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bstract

A procedure to predict the state of charge of a lithium ion cell using experimental data (cell potential versus time), as it becomes available, is
resented. The procedure is based on the physics of the system and provides a realistic estimate of the state of charge of the cell as a function of

ime, for a given set of properties of the electrodes. An electrochemical cell model is used to obtain an extended Kalman filter (EKF) for estimating
he state of charge (SOC) of a lithium ion cell in which the negative electrode is the limiting electrode. The method could also be used for a cell in
hich the positive electrode is limiting.
2006 Elsevier B.V. All rights reserved.
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. Introduction

The phrase state of charge (SOC) is routinely used to describe
he performance of a lithium ion cell [1]. Numerous approaches
ave been presented in refs. [2–28] to monitor the SOC of a
ell; most of these are for lead-acid batteries. These include,
ut are not limited to, following a physical property like the
nternal resistance of the cell or the electrolyte density [3,4],

easurement of the cell impedance [5–8], optical methods [9],
ddy current methods [10], equivalent circuit analysis of the
harge/discharge and/or impedance curves [11–18,22], tech-
iques employing a Kalman filter [19–21], techniques based on
uzzy logic [23–25] and coulomb-counting [26,27]. The model
y Tenno et al. for the VRLA battery [2] is valid only under
vercharge. Piller et al. [28] provide a good overview of most
f these methods. Huet [5] provides an extensive review of
mpedance measurements for determination of the SOC for lead-
cid and nickel–cadmium cells. Verbrugge et al. [14–17] discuss
he utility of circuit analog models in the recursive estimation
f parameters to predict battery performance in the context of

lectric vehicles. Fuzzy-logic based models that can be readily
mplemented in hardware are discussed in the work by Salkind
t al. [23]. Hansen and Wang [12] present a pattern recognition
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lgorithm that reduces the computational effort for circuit-based
odels developed using ADVISOR [13] and makes them suit-

ble for real-time embedded system applications. Nanjudaiah
nd Koch [26] developed a cycle-life sensor for a Li/Li+ half
ell by inserting a Pt microelectrode inside the cell. Martinet et
l. [18] present a correlation between the electrochemical noise
n a battery system and its state of charge.

In methods employing circuit analogy, the parameter that is
racked to estimate the state of charge is most often empirical
ith little physical significance. The coulomb-counting proce-
ure is not reliable since not all the current supplied goes to
harging the cell and the charge lost to any undesired side
eaction [30] is not included. Similarly, the fuzzy logic based
ethods rely on the training data supplied. Hence the results

rom these models are of limited value in predicting the SOC or
OH of a battery. Consequently, there arises a need for state of
harge estimation based on the physics of the cell. Unfortunately,
he computational time required to solve rigorous battery models
29] repeatedly practically eliminates the utility of physics-based
odels that are used to characterize the SOC of the cell. Inter-
ediate models (i.e., extension of circuit analog models) were

resented by Plett [19–21], but these are too empirical to pro-
ide any insight into the system. Some of our recent publications

31–33] present a simple, computationally efficient, ordinary
ifferential equation (ODE) model of the cell using the FOR-
RAN subroutine DDASL [34], that is capable of predicting
ell, the charge/discharge curves of a lithium ion cell, up to

mailto:white@engr.sc.edu
dx.doi.org/10.1016/j.jpowsour.2006.04.146
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Nomenclature

aj specific surface area of the electrode ‘j’ (m2 m−3)
c1,j concentration of lithium in the solid phase

(mol m−3)
c0 concentration of the electrolyte (mol m−3)
c

avg
1,j average concentration of lithium in the solid phase

(mol m−3)
cmax

1,j maximum concentration of lithium in the solid

phase (mol m−3)
cs

1,j concentration of lithium at the surface of the

sphere (mol m−3)
c0

1,j initial concentration of lithium in the solid phase

(mol m−3)
D1,j diffusion coefficient of lithium in the solid phase

inside electrode ‘j’ (m2 s−1)
e weighted sum-squared error
f forcing function matrix
F Faraday’s constant (96,487 C/equivalent)
F linearized forcing function matrix
G(t) matrix of process noise coefficients
h function of the estimated states
H linearized system matrix
Jj flux entering electrode j (A)
kj rate constant for the electrochemical reaction at

the surface (m2.5 mol−0.5 s−1)
K filter gain
n number of electrons transferred (=1)
P covariance matrix
Q Variance of the process noise
r radial coordinate (m)
Rj radius of the particle in phase ‘j’ (j = n, p) (m)
Rk+1 variance of the measurement noise
t time (s)
u(t) input function
Uθ

j open circuit potential at the electrode ‘j’.
x- vector of the state variables
Vcell cell potential (V)
W weight matrix
y vector of the predicted values of the output vari-

ables
y* vector of the experimental values of the output

variables
φ1,j solid phase potential at the electrode ‘j’ (V)
θj utility coefficient of electrode ‘j’
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θn state of charge based on the negative electrode

nd including the 1 C rate. In this work, our model is used to
esign an extended Kalman filter (EKF) to predict the state
f charge of a lithium ion cell as it is charged or discharged.

he model is regressed with synthetic data (cell potential as a

unction of time) to provide estimates of the solid phase con-
entrations as functions of time and hence, the state of charge of
he cell can be monitored online. State of health (SOH) on the
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ther hand provides information on aging of the cell. Cycling
erformance of the cell is not considered in this paper and hence
OH calculations are of little relevance in this context [20].
owever, it must be mentioned that an extension of the present

echnique (currently being pursued in our laboratory) to study
ycling behavior will yield the SOC as well as the SOH of the
ell.

. The Kalman filter

The term “filter” refers to a weighted least squares algorithm
hat can be used to minimize the effects of measurement noise
45]. A brief review of linear filters is provided in this section,
ollowed by a direct analogy for the nonlinear case, which is of
nterest in the context of an electrochemical cell.

Let us say we have an approximate model of a system:

y1(t) = a1x1(t) + b1x2(t)

y2(t) = a2x1(t) + b2x2(t)
(1)

here y1 and y2 are equivalents (in the model) of the variables
hat can be directly measured in an experiment, x1 and x2 are
he state variables (in the model) to be estimated as a function of
ime, for given values of the constants ai and bi. The objective
s to estimate and update the values of x1 and x2 as we progress
n time.

The equation above can be written in the state-space form
45] as follows:

= H · x (2)

here the output vector is:

=
[

y1

y2

]
(3)

nd the vector of states is:

=
[

x1

x2

]
(4)

is the system matrix (or the matrix of coefficients):

=
[

a1 b1

a2 b2

]
(5)

Let y∗
1 and y∗

2 be the experimental values corresponding to the
odel predictions y1 and y2, respectively. From an experiment,
e are able to measure y∗

1 and y∗
2 at various time steps, for

xample, tk and tk+1. Let us denote these values as y∗
1,k and

∗
2,k at t = tk, and y∗

1,k+1 and y∗
2,k+1 at t = tk+1. The corresponding

alues in the model are y1,k and y2,k for t = tk and y1,k+1 and y2,k+1
or t = tk+1.
In a set of experimental data, all the data points need not be
qually weighted—some allowance must be provided to account
or the deviations due to experimental error. Let the weight asso-
iated with a data point at time t = tk be Wi,k (i.e., the weight for
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∗
1,k at t = tk will be W1,k). Then the weighted sum-squared resid-
al is given by:

k = 1
2 [(y

k
− y∗

k
)T Wk(y

k
− y∗

k )] (6)

here

k =
[

W1,k 0

0 W2,k

]
(7)

ssuming that there is no correlation between the errors. Note
hat if ‘j’ is the number of state variables, then the residual is
iven by:

k = 1
2

∑
j

Wj,k(yj,k − y∗
j,k)2 (8)

ur objective then, is to estimate the state variables (x1,k and
2,k) such that the error between the predictions made (y1,k and
2,k) using the estimates and the experimental measurements is
inimal: i.e., minimize the expression for the sum squared error

iven by Eq. (8), with respect to the state variables. To achieve
his, we find the first derivatives of the function to be minimized
ek) with respect to each of the state variables (x1,k and x2,k) and
et them equal to zero:

xkek = 1

2

n∑
j=1

2
∂yj,k

∂xj,k

Wj,k(yj,k − y∗
j,k) = 0 for n = 1, 2 (9)

ewriting Eq. (9) in the state-space form, we have:

xkek = HT
k Wk(yk − y∗

k) = 0 (10)

ince yk = Hk × xk Eq. (10) can be rewritten as follows:

xkek = HT
k Wk(Hk · xk − y∗

k) = 0 (11)

q. (11) yields:

k = (HT
k WkHk)

−1
HT

k Wky
∗
k (12)

e now have xk in terms of y∗
k . The next step is to find xk+1 in

erms of xk and y∗
k+1. At time tk+1 we have data points from tk

nd tk+1. Hence using similar arguments [45] used to derive (12)
e have:

k+1 = (HT
k WkHk + HT

k+1Wk+1Hk+1)
−1

× (HT
k Wky

∗
k + HT

k+1Wk+1y
∗
k+1) (13)

ubstituting (13) into (12) and simplifying we obtain:

k+1 = xk + (HT
k WkHk + HT

k+1Wk+1Hk+1)
−1

× HT
k+1Wk+1(y∗

k+1 − Hk+1xk) (14)

q. (14) is of the form:

∗

k+1 = xk + Kk+1(yk+1 − Hk+1xk) (15)

here

k+1 = (HT
k WkHk + HT

k+1Wk+1Hk+1)
−1

HT
k+1Wk+1 (16)

a
p

Q
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s the filter gain and

k+1 = (HT
k WkHk + HT

k+1Wk+1Hk+1)
−1

(17)

s the covariance matrix.

. Extension to the nonlinear case

For the nonlinear case, the model equations are typically of
he form:

˙(t) = f (x(t), u(t), t) + G(t)W(t) (18)

(t) = h(x(t)) (19)

here W(t) is the weight on the process noise G(t) and u(t) is
he input. The experimental data is represented by:

∗
k = h(x̂k) + vk (20)

here vk is zero mean Gaussian noise associated with the mea-
urements, whose variance is σ. The symbol x̂k is used to
pproximate the actual values of the discretized state variables
k. This approximation is essential because the nonlinear system
oes not have an exact solution like the linear case. The objec-
ive then, is to design a filter quite similar to Eq. (14) that can
redict x̂k+1 given x̂k. This equation is of the form:

ˆ k+1 = x̂k + [K(x̂k)]k+1(y∗
k − h(x̂k)) (21)

he main difference between Eqs. (21) and (15) is that the gain
atrix (K(x̂k)) for the nonlinear case is a function of the state

ariables (x̂k) and hence an iterative solution procedure is essen-
ial. Upon linearizing the model equations (Eqs. (18) and (19))
n equation set for an extended Kalman filter can be obtained.
he linearized form of the matrices f and h are given by:

= ∂(f (x(t), u(t), t))

∂x(t)

∣∣∣∣
x(t)=x̂k

(22)

k =
(

∂(h(x(t)))

∂x(t)

)
x(t)=x̂k

(23)

or known values of G(t) and σ the Riccati equation [41,45] can
e used for the filter gain:

k+1 = Q · Pk+1H
T
k+1

Q · Hk+1Pk+1H
T
k+1 + Rk+1

(24)

k+1 is the state error covariance defined by [45]:

k+1 = E{x̂k+1, x̂
T
k+1} (25)

is the covariance of the process noise (i.e., G(t)W(t)). In this
ork, the weight matrix W is held constant over time, for sim-
licity and equals the identity matrix since the process noise is

ssumed to be uncorrelated. For this case, the covariance of the
rocess noise is defined by [45]:

= E{WWT} (26)
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Table 1
List of parameters

Parameter Unit Anode Cathode

Radius of the particle (Rj) m 11 × 10-6 12.5 × 10−6

Rate constant (kj) mol−(1/2) s−1 4.907 × 10−5 1.139 × 10−5

Maximum lithium concentration (cmax
1,j

) mol m−3 51555 30555
Solid phase diffusion coefficient (D1,j) m2 s−1 1.0 × 10−14 3.9 × 10−14

Mass of active material (mj) g 15.92 7.472
Electrolyte concentration (c0) mol m−3 1000
T
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emperature (T) K
araday’s constant (F) C mol−1

as constant (R) J mol−1 K−1

k+1 is the covariance of the noise in the measurement (i.e., vk+1)
iven by [45]:

k+1 = E{vk+1v
T
k+1} (27)

he Riccati equation is a result of a transformation that seeks
o replace a differential equation with an equivalent collection
f uncoupled equations of lower order [43]. Two limiting cases
re considered to illustrate the capabilities of Eq. (24): case (i)
he measurement noise is much greater than the process noise
i.e., Rk+1 � Q) and case (ii) the measurement noise is much less
han the process noise (i.e., Rk+1 � Q). For case (i), the Riccati
quation (Eq. (24)) simplifies to:

k+1 = Q · Pk+1H
T
k+1

Q · Hk+1Pk+1H
T
k+1 + Rk+1

≈ 0 (28)

n other words, the gain matrix is not updated if the measurement
oise is much greater than the process noise. For case (ii), Eq.
24) can be simplified to:

k+1 = Q · Pk+1H
T
k+1

T ≈ (Hk+1)−1 (29)

Q · Hk+1Pk+1Hk+1 + Rk+1

or this case, the gain matrix (Kk+1) directly maps the noise (vk)
n the output (yk) to the update in the state variable (x̂k). Thus, the
iccati equation is capable of filtering the measurement noise

[

Fig. 1. A schematic representation
298.15
96487.0
8.314

ut while retaining the process noise. The choice of Q and Rk+1
re arbitrary—however, determination of an appropriate value
or Q from the variance of experimental data is possible [42,46].

ore details on these tuning parameters are provided below.

. The single particle model

The single particle (SP) approach originally developed by
aran et al. [31] for the metal hydride battery and later extended

o the lithium system [32,33] is used in this work. This model
ncludes the assumption that each electrode of a lithium ion cell
an be approximated by a single spherical particle whose surface
rea is scaled to that of the porous electrode. Further, concentra-
ion and potential changes in the solution phase are ignored. All
arameters are held constant (see Table 1) and thermal effects
re assumed to be negligible. No attempt is made in this work
o model capacity fade [30] with cycling of the cell. Most of
hese assumptions can be readily relaxed [32] at the cost of a

ore sophisticated model. Fig. 1 provides a schematic of the SP
odel and the model equations are presented below.
Diffusion in the solid phase is governed by the Fick’s laws
35] written in spherical coordinates:

∂c1,j

∂t
= D1,j

1

r2

∂

∂r

(
r2 ∂c1,j

∂r

)
(30)

of the single particle model.
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c1,j

∣∣
t=0 = c0

1,j (31)

∂c1,j

∂r

)
r=0

= 0

(
∂c1,j

∂r

)
r=Rj

= − Jj

nFD1,jaj

(32)

here Jj is the flux entering electrode ‘j’. Eqs. (1)–(3) can be
olume averaged [36,37] and the concentration inside the solid
hase (c1,j) can be expressed in terms of the concentration at the
urface of the sphere (cs

1,j) and the average concentration inside

he sphere (cavg
1,j ). The resultant equations are:

dc
avg
1,j

dt
+ 15D1,j

Rj

(cavg
1,j − cs

1,j) = 0 (33)

c
avg
1,j

∣∣∣
t=0

= c0
1,j

j + 5D1,j

Rj

(cs
1,j − c

avg
1,j )Faj = 0 (34)

utler-Volmer kinetics [38] is employed to represent the charge
ransfer reaction at the surface of the sphere:

j = Fajkj

√
cmax

1,j − cs
1,j

√
cs

1,jc0

{
exp

(
0.5F

RT
[φ1,j − Uθ

j ]

)

− exp

(
−0.5F

RT
[φ1,j − Uθ

j ]

)}
(35)

inally, since none of the above variables solved for (φ1,j, cs
1,j ,

avg
1,j ) are directly measurable from a functioning cell, the solid
hase potentials of the individual electrodes are related to the
ell voltage as follows:

cell = φ1,p − φ1,n (36)

he open circuit potentials (Uθ
j ) are empirical functions of the

olid phase concentration (cs
1,j for the present case) obtained

y fitting experimental data to polynomial expressions [40].
he expressions presented by Ramadass et al. [30] are used
ere:

θ
n = 0.7222 + 0.1387θn + 0.029θ0.5

n − 0.0172

θn

+ 0.0019

θ1.5
n

+0.2808e(0.90−15θn) − 0.7984e(0.4465θn−0.4108) (37)

θ
p = −4.656 + 88.669θ2

p − 401.119θ4
p + 342.909θ6

p − 462.47

−1.0 + 18.933θ2
p − 79.532θ4

p + 37.311θ6
p − 73.083

here
j = cs
1,j

cmax
1,j

(39)

s the utility coefficient. At the end of complete discharge, θj

eaches a value of 1.0 for the positive electrode and 0.0 for the
egative electrode in an ideal cell.

6

t
e
t
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+ 433.434θ10
p

95.96θ10
p

(38)

. Online estimation of the state of charge

The SP model presented in the previous section needs further
implification to be rewritten in the form of Eqs. (18) and (19).
qs. (33) and (34) can be combined and the resulting equation
an be rewritten for each electrode in state space form as follows:

dc
avg
1,p

dt

dc
avg
1,n

dt

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

− 3

RpFap

Jp

3

RnFan

Jn

⎤
⎥⎥⎦ (40)

or this case the equivalent of Eq. (19) is the expression for the
ell potential (Vcell) obtained by combining Eqs. (35)–(39) to
ive:

cell = φ1,p − φ1,n = h(cavg
1,p(t), cavg

1,n(t), Jp, Jn) (41)

cell corresponds to the output variable y(t) since it is directly
easurable. The vector F is linear for this model. As seen from
q. (40), we have:

=

⎡
⎢⎢⎣

− 3

RpFap

Jp

3

RnFan

Jn

⎤
⎥⎥⎦ (42)

he function h is nonlinear, and is dependent on the state vari-
bles (cavg

1,p(t) and c
avg
1,n(t)) and the input current. The experimental

ata for Vcell (represented by y∗
k in Eq. (20)) are simulated in this

aper by adding a zero mean Gaussian noise (vk) with a variance
f 0.1.

The state of charge of the cell (SOC) is represented by the ratio
etween the average concentration of lithium (cavg

1,j (t)) inside
he limiting electrode and the maximum concentration (cmax

1,j (t))
nside that electrode. Most commercial lithium ion cells are lim-
ted by the performance of the negative electrode [44]. Hence,
or illustrative purposes, the negative electrode is assumed to
e the limiting electrode and the state of charge based on the
egative electrode (θn(t)) is given by:

n(t) = c
avg
1,n(t)

cmax
1,n (t)

(43)

owever, the technique is not limited to negative limited elec-
rodes; an equivalent formulation can be done based on the
verage concentration of lithium inside the positive electrode,
or the case of positive electrode limited cells.

. Results and discussion
The process noise (G(t)W) is a measure of the inaccuracy of
he model, while the measurement noise (vk) is a measure of
xternal disturbance that corrupts the actual data collected from
he system. Hence, the variance of the process noise (Q) and that
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Fig. 2. Cell voltage as a function o

f the measurement (Rk+1) can be used as tuning parameters of
he filter. To illustrate this, the model is used to obtain synthetic
ata for different values of Q and Rk+1. The synthetic data was
enerated by adding zero mean Gaussian noise (G(t)), with a
tandard deviation of 10%, to the discharge curve obtained from
he single particle model. Generating data by adding noise to
he output of the model is the equivalent of having an error
n the cell voltage due to faulty measurements. Hence, a good
lter should eliminate the noise due to the measurements and

he predicted profile for the cell voltage should not oscillate as
uch as the noisy data. Two case studies are considered in order

o illustrate the capabilities of the present approach. In the first
ase, all the noise in the data is attributed to the measurement

rror, consistent with the methodology adopted to generate the
ynthetic data. In the second case, an incorrect assumption is
ade that all the noise in the data is from the cell, owing to

hysical changes happening within the system. Fig. 2 shows

r
t
v
o

Fig. 3. Cell voltage as a function of time w
when process noise is negligible.

he estimated cell voltage as a function of time along with the
ynthetic data for Case 1. The smooth line through the center
s the predicted profile for the cell voltage from the cell. This
gure illustrates the capability of the EKF approach to predict

he true cell voltage filtering the noise due to the measurements
ut. There is a good fit between the data and the predictions. The
uning parameters used to generate this data are Q = 1e−6 and
k+1 = 1e−2. This represents the case where the process noise

s insignificant compared to the measurement noise. This is true
or the present case, since all the disturbance was added to the
rue potential (i.e., the actual model predictions) as measurement
oise. As a result the estimated voltage does not get perturbed
ith the experimental noise seen in the data. This verifies the
esults implied by Eq. (28). Also shown is the error between the
wo curves as compared to the bounds set by the experimental
ariance. The error lies well within the bounds of the 3 − σ

utliers (shown on either side of the error on the same plot).

hen process noise is considerable.
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Fig. 3 shows the change in Vcell with time for Case 2. For
his case, we assumed that all the noise is attributed to the pro-
ess response, i.e., the inadequacy of the model to reflect all the
hanges that happen within the cell and hence set the penalty on
he model (Q) to be 1e−3, which is considerably higher than the
revious case. The value of Rk+1 is the same as in the previous
ase. These values place less emphasis on the experimental noise
nd attribute the oscillations in the data to unmodeled dynamics.
or this case, one would require that the predicted cell voltage
ollows the changes in experimental Vcell more accurately, since
he oscillations in this case are assumed not to originate from

easurement error. As seen from Fig. 3 the predicted profile

or the cell voltage closely follows the changes in the data as
redicted by Eq. (29).

For estimation of the state of charge, Eqs. (33) and (34) were
sed along with the other model equations to obtain the SOC

p
r
i
v

Fig. 5. State of charge as a function of tim
when process noise is considerable.

nside the limiting electrode (θn(t)) as shown in Eq. (43). Fig. 4
hows the state of charge calculated using Eq. (43) as a function
f time for the second case (i.e., Q = 1e−3 and Rk+1 = 0.01).
his response is noisy and the error is about ±10% as shown
y the outliers. The high error in the state of charge estimates
eflects our incorrect assumption for Case 2 that the oscillations
n the data are due to physical changes into the cell. Note that
he synthetic data were generated by adding measurement noise
o the true cell potential. Hence, this result is expected. In other
ords, no process noise was used in generating the synthetic
ata and all oscillations in the Vcell versus t data are because
f the measurement noise added to the model. Since the tuning

arameters used in Case 2 penalize the model heavily despite its
easonable accuracy, the inaccuracy due to an error in judgment
s reflected in the SOC predictions. This inference is further
erified in Fig. 5, where the process noise is set to a negligible

e when process noise is negligible.
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Fig. 6. Comparison of es

alue (Case 1) and the scatter in the response is attributed to the
easurement noise. The state of charge estimate for this case is
uch smoother and follows closely the values used in the model.
he error in the state of charge predictions is about ±2%.

In order to verify the validity of the model, experimental
ata from Sony 18650 Cells are compared to the estimated cell
oltage and state of charge in Fig. 6. The discharge curve was
btained from at 25 ◦C in an Arbin battery testing system (Col-
ege Station, TX) at a discharge current of 1 A, after the cell
as charged to its full capacity of 1.78 Ah. The data obtained

rom the experimental discharge curve were used to update the
odel estimates at each instant of time. The experimental state

f charge at each instant of time was obtained by integrating
he charge removed from the cell. The values for Q and Rk+1
ere held at 1e−6 and 0.01, respectively. Fig. 6 shows very
ood agreement between the experimental cell voltage and the
redictions.

. Advantages of the current approach

The methodology outlined in this work does not involve
ecursive nonlinear regression. The conventional estimation pro-
ocols invoke a nonlinear regression technique [39,42], which is
complex iterative process. In order to obtain ‘n’ parameter val-
es, one needs to solve a minimum of ‘n’ equations—and since
he Kalman filter approach for the estimation of ‘n’ parameters

nvolves inverting a matrix of size no bigger than ‘n’, this is the

ost optimal algorithm to estimate parameters online. Whereas
he competitive non-linear least squares algorithm requires about
.8 s of computational time on a Pentium IV, 2 GHz processor, in

t
F
e
p

es to experimental data.

rder to obtain the state of charge at a particular time, the Kalman
lter approach presented here takes about 4 ms for an equiva-

ent estimate. This rapid estimate of the state of charge enables
ne to follow closely the performance of the cell as shown in
igs. 2–5. Another advantage of the current approach is that it is
imple enough to be implemented in a real time device, since it
pares the tedium of solving a complex nonlinear optimization
roblem.

Incorporation of a physics based model along with the
alman filter based estimation technique improves the predic-

ive capability of the model, in addition to providing a physical
nsight to the state of charge estimates. For example, the state of
harge in the present approach is the ratio between the average
oncentration to the maximum concentration, of the active mate-
ial within the electrode that limits the performance of the cell,
nlike the empirical values predicted by the models in the liter-
ture. Plett [19–21] introduced some models to predict the state
f charge of a lithium ion cell accurately using the extended
alman filter approach. However, results from his work [20]

how that it is essential to add an arbitrary number of poles
nd zeros to the transfer function used to represent the cell in
he model, in order to obtain a very good fit. This approach is
s empirical as the circuit based approach proposed by others
14–16]. The state of charge predicted by the empirical mod-
ls does not have a direct correlation with the dynamics of the
ell as do the predictions from rigorous models based on the

ransport and kinetic equations. In addition to this, results from
ig. 6 show that a physics based models can be used to obtain
stimates of the state of charge. A Monte Carlo simulation was
erformed—generating 100 sets of synthetic data and the max-
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mum error in the estimation of the state of charge for each run
s plotted in Fig. 7. The results show that for all the cases, the
stimates lie well within ±2%.

. Conclusion

A model-based extended Kalman filter was developed based
n a simple electrochemical model of a lithium ion cell. The
tate of charge of the cell is monitored continuously as a func-
ion of time. The predictions were compared with synthetic data.
he Kalman filter approach represents the optimal algorithm for

ecursive identification [16]. The SP model adds the information
bout the time evolution of the parameters characterizing the
ystem state. Hence, the approach presented here provides esti-
ates of the SOC of the cell, that are as good as any empirical
ethodology adopted in the literature, while providing a good

hysical insight into the system. To summarize, the methodology
utlined here greatly reduces the computational time involved in
btaining the state of charge from a first principles based model,
hile adding physical insight into otherwise equivalent circuit
ased models implementing the filtering technique.
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