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Abstract

Battery life is an important, yet technically challenging, issue for battery development and application. Adequately estimating battery life
requires a significant amount of testing and modeling effort to validate the results. Integrated battery testing and modeling is quite feasible
today to simulate battery performance, and therefore applicable to predict its life. A relatively simple equivalent-circuit model (ECM) is used
in this work to show that such an integrated approach can actually lead to a high-fidelity simulation of a lithium-ion cell's performance and
life. The methodology to model the cell’s capacity fade during thermal aging is described to illustrate its applicability to battery calendar life
prediction.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction that allow detailed investigation of interfacial and bulk prop-
erties of electrode materials have contributed to a better un-
Accurate prediction of a battery’s life, either the calendar derstanding of cell performance and degradg@nit is fea-
or the cycle life, is a great technical challenge to any battery sible to develop an integrated battery testing and simulation
application. Battery life is an important issue for both trac- capability to assist battery R&D and operati@nb].
tion and stationary applications because itis critically related  There are a few attempts in the past to predict lithium-
to battery reliability and dependability, which in turn deter- ion battery capacity. For example, Fuller et [Al0] used a
mines a power source’s quality and eventual life-cycle cost. ‘first-principles’ electrochemical model to estimate lithium-
A battery’s actual service life, however, depends on its his- polymer cell capacity. Rakhmatov et §L1] proposed an
tory, during both the storage/standby and mission/duty pe- analytical model for lithium-ion cells used in portable elec-
riods experienced by the battery through its lifetime. Any tronic systems that can predict battery lifetime. Spotidig]
sensible approach to predict battery life therefore has to ad-incorporated SEI growth into Fuller's model and began to
dressimpacts from both the storage/standby and mission/dutylook into the correlation of impedance change with capacity
periods. fade. Ramadass et §l.3] attempted to incorporate solvent
In the past decade, due to substantial improvements inreduction reaction into their first-principles electrochemical
computer computation power and software capability, bat- model to predict capacity fade.
tery modeling and simulatiof1l—8] has enjoyed significant We are muchinterested in taking a comprehensive, concur-
advancements. At the same time, experimental techniquesrent and hybrid approadfi,8] to develop tools and strategies
that can predict the end-of-life (EOL) of a battery. Determina-
tion of the EOL of a battery system in service is very difficult,
* Corresponding author. Tel.: +1 808 956 2339; fax: +1 808 956 2336. €Xpensive, and often destructive to the system. Therefore,
E-mail addressbliaw@hawaii.edu (B.Y. Liaw). non-invasive, non-destructive techniques that can determine
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Sandia has been involved in studying the performance of = “jo0e; o0e. 80% 70% 60% 50% 40% 30% 20% 10% 0%
a group of 18650-size lithium-ion batteries (LIB) that was S0OC, %

fabricated for the US Department of Energy (USDOE) Ad-

vanced Technology Development (ATD) Program. These bat- Fig. 2. SOC-dependent OCV and resistance values used in ECM.
teries contain a high-power chemis{8;14-16] One of the ) ) )
objectives of the ATD Program is to develop procedures to function of &, follows a power law with SOC, while that of
make rapid comparisons of performance—degradation ratesRz iS an exponential function with SOC, as shown in E@}.
and predictions of battery life. This paper will discuss a sim- and (2)

ple LIB modeling .approach that uses an equivglent-circuit Ry = a + b(SOCY (1)
model (ECM) to simulate cell performance, particularly the ,
capacity fade phenomenon. This example shows that we canR2 = d exp[(1— SOC¥] (2)

simulate battery performance changes due to thermal aging,-l-hus
which is one of the most influential factors impacting battery
calendar life during storage, standby or operation periods. Rz = a + b(SOCY + d exp[(1— SOC}] 3)

These functions are empirical and do not imply any physi-
cal meaning in this work, although further analysis of their
dependence with aging time and conditions could provide us
some clues as to what process might be shaping the physical
change of the cell performance. This would need to be ver-
ified by additional experimental evidence. The capacitance
value,C, can be derived from the characteristic frequency,
fc2 = 1/R2C, which is yielded from the Nyquist plot of the
cell as demonstrated Fig. 3. The time-dependent cell volt-
age discharge curve can then be calculated from the ECM for
a constant-current conditigt9], according to Eq(4):

2. The equivalent-circuit model (ECM)

There are several ECM approaches of different nature and
flavor reported by others (e.g17-19) for simulating LIB
performance. A schematic of the ECM used in this work is
shown inFig. L The model resembles to that used by Ver-
brugge and Cone]lL9] for Ni-MH cells. We favor this model
due to its simplicity, yet flexibility, in describing an electro-
chemical system via the separation of all ohmic resistance
components from all faradic non-linear components, as they
are lumped intdr; andR,C, respectively. This generic na- (1) = @e—tﬂezc
ture makes this ECM applicable to a variety of chemistries C
(e.g., valve-regulated lead adid], Ni-MH [19], or LIB in

+ Vo — IR1 — IRo(1 — e /R2C)  (4)

this paper). 0.015
To construct a valid model, we first need to incorporate the
state-of-charge (SOC)-dependentopen circuitvoltage (OCV) .. @ 60% SOC
a O

and resistanceR; and Ry) values into the modelFig. 2 2

shows these SOC-dependent values for the chemistry uset% Bt A%

in this work. The OCV values were determined from a cell = o.005 fe2(=35Hz)

discharged a€/25 rate, as reported if20]. The resistance

versus SOC relationship can be derived from two sources of W”c

experimental data, either from ac impedance measurement: 00 0025 003 0035

or from the galvanostatic dc polarization, which yields dis-
charge curves at different rates. A more detailed discussion of
how the values were derived can be founddh We should
note that in the model, the resistariRewas assumed to con-
sist of two independent contribution®, andR’, as shown in

Fig. 2 to approximate the resistance change with SOC. The  Fig. 3. Nyquist plot for cell #319 measured at 60% and 100% SOC.
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wherel is constantQ(0) is the nominal capacity, and, the
nominal SOC-dependent cell OCV. Thus, for any given time
step, the charge passed is calculated to derive the SOC valui
at the end of the step, and the associated OCV and resistanc
values are plugged into E¢4) to give the cell voltage as a
function of time.

3. Experimental

Quallion LLC (Sylmar, CA) provided test cells as part of
the USDOE ATD Program efforts, and Sandia along with four
other National Labs was commissioned to evaluate the cell
performance for hybrid electric vehicle applications. Detailed
descriptions of the chemistry, cell configuration, test proto-
cols and procedures, and test results can be fouBlifi,20]

In short, this high-power cell chemistry uses a cathode con-
sisting of LiNig.gCay.15Al0.0502, an anode fabricated with
MAG-10 graphite, and an electrolyte consisting of ethylene
carbonate (EC)/ethyl methyl carbonate (EMC) (3:7 wt.% ra-
tio) with 1.2 M LiPFs.

The data used in this paper were extracted from that ob-
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Fig. 4. Discharge curves simulated by ECM using &j.and the data ob-
tained atC/25 andC/1 for comparison and validation.

the shape of the discharge curves. This is achieved primarily
by the use of the two contribution®, andR7, in R;. The
more consistency achieved, the better we can distinguish any

tained for a cell (#319) in the pool of Sandia’s test cells subtle differences from the parameters used to interpret the
as an example. This particular cell went through thermal results. Eventually, this capability can be used to analyze sub-
aging at 55C and 100% SOC for about 20 weeks, while tle differences from various phenomenological assumptions
the other lithium-ion cells were aged at temperatures rang- and the corresponding reflection in the parameters applied to
ing from 25°C to 55°C and at 60%, 80%, or 100% SOC the battery’s physical model to help us study the impacts on
to examine the cell’s power and capacity degradation. Cell the power-delivery capability, capacity, and life.

#319 was chosen because its behavior is representative of The ability to simulate cell voltage under galvanostatic
the group of cells that went through the same thermal-aging charge or discharge regimes is quite useful for battery R&D.
conditions. For example, by imposing a suitable cut-off condition, we

The cell performance as received and during subsequentcan calculate the amount of charge put in and released from
tests at four-week intervals was evaluated by a reference perthe cell to yield the rate capacity, as well as charge efficiency.
formance test (RPT), as described20]. The cell capacity Furthermore, if the aging effects and degradation rates are
was determined &/1 andC/25 discharge rates in RPTs after known, we can perform simulations using various tempera-
each thermal-aging period. ac impedance data were also colture and power conditions imposed onto the cell to simulate
lected, and were intended to identify which cell components the life performance.
were changing in the aging process. Other National Labora-  In order to simulate the capacity fade of the cell, we need
tories on the ATD Program are conducting more detailed di- to know how cell characteristics such as OCV and resistance
agnostic analyses to understand the degradation mechanismialues change with aging time and conditions. Since OCV
The discharge curves from the discharge regim€s¥28 and andR; are intrinsic to the cell, their changes under thermal
C/1andthe ac compleximpedance data generated inthe RPTaging should be negligible. Therefore, we treated them as
were used in deriving the parameters for model developmentinvariant in this workR; = 0.0112 was used throughout the
and validation. work, independent of SOC and aging conditions.

The only characteristic that requires attention is the change
in Ry. Fig. 5shows how the five parameters in E8) change
with the aging period under the same aging condition. These
relationships allow us to interpolate or extrapolate parame-

Fig. 4shows a series of discharge curves at various rates,ter values over a specific aging period to permit prediction
from C/25 to 1QC, simulated by the ECM using E@). Also of the cell performance characteristics under the aging con-
shown are two sets of experimental data obtaine@/aé dition. Parametea is a constant and independent of SOC,
andC/1 rate. The very high degree of agreement between theand parametenis andc change in linear fashions. Parameter
actual data and the simulated results gives us a high level ofd, the pre-exponential factor, changes in a 3rd order polyno-
confidence about the resistance values that we used in themial while e changes in a power law fashion.
model. It is worth mentioning that the fit of the parameters Fig. 6 shows total cell resistance from the above five pa-
is also demonstrated by the ability to capture the essence oframeters in Eq(3) andR;. The overall resistance of the cell

4. Results and discussion
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region, thus leading to a higher rate of capacity fade. The &

separation oR; into two independent contributions &, § 10
and R allows a disproportional rate of increaseR) and S

5, making the approach more suitable and easier to reflect 5 « Experimental |
characteristic changes in capacity fade. 52 o Simulated

Fig. 7 shows the results of using this set of parameters o . ‘ : 1 .
. ) ) . : 5 10 15 20 25
in ECM to simulate the discharge behavior of the cell going . i

. . . . Aging Period,wks

through the thermal-aging experiments. The five discharge
Curves simulated frqm the ECMare C0n5|5tentw_|th the EXPEr- kig. 8. Comparison of capacity fade measured from experiments and sim-
imental data. The differences between the predicted capacityulated from ECM. Polynomial fitting allows projection of battery calendar
and the experimental data are compareHiq 8. life under the thermal-aging condition.
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