
Statistical Power Minimization for FPGA Dual-Vdd
Interconnect with Time Slack Allocation

1. TIME SLACK ALLOCATION WITH WIRE
SEGMENTS OF DIFFERENT LENGTHS

we use the net-based formulation which partitions the constraints
on path delay into constraints on delay across circuit elements or
routing. Let a(v) be the arrival time for vertex v in G and the timing
constraints for PI and PO are as below,

a(v) ≤ Tspec ∀v ∈ PO (1)

a(v) = 0 ∀v ∈ PI (2)

For the edges corresponding to routing in G, the constraints consid-
ering slack can be expressed as

a(pi0) + d(pi0, pik) + Sik ≤ a(pik)

0 ≤ i < Nr ∧ ∀pik ∈ FOpi0 (3)

where vertex pi0 is the source of Ri in G, vertex pik is kth sink of
Ri in G, Sik is the slack allocated to kth sink in Ri and d(pi0, pik)
is the delay from pi0 to pik in Ri using VddH. For the edges other
than routing in G, the constraints can be expressed as

a(u)+d(u, v) ≤ a(v) ∀u ∈ V ∧u /∈ SRC∧v ∈ FOu (4)

where SRC is a subset of V and gives the set of vertices corre-
sponding to routing tree sources.

There is an upper bound for slack, which is the delay increase
when VddL is assigned to all the switches in a tree. Clearly, slack
more than the upper bound cannot lead to more VddL switches. We
define the useful slack of each routing tree sink as the slack less
than this upper bound. For the rest part of the paper, we use slack to
represent the useful slack. The slack upper bound constraints can
be expressed as

0 ≤ Sik ≤ Dik 0 ≤ i < Nr ∧ 1 ≤ k ≤ Nk(i) (5)

where Nk(i) is the number of sinks in Ri and Dik is the delay
increase of the path from the source to kth sink in Ri when VddL
is assigned to all the switches in that path.

Given a routing tree with arbitrary topology and allocated slack
for each sink, we need to estimate power reduction that can be
achieved. We use lik represent the number of switches in the path
from the source to kth sink in Ri. We first transform slack Sik into
sik, which is expressed in number of switches as follows,

sik =
Sik

Dik

· lik (6)

We then estimate the VddL switch number that can be achieved
using sik. We use Cik to represent the total load capacitance of the
switches in the path from the source to kth sink in Ri. We use cij

to represent the load capacitance of jth switch in Ri. We define
sink list SLij as the set of sinks in the fanout cone of jth switch

in Ri. We then estimate the number of VddL switches that can be
achieved given the allocated slack as

Fn(i) =

Ns(i)−1
X

j=0

min(
sik

Cik

· cij : ∀k ∈ SLij) (7)

To estimate the number of VddL switches that can be achieved in
tree Ri, we first deliberately distribute the slack sik to the switches
in the path from source to kth sink in Ri considering the load
capacitance of each switch. For a switch with multiple sinks in
its fanout cone, we choose the minimum sikcij/Cik as the slack
distributed to the switch. We then add the slack distributed to all the
switches in Ri. and get the estimated number of VddL switches.
The rationale is that we consider kth sink with minimum sikcij/Cik

in sink list SLij as the most critical sink to jth switch in Ri.
We then estimate the power reduction ofRi. The dynamic power

reduction of the tree Ri is estimated as the sum of the dynamic
power reduction of each switch in Ri and can be expressed as,

Pdr(i) = 0.5fclk·∆V dd2·fs(i)

Ns(i)−1
X

j=0

[min(
sik

Cik

· cij : ∀k ∈ SLij) · cij ]

(8)

The leakage power reduction of Ri is also the sum of the leakage
power reduction of each switch in Ri and can be expressed as,

Plr(i) =

Ns(i)−1
X

j=0

[min(
sik

Cik

· cij : ∀k ∈ SLij) · ∆Ps(i, j)] (9)

where ∆Ps(i, j) is the leakage power difference of jth switch in
Ri between VddH and VddL. Wire segments with different lengths
might be driven by switches with different sizes. The objective is
to maximize power reduction given by the sum of (8) and (9). To
incorporate (8) and (9) into mathematical programming, we intro-
duce a variable fn(i, j) for jth switch in Ri and some additional
constraints. The new objective function after transformation plus
the additional constraints can be expressed as

Maximize

Nr−1
X

i=0

0.5fclk∆V dd2

Ns(i)−1
X

j=0

fn(i, j)fs(i, j)cij

+

Nr−1
X

i=0

Ns(i)−1
X

j=0

fn(i, j)∆Ps(i, j) (10)

s.t.

fn(i, j) ≤
sik

Cik

cij 0 ≤ i < Nr ∧ 0 ≤ j < Ns(i) ∧ ∀k ∈ SLij(11)

We formulate the time slack allocation problem using objec-
tive function (10), additional constraints (11), slack upper bound
constraints (5), plus timing constraints (1), (2), (3) and (4). It is



easy to verify that (1) ∼ (5) and (11) are linear, and the objective
function (10) is linear too. Hence we have the following theorem.

Theorem 1. The time slack allocation problem is a linear
programming (LP) problem.

2. STATISTICAL DELAY AND POWER
MODELS

We consider the variation in threshold voltage (Vth), effective
channel length (Leff ), and gate oxide thickness (Tox). Similar to
[1] where ASIC is assumed, each variation (∆P ) is decomposed
into global (die-to-die) variation (∆Pg) and local (within-die) varia-
tion (∆Pl). Both global and local variations are modeled as normal
random variables. To make presentation simple, we denote ∆Leff ,
∆Vth and ∆Tox as L, V and T , respectively. L, V and T can be
decomposed into local (Ll, Vl, Tl) and global (Lg , Vg , Tg) compo-
nents.

Power reduction of an interconnect switch by changing the Vdd-
level from VddH to VddL considering process variation is presented
as below,

∆P = ∆P0e
−c1Le−c2V e−c3T (12)

∆E = ∆E0 +
∂∆E

∂V
V = ∆E0 + c4V (13)

∆P is leakage power reduction, ∆E is dynamic energy per signal
switch reduction when driving unit load capacitance. c1, c2, c3 and
c4 are curve fit parameters. ∆P0 and ∆E0 are the nominal values.
∆P exponentially depends on L, V and T . Under this model, ∆P
is a lognormal (LN) random variable as follows,

∆P ∼ LN(ln(∆P0), (c
2
1σ

2
L + c2

2σ
2
V + c2

3σ
2
T ))

We assume a first-order Taylor expansion of dynamic energy reduc-
tion ∆E is adequate, which therefore can be modeled as a normal
random variable as follows,

∆E ∼ N(∆E0, c
2
4σ

2
V )

A first-order Taylor expansion of circuit element delay is also as-
sumed as adequate,

d = d0 +
∂d

∂L
∆L +

∂d

∂V
∆V = d0 + c5L + c6V (14)

where d0 is the nominal value of circuit element delay, c4 and c5

are curve fit parameters. Delay d is a normal random variable as
follows under this model,

∆d ∼ N(∆d0, c
2
5σ

2
L + c2

6σ
2
V )

3. STATISTICAL POWER OPTIMIZATION

3.1 Statistical Chip-level Time Slack
Allocation

To handle the variability of process parameters, we reformu-
late the time slack allocation problem as a robust linear program
problem which can be solved efficiently using interior-point convex
methods [2]. We first the objective function (10) into an equivalent
formulation as below, which places the power reduction into the
constraint set

Miminize

Nr−1
X

i=0

Nk(i)−1
X

k=0

Sik (15)

s.t.
Nr−1
X

i=0

Ns(i)−1
X

j=0

∆Pd(i, j)fn(i, j) ≥ ˆ∆Pdyn (16)

∆Pd(i, j) = cijfclkfs(i, j)∆E(i, j)

Nr−1
X

i=0

Ns(i)−1
X

j=0

∆Ps(i, j)fn(i, j) ≥ ˆ∆Pleak (17)

where ∆E(i, j) is the dynamic energy per signal switch reduction of
switch j in Ri when driving unit capacitance, ˆ∆Pdyn and ˆ∆Pleak

are the optimal dynamic and leakage power reduction achieved by
the time slack allocation problem without considering process vari-
ation. The statistical equivalents of the power reduction constraints
(16) and (17) can be expressed as,

P (

Nr−1
X

i=0

Ns(i)−1
X

j=0

∆Pd(i, j)fn(i, j) ≥ ˆ∆Pdyn) ≥ η (18)

P (

Nr−1
X

i=0

Ns(i)−1
X

j=0

∆Ps(i, j)fn(i, j) ≥ ˆ∆Pleak) ≥ η (19)

We first handle the probabilistic dynamic power reduction con-
straint (18). Let x =

P

i,j
∆Pd(i, j)fn(i, j), where

∆Pd(i, j) = cijfclkfs(i, j)[∆E0(i, j) + c4(i, j)V ]

x is the sum of random normal variables and can be modeled as
another normal random variable. Considering the fact that all the
switches on chip share the same Vg , the mean µx and variance σ2

x

of x can be expressed as,

µx = fclk

X

i,j

[cijfs(i, j)∆E0(i, j)fn(i, j)] (20)

σ2
x = f2

clk[
X

i,j

cijfs(i, j)fn(i, j)]2σVg

2

+ f2
clk

X

i,j

[cijfs(i, j)fn(i, j)]2σVl

2 (21)

Using the translation-invariance property of a normal distribution
variable, We can express (18) as

P (
−x + µx

σx

≤
− ˆ∆Pdyn + µx

σx

) ≥ η (22)

Since (−x+µx)/σx ∼ N(0, 1), P (x ≥ ˆ∆Pdyn) ≥ η is φ(− ˆ∆Pdyn+
µx)/σx) ≥ η where φ(·) is the cdf of N(0, 1). We can finally ex-
press the dynamic power constraint (18) as follows,

µx − φ−1(η)σx ≥ ˆ∆Pdyn (23)

Similarly, for leakage power reduction constraint, we let y =
P

i,j
∆Ps(i, j)fn(i, j), where

∆Ps(i, j) = ∆P0e
−c1(i,j)L−c2(i,j)V −c3(i,j)T

y is the sum of lognormal variables and can be modeled as another
lognormal random variable [3]. Considering the fact that all the
switches share the same global variances, we can calculate the
mean µy and variance σ2

y of y. We first define:

g0(c1, c2, c3) = c2
1(σ

2
Lg

+ σ2
Ll

) + c2
2(σ

2
Vg

+ σ2
Vl

) + c2
3(σ

2
Tg

+ σ2
Tl

)

Aij = ∆Ps(i, j)fn(i, j)



µy and σ2
y can then be expressed as follows,

µy =
X

i,j

∆P0(i, j)fn(i, j)e
g0(c1(i,j),c2(i,j),c3(i,j))

2 (24)

σ2
y =

X

i,j

{[(∆P0(i, j)fn(i, j))2eg0(c1(i,j),c2(i,j),c3(i,j)]

·[eg0(c1(i,j),c2(i,j),c3(i,j) − 1]}

+
X

i,j

X

i′,j′

2COV (Aij , Ai′j′ ) (25)

where µy is the sum of means of Aij and σ2
y is the sum of variance

of Aij and the covariance of each pair of Aij . The covariance is
calculated as follows,

COV (Aij , Ai′j′ ) = E[AijAi′j′ ] − E[Aij ]E[Ai′j′ ] (26)

E[AijAi′j′ ] = (∆P0(i, j)fn(i, j)) · (∆P0(i
′, j′)fn(i′, j′))

·e
g0(c1(i,j)+c1(i′,j′),c2(i,j)+c2(i′,j′),c3(i,j)+c3(i′,j′))

2

E[Aij ] = ∆P0(i, j)fn(i, j)e
g0(c1(i,j),c2(i,j),c3(i,j))

2

We then use the method from [1] to obtain the mean and variance
(µN,y, σ2

N,y) of the normal random variable corresponding to the
lognormal variable y.

µN,y = ln(µ2
y/

q

µ2
y + σ2

y), σ2
N,y = ln(1 + σ2

y/µ2
y) (27)

Similar to the dynamic power constraint (23), we can express the
leakage power constraint (19) as

µN,y − φ−1(η)σN,y ≥ ln( ˆ∆Pleak)

Based on (27), we can finally express (19) as

ln(µ
2
y/

q

µ2
y + σ2

y) − φ
−1

(η)
q

ln(1 + σ2
y/µ2

y) ≥ ln( ˆ∆Pleak) (28)

Similar to [4], we perform a least square error fitting for (28) and
get a linear funtion of µy and σy as follows,

(a1 − a2φ
−1

(η))µy + (a3 − a4φ
−1

(η))σy ≥ ln( ˆ∆Pleak) (29)

Considering the uncertainty of timing constraints, the determin-
istic timing constraints (1) can be transformed into the probabilistic
constraints as follows,

P (a(v) ≤ Tspec) ≥ ζ ∀v ∈ PO (30)

where ζ is the timing yield. Similar to [5, 4], we use a heuris-
tic method to model the circuit element delays as d(u, v)0 +
φ−1(ζ)σd(u,v)0 , where d(u, v)0 is the nominal delay value of edge
e(u, v) and σd(u,v)0 is the standard deviation of the circuit element
delay. We then can tranform (30) into closed form analytically.
For PI and PO, the constraints stay the same as (2) and (1), respec-
tively. For the edges corresponding to routing in G, the probabilistic
constraints considering slack can be expressed as

a(pi0) + d(pi0, pik)0 + σd(pi0,pik)0 + Sik ≤ a(pik)

0 ≤ i < Nr ∧ ∀pik ∈ FOpi0 (31)

σ2
d(pi0,pik)0 = [

X

∀bij∈Lik

c5(i, j)]
2σ2

Lg
+

X

∀bij∈Lik

c5(i, j)
2σ2

Ll

+[
X

∀bij∈Lik

c6(i, j)]
2σ2

Vg
+

X

∀bij∈Lik

c6(i, j)
2σ2

Vl

where bij is jth switch in Ri, Lik is the path from pi0 to pik

and σd(pi0,pik)0 is the standard deviation of routing path delay
d(pi0, pik)0 considering local and global variations.

For the edges other than routing in G, the probabilistic timing
constraints can be expressed as

a(u) + d(u, v)0 + σd(u,v)0 ≤ a(v)

∀u ∈ V ∧ u /∈ SRC ∧ v ∈ FOu (32)

σd(u,v)0
2 = c5(u, v)2(σ2

Lg
+ σ2

Ll
) + c6(u, v)2(σ2

Vg
+ σ2

Vl
)

(33)

We formulate the statistical time slack allocation problem us-
ing objective function (15), additional constraints (11), slack upper
bound constraints (5), statistical power constraints (23) and (29),
plus statistical timing constraints (1), (2), (31) and (32). It is easy to
verify that the statistical power constraints (23) and (29) are second-
order conic functions, and the objective function (15) and all other
constraints are linear. Hence we have the following theorem.

Theorem 2. The statistical time slack allocation problem
is a second-order conic programming (SOCP) problem.

An SOCP problem is convex and can be solved efficiently using
the interior point methods with a globally optimal solution [2]. The
complexity of solving a SOCP problem is close to O(N1.3) in
the size of the benchmark circuit. By solving the statistical time
slack allocation problem, we allocate time slack to each routing tree
considering probabilistic timing and power constraints.

3.2 Statistical Net-level Bottom-up Assignment
and Refinement

After statistically allocate time slack to each routing tree, we
perform a net-level bottom-up assignment similar to that as in [6]
to leverage the allocated slack (see Figure 1). For each tree Ri,
VddH is first assigned to all the switches in Ri. We then iteratively
perform the following steps in a bottom-up fashion. A switch is
defined as a candidate switch if it follows into two categories. In
the first category, a candidate switch is ‘untried’, and it does not
drive any switch. In the second category, VddL has been assigned
to all the fanout switches of a candidate switch. We assign VddL to
a candidate switch and mark the switch as ‘tried’. After updating
the circuit timing, we reject the assignment and restore the Vdd-
level of the switch to VddH if the delay increase at any sink exceeds
the allocated slack. Different from [6] that uses the nominal delay
value, we use d0

ij + φ−1(ζ)σd0
ij

as the delay of jth switch in Ri.
VddL can be assigned to jth candidate switch in Ri only if all the
sinks in SLij have available slack greater than ∆dij , where

∆dij = d0
ij(V ddL)−d0

ij(V ddH)+φ−1(ζ)[σd0
ij

(V ddL)−σd0
ij

(V ddH)]

The iteration terminates when there is no candidate switch in Ri.

Bottom-up assignment within Ri:

Assign VddH to all switches in Ri and mark them as ‘untried’;
While( ∃ candidate switch)
{

Assign VddL to a candidate switch j;
If (timing constraints violated)
{

Find all the upstream switches of j in Ri;
Assign VddH to j and those upstream switches, and

mark them as ‘tried’;
}
Else mark j as ‘tried’;
Update slack for sinks in SLij ;

}

Figure 1: Statistical net-level bottom-up assign-

ment.

After net-level assignment, we may further reduce power by
leveraging surplus slack. To leverage surplus slack, we mark all the



VddH switches as ‘untried’ but keep the VddL switches as ‘tried’,
and then perform the sensitivity based algorithm dTLC-S in [6] but
use d0 + φ−1(ζ)σd0 as the switch delay to achieve more VddL
switches and further reduce power.
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