
Parametric Yield Maximization using Gate Sizing based on
Efficient Statistical Power and Delay Gradient Computation

Kaviraj Chopra, Saumil Shah, Ashish Srivastava, David Blaauw, Dennis Sylvester
University of Michigan, EECS Department, Ann Arbor, MI 48109

{kaviraj, saumil, ansrivas, Blaauw, dennis}@eecs.umich.edu

Abstract
With the increased significance of leakage power and
performance variability, the yield of a design is becoming
constrained both by power and performance limits, thereby
significantly complicating circuit optimization. In this paper, we
propose a new optimization method for yield optimization under
simultaneous leakage power and performance limits. The
optimization approach uses a novel leakage power and
performance analysis that is statistical in nature and considers
the correlation between leakage power and performance to
enable accurate computation of circuit yield under power and
delay limits. We then propose a new heuristic approach to
incrementally compute the gradient of yield with respect to gate
sizes in the circuit with high efficiency and accuracy. We then
show how this gradient information can be effectively used by a
non-linear optimizer to perform yield optimization. We consider
both inter-die and intra-die variations with correlated and
random components. The proposed approach is implemented
and tested and we demonstrate up to 40% yield improvement
compared to a deterministically optimized circuit.

1. Introduction and Overview of Approach
Continued process scaling has resulted in a large increase in
process variability that leads to large fluctuations in process
parameters from their nominal values. These variations have
grown due in part to aggressive lithographic techniques that are
used to pattern dimensions smaller than the wavelength of light.
In addition, smaller device dimensions and a smaller number of
doping atoms increase the influence of phenomena such as line
edge roughness and random dopant effects. These process
variations translate to wide ranges in performance metrics of
current designs. In particular, leakage current which is
extremely sensitive to a number of key process parameters has
shown huge fluctuations with [1] showing a 20X variation in
leakage power for a 30% variation in performance across 1000
samples of a design manufactured in a 180 nm technology. In
addition, as the contribution of leakage power has grown the
fluctuation in power dissipation is now dominated by leakage
power. This results in a negative correlation between power
dissipation and delay of a design. Thus high performance
samples of a design are also expected to have higher power
dissipation and vice-versa. This leads to a two-sided constraint
on the feasible region of parametric yield defined by delay and
power limits [2], and causes significant yield loss under
variations in process parameters.
A number of analysis techniques to consider the impact of
variability on timing [3-7] and power [8-9] have been developed.
However, these approaches do not estimate the true parametric
yield of a design considering both power and performance
correlation. Reference [10] was the first to consider the impact
of variability on circuit optimization. The authors described the
formation of a timing wall due to deterministic power
optimization which increases the susceptibility of the design to
process variations, and proposed a heuristic approach to prevent
the build-up of a large number of paths near the critical delay of
the circuit. This was achieved by adding a penalty function
which had a negative impact on the objective function value

whenever a path had a delay which was near critical. However,
the approach was deterministic in nature and did not use any
statistical information during optimization.
Recently, several statistical timing [11-13] and power [14-16]
optimization approaches have also been proposed. However, all
these approaches neglect the correlation between power and
performance. Therefore, timing yield improvements inevitably
result in degradation in power yield and vice versa. Moreover,
most of these approaches suffer from large computational
complexity and runtimes. Thus, there is a critical need to
develop approaches that perform true and efficient parametric
yield optimization, where yield is defined using both power and
timing constraints. Recently, [17] proposed an approach to
perform gate-level yield analysis in a computationally efficient
manner while considering the correlation between power and
performance. The approach was based on a
principal-component based process variation modeling
technique to perform timing and power analysis using the same
set of underlying random variables (RVs), allowing the
correlation in power and performance to be captured.
Additionally the approach considers all components of process
variations: inter-die and intra-die (spatially correlated and
random) variability and can therefore serve as a framework to
enable true parametric yield optimization.
In this work, we propose a novel approach to perform yield
optimization using gate sizing. The yield optimization is
formulated as an unconstrained optimization problem, where
the objective is to maximize the parametric yield of a design.
The optimization is performed using a gradient-based non-linear
optimizer. A brute-force gradient computation approach based
on iterative yield analysis, however, leads to large
computational overheads. Therefore, we propose an efficient
heuristic technique to perform the computation of the yield
gradient. This is achieved by perturbing the size of a gate in the
circuit and heuristically recalculating the delay and power
probability distribution functions (pdfs) of the perturbed circuit.
The timing pdf of the perturbed circuit is calculated based on a
novel cutset approach that analyzes only a subset of the nodes in
the circuit to estimate the complete delay pdf.
The power pdf of the perturbed circuit is calculated with an
incremental power analysis. This involves subtracting the power
dissipation of the perturbed gate from the pdf of total power for
the complete circuit and then adding the power dissipation of the
perturbed gate while accounting for the gate size change. These
perturbed pdfs are then used to compute the yield of the
perturbed circuit by integrating the perturbed bivariate Gaussian
distribution over the region defined by the leakage power and
timing constraint. This gradient computation technique is then
integrated with LANCELOT [18], a large-scale non-linear
optimizer, to improve the parametric yield of the design, and is
found to provide an 8X improvement in runtime with an average
error of 0.1%.
The remainder of the paper is organized as follows. Section 2
briefly reviews the principal component based approach to
perform yield analysis. Section 3 presents the incremental
timing and power analysis techniques, which are then used to
compute the gradient of yield. In Section 4 we provide details
regarding the implementation of our yield optimization

0-7803-9254-X/05/$20.00 ©2005 IEEE. 1020

Figure 1. Example partitions of a circuit using a grid to
model the correlated component of variations
approach and present results including a comparison of our
approach to deterministic optimization. We provide conclusions
in Section 5.
2. Yield analysis
In this section we briefly discuss our modeling assumptions and
yield analysis approach. We also define the yield optimization
problem and describe a brute-force approach to perform yield
optimization. The computational complexity of this brute-force
approach motivates the need for more efficient gradient
computation techniques.
Our yield analysis framework is based on the approach in [17],
and we express the delay and a leakage of a gate as

()

()







∆+=

∆+=

∑

∑

=

=

p

i
ppnom

p

i
ppnom

PVLeakage

PdDelay

1

1

exp β

α (1)

where dnom and exp(Vnom) are the nominal gate delay and leakage,
respectively, and αp and βp captures the dependence of gate
delay and the log of gate leakage on the p process parameters of
interest. The RVs ∆Pp in the above equation refers to the
variations in these process parameters that are assumed to be
Gaussian. The variation in process parameter is then partitioned
into a correlated and random component. The correlated
component is handled by partitioning the design as shown in
Figure 1. For each parameter, each square in the grid is assigned
to a Gaussian RV which captures the correlated variation in that
process parameter, which is defined using a correlation matrix.
This gives a total of Ng RVs for each parameter, which are
assumed to have a joint multinormal distribution. Using
principal components analysis [19] the correlated component is
expressed as a linear combination of Ng independent Gaussian
RVs (zi), and the random variation in all the process parameters
is lumped into a single RV - dη for delay and lη for leakage,
and the coefficient of the random component is calculated by
matching the variance of the random contribution. This
approach gives us canonical expressions for gate delay and
leakage power which are expressed as:









+








+=

+







+=

∑ ∑

∑ ∑

= =

= =

RzVLeakage

RzdDelay

l

p

i

n

i
iipnom

d

p

i

n

i
iipnom

ηγβ

ηγα

1 1

1 1

exp

 (2)

Timing analysis is then performed in the spirit of [3][17], and
the delay is propagated through the circuit, while maintaining
the node delays in the same canonical form with different
coefficients. The sum operation is performed by simply adding
the coefficients for each of the RVs, other than the random
component whose coefficient is obtained as the square root of
the sum of the squared coefficients of the random components

1.3
1.4

1.5
1.6

0

2

4

6

-10.4

-10.0
-9.6

-9.2

JP
D

F
va

lu
e

lo
g(

Le
ak

ag
e)

Delay(ns)
Figure 2. Joint probability distribution function for the
bivariate Gaussian distribution for c3540.
of the summed pdfs. The max operation is performed by
matching the mean, variance and the correlation of the max of
two RV (which are obtained using [20]) and the canonical
expression of the max.
Leakage power analysis is based on summing lognormal RVs
using Wilkinson’s method [21] as proposed in [8]. The leakage
of each gate is iteratively added to the sum which is maintained
in canonical form. In each addition the coefficients of the
canonical expression for the sum are calculated by matching the
mean, variance and correlation with the principal components of
the sum (obtained using [8]) and the canonical expression for
the sum.
At the end of timing and power analysis (that provides the delay
and leakage power canonical form) the correlation between
delay and leakage power is estimated using:

∑
=

=
n

i
iiLeakageDelayCov

1

),(βα (3)

These five parameters (mean and variance of delay and leakage
power and their correlation) are used to define a bivariate
Gaussian distribution for delay and log of leakage power as
shown in Figure 2. The parametric yield which is defined as:

()00 , PPDDPY ≤≤= (4)

where D is delay of the circuit constrained to be less than D0 and
P is the power of the design constrained to be less than P0. In
this work, we assume that variations in power are dominated by
variations in leakage power and the dynamic power dissipation
is assumed to be a fixed number and subtracted out of the total
power budget of the design to define the leakage power
constraint. Based on this assumption, we can rewrite (4) as

())log(log, 00 DL PPPDDPY −≤≤= (5)

where PL and PD are the leakage and dynamic power of the
design. The above yield expression is now equivalent to the
integral of a bivariate Gaussian RV over a rectangular region,
and can be evaluated using expression developed in [22]. Both
the timing and power computation steps require O(nNg) steps,
where n is the number of gates in the design and Ng is the
number of regions into which the design is partitioned to capture
the correlation structure of correlated process variations.
However, the final yield computation step (5) itself runs in
constant time since the yield computation is always performed
using the set of five parameters, independent of the size of the
problem.
Based on this yield analysis engine, a brute-force approach to
perform yield optimization using gate sizing can be developed.
This involves computing the gradient of yield to the size of each
gate, which can be estimated by resizing each gate and

1021

performing yield analysis and setting the gate back to its original
size. After computing the gradient, we use a large scale
non-linear optimizer to improve the yield of the circuit. We now
consider the computational complexity of one iteration of this
approach. Each gradient computation requires n+1 yield
analysis runs and thus has an overall complexity of O(n2Ng).
Note that the since the size of the partitions is fixed, the number
of partitions Ng can also be expected to increase with the size of
the design. Thus, the overall computational requirements soon
become untenable for large designs. Also, note that the
brute-force approach spends most of the time recalculating the
same information for most of the circuit and motivates the need
for an efficient gradient computation approach.

3. Gradient Computation
In this section we will discuss our new gradient computation
approach that calculates the updated timing and delay pdfs
based on a change in gate size. Both the timing and power
perturbation analysis techniques update the coefficients of the
delay and leakage pdf expression based on the change in gate
size. These updated delay and leakage power pdfs are then used
to compute the yield of the perturbed design. The change in
yield is used to estimate the gradient of yield to the size of each
gate in the design.

3.1 Timing Perturbation Computation
We will explain our timing perturbation computation approach
based on cutsets using the following graph representation for
our circuits.
Definition 1: A timing graph is a directed acyclic graph having
exactly one source and one sink: G={N,E,ns,nf}, where
N={n1,n2,..,nk} is a set of nodes, E={e1,e2,…,el} is a set of edges,

Nns∈ is the source node and Nfn ∈ is the sink node and each
edge is an ordered pair of nodes e=(ni,nj) and each node is
associated with a delay for each fanin edge, which depends on
the characteristics of the fanout nodes.
The nodes in the timing graph correspond to gates and the edges
correspond to nets in a circuit. A probabilistic timing graph is
defined as a timing graph where each node is associated with a
RV for the delay for each fanin edge. Figure 3 shows an example
timing graph with ten nodes, eight of which represent actual
gates and nodes 1 and 10 represent the source and sink nodes,
respectively. The latest arrival time (AT) and required arrival
time (RAT) probability distribution functions (pdf) for each
node in the timing graph are now defined as:
Definition 2: The latest arrival time (AT) at an edge e in the
probabilistic timing graph is a RV whose CDF Ae(t) gives the
probability that a deterministic sample of this timing graph has
an arrival time less than t.
Definition 3: The earliest required arrival time (RAT) at an
edge e in the probabilistic timing graph is a RV whose CDF Re(t)
gives the probability that the deterministic sample meets the
timing constraint Tcrit if the deterministic arrival time at the node
is less than t.
Note that the sum of the AT and RAT at a node represents the
partial pdf of delay since it does not take into account the
influence of the edges that are not present in either the fanin or
the fanout cone of the node on the pdf of circuit delay. To
express the dependence of circuit delay on the delay of one of
the nodes let us define the following terms.
Definition 4: A linear topological ordering (LTO) of the nodes
in a timing graph is a total order based on the relationship that
the order of any node x that lies in the fanout cone of a node n is
strictly larger than the order of node n, and that no two nodes in
a timing graph have the same order.
An LTO of a timing graph can be easily determined by
performing a breadth-first traversal of the timing graph. Though

a given timing graph can have many LTOs, finding the optimal
LTO is not the focus of this paper. Figure 3 illustrates a timing
graph with nodes labeled according to a LTO of the timing graph.
Note that swapping nodes 8 and 9 will still maintain a valid LTO
of the nodes.
Definition 5: A cutset of a timing graph with a given LTO of a
node n is defined to be the set of edges (ni,nj) of the timing graph
which satisfy LTO(ni)≤LTO(n) and LTO(nj)>LTO(n).
Definition 6: A node x of the timing graph belongs to the
cutset-source of node n if there exists an edge (x,*) which
belongs to the cutset of node n.
Definition 7: The fanin-set of a node n of a timing graph is the
set of immediate predecessor nodes of node n.
Definition 8: The arrival time set or ATSet of a node n is the
union of the fanin-set of node n and the nodes in the fanout cone
of the fanin-set of node n that have order less than or equal to the
order of node n.
Definition 9: The convolution-set or ConvSet of a node n is the
intersection of the ATSet and cutset-source of node n.
Any cutset of the timing graph divides the timing graph into two
disconnected components and the statistical maximum of the
sum of the AT and RAT of all edges in the cutset gives the
complete pdf of circuit delay. Now, if we perturb the delay
characteristics of a node n (by gate sizing) we also change the
capacitive loading of the fanin gates, affecting their delay
characteristics as well. To compute the new circuit delay we
note that the RAT of the edges in the cutset does not change,
since all the gates in their fanout cone includes gates that have
order strictly greater than the order of node n, and have
unchanged delay characteristics1.

Figure 3. A timing graph showing a linear topological
ordering for the nodes and cutsets for nodes 8 and 9

Figure 4. A timing graph showing the ATSet (nodes within
the shaded ellipse) and cutset-source set (nodes within the
dashed shape) for node 8

1 This neglects the impact of the change in the slope of the
circuit. However, the approach for timing analysis using
backward propagation [24] can be used to consider their impact
within the same framework.

1

3

4

5

6

7

9

8
10

2

1

3

4

5

6

7

9

8
10

2

1022

However, the AT for all edges that are in the fanout cone of the
fanin-set of node n changes. However we are only interested in
AT changes for edges that are driven by nodes that have order
less than the order of gate n, since we need to compute the AT
for the edges in the cutset only. This is exactly the set of nodes
defined by the ATSet of node n. If the AT of an edge in the cutset
changes we need to recompute the convolution of the AT and
RAT at that edge. These edges are driven by the nodes in the
intersection of the ATSet and the cutset which is defined as the
ConvSet of node n.
Let us revisit the example timing graph in Figure 3 and consider
node 8. The cutset for this node is the set of edges (6,9), (8,10)
and (5,10) as shown by the dashed line. The ATSet for the node
can be identified as the set of nodes 6, 7 and 8 as shown in
Figure 4. The intersection of the cutset-source and ATSet
defines the ConvSet and is the set of nodes 6 and 8. Note that the
ConvSet identifies that the AT and RAT has not changed on the
edge (5,10) and we do not need to recompute the convolution of
the AT and RAT for this edge. However, if we consider node 9
the cutset is defined by the edges from nodes 5, 8 and 9 to node
10, as shown as the dotted line in Figure 3. The pseudo-code to
calculate the delay pdf of the perturbed circuit is shown below,
where we refer to the edge by the name of the driving node. The
pseudo-code involves the computation of the AT for all nodes in
the ATSet, convolution of the AT and RAT for all nodes in the
ConvSet and the statistical maximum of the convolution for all
edges in the cutset.
Note that all the computations in CutSetSsta are performed
using the same canonical expression for the delay pdf. Thus, the
final delay pdf of the perturbed circuit is also expressed in the
same form. Although, the approach as described seems exact, it
is heuristic. This results from the fact that the computation of the
max function of delay pdfs is not exact and forward and
backward traversals of the graph result in timing delays that are
not exactly same. However, this error is very small as will be
shown later in the results section.

3.2 Power Perturbation Computation
The statistical power computation is performed by summing the
power dissipation of each gate in a circuit to compute the
complete pdf of leakage power. To perform power analysis of a
circuit with perturbations in the size of a gate, we first perform
statistical power analysis of the unperturbed circuit as described
in Section 2. Now the leakage power after the size of gate i has
been perturbed is expressed as

pert
igate

unpert
icirc

pert
igate

unpert
igate

unpert
circ

pert
circ

PP

PPPP

,\

,,

+=

+−= (6)

where Ppert and Punpert refer to the perturbed and unperturbed
power, respectively and the subscript indicates whether the
power refers to the circuit or to the gate. Since the leakage
power is expressed a lognormal (exponential of a Gaussian) RV,
we can approximate their sum using another lognormal. In
general, if we sum b

leakP and c
leakP to obtain a

leakP , which is

Figure 5. Pseudo-code for the computation of perturbations
in timing pdf of a circuit

mathematically expressed as,

c
leak

b
leakn

n

i
iin

n

i
ii

n

n

i
ii

a
leak

PPczccbzbb

azaaP

+=







+++








++=









++=

+
=

+
=

+
=

∑∑

∑

1
1

01
1

0

1
1

0

expexp

exp (7)

the coefficients in the expression for a
leakP can be obtained by

matching the mean, variance and the correlation coefficient with
the exponential of the principal components (zi’s). This gives us
a set of n+2 equations in n+2 variables which can be
analytically solved to obtain the following expression for the
coefficients associated with the principal components [17]

()
() ()

() ()
() ()() ()






+

+
=








=

i

ii

i

i

zc
leak

b
leak

zc
leak

zb
leak

za
leak

za
leak

i eEPEPE
ePEePE

eEPE
ePEa loglog (8)

Using the expressions developed in [13], the remaining two
coefficients in the expression for a

leakP can be expressed as

() ()()
() ()() () () ()











++++

+
=

cbcb
b

leak
b

leak

b
leak

b
leak

PPCovPVarPVarPEPE

PEPE
a

2
log

2
1

2

4

0
 (9)

() () ()
() ()()

5.0

1

2
21

21log











−











+

++
+= ∑

=
+

n

i
ib

leak
b

leak

cbcb
n a

PEPE
PPCovPVarPVara (10)

Note that to compute the expression in (6) we need to use the
above expressions twice to calculate the final perturbed leakage.
However, when one of the lognormals is subtracted the signs
associated with its expected value and covariance terms in the
above expressions are reversed.

3.3 Yield Gradient
To this point we have developed efficient approaches to perform
statistical timing and power perturbation computation. Now, we
will use these techniques to perform the computation of the
gradient of yield in an efficient manner.
The computation of yield gradient involves the computation of
the perturbation in yield for small changes in the size of gates in
the design. The pseudo-code for the computation of yield is
included in Figure 6. After each resizing move, the non-linear

Figure 6. Pseudo-code for the computation of the yield
gradient

CUTSETSSTA (n)

 for each node (x ∈ ATSET (n))
Compute AT(x);

for each node (x ∈ CONVSET (n))
 CT(x) ← convolution (AT(x), RT(x))

for each edge(x ∈ CUTSET (n))
 Tn ← maximum (Tn, CT(x))

 return Tn

FASTYIELDGRADIENT (CIRCUIT, SIZE)

 for each gate (g ∈ CIRCUIT)
update load cap and size of (g) using SIZE;

 for each gate (g ∈ CIRCUIT)
compute new gate delay & power of (g)

T ← FORWARDSSTA (CIRCUIT)
P ← STATPOWERANALYSIS (CIRCUIT)
Y ← YIELD (P, T)
do REVERSESSTA (CIRCUIT)

for each gate(g ∈ CIRCUIT)
 save current state of CIRCUIT
 s+ ← SIZE(g)+ ∆SIZE(g)
 compute new gate delay & power of g

for each gate(i ∈ FANIN(g))
 update load cap and delay of i

 T+ ← CUTSETSSTA (CIRCUIT)
P+ ← INCREMSPA (CIRCUIT, P)

 Y+ ← YIELD (P+, T+)
 ∇Y(g) ← (Y+ -Y)/ ∆SIZE(g)
 restore the original state of the CIRCUIT

 return ∇Y

1023

optimizer calls the yield computation routine
“FastYieldGradient”. The first step is to initialize the circuit so
that all nodes are assigned the correct load capacitance based on
the sizes of the gates in its immediate fanout, and the correct
leakage power based on its own size. Based on the load
capacitance of the node each input of a node is assigned to a
delay pdf, which represents the delay of the timing arc from that
particular input to the output of the gate.
After the initialization step, the next step involves the
propagation of the AT from the source node to the sink node in
the timing graph. This is represented as “ForwardSSTA” in the
pseudo-code. The next step is to perform statistical power
analysis and generate the leakage current pdf using
“StatPowerAnalysis”. The “Yield” function is then used to
compute the yield based on the timing and leakage power pdfs
given a leakage power constraint P and a delay constraint D, as
outlined in Section 2.
To perform the computation of yield gradient, we first propagate
the RAT from the sink node to the source node using
“ReverseSSTA”. Then we go through each node in the circuit
iteratively and perturb the size of each gate by a small amount.
The load capacitance of the nodes in the fanin-set of the node
and the delay pdf assigned to each timing arc of this node and
the nodes in the fanin-set are updated. Then using the statistical
timing and power perturbation computation techniques
discussed in Sections 3.1-3.2 we compute the delay and leakage
power pdfs of this perturbed circuit. The yield corresponding to
the perturbed circuit is then calculated and the change in yield is
used to define the particular component of the yield gradient.
Let us consider the computational complexity of our proposed
approach and compare it to the brute-force approach, where
each iteration had a complexity of O(n2Ng). Each iteration, in
our proposed approach, involves a single run of the complete
yield analysis approach, as discussed above, which has a
complexity of O(nNg). The timing and power perturbation
computation is repeated O(n) times. The complexity of the
incremental power analysis is O(Ng) since we require two sum
operations of the lognormal RVs. For the statistical timing
perturbation computation most of the max computations in the
cutset can be reused by storing the information as a heap. Thus,
the timing perturbation computation has a complexity of O(Ng
log(n)). Thus the overall complexity of the approach is
O(nNglog(n)), which is a large improvement compared to the
brute-force approach.

4. Results and Implementation Details
We implemented the proposed approach in C and compared our
yield improvements to a deterministic circuit optimization
technique. Our proposed approach for the computation of the
yield gradient is written as a subroutine which the optimizer
uses to calculate the gradient of the objective function. The yield
analysis engine serves as the subroutine to calculate the
objective function itself. Following, we present the accuracy
and runtime results for the proposed approach.
If we assume that reverse and forward SSTA give exact timing
distributions at each node, then the procedure would be exact as
well. However, as noted before, due to the Gaussian
approximation considered while computing the maximum
introduces a small inaccuracy while performing forward and
reverse SSTA . Now, since this inaccuracy is a function of circuit
topology and reconvergence structure the sensitivity of yield
computed using only FORWARDSSTA based brute-force is
negligible. Table 1 shows the runtime comparison and accuracy
results of the proposed gradient computation procedure as
compared to the naïve brute force approach. The circuit size in
terms of the number of gates and the average cut-width over all
nodes in the circuit is also reported in the second and the third
columns, respectively. Runtime per gradient vector computation

Table 1.Comparison of Yield gradient computation using
FASTYIELDGRADIENT and brute-force approach.

c432 257 46.8 0.6 0.1 7.0 1.2 6.7E-03
c499 545 96.0 5.2 0.7 7.1 0.3 3.4E-03
c880 501 103.8 4.8 0.6 7.9 0.2 1.2E-02
c1908 604 84.3 6.5 0.7 9.8 2.6 1.7E-02
c2670 781 248.2 5.7 1.1 5.3 5.2 1.0E-03
c3540 1164 140.6 41.9 3.5 12.1 1.0 1.5E-03
c5315 1693 295.1 130.3 13.1 9.9 7.4 2.4E-03
c6288 3835 297.9 991.3 51.0 19.5 1.8 1.4E-03
c7552 2153 317.8 979.4 51.1 19.2 1.8 1.4E-03

i2 193 105.0 214.8 20.3 10.6 2.0 1.5E-03
i4 265 105.8 0.4 0.1 2.9 1.3 1.8E-02
i5 424 137.5 0.6 0.2 2.8 8.0 9.4E-02
i6 462 177.8 3.2 0.7 4.5 0.1 2.3E-02
i7 770 252.3 2.0 0.7 3.0 1.8 6.0E-02
i8 1014 243.7 10.4 2.2 4.7 1.0 4.0E-02
i10 2483 413.0 19.6 3.8 5.2 2.3 2.3E-03

Bench.
Circuit #gates

Average
Cut-Size

Brute-
Force

Fast
Gradient Speed-up

Max. Error
(%)

Avg. Error
(%)

using the brute approach and the proposed procedure are given
in Columns 4 and 5, respectively. The speed up of the proposed
method over the brute-force approach is given in Column 6, and
ranges between 3X to 20X and is found to be larger for bigger
circuits. The maximum error, over all gates, found using
gradient computation normalized with respect to the brute-force
method is given in Column 7, and is found to be small in most
cases with an average of 2.4%. The error averaged error over all
gates in the circuit is given in the last columns of Table 1 and is
found to be extremely small.
4.1 Yield Optimization
The gates in our standard cell library are characterized for a set
of sizes in the range from minimum size to maximum size and
the delay and leakage power for intermediate gate sizes is
obtained using linear interpolation. All designs are then
deterministically optimized for power under delay constraints
using either design compiler or LANCELOT [18]. We use our
statistical yield maximization approach to improve the yield of
this optimized design for a set of different power and timing
constraints. Our results indicate that performing statistical
optimization can significantly improve the timing yield of the
design. We compare our results based on the ISCAS85 [23]
benchmarks which were synthesized in a 130 nm technology.
The yield optimization results are given in Table 2. The first
sub-section including columns 2, 3, 4 and 5 report the initial
timing and power statistics resulting from a deterministically
optimized circuit. The deterministic optimization was
performed using nominal delay and power models. We present
yield optimization results for two sets of constraints. The first
set includes yield optimization for aggressive nominal value
constraints. As a deterministic optimizer is unaware of the
variation in power and timing and their correlation, the initial
yield at nominal constraints is extremely small. However, the
proposed variability aware yield optimization significantly
improves the yield. For example, the yield for benchmark
circuits c432, c499 and c880 dramatically improves from close
to 0% to up to 40%. Column 6, 7, 8 and 9 report the post
optimization timing and power statistics of the circuit. The
initial yield subject to nominal value constraints and the yield
after performing optimization are given in Columns 10 and 11,
respectively. The second set of results report the performance of
yield optimization under pessimistic constraints. For this case
we use the nominal value offset by one standard deviation as the
constraint for both power and timing while defining the
objective function for optimization. Again columns 12, 13, 14
and 15 list the post optimization statistics of the circuit whereas
columns 16 and 17 report the results achieved after performing
the proposed yield optimization. As the constraints are relaxed
in this case the initial yield of the circuit improves and for the
same reason the improvements achieved are relatively smaller
as compared to the previous case. The maximum improvement
in this case is found to be greater than 20% for the benchmark
circuit c1908.

1024

Table 2: Yield Optimization results for different power and timing constraints

Dm Ds Pm Ps Dm Ds Pm Ps Init. Opt. Dm Ds Pm Ps Init. Opt.
c432 669.75 23.194 10.35 3.78 627 22 10.2 3.72 ~0 48.7 650.7 22 9.98 3.62 42.07 48.83
c499 754.89 25.622 30.66 10.56 716 23 31.01 10.1 ~0 46.87 739 25 28.81 9.87 41.87 46.87
c880 701.86 23.005 25.48 8.83 669 21 23.1 7.99 ~0 45.26 695 22 23.2 8 42 45.2
c1908 924.83 27.311 16.09 5.47 928.1 27.48 15.4 5.2 1.25 19.25 938 31 4.8 1.6 42.6 65.7
c2670 684.82 23.241 6.3 2.16 690 23.5 6.1 2.09 0.98 19.28 657 22 6.15 2.15 42.1 49.22
c3540 1134.5 34.641 48.73 16.14 1126 34.6 46.1 15.2 0.05 29.3 1126 34.6 46.1 15.25 42 44.7
c5315 981.82 30.862 74.97 24.4 995 31 69.7 22.6 ~0 16.41 985 31 72.6 23.6 42.03 42.05
c6288 2638.7 71.818 98.37 30.66 2651 72 91.2 28 1.2 19.2 2591 70.95 96.5 30 42.1 47.62
c7552 1180.5 33.774 72.39 23.54 1186 34.5 67.4 21.8 ~0 19.1 1150 30.3 67.8 21 42.03 48.4

D < Dm + Ds, P < Pm +Ps
Delay(ps) Power (µW) Yield(%)

D < Dm, P < Pm
Delay(ps) Power (µW) Yield(%)

Bench.
Circuits Delay(ps) Power (µW)

Initial solution

5. Conclusions
To the best of our knowledge, we have presented the first
approach to perform gate-level parametric yield optimization
considering constraints on power and performance, along with
their correlation. The approach for yield computation is shown
to be computationally efficient and is shown to provide an 8X
improvement in runtime, as compared to a brute-force gradient
computation approach. The yield gradient is used to guide a
large-scale non linear optimizer to improve the yield of a design
that has been optimized deterministically, under varying power
and delay constraints. The results show that we can achieve
improvements in yield which are as large as 40%.

Acknowledgements
This work was supported in part by NSF, SRC and
MARCO/DARPA.

References
[1] T. Karnik, S. Borkar, and V. De, “Sub-90 nm technologies
challenges and opportunities for CAD,” ACM/IEEE ICCAD, pp.
203-206, 2002.
[2] R. Rao et al., “Parametric yield analysis and
constrained-based supply voltage optimization,” ACM/IEEE
ISQED, pp. 284-290, 2005.
[3] H. Chang and S. S. Sapatnekar, “Statistical timing analysis
considering spatial correlations using a single PERT-like
traversal,” ACM/IEEE ICCAD, pp. 621-625, 2003.
[4] C. Viswesweriah et al., “First-order incremental block-based
statistical timing analysis,” ACM/IEEE DAC, pp. 331-336,
2004.
[5] A. Agarwal et al., “Statistical timing analysis using bounds
and selective enumeration,” IEEE Trans. on CAD, pp.
1243-1260, pp. 1243-1260, Sept. 2003.
[6] A. Devgan and C. Kashyap, “Block-Based statistical timing
analysis with uncertainty,” ACM/IEEE ICCAD, pp. 607-614,
2003.
[7] M. Orshansky and A. Bandopadhyay, “Fast statistical timing
analysis handling arbitrary delay correlations,” ACM/IEEE
DAC, pp. 337-342, 2004.
[8] R.R. Rao, et al., “Statistical analysis of subthreshold leakage
current for VLSI circuits,” IEEE Trans. VLSI Systems,
pp.131-139, Feb. 2004.
[9] S. Narendra et al., “Full-chip sub-threshold leakage power
prediction model for sub-0.18µm CMOS,” ACM/IEEE ISLPED,
pp. 19-23, 2002.
[10] X. Bai, et al., “Uncertainty aware circuit optimization,”
ACM/IEEE DAC, pp.58-63, 2002.
[11] S. Raj, S. Vrudhula, and J. Wang, “A methodology to
improve timing yield in the presence of process variations,”
ACM/IEEE DAC, pp. 448-453, 2004.

[12] S. Choi, B. Paul and K. Roy, “Novel sizing algorithm for
yield improvement under process variation in nanometer
technology,” IEEE/ACM DAC, pp. 454-459, 2004.
[13] A. Agarwal et al., “Statistical timing based optimization
using gate sizing,” ACM/IEEE DATE, pp. 400-405, 2005.
[14] A. Srivastava, D. Sylvester, and D. Blaauw, “Statistical
optimization of leakage power considering process variations
using dual-Vth and sizing,” ACM/IEEE DAC, pp. 773-778,
2004.
[15] A. Davoodi, V. Khandelwal, and A. Srivastava,
“Variability inspired implementation selection problem,”
ACM/IEEE ICCAD, pp. 423-427, 2004.
[16] M. Mani and M. Orshansky, “A new statistical algorithm
for gate sizing,” ACM/IEEE ICCD, pp. 272-277, 2004.
[17] A. Srivastava et al., “Accurate and efficient gate level
parametric yield estimation considering correlated variations in
leakage power and performance,” ACM/IEEE DAC, pp.
535-540, 2005..
[18] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT:
A Fortran package for large-scale non-linear optimizer
(Release A). Springer, Verlag, 1992.
[19] D. F. Morrison, Multivariate statistical methods,
McGraw-Hill Book Company, 1967.
[20] C. Clark, “The greatest of a finite set of random variables,”
Operations Research, vol. 9, pp. 85-91, 1961.
[21] S.C. Schwartz and Y.S. Yeh, “On the distribution function
and moments of power sums with lognormal components,” Bell
Systems Technical Journal, vol.61, pp.1441-1462, Sep. 1982.
[22] J. H. Cadwell, “The bivariate normal integral,” Biometrika,
pp. 31-35, Dec. 1951.
[23] F. Brglez and H. Fujiwara, “A neutral netlist of 10
combinational benchmark circuits and a target translator in
Fortran,” Proc. ISCAS, pp. 695-698, May 1989.
[24] D. Lee, V. Zolotov and D. Blaauw, “Static timing analysis
using backward propagation,” ACM/IEEE DAC, pp. 664-669,
2004.

1025

