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PROCEEDINGS

OF THE INSTITUTION OF ELECTRICAL ENGINEERS

Control & Science

Self-tuning controller

D. W. Clarke, M.A., D.Phil., and P. J. Gawthrop, B.A.

Indexing rerms: Control-system synthesis, Controller, Optimal conerol, Tuning

Abstract

A strategy for the design of self-tuning controllers of systems with constant but unknown parameters is presented. o
A cost function which incorporates system input, output and set-point variations is selected, and a control law for ’

a known system is derived. This control law

is shown to comprise a least-squares predictor of a function related to

the cost function, and the control input is chosen to make the prediction zero. The parameters of the control law

for the unknown system are estimated using a recursive-least-squares algorithm, and the optiméal parameters are :
shown to be a fixed point of the algorithm. Whilst retaining their computational simplicity , the proposed method -, 1
has several advantages over self-tuning-regulator strategies which attempt to minimise the output variance alone: b

weighting of control is allowed for; set-point

a system-related parameter to ensure convergence; and, for stable but nonminimum phase systems, there is no need

variation may be optimally followed: there is no requirement to choose

to employ time-consuming methods, such as the solution of a Riccati equation. Several simulated examples are used

to demonstrate the potential of the method.

List of principal symbols

A(z™') = polynomial of order # corres-
ponding to a system output;
g = 1
B(z™') = polynomial of order n corres-
ponding to a system input
((z™!) = polynomial of order n corres-
ponding to an uncorrelated random
sequence; ¢g = |
d = constant output level
E{} = expectation operator
E(z™),Fz™"),G(z™"),H(z"') = general polynomials

€, = k-step-ahead prediction error of
the output
I,J = cost function
I = the identity matrix
k = system time delay
K, = updating gain matrix in the

recursive-least-squares estimator
system order
costing polynomials for the system
output, input and set point,
respectively
P, = matrix proportional to the co-
variance of the estimated parameter
¢t = time in sample instants (integer)
g, Wy, = system input, set point, and output,
respectively, at time £
x; = vector containing measured data
= forward-shift operator: 2Ry, =
Upate
a = asymptotic sample length
B = forgetting factor
§ = constant related to d
€., = k-step-ahead prediction error of
the generalised output function
A = control weighting
¢ = generalised output function
@ = vector of parameters
£, = uncorrelated zero-mean random
sequence
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" is suitable for operation using smail online computers, or even

A polynomial of order r in the backward-shift operator z™' is denoted . ‘

Pz ) =pe +pizt + ... +p=77. After definition, and where con-
venient, the polynomial is written simply as P. The estimate of a
parameter 7y is denoted by 7.

1 Introduction

The optimal control of systems with unknown parameters
subjected to random disturbances is of considerable theoretical and
practical interest. Although this problem is soluble in principle, the
excessive computations required by the resultant control laws pre-
clude their use in practice. so it is useful to consider suboptimal
algorithms which, however, may be more easily realised. An important
class of methods. called ‘self~tuning regulators’, have been developed by
Astrom and Wittenmark"? for the control of systems with constant,
but unknown, parameters. The regulator is based on a recursive-least-
squares estimator of the parameters of a feedback control law, followed
by the use of the estimated parameters in the control law itself. Con-
vergence conditions®# have shown that, asymptotically, the self-
tuning regulators approach the steady-state optimal regulators for a
good many systems and successful practical implementations have
been reported.’ The control calculations are trivial, as the feedback
consists of a pulse-transfer function; the recursive estimator is more
burdensome, but not excessively so. Hence the self-tuning regulator

(SR S

MiCroprocessors.

As its name implies, the self-tuning regulator attempts to minimise
the fluctuations of the system'’s output when the loop is randomly
disturbed, but it makes no attempt to ensure that set points are
followed optimally, nor does it try to penalise excessive control action.
Work has been reported® which extends the regulator to include a
constant set point, or which suboptimally inserts an integration in the
loop.? but neither method is particularly appropriate, as the first'
ignores set-point changes, and the second will make the regulator
converge to different values according to the pattern of set-point
changes. Lack of costing of control is a further handicap to the basic
self-tuning regulator, as there is then no way of modifying its
asymptotic behaviour beyond changing the sample interval and
restarting the algorithm. Moreover, to control nonminimum-phase
systems in a stable manner, the simple method must be discarded,
and at each sample instant the computationally more difficult online
solution of a Riccati equation® must be used, or a polynomial identity
must be resolved;” these complexities can be avoided if control costing
is involved.” Identifiability conditions for the feedback parameters show
that one system-related parameter must be chosen a priori to ensure
proper operation; this detract slightly from the 'self-tuning’ philosophy,
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and incorrect choice may lead to instability. All these problems can
be overcome in a number of cases by the method described below,
where the self-tuning principle is used to minimise a cost function
which incorporates fluctuations of inputs, outputs and set points,
whilst retaining the essential simplicity of the basic algorithm, The
derivation, however, differs in emphasis from that of Astrom and
Wittenmark, and suggests how the self-tuning principle may be
developed further.

The systems considered are single input and single output,
randomly disturbed and described by the difference equation:

n
Yayei = wa.¢+d+zqa- 0]
i=0 i=0

where u, and y, are the system’s control input and output at the
sample instant £ and are exactly measurable; &, is an uncorrelated
random sequence of zero mean disturbing the system. The order of
the system is # and the time delay is k; d is a constant reflecting the
nonzero steady-state output of practical systems for a steady-zero
control input. Without loss of generahty ay istaken tobe 1; ¢y is
further taken to be 1 and the variance of £, scaled accordingly. Eqn. 1

may be expressed more concisely in terms of the backward-shift

operator ™" as:

A )y =

the roots of C lie within the unit circle.
The cost functions to be considered are of the form:

S

or alternatively, if P, 0’ and R are polynomials in the shift operator,
I = E{(Pyssn —Rw)* + Q'w)} 3)

where po may be taken to be 1 without loss of generality. The
sequence w, is a known function of time, such as a set point or the
output of some model which it is desired that the system should
follow, and the expectation is conditional upon system input and
output data acquired up to time f. The cost function includes the

important cases:
5L = E{(yesr —w)? + Nid
L = E{Gur—~w)? + N —ue- )}

which have been used in previous control studies of systems using
identified models.!® The effect of using /; is to compromise between
increased deviations of the system output and reduced control
variations, whereas I, costs changes in control. If w; has a nonzero
mean level w,, I, will not ensure that y;, the mean of y,, is equal to
we unless X' is zero. [, inserts an extra integrator into the loop and
guarantees equality of ¥, and w, at the expense of degraded dynamic
performance. The incorporation of the weighting polynomials £ and
R in [ is for the sake of completeness; the structure of the derived
controller is unaffected, except for a possible increase in its order.

2B u, +d+ Cz7V) &, @)

(3a)
(3b)

2 Controller design for systems with known parameters

As a preliminary to the proposed solution of the self-tuning
control problem, consider the design of controllers which minimise
I of eqn. 3 for systems described by eqn. 2, but with known
parameters. When p, is the only nonzero weighting parameter in /,
the controller is the so-called minimum-variance regulator ' which
effectively predicts the system output k steps ahead, ¢, ¢, as a
function of u,, and sets the prediction to zero by appropriate choice
of the current control #,. Extensions to include control costs also
predict and nullify a more general expression—this is the basis of the
control derivation below.

Define

VeeitOe Veers e S Uy )2 Yeej T Craj )

to be the optimal (least-squares) predictor of v,,; at time 7, given
data from samples up to and including time 7. By using standard
arguments, for example the orthogonal projection theorem. ¢, can
be shown to be uncorrelated with y;_;, 1;..; for i 2 0, and hence with
y itself, It is further shown in Appendix 8 that v;,;;, can be expressed
recursively in closed form as:

Oty = FE e+ G upejr +1d, forj <k,
where £, G/ and v; are derived from the polynomial identities:

C = EA + 7 Fl,where E;(z™") is of orderj — 1;

930

G = L5
£(D)

We may set, trivially, ¥/, = ym forj < 0, which may be included
in the above recursion by putting £} = ZCand E;=0forj<0.
Now, substituting eqn. 4 into eqn. 3:

I= E{P[¥irie+ k] ~ Rw,)? “‘(Q'Ut)z}

where Pe, . is uncorrelated with u,_;, wy.;. ¥, for i
letting 0® = E{(Pe,,)* }, the cost function becomes:

= Byfernt —Rw,)* +(Qu)* +
which is minimised by choosing u; such that:

o
au,

Y =

= YPyfiye —Rw)GR(0) + 2000y =

Using the fact that G,(0) = by, the control law is given by:

ny,k“+‘—l-6—g—' —Rw; = 0 &)
Defining a new costing polynomial Q(z™") so that @ = Zi—-: ,and a
function ¢* such that . ;: 2

Berit = PVivnie + Que —Rwy ©)
the control law given by eqn. 5 is written concisely as:

Oerie =0 M

Furthermore, if ¢, is defined as:

Drere = Pyhk + Qut ‘Rwl
and recalling that vi.; = ¥eji¢ + €rej where ¢, Is uncorrelated with
Yivit e it follows that:

¢tHz = ¢l*+k it + €rake

k-t
Z DPi€rah-i

is uncorrelated thh $*,and that the function ¢* is the least-squares
optimal predictor of ¢. Moreover, defining a cost function J to be

E{Qﬁtzw-k }, then:
J = @Bfr ) +0°

and minimising / or J generates the same control law.
Now, substitute for yf, ;| in eqn. 6 to get:

where
€4k

Dt = Z L [Fy_j Yo+ Grojtte-i + Yie—jd] + Que —Rwy,
and define new polynomials:

2 PP

G = Y pziGe; +CQ -

f'(z"‘) =

H(z"') =~ CR
and a constant: § = Zp; vy, _;d. [t follows that ¢* may itself be
expressed recursively as:

Coferit = Fy,+Gu,+Hw,+6 ®)
and as the control sets ¢* to zero at each stage, it is given by

Fy,+Gu+Hw +6 = 0 ©)

This control algorithm is similar to that of the basic minimum
variance control in that it minimises £ {$2} by setting the predicted
future value of ¢ equal to zero at each step. Just as the minimum
variance control law also minimises the infinite stage variance of the
output y,, and not simply the conditional cost function, so the

_ control law derived above minimises the infinite stage variance of

the generalised output ¢;. This is useful when considering its
behaviour in controlling nonminimum phase systems. Note also that,
as ¢* is set to zero at each stage:

& = Wie-ete =&
Hence

E{prrns} = 0, IsIZk
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These correlation functions may be used empirically to verify correct
controller action. The structure of the control law is shown in Fig. 1:
it contains forward, feedback and precompensator elements which are
all simple to realise digitally. The constant § ensures a proper output
level without the use of an integrator in the forward path, In practice,
d may drift, 50 an integrator would be required in the loop, unless &
were updated continuously to compensate.
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Fig. 1
Structure of the optimal controller

The stability of the feedback system may be shown to depend on
the location of the roots of the polynomial equation:

PB+Q4 =0 (10)

For example, if 7, is chosen as the cost function, then P = 1, so if
X' = boX then @ = qoQ'/bo = A and stability is determined by roots of

B+M =0

For X = 0, we obtain the minimum-variance regulator and the roots
depend entirely on the factors of B; hence, for nonminimum phase
systems, the closed loop is unstable. However, if A % 0, the roots now
depend on A4 also; if the system is open-loop stable these will lie within
the unit circle and the system will be closed-loop stable provided A is
large enough. Alternatively, unstable, minimum phase systems are
stabilised if the control weighting A is small enough.
It is interesting to consider the sensitivity of the control behaviour
to the use of estimated rather than true parameters. A full analysis
involves extensive algebra and is outside the scope of this paper; here
we restrict ourselves to the special case wherek =1 =P.d=0=R.
@ =X, giving:
a1 = Peuy TNy, SO

Copy = Fy + (B + A0y + CEyyy
The control law here is:

Fy + (B+2C)uy = 0
where F denotes an estimate of the polynomial F etc. Then, using eqn. 2
we get a recursive relation for ¢,
_ {FB+20)— F(B+AC)}Boy + \CE)

= - - 4 2
brn1 CB+M)(B+)C) S (D)

Consider first the minimum-variance case where A = 0: eqn. 11 reduces

to PO
FB—FB —_

Ve = g + &

Now define E(z"') =B — B to be the error in the 8 polynomial, and

suppose F = F, then:

B(C—A4)
= I—:i%j]-j where T = -—;-E—-,asF = z(C—A)
This means that y, may be considered to be the output of a ¢closed-
loop system with &, as input, and for which the open-loop transfer
function is T(z™'). Hence the sensitivity may be analysed by using
classical methods, such as the Nyquist plot or the root locus, and
situations may readily be constructed for which the “closed loop™ is
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unstable and the control is infinitely sensitive to the given B.

The corresponding analysis for general X in eqn. 11 is difficult,
but if we assume that ¢, = £, (which it would be in the case of no
parameter error), the corresponding closed-loop ‘sensitivity” system
is approximately: .

- & . _ Be-a
@ = T e where T = CB+ )

If the original system, eqn. 2, is open-loop stable, then for large enough
A we can make this ‘sensitivity” system stable in cases where the
simpler version is not, and the corresponding control becomes
relatively insensitive to parameter error; this has been confirmed in
some simulated examples in Reference 8.

3 Self-tuning controller

In the previous Section, it was shown that the control law
for a system with known parameters reduced 1o setting the optimal
prediction @7, of a function ¢, , closely related to the chosen
cost function, to zero at each stage. Effectively the system, eqn. 1,
and the cost function, eqn. 3, are combined to form an equivalent
system

Cofsnie = Fy, + Guy +Hw +35 (12)

Gtrn = ‘aj;-o»ktt + €ur ~
and with the control setting ¢* to zero the closed-loop behaviour is
such that ¢, equals €, . In this Section, the problem of the control
of systems described by eqn. I, but with unknown parameters, is
considered, in which simplicity of the algorithm is preferred to a
strictly optimal solution. The cost function is again given by eqn, 3,
so eqn. 12 then describes the equivalent system, but now parameters of
F, G, H and 8 are unknown.

If C= 1, eqns. 12 can be written in the form:

¢t+k = xtTG + €ten (13)
where x, is a column vector containing known functions of time:

xF = a2y vty w01}
and @ is the vector of unknown parameters:

87 = (/i 380,81 o ity 8}

Now, as the components of x, are uncorrelated with €14k it is well
known that the best (minimum variance and unbiased) linear estimate
9 of 8 is given using a least-squares algorithm,'? which is most usefully
expressed in this context in its recursive form. At time 7, let the vector
of parameter estimates previously available be 8,_, . Asa new value of
Yy is now acquired ¢, may be constructed, so a new estimate 8, of the
parameters may be generated:

8 = é{-: +Kf(.¢l"~“:-l.~ é,-,) )
Ky = Poxy o (1 4+ X Poxy )

b= Py — K (1 +xl7;hptxf-I:Kltl

(14)

where P, is 2 matrix proportional to the covariance of the estimated
parameters. The simplest control takes no account of any interactions
that may exist between identification and control, but merely assumes
that the estimated parameters are in fact the true ones, and hence
chooses 1, such that:

Bfenie = Ly, +Cuy+Hw, +8 = xT6, = 0 (15)

where £, G‘, f}, & are the estimated values of F. G, Hand 8.
Now, in general, Cis 2 polynomial of order i1. so eqn. 13 becomes:

Brae = X180 + pur + (1= COVfr (16)

In this case. ¢* is correlated with x, so the use of a least-squares
estimator alone would produce estimates which are no longer unbiased.
But the estimator js cascaded with a control law which sets #* to zero.
Hence, assuming 8 — 0. the control law, eqn. 15, tends to the optimal
control law ¢* =0, and the offending terms in eqn. 16 will vanish.
Therefore 8 = @ is a fixed point of the algorithm: its stability is now
briefly discussed.

In References 3 and 4. Ljung has shown, for the self-tuning regulator,
that if the input and output of the system are bounded. which naturally
requires stable closed-loop control. stability of the fixed point of the
algorithm, 8 = 9. is related to the stability of an associated ordinary
differential equation. The conditions which he derives for obtaining
systems which produce unstable fixed points, and where their parameter
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estimates oscillate about the point, are closely related to the parameter
sensitivity criteria for the minimum-variance control law discussed
earlier. This indicates that a small error in the parameter vector is
rapidly propagated into poor control in these cases, and this can further
bias future parameter estimates. However, the previous discussion also
demonstrated that this excessive sensitivity may be reduced by appro-
priate choice of A, so convergence is possible in a wider range of
circumstances.

The useful asymptotic behaviour of combined least-squares esti-
mator and least-squares predictor control law is due to the similarity
of the cost functions minimised by each. The estimator generates 8,
to minimise the function

N 1 ¢ .

1g(8) = 7 El@!e -x7,8)?
whereas the predictor uses a value * which minimises:

1,(8") = E((9r. —x10")}
assumning that the system parameters are known. Although the
sequence X; is not stationary even if w; is, for 8, varies with time, so
that the ergodic theorem cannot be invoked to directly equate /z and
1,, for large value of ¢, the estimate 8; is only varying slowly, and the
two functions become approximately equivalent. Suppose that the
estimation is poor in the sense that /g is relatively unaffected by a
change in the estimates in some direction in parameter space. Then
the predictor, and hence the control law, will be insensitive to a
similar deviation; so good control will be achievable even if parameter
estimates vary.

As pointed out in Reference 1, Jp and [, are constant in one -
direction in parameter space, that of all vectors of the form u#. In
principle, the above indicates that this is unimportant as far as the
control is concerned, but in practice numerical problems would
arise if 4 were very large or very small. Following Reference 1, this
is circumvented by choosing a value for one component, the /th say,
to be 8, thus fixing u to be §;/8; For finite y, a nonzero element of
8must of course be chosen; if no set-point terms are present, and so
H(z™') is not included, one parameter that can never be zero, provided
k has been properly chosen, is go the leading coefficient of G(z™"),
which depends on unknown system parameters. It has been shown
using a particular example! that if this parameter js taken to be
much smaller than its actual value, the estimates 6, may diverge, and
if taken too large convergence tends to be slow. However, if w; is
nonzero, the corresponding parameters of H(z™") are included in the
vector 8. The leading coefficient A, is independent ot the system
parameters, and hence is known a priori. It is, therefore, the most
convenient parameter to choose in that these related convergence
problems-do not arise.

If C# 1, convergence of the algorithm is hindered by the inclusion
of early data ¢, which, as the control law is away from the optimum,
contains components due to nonzero ¢, . The standard recursive-
least-squares estimator is derived ignoring these terms, so the norms
of P, and hence K, of eqn. 14 may approach zero more rapidly
than ¢*, and the estimates 8, may only be changing slowly, even

though they are relatively far from the true parameters. This effect
can be overcome by slightly modifying the estimator so it minimises
the function -

¢

. 1 = .

Iz(8) = 7 LB~ XL 8)?
8§=1

where {8 is the ‘forgetting factor’, and is a constant less than unity.

The function of B in / is to weigh out past data; a useful figure here

is the ‘asymptotic sample length’ «, given by

1

which shows that § must in fact be close to unity so that fluctuations
in the data are not excessively reflected in the estimates.

4 Simulation of the self-tuning controller

The simulated examples discussed below illustrate the
behaviour of the self-tuning controller and compare its properties
with those of algorithins presented elsewhere.* 7 In each example,
both the system and the controller were simulated digitally and the
time delay and the polynomial orders appropriate for the controller
were correctly chosen. The initial parameters were usually taken to
be zero (except for gy to avoid control saturation on start up), the
initial matrix P, to be 1007, and asymptotic sample lengths to be
in the range 200~500. After a typical run of 1000 sample instants, a
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standard series of graphs were plotted, the correlation functions of
the data over the last half of the run were computed and the perfor-
mance in comparison with the optimal controller for the system with
known parameters was evaluated.

The Figures associated with each example contain the following
graphs: w, the set-point, or the desired output of the system; ¢, the
generalised function, the variance of which the controller attemnpts to
minimise; u, the controller output, being the input to the system;
estimated parameters, the estimated controller parameters, the
broken lines being the parameters of the optimal controller for known
system polynomials; c.c.f., the normalised correlation functions
over the last 501 points for shifts s in the range [~ 10, 10]. These
are: | oo

501 ,zzsof' P
which should be approximately zero for |s| > k

1000
Z ety

1 1000
ey Z Dt Ft-gs ﬁ::sm

501 45500
which should both be approximately zero for s > %
] 1000
o1 2 O

whi'ch should be approximately zero for all s; Cumulative excess loss,
if ¢ is the generalised function for the optimal controller at time ¢
operating with the same system and disturbance sequence, then this

is the function

t
L (@) =)
If the self-tuning controller converges to the optimal controller, this
function will clearly tend to a constant value.
41 Example 1

The system involved is stable, minimum phase, and 2nd-
order

Ye = DSy =0Ty, ey + 050, +
+ & — 05, +04
and the cost-function to be minimised is
I = E{(yio —w)* +05u? |y, 0.}
giving a generalised function
& = Ve—wi +05u,

As a numerical example of the use of the theory in Section 2, we
shall derive the extended minimum variance control law. Here k = 1,

50
C=A4+z'"F and £ =1

Hence, Fi = 10~ 07z ,G{ =EB =10+ 052" ;y = E(1) = 1-0.
Recalling that:

Y oiFei = F|

Y piziGy i +CQ = G| +05C

1>

F

e

G

HA&~CR =~C
we have
Cotanit = 108, —0-Twpey + 151y + 0251, —
=wy + 05w, + 04
Hence the optimal control law given the system parameters is:
up = (1-0v = 07vpy + 0251,y —w; + 05w,_, + 0-4)/1°S

The self-tuning controller was realised choosing the coefficient of
wy(fg ) to be its known value of —1, and the other six parameters
estimated; the control law used the estimated parameters at each_
sample instant as if they had the true values: The initial value of g,
was chosen to be 2-0, instead of the true value of 15, and the
asymptotic sample length & was chosen to be 200. Fig. 2 shows a
typical run with this system; the graphs of 3 and of the excess
curnulative loss both indicate that satisfactory control was achieved
within 20 sample instants. The behaviour of the estimated parameters,
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however, show that the asymptotic sample length was too short for good and the control js siable.
estimates, but the control itself and the correlations are both good. The system and the controller were simulated with A chosen to be

which implies that the contral strategy is not very sensitive to such
variations of the estimates.
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and 2nd- p Fig. 2 Example 2: Using Wittenmark's modification of the self-tuning regulator ;
[ Controlling a 2nd-order system i
1000 i
4.2 Example 2 ﬁ F
. 600
In Reference 2, it is shown that the basic self-tuning regulator * 20 ( } “ i f ( [
can to some exte:nt accommodate set points by letting the algorithm 5 e _'éo P 500 ey
operate on the difference between the system output and the set point, 1o
in place of the output itself, and by inserting an integrator in the closed o
! loop. The regulator converges so as to produce the minimum error 30
, variance only if eitber the set'poi_nt is constant, or if the noise is zero. -5 005 555 e 55 P oo
If the set point varies and noise is present, the structure of the regulator }
does not allow convergence to the optimal control law, and so the associ- 1509 i s
m 2, we o A . . >5 o “
Here k = | ated cost function is not minimised. F ig. 3 shows the results of simulat-
ing such a regulator, the system being . -5 002 =5 e =55 o5 B0 !
o Yo = 09y +upy +5 4055, 19 , »
= 1. r X 2 00 o
E()=10. I To allow for comparisons with the self-tuning controller, the cost func-
tion is taken to be £{¢?}, where ¢, = y, — We.1 . Note that the excess ;’woo 200 100 600 800 1000
‘ cumulative loss is continually increasing, and that the autocorrelation of § 160 - -
¢¢ is not optimal. The parameters, morever, converge to values close to § 080 %:ﬁ\:‘:: = b
those of the generalised dead-beat controller which are indicated in the 8 - - e
Figure, as the signal-to-noise ratio is high, but they would converge to 5 0
different values according to the pattern of set-point changes. gos0 M“\M
The behaviour of this adaptation of the self-tuning regulator should G ao{ ““““““ ™
' be compared with that of the self-tuning controller for the same system, M 5 :
as shown in Fig. 4. In situations where the set-point rarely changes, ool
however, these differences would not be as marked except at the changes = I 5
themselves. 20 OG].,O P
-1 00
‘ 4.3 Example 3 £8
i . BT 44846
i - The system controlled is stable but nonminimum phase: é’§
04)/1-5 Ve =095y +10uy +20u_y + £~ 07k, g§ %
This example is discussed in Reference 7 where it is shown that, aithough 99% 200 200 300 300 1500
ent of ! the basic self-tuning regulator is unstable, an algorithm which factorises 4
neters ‘ the estimated polynomials and excludes the terms causing instability Fig. 4 e 2
each can exert satisfactory control. This system is tackled here using the Example 2: the self-tuning controller with the same systemas Fig. 3
te of ga \ self-tuning controller by reco gnising that a choice of ¢; in the form
e . t = ¥¢ + Auy_y leads to a stable control law if A is greater than a certain  0-7 and with an asymptotic sample length of 200. The control signal
Jwsa value. Applying eqn. 10, the characteristic equation is: ue was restricted by hard limits of 10 to avoid initial excessive control
2ss 1 -ty action. Fig. 5 shows the behaviour during typical run; after the first
chieved (A +207) +2 (109527 ) =0 few sample instants the loop is clearly stable. Fig. 6 shows the excess
arameters, Hence, for X > 0-514, the closed-loop poles are within the unit circle cumulative loss of ., as well as ¢, and the autocorrelation of y;; the
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variance of y, is not greatly above the minimum achievable for this
system.
An obvious question concerns the practical choice of A, for in this

example A was clearly chosen with reference to the system parameters,

project investigating the feasibility of the use of microprocessors as
self-tuning regulators.

7 References

which are in general assumed to be unknown. One method, successfully

used in References 8 and 10, is to choose a large value of A initially to
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Example 3: controlling a nonminimum-phase system

restrict control action, and then to reduce A later to improve the over-
all performance. This strategy could also be useful even if the system
is known to be minimum phase.

5 Conclusions

A self-tuning controller has been derived which minimises a
cost-function containing terms in the system input and set point as well
as in the output. The controller retains the essential simplicity of the
self-tuning regulator of Astrom and Wittenmark, and should be of value
in industrial situations where process parameters are unknown. The

y
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Example 3: variance of the output of the nonminimum-phase system

properties of the controller have been shown by examples to be superior
to those of the self-tuning regulator; many further examples have also
been simulated which verify the generally good behaviour of the algo-
rithm. It is believed that the derivation of the algorithm illuminates
fundamental aspects of the controller and the approximations involved.
The controller is shown to have good asymptotic behaviour and it
is hoped to report on methods for improving its transient behaviour
shortly.
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8 Appendix
k-step-ahead predictor
The system, eqn. ! and Fig. 1, may be written in z-transform
form as
(Z*l) ) az” ) i
= s+ = —-d 17
Yisr Az -1) Az 1 £+ A 1) 17)

The disturbance term may be considered as the sum of two terms, one
representing future disturbances, and the other disturbances that have
occured up to and including time . Explicitly, it may be written as:
-1
- Fe™)
A

%st = BT g +

= ey t €

(18)

fe—1

Z E,'Z_i
0

n—1
Fy= Y fz"

)
Combining eqns. 17 and 18

where E(z”') =

and

e W

B F 1
Vv = € T = Uy +ZE£ +Zd

A 2

]

By comparison of eqns. 19 and 20 it follows that:

B F
}';klt = Zut +Z £, +Zd (20)
Now from eqns. 18 and 14 we have:

& _ =Pl
A4 A

so eqn. 20 becomes H

&

o

B . E
4“7 Eq

Hence, using the identity eqn. 18

£
EA

d
Fearlt = _.V?ft—k) "’;

L

« B
Yesnit = Z“t F;

C:V:Hzlt = EBuy +Fy, +Ed

Asd is a constant
E(z"Yd = E(1)d =
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