N

wjI j
2

sV 5
1

( j51
N wj

(
j51

N

wjVj
regression

sIV 5
1

( j51
N wj

(
j51

N

wjI jVj
regression

where N represents the number of recorded current-potential
points to be included in the extraction of theVoc and the resistanc
Using these expressions, we can write the following
r

R 5 2
sIV 2 sIsV

sII 2 ~sI!
2

@14#

and

Voc 5
sIIsV 2 sIVsI

sII 2 ~sI!
2

@15#

The remaining manipulations recast these equations into the
recursive form as indicated previously. Specifically, by straigh
ward algebraic manipulation, the following equations are derive
application, the first equation is to be implemented prior to the
lowing four at each time step

swuN 5 (
j51

N

wj 5 (
j51

N

g jl
N2j 5 gN 1 l(

j51

N21

g jl
N212j 5 gN

1 l~swuN21!

sIuN 5
1

( j51
N wj

(
j51

N

wjI j 5
gNI N 1 l~sIuN21!~swuN21!

~swuN!

sII uN 5
1

( j51
N wj

(
j51

N

wjI j
2 5

gNI N
2 1 l~sII uN21!~swuN21!

~swuN!

sVuN 5
1

( j51
N wj

(
j51

N

wjVj
regression

5
gNVN

regression1 l~sVuN21!~swuN21!

~swuN!

sIV uN 5
1

( j51
N wj

(
j51

N

wjI jVj
regression

5
gNI NVN

regression1 l~sIV uN21!~swuN21!

~swuN!

Thus, the far right term in each of these five equations allows o
determine the indicated sum by considering values at the time sN
and calculated values from the previous time step: these are
recursive expressions. Another useful feature of these equati
that although exponential forgetting is embedded within the sys
no exponentiation that could lead to underflow or overflow e
results in the equation system. Care must be exercised in start
recursive routines; the following expressions are used forN 5 1
~the first time step!

swu1 5 g1

sIu1 5 g1I 1

sIIu1 5 g1I 1
2

sVu1 5 g1V1

sIVu1 5 g1I 1V1

A variance test is important to determine the quality of the dat
regression analysis and to avoid the division by zero associate
singular equation systems and an excessively small determina
a matrix system of equations. The denominator term can be s
to be a variance;27 thus we define

denomItest5 H 1 if sII 2 ~sI!
2 > 0.5 A

0 if s 2 ~s !2 , 0.5 A
@16#
II I
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Underlined values represent suggested calibrations for the
lead-acid battery pack; these calibrated values were used i
work. A value of unity reflects passage of the denominator~deter-
minant! test.

We next describe a recursive skewness test. For our purpos
define skewness as27

skewness5 U 1

Ns3 (j51

j5N

~xj 2 x̄!3U @17#

wherex̄ is the average of thex-values (x̄ 5 sI) ands2 is a variance
(s2 5 sII 2 sI

2). We restrict the skewness test to the actual cur
time values and do not incorporate the charge-discharge weig
Following the same logic used previously, the following sum
tions and recursive relations are derived; the subscripts is added to
indicate quantities associated with the skewness calculation

sw,suN 5 (
j51

N

lN2j 5 1 1 l(
j51

N21

jl
N212j 5 1 1 l~sw,suN21!

sI,suN 5
1

( j51
N lN2j (j51

N

lN2jI j 5
I N 1 l~sI,suN21!~sw,suN21!

~sw,suN!

sII,suN 5
1

( j51
N lN2j (j51

N

lN2jI j
2 5

I N
2 1 l~sI,sIuN21!~sw,suN21!

~sw,suN!

skewnessuN

5 5
skewIcal if denomItest< 0

F U ~ I N 2 sI,suN!3

@sII,suN 2 ~sI,suN!2#3/2U 1 ~skewnessuN21!~N 2 1!

N
G

if denomItest. 0

The value ofskewIcal represents a calibration. A large value may
more appropriate if it is desired to start the WRLS portion of
algorithm sooner (skewIcal 5 10 was used in this work!. To start
the recursive calculations for skewness, the following condition
used

sw,su1 5 1

sI,su1 5 I 1

sII,su1 5 I 1
2

Analogous todenomItest, define

skewItest5 H 0 if skewness> skewIcal

1 if skewness, skewIcal

As with denomItest, the regression analysis is not employed if
skew test is not passed. When eitherskewItestor denomItestor both
are zero, and the regression analysis is not implemented, the O
found by

Voc 5 Vmeasuredut 1 ~ I u tRu t2Dt! 1 S I u t 1 I u t2Dt

2 DADt

2 exp~2BDt !@Vmeasured2 ~Voc 2 IR!# t2Dt @18#

where it is seen that the employed resistanceR is taken from the
previous time step value.

Evaluation of the voltage-based SOC.—The preceding discu
sion shows how to extract an estimate for the OCV; it now rem
s

e

.

s

to convert this estimate intoSOCV , and for this the hysteresis vo
age must be treated. For the time integration, the followin
applied1

VH~ t ! 5 wH$VH 2 ~Dt !b@h II 1 SD#% t2Dt

1 ~1 2 wH!@Voc,cell 2 V0~T, SOCV!#t2Dt @19#

Although the subscript on the brackets and braces indicate
values to the right of this equation can be evaluated at the pre
time step, note that the current is known~measured! for all times, so
the current employed~and the current efficiency! can be taken as th
average of the present and previous time steps to increase ac
It is also important to note that this equation is not a straightfor
time integration of Eq. 5 unless the weighting factorwH is set to
unity. Thus, the quantity@Voc,cell 2 V0(T, SOCV!#t2Dt in Eq. 19
allows for a correction to the extraction of the hysteresis vo
through the recognition that the previous time step value fo
SOC can be used to calculate an OCV. This back-calculated
provides a value ofVH that likely differs from that calculated usi
Eq. 5 alone.

The next step is to transform theVoc into a voltage-based SO
including the hysteresis voltage. Because we can now calc
V0(T, SOCV) 5 Voc 2 VH , we can simply invertV0(T, SOCV) to
extractSOCV . For lead-acid, the approximately linear relation
picted in Fig. 2 can be employed. For example, at 25°C

Voc~volts/cell, 25°C)5 1.92141 0.2949
SOC

100

for the lead-acid batteries of this work. Finally, as noted initia
the combined SOC can now be calculated from Eq. 1;i.e.,
SOC5 wSOC(SOCC) 1 (1 2 wSOC)(SOCV). The next section ad
dresses the weight factorswSOC andwH .

Specification of wSOC and wH.—An important topic to be clar
fied is the weight factorswSOC and wH ; the influence of the tim
step size must be addressed in the calculation of these fact
well. That is, if very small time steps are employed, then the we
ing factor should be altered so that time-dependent quantities a
lost from the calculation and instead are allowed to evolve in a
dance with their particular time constants. Thus the following
proach is applied in this example application1,12

wSOC 5 wSOC,max2 aw~Dt ! and wH 5 wH,max 2 aH~Dt ! @20#

These weighting factors are to be bounded~e.g., between 0.5 and 1!.
We provide an overview of what must be considered in speci
wSOC andwH , but application of the algorithm in an operating
vironment~algorithm tuning2! must be exercised to find the app
priate values for a specific application. ForwH , because the lea
acid battery does not exhibit significant hysteresis effects, w
wH 5 1 throughout; that is, the hysteresis voltage is calculated
included in the results, but it is not adapted~cf. Eq. 19!.

When the battery SOC exceeds about 95%, the voltage-
SOC can become inaccurate due to the less predictable pro
associated with the overcharge reactions discussed previously.
larly, for short times~i.e., before the regression analysis allows
accurate fitting of the resistance and OCP!, wSOC can be set to unit
and the SOC is calculated for this short time based solely on
lomb integration provided the initial SOC is known~e.g., stored in
the embedded controller memory and corrected for self-discha
initialized prior to power excitation from the measured value
Voc). Another special case results when the battery has been
for prolonged periods. In this case, the hysteresis model retu
value of VH that is less than210 mV, and the magnitude of t
current is quite low~e.g., less than 0.01 A!. In this case, the voltag
based SOC is likely to provide the most accurate estimate fo
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combined SOC. We also desire that the voltage-based contrib
be further enforced when the SOC falls below a calibrated v
~20% is suggested! to avoid undervoltage faults that can impair
operation of devices requiring voltage values above a critical l

Adaptive power capability.—The maximum discharge power c
be expressed as

Pmax,discharge5 IV 5 IVmin

That is, when the battery voltage obtains its lowest acceptable v
the maximum discharge power results. First, consider an ohmi
tery, whereinV 5 Voc 2 IR, and

Pmax,discharge5 IVmin 5
~Voc 2 Vmin!

R
Vmin

This expression corresponds to the high-frequency power capa
and can be obtained by solving for the power capability assoc
with Fig. 4 when the capacitor is shorted out~offers no impedance!
due to high-frequency excitation. Similarly, the high-freque
charge power for the ohmic battery corresponds to

Pmax,charge5 IVmax 5
~Voc 2 Vmax!

R
Vmax

We shall refer to these power capabilities governed solely by
resistanceR as instantaneous power capabilities. For the maxim
ohmic resistance, obtained at long times,R is replaced byR
1 Rct , whereRct is often different for charge and discharge~cf.
Fig. 3!. In this low-frequency case, the power capability is ass
ated with Fig. 4 and an open-circuited capacitor~infinite impedance!
due to low-frequency excitation. Thus, the ohmic battery does
address transient effects such as those correlated by the sup
tion integral 3. To calculate the maximum charge and disch
powers available for the time intervalDt including capacitive ef
fects, the current is obtained from Eq. 7

To implement these equations, the respective powers are calc
immediately after the algorithm has been employed to finish
SOCdetermination at timet. In this case, quantities calculated
measured at timet are then immediately stored in the variables lis
in the respective power expressions at timet 2 Dt. Then one mus
state the durationDt corresponding to the desired estimate
power.~It would seem sufficiently accurate to not updateVoc unless
Dt were to exceed tens of seconds. One could then use co
counting on the projected current to estimate a new state of c
and updateVoc.) For example, if we want to know the power e
mates 2 s from the present timet, then the present measured a
extracted values are placed in thet 2 Dt subscripted quantities,t
andDt are set to 2 s, and the right sides of the preceding equa
yield the desired maximum charge and discharge power estim
s from the present.

I u t 5
~Voc 2 V! t 2 ~AI t2DtDt/2!

R

Pmax,dischargeut 5 IVmin 5 F ~Voc 2 Vmin! t 2 ~AI t

Pmax,chargeut 5 IVmax 5 F ~Voc 2 Vmax! t 2 ~AI t2
,
-

si-

d

b
e

2

Results and Discussion

The algorithm developed in the previous section was appli
two types of batteries: nominally 55 Ah lead-acid batteries use
construct GM’s 42 V parallel hybrid truck~PHT! power source an
105 Ah NiMH batteries~SAFT! in an S10E EV modified for re
search and development purposes. Most of our effort is focus
the hybrid electric vehicle~HEV! application; the NiMH results a
presented so as to determine whether the general approach
used for both HEV and EV applications and on lead-acid and N
technologies.

Perhaps more than any other algorithm output, power capa
is most important for HEV applications. The power capability p
shown in Fig. 5 for the 42 V battery pack result from the applica
of the algorithm using the power profile labeled ‘‘Actual p
power, kW’’ in Fig. 5 ~along with a forgetting factorl of 0.99 and
unity for the discharge-to-charge weight factorg j for all points j, as
shown in the base case curve of Fig. 6!. The power on charge w
kept under 4 kW, while discharge power pulses reached 15
Analyzing Fig. 5, we see that after sustained charges~respectively
discharges!, the algorithm reports that the maximum charge~respec

tively discharge! power capability declines, while the maximum d
charge~respectively charge! power capability increases. These
servations are consistent with analyses of actual batteries an
directly attributable to transient irreversible losses that are simu
by the resistor-capacitor combination shown in Fig. 4. The ef
are particularly evident between 200 and 300 s.

The weighting of the points (wj 5 g jl per Eq. 12! is clarified in
Fig. 6. We see that for the base case (g j 5 1 for all points j and
l 5 0.99), points older than about 100 s relative to the current
point ~1341 s in Fig. 6! have a small~and exponentially decreasin!
impact on the recursive least-squares regression. The far right
in Fig. 6 shows that the relevant time window is reduced to abo
s whenl is increased to 0.9, in agreement with Eq. 13. Last, ch
ing the discharge-to-charge weight factor tog 5 2 results in dis
continuous upper and lower weighting curves; values forming
upper curve correspond to discharge events~which receive twice th

xp~2BDt !@V 2 ~Voc 1 IR!# t2Dt

Dt/2!

t/2! 1 exp~2BDt !@V 2 ~Voc 1 IR!# t2Dt

1 ~AI t2DtDt/2! GVmin @21#

/2! 1 exp~2BDt !@V 2 ~Voc 1 IR!# t2Dt

1 ~AI t2DtDt/2! GVmax

Figure 5. Pack power~measured independent variable! for the three-modul
pack ~36/42 V system! and predicted available power capabilities.
1 e

1 ~A

2DtD

R

DtDt

R
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weighting with g 5 2 and wj 5 2l), while those forming th
lower curve correspond towj 5 l j on charge.

The remaining primary outputs from the algorithm are displa
in Fig. 7. The algorithm regresses theVoc and high-frequency resi
tanceR. For the lead-acid battery, the hysteresis voltage is incl
but is not adapted, as it does not play a large role. From the va
V0 5 Voc 2 VH , the voltage-basedSOCV is obtained ~Eq. 4!,
which, when combined with coulomb counting, yields the extra
SOC ~Eq. 1!. For the rather short test durations of this work, p
coulomb counting can be used to access the SOC, unlike in a
continuous HEV operation, and the accuracy of the regressed
is reflected by the agreement between regressed SOC and the
labeledSOCcoulomb counting. In addition, C/3 discharge of the batte
at the end of the experiment yielded a capacity of 62% SOC
close agreement with the regressed SOC. Generally, similar r
were obtained when the SOC was cycled as in Fig. 7 abo
average SOC value ranging from 40 to 70%.

The high-frequency resistance may be useful in assessin
health of the battery. This assertion is based on two observa

Figure 6. Weight factor components for weighted recursive least-squ
formulation. Low values ofl are shown to weight preferentially the infl
ence of more recent data. Two curves are seen wheng Þ 1; one for dis-
charge data points and one for charge data points. Wheng . 1 ~respectively
g , 1), the curve for the discharge weight factor is above~respectively
below! the charge curve. Note that for our base case (l 5 0.99,g 5 1),
about 200 s of the most recent data are used to regress parameter va

Figure 7. Measured pack voltage and current and SOC~by purely coulomb
counting!. Also shown are the calculated hysteresis voltage and the reg
SOC, OCV, and high-frequency pack resistance.
f

l

ve

s

e
.

First, as electrodes degrade upon cycling, the intimate conta
tween conductive particles necessary for battery operation is s
lost, resulting in larger values ofR. Similarly, loss of acid due t
sulfation~growth of inert lead sulfate crystals, removing sulfate
from the electrolyte! leads to an increased ohmic resistance du
the loss of acid and a concomitant drop in electrolyte conduc
along with pore blockage attributable to the covering of other
active electrode reaction sites by inert lead sulfate crystals.17 Similar
phenomena take place in NiMH28,29 and lithium-ion batteries;i.e.,
upon cycling, the high-frequency resistance increases. We ca
ticipate that increases in high-frequency resistance upon exte
cycling can be expected for all commercially viable EV and H
batteries.

Statistical aspects of the algorithm behavior based on the p
profile displayed in Fig. 5 are plotted in Fig. 8 and 9. The e
in representing the measured voltage using the regressed para
is shown by the uppermost data in Fig. 8 and correspond
yj 2 (mxj 1 b) in Eq. 11. The time per point is 1 s for these dat
and the power prediction error refers to the power predicte
time t when the parameters regressed from the previous tim
t 2 Dt are used to calculate the battery voltage using the mea
current at timet and Eq. 21. The error on charge and discharge
generally less than 100 mV/module, yielding usually less than
for both the voltage and power capability errors under these c
tions. The immediate increase in the skewness of the current s
near 245 s results from a nearly constant charge power exci
followed by an immediate change to discharge. The lower pl
Fig. 9 represents this skewed-data condition, whereas the upp
corresponds to more random power excitation around 1021 s
clustering of charge data in the lower plot~skewed data! of Fig. 9,
relative to the upper plot, helps to explain why the regression s
tics for the upper plot are superior to those of the lower plot.

Perhaps the most important aspect of Fig. 8 and 9 is that the
help to explain why the algorithm works. When the parallel resi
capacitor contribution to the impedance is removed from the
sured voltage to form the regression voltage~cf. Eq. 8!, the lower-
most plot of Fig. 9 shows that a substantially linear relation h
for the resulting regression voltagevs. current, and one should e
pect the two-parameter linear regression to represent the dat
little error. Note that the 91 points used to generate the plots s
in Fig. 9 correspond to 91 s, which is on the order of the duratio
influence whenl 5 0.99, the base-case value for the forgetting
tor l ~cf. Fig. 6!. Even when the data are skewed~lower plot of Fig.
9!, the regression voltagevs. current is still linear; in implement
tion, we found that accepting all data for regression when the s
d

Figure 8. Statistics for weighted recursive least-squares regression a
ated with the power profile shown in Fig. 5. The power prediction e
results from using the regressed values at time stept 2 Dt to predict the
power at timet given the current at timet vs. the actual power~current
multiplied onto voltage! at time t.
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ness in the current excitation source is less than 10 worked w
The convergence of the algorithm is highly dependent on

value of the weight factorwSOC. The voltage-based portion of t
SOC calculation,SOCV , converges rapidly, but it is highly sensiti
to variations in the battery voltage; such variations can be attr
able to both measurement and model errors, and these erro
give rise to unwanted instabilities inSOCV . Conversely, th
coulomb-counting-based portion of the SOC calculation,SOCC , is a
much more stable integral quantity, but it can steadily become
curate due to current efficiencies that are not known with en
certainty to be included in the model reference adaptive sy
Thus, SOCV contains the more adaptive portion of the algorit
whereasSOCC provides stability. For the base-case conditions
sen, the algorithm converges smoothly from intentionally erron
starting values for the SOC in about 200 s, as indicated in Fig
The initial value ofSOCwas 64%~cf. Fig. 7!; the initial value for
SOC was arbitrarily set to 90 and 30% for the upper and lower
of Fig. 10, respectively. The results of Fig. 10 help to explain w
coulomb-counting SOC method cannot be used in actual ve
applications. Any error in the SOC is not removed adaptively,
the pure coulomb-counting value for the SOC maintains at a v
close to the erroneous initial starting value in each case. The p

Figure 9. Recursive skewness analysis. The lower plot shows that at
~see Fig. 7 for the measured current!, the current is skewed, as a lon
duration of dominantly constant charge currents are followed by a disch
The clustering of currents at2100 A ~charge! shown in the lower plot yield
a skewed data set for linear regression. The maximum in the recursive
ness curve of Fig. 8 corresponds to the lower plot. In contrast, the
random current history associated with the upper plot yields good regre
statistics.
n

.

r

calculations are sensitive to the value of the SOC, as the dr
force for discharge~respectively charge! power is the differenc
between the minimum~respectively maximum! voltage allowed an
the Voc, andVoc is obtained from the value ofSOC. Last, we note
that the regressed high-frequency resistanceR is not sensitive t
erroneous values forSOC ~compare Fig. 7 and 10!, which bode
well for the use of an adapted high-frequency resistance as a
nostic for a battery SOH.

A 25°C discharge power test of the algorithm for the PHT ap
cation is shown in Fig. 11. First, the powervs.time trace in the PH
over a drive similar to that of the Federal Test Procedure~FTP! was
recorded. Then, in a separate laboratory test, six different ma
charge power pulses were enforced at various times througho
recorded FTP-like power cycle by setting the pack voltage to
~10 V/module!, indicated by the arrows in Fig. 11. Generally
predicted 2 s and instantaneous power calculations bounded th
mediate discharge power available~cf. ovals!, and the availabl
power always exceeded the 2 s predicted power capability. The
results are promising for vehicle integration, and similar results
obtained at220 and 0°C.

.

-
Figure 10. Algorithm convergence test. For the upper plot, the initial S
was set to 90%~the correct value being 60% as in Fig. 7!. For the lower plot
the initial SOC was set to 30%. A comparison with Fig. 7 shows tha
algorithm converges to the correct SOC within about 200 s. Note tha
regressed value for the high-frequency resistance value is not affecte
stantially.
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As mentioned previously, the equivalent circuit shown in Fi
should suffice to represent all known batteries for EV and H
applications. The results shown in Fig. 12 and 13 support this a
tion, as the data correspond to a high-voltage EV NiMH ba
system. Because the SOC varies over a wide range in EV ap
tions, in contrast to HEV applications, the high-frequency resist
R also shows variations, and the variation inR is generally consis
tent with published measurements of this quantity for NiMH
battery modules.13 Thus if R is to be used to determine a batt
SOH in application, one must normalize the regressed value oR to
nominal values which are a function of both temperature and S
For Fig. 12 and 13, theAh capacity was determined before
discharges for the EV battery pack, so the coulomb-counting v
for the SOC is accurate, and the difference between the regr
SOC and that obtained by coulomb counting corresponds t
algorithm error, which is sufficiently small for application purpos
In actual applications, theAh capacity of the battery pack is n

Figure 11. Discharge power test. Over an FTP-representative cycle rec
from a ~GM! PHT drive, the pack voltage was set abruptly to 30 V~10
V/module! at six different times, as indicated by the arrows. Generally
predicted 2 s and instantaneous power calculations bounded the imm
discharge power available~cf. ovals!, and the available power always e
ceeded the 2 s predicted power capability.

Figure 12. Weighted recursive least-squares algorithm applied to an el
vehicle ~NiMH ! battery pack of 26 modules. The pack was discha
through a resistor to yield the desired current excitation. For these
Ah 5 105,l 5 0.95,l 5 1, a 5 0.001 s21, anda 5 0.005 s21.
nominal w H
-

-

d

known prior to every drive, so an adaptive SOC algorithm is
quired.~The pack capacity can be estimated and updated adap
for drives in which the pack is initially near full capacity and
final SOC and pack voltage are low.12!

Conclusions

Efficient HEV and EV operation requires knowledge of the
tery state;i.e., how much energy is left in the battery and how m
power the battery can discharge or accept. The algorithm de
and implemented in this paper represents a potential means
dress these issues in an efficient manner consistent with the c
tational capabilities of embedded controllers employed by the
motive industry. The algorithm can be used on both lead-acid
NiMH traction battery systems and should work for other ba
systems as well. It is suggested that the high-frequency resista
used as a proxy for the SOH of the battery modules; determinin
module SOH adaptively is important for optimal energy man
ment and on-board diagnostics.
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List of Symbols

Ah coulombic capacity, C-h/s
A 1/CD , F ~Eq. 3!
b Regressed intercept~Eq. 10!
B 1/(RctCD), 1/s ~Eq. 3!

CD capacitance, F~cf. Fig. 4!
I current, A

m regressed slope~Eq. 10!
P power, W
R high-frequency resistance, ohms~cf. Fig. 4!

Rct effective interfacial resistance, ohm~cf. Fig. 4!
SOC percent state of charge~energy content in the battery relative to the energy

tent upon full charge!
s sum
t time, s

V system voltage, V

e

,

Figure 13. Algorithm applied to an S10E drive with the same battery p
as shown in Fig. 12. Parameters correspond to those of Fig. 12, wi
exception thatl 5 0.9; the value ofl was lowered to account for the larg
time per point~30 s for this profilevs.1 s in Fig. 12! and the correspondin
need to reduce the impact of earlier~i.e., relatively older than in Fig. 12! data
points.
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VH hysteresis voltage, V~cf. Eq. 5 and Fig. 4!
Voc open-circuit voltage, V~cf. Fig. 4!
wH hysteresis weight factor~Eq. 19!

wSOC weighting factor~Eq. 1!

Greek

b hysteresis parameter~Eq. 5!
e self-discharge hysteresis parameter~Eq. 5!

h I current efficiency~Eq. 2!
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