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Abstract 
With the increased significance of leakage power and 
performance variability, the yield of a design is becoming 
constrained both by power and performance limits, thereby 
significantly complicating circuit optimization. In this paper, we 
propose a new optimization method for yield optimization under 
simultaneous leakage power and performance limits. The 
optimization approach uses a novel leakage power and 
performance analysis that is statistical in nature and considers 
the correlation between leakage power and performance to 
enable accurate computation of circuit yield under power and 
delay limits. We then propose a new heuristic approach to 
incrementally compute the gradient of yield with respect to gate 
sizes in the circuit with high efficiency and accuracy. We then 
show how this gradient information can be effectively used by a 
non-linear optimizer to perform yield optimization. We consider 
both inter-die and intra-die variations with correlated and 
random components. The proposed approach is implemented 
and tested and we demonstrate up to 40% yield improvement 
compared to a deterministically optimized circuit.  

 
1. Introduction and Overview of Approach 
Continued process scaling has resulted in a large increase in 
process variability that leads to large fluctuations in process 
parameters from their nominal values. These variations have 
grown due in part to aggressive lithographic techniques that are 
used to pattern dimensions smaller than the wavelength of light. 
In addition, smaller device dimensions and a smaller number of 
doping atoms increase the influence of phenomena such as line 
edge roughness and random dopant effects. These process 
variations translate to wide ranges in performance metrics of 
current designs. In particular, leakage current which is 
extremely sensitive to a number of key process parameters has 
shown huge fluctuations with [1] showing a 20X variation in 
leakage power for a 30% variation in performance across 1000 
samples of a design manufactured in a 180 nm technology. In 
addition, as the contribution of leakage power has grown the 
fluctuation in power dissipation is now dominated by leakage 
power. This results in a negative correlation between power 
dissipation and delay of a design. Thus high performance 
samples of a design are also expected to have higher power 
dissipation and vice-versa.  This leads to a two-sided constraint 
on the feasible region of parametric yield defined by delay and 
power limits [2], and causes significant yield loss under 
variations in process parameters. 
A number of analysis techniques to consider the impact of 
variability on timing [3-7] and power [8-9] have been developed. 
However, these approaches do not estimate the true parametric 
yield of a design considering both power and performance 
correlation. Reference [10] was the first to consider the impact 
of variability on circuit optimization. The authors described the 
formation of a timing wall due to deterministic power 
optimization which increases the susceptibility of the design to 
process variations, and proposed a heuristic approach to prevent 
the build-up of a large number of paths near the critical delay of 
the circuit. This was achieved by adding a penalty function 
which had a negative impact on the objective function value 

whenever a path had a delay which was near critical. However, 
the approach was deterministic in nature and did not use any 
statistical information during optimization.   
Recently, several statistical timing [11-13] and power [14-16] 
optimization approaches have also been proposed. However, all 
these approaches neglect the correlation between power and 
performance. Therefore, timing yield improvements inevitably 
result in degradation in power yield and vice versa. Moreover, 
most of these approaches suffer from large computational 
complexity and runtimes. Thus, there is a critical need to 
develop approaches that perform true and efficient parametric 
yield optimization, where yield is defined using both power and 
timing constraints. Recently, [17] proposed an approach to 
perform gate-level yield analysis in a computationally efficient 
manner while considering the correlation between power and 
performance. The approach was based on a 
principal-component based process variation modeling 
technique to perform timing and power analysis using the same 
set of underlying random variables (RVs), allowing the 
correlation in power and performance to be captured. 
Additionally the approach considers all components of process 
variations: inter-die and intra-die (spatially correlated and 
random) variability and can therefore serve as a framework to 
enable true parametric yield optimization.  
In this work, we propose a novel approach to perform yield 
optimization using gate sizing. The yield optimization is 
formulated as an unconstrained optimization problem, where 
the objective is to maximize the parametric yield of a design. 
The optimization is performed using a gradient-based non-linear 
optimizer. A brute-force gradient computation approach based 
on iterative yield analysis, however, leads to large 
computational overheads. Therefore, we propose an efficient 
heuristic technique to perform the computation of the yield 
gradient. This is achieved by perturbing the size of a gate in the 
circuit and heuristically recalculating the delay and power 
probability distribution functions (pdfs) of the perturbed circuit. 
The timing pdf of the perturbed circuit is calculated based on a 
novel cutset approach that analyzes only a subset of the nodes in 
the circuit to estimate the complete delay pdf.  
The power pdf of the perturbed circuit is calculated with an 
incremental power analysis. This involves subtracting the power 
dissipation of the perturbed gate from the pdf of total power for 
the complete circuit and then adding the power dissipation of the 
perturbed gate while accounting for the gate size change. These 
perturbed pdfs are then used to compute the yield of the 
perturbed circuit by integrating the perturbed bivariate Gaussian 
distribution over the region defined by the leakage power and 
timing constraint. This gradient computation technique is then 
integrated with LANCELOT [18], a large-scale non-linear 
optimizer, to improve the parametric yield of the design, and is 
found to provide an 8X improvement in runtime with an average 
error of 0.1%. 
The remainder of the paper is organized as follows. Section 2 
briefly reviews the principal component based approach to 
perform yield analysis. Section 3 presents the incremental 
timing and power analysis techniques, which are then used to 
compute the gradient of yield. In Section 4 we provide details 
regarding the implementation of our yield optimization  
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Figure 1. Example partitions of a circuit using a grid to 
model the correlated component of variations  
approach and present results including a comparison of our 
approach to deterministic optimization. We provide conclusions 
in Section 5. 
2. Yield analysis 
In this section we briefly discuss our modeling assumptions and 
yield analysis approach. We also define the yield optimization 
problem and describe a brute-force approach to perform yield 
optimization. The computational complexity of this brute-force 
approach motivates the need for more efficient gradient 
computation techniques.  
Our yield analysis framework is based on the approach in [17], 
and we express the delay and a leakage of a gate as 
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where dnom and exp(Vnom) are the nominal gate delay and leakage,  
respectively, and αp and βp captures the dependence of gate 
delay and the log of gate leakage on the p process parameters of 
interest. The RVs ∆Pp in the above equation refers to the 
variations in these process parameters that are assumed to be 
Gaussian. The variation in process parameter is then partitioned 
into a correlated and random component. The correlated 
component is handled by partitioning the design as shown in 
Figure 1. For each parameter, each square in the grid is assigned 
to a Gaussian RV which captures the correlated variation in that 
process parameter, which is defined using a correlation matrix. 
This gives a total of Ng RVs for each parameter, which are 
assumed to have a joint multinormal distribution. Using 
principal components analysis [19] the correlated component is 
expressed as a linear combination of Ng independent Gaussian 
RVs (zi), and the random variation in all the process parameters 
is lumped into a single RV - dη  for delay and lη  for leakage, 
and the coefficient of the random component is calculated by 
matching the variance of the random contribution. This 
approach gives us canonical expressions for gate delay and 
leakage power which are expressed as: 
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Timing analysis is then performed in the spirit of [3][17], and 
the delay is propagated through the circuit, while maintaining 
the node delays in the same canonical form with different 
coefficients. The sum operation is performed by simply adding 
the coefficients for each of the RVs, other than the random 
component whose coefficient is obtained as the square root of 
the sum of the squared coefficients of the random components  
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Figure 2. Joint probability distribution function for the 
bivariate Gaussian distribution for c3540. 
of the summed pdfs. The max operation is performed by 
matching the mean, variance and the correlation of the max of 
two RV (which are obtained using [20]) and the canonical 
expression of the max.   
Leakage power analysis is based on summing lognormal RVs 
using Wilkinson’s method [21] as proposed in [8]. The leakage 
of each gate is iteratively added to the sum which is maintained 
in canonical form. In each addition the coefficients of the 
canonical expression for the sum are calculated by matching the 
mean, variance and correlation with the principal components of 
the sum (obtained using [8]) and the canonical expression for 
the sum.   
At the end of timing and power analysis (that provides the delay 
and leakage power canonical form) the correlation between 
delay and leakage power is estimated using: 
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These five parameters (mean and variance of delay and leakage 
power and their correlation) are used to define a bivariate 
Gaussian distribution for delay and log of leakage power as 
shown in Figure 2. The parametric yield which is defined as: 

( )00 , PPDDPY ≤≤=                  (4) 

where D is delay of the circuit constrained to be less than D0 and 
P is the power of the design constrained to be less than P0. In 
this work, we assume that variations in power are dominated by 
variations in leakage power and the dynamic power dissipation 
is assumed to be a fixed number and subtracted out of the total 
power budget of the design to define the leakage power 
constraint. Based on this assumption, we can rewrite (4) as  

( ))log(log, 00 DL PPPDDPY −≤≤=            (5) 

where PL and PD are the leakage and dynamic power of the 
design. The above yield expression is now equivalent to the 
integral of a bivariate Gaussian RV over a rectangular region, 
and can be evaluated using expression developed in [22]. Both 
the timing and power computation steps require O(nNg) steps, 
where n is the number of gates in the design and Ng is the 
number of regions into which the design is partitioned to capture 
the correlation structure of correlated process variations. 
However, the final yield computation step (5) itself runs in 
constant time since the yield computation is always performed 
using the set of five parameters, independent of the size of the 
problem. 
Based on this yield analysis engine, a brute-force approach to 
perform yield optimization using gate sizing can be developed. 
This involves computing the gradient of yield to the size of each 
gate, which can be estimated by resizing each gate and 
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performing yield analysis and setting the gate back to its original 
size. After computing the gradient, we use a large scale 
non-linear optimizer to improve the yield of the circuit. We now 
consider the computational complexity of one iteration of this 
approach. Each gradient computation requires n+1 yield 
analysis runs and thus has an overall complexity of O(n2Ng). 
Note that the since the size of the partitions is fixed, the number 
of partitions Ng can also be expected to increase with the size of 
the design. Thus, the overall computational requirements soon 
become untenable for large designs. Also, note that the 
brute-force approach spends most of the time recalculating the 
same information for most of the circuit and motivates the need 
for an efficient gradient computation approach.  

3. Gradient Computation 
In this section we will discuss our new gradient computation 
approach that calculates the updated timing and delay pdfs 
based on a change in gate size. Both the timing and power 
perturbation analysis techniques update the coefficients of the 
delay and leakage pdf expression based on the change in gate 
size. These updated delay and leakage power pdfs are then used 
to compute the yield of the perturbed design. The change in 
yield is used to estimate the gradient of yield to the size of each 
gate in the design. 

3.1 Timing Perturbation Computation  
We will explain our timing perturbation computation approach 
based on cutsets using the following graph representation for 
our circuits. 
Definition 1: A timing graph is a directed acyclic graph having 
exactly one source and one sink: G={N,E,ns,nf}, where 
N={n1,n2,..,nk} is a set of nodes, E={e1,e2,…,el} is a set of edges, 

Nns∈ is the source node and Nfn ∈ is the sink node and each 
edge is an ordered pair of nodes e=(ni,nj) and each node is 
associated with a delay for each fanin edge, which depends on 
the characteristics of the fanout nodes. 
The nodes in the timing graph correspond to gates and the edges 
correspond to nets in a circuit. A probabilistic timing graph is 
defined as a timing graph where each node is associated with a 
RV for the delay for each fanin edge. Figure 3 shows an example 
timing graph with ten nodes, eight of which represent actual 
gates and nodes 1 and 10 represent the source and sink nodes, 
respectively. The latest arrival time (AT) and required arrival 
time (RAT) probability distribution functions (pdf) for each 
node in the timing graph are now defined as: 
Definition 2: The latest arrival time (AT) at an edge e in the 
probabilistic timing graph is a RV whose CDF Ae(t) gives the 
probability that a deterministic sample of this timing graph has 
an arrival time less than t. 
Definition 3: The earliest required arrival time (RAT) at an 
edge e in the probabilistic timing graph is a RV whose CDF Re(t) 
gives the probability that the deterministic sample meets the 
timing constraint Tcrit if the deterministic arrival time at the node 
is less than t. 
Note that the sum of the AT and RAT at a node represents the 
partial pdf of delay since it does not take into account the 
influence of the edges that are not present in either the fanin or 
the fanout cone of the node on the pdf of circuit delay. To 
express the dependence of circuit delay on the delay of one of 
the nodes let us define the following terms. 
Definition 4: A linear topological ordering (LTO) of the nodes 
in a timing graph is a total order based on the relationship that 
the order of any node x that lies in the fanout cone of a node n is 
strictly larger than the order of node n, and that no two nodes in 
a timing graph have the same order.     
An LTO of a timing graph can be easily determined by 
performing a breadth-first traversal of the timing graph. Though 

a given timing graph can have many LTOs, finding the optimal 
LTO is not the focus of this paper. Figure 3 illustrates a timing 
graph with nodes labeled according to a LTO of the timing graph. 
Note that swapping nodes 8 and 9 will still maintain a valid LTO 
of the nodes. 
Definition 5: A cutset of a timing graph with a given LTO of a 
node n is defined to be the set of edges (ni,nj) of the timing graph 
which satisfy LTO(ni)≤LTO(n) and LTO(nj)>LTO(n). 
Definition 6: A node x of the timing graph belongs to the 
cutset-source of node n if there exists an edge (x,*) which 
belongs to the cutset of node n.    
Definition 7: The fanin-set of a node n of a timing graph is the 
set of immediate predecessor nodes of node n.  
Definition 8: The arrival time set or ATSet of a node n is the 
union of the fanin-set of node n and the nodes in the fanout cone 
of the fanin-set of node n that have order less than or equal to the 
order of node n. 
Definition 9: The convolution-set or ConvSet of a node n is the 
intersection of the ATSet and cutset-source of node n. 
Any cutset of the timing graph divides the timing graph into two 
disconnected components and the statistical maximum of the 
sum of the AT and RAT of all edges in the cutset gives the 
complete pdf of circuit delay. Now, if we perturb the delay 
characteristics of a node n (by gate sizing) we also change the 
capacitive loading of the fanin gates, affecting their delay 
characteristics as well. To compute the new circuit delay we 
note that the RAT of the edges in the cutset does not change, 
since all the gates in their fanout cone includes gates that have 
order strictly greater than the order of node n, and have 
unchanged delay characteristics1.  

 
Figure 3. A timing graph showing a linear topological 
ordering for the nodes and cutsets for nodes 8 and 9 

 
Figure 4. A timing graph showing the ATSet (nodes within 
the shaded ellipse) and cutset-source set (nodes within the 
dashed shape) for node 8 

                                                        
1 This neglects the impact of the change in the slope of the 
circuit. However, the approach for timing analysis using 
backward propagation [24] can be used to consider their impact 
within the same framework. 
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However, the AT for all edges that are in the fanout cone of the 
fanin-set of node n changes. However we are only interested in 
AT changes for edges that are driven by nodes that have order 
less than the order of gate n, since we need to compute the AT 
for the edges in the cutset only. This is exactly the set of nodes 
defined by the ATSet of node n. If the AT of an edge in the cutset 
changes we need to recompute the convolution of the AT and 
RAT at that edge. These edges are driven by the nodes in the 
intersection of the ATSet and the cutset which is defined as the 
ConvSet of node n.      
Let us revisit the example timing graph in Figure 3 and consider 
node 8. The cutset for this node is the set of edges (6,9), (8,10) 
and (5,10) as shown by the dashed line. The ATSet for the node 
can be identified as the set of nodes 6, 7 and 8 as shown in 
Figure 4. The intersection of the cutset-source and ATSet 
defines the ConvSet and is the set of nodes 6 and 8. Note that the 
ConvSet identifies that the AT and RAT has not changed on the 
edge (5,10) and we do not need to recompute the convolution of 
the AT and RAT for this edge. However, if we consider node 9 
the cutset is defined by the edges from nodes 5, 8 and 9 to node 
10, as shown as the dotted line in Figure 3. The pseudo-code to 
calculate the delay pdf of the perturbed circuit is shown below, 
where we refer to the edge by the name of the driving node. The 
pseudo-code involves the computation of the AT for all nodes in 
the ATSet, convolution of the AT and RAT for all nodes in the 
ConvSet and the statistical maximum of the convolution for all 
edges in the cutset. 
Note that all the computations in CutSetSsta are performed 
using the same canonical expression for the delay pdf. Thus, the 
final delay pdf of the perturbed circuit is also expressed in the 
same form. Although, the approach as described seems exact, it 
is heuristic. This results from the fact that the computation of the 
max function of delay pdfs is not exact and forward and 
backward traversals of the graph result in timing delays that are 
not exactly same. However, this error is very small as will be 
shown later in the results section. 

3.2 Power Perturbation Computation 
The statistical power computation is performed by summing the 
power dissipation of each gate in a circuit to compute the 
complete pdf of leakage power. To perform power analysis of a 
circuit with perturbations in the size of a gate, we first perform 
statistical power analysis of the unperturbed circuit as described 
in Section 2. Now the leakage power after the size of gate i has 
been perturbed is expressed as 
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where Ppert and Punpert refer to the perturbed and unperturbed 
power, respectively and the subscript indicates whether the 
power refers to the circuit or to the gate. Since the leakage 
power is expressed a lognormal (exponential of a Gaussian) RV, 
we can approximate their sum using another lognormal. In 
general, if we sum b

leakP  and c
leakP  to obtain a

leakP , which is 

 
 
 
 
 
 
 
 
Figure 5. Pseudo-code for the computation of perturbations 
in timing pdf of a circuit 

mathematically expressed as, 

c
leak

b
leakn

n

i
iin

n

i
ii

n

n

i
ii

a
leak

PPczccbzbb

azaaP

+=







+++








++=









++=

+
=

+
=

+
=

∑∑

∑

1
1

01
1

0

1
1

0

expexp

exp (7) 

the coefficients in the expression for a
leakP can be obtained by 

matching the mean, variance and the correlation coefficient with 
the exponential of the principal components (zi’s). This gives us 
a set of n+2 equations in n+2 variables which can be 
analytically solved to obtain the following expression for the 
coefficients associated with the principal components [17] 
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Using the expressions developed in [13], the remaining two 
coefficients in the expression for a

leakP can be expressed as 

( ) ( )( )
( ) ( )( ) ( ) ( ) ( )











++++

+
=

cbcb
b

leak
b

leak

b
leak

b
leak

PPCovPVarPVarPEPE

PEPE
a

2
log

2
1

2

4

0
 (9) 

( ) ( ) ( )
( ) ( )( )

5.0

1

2
21

21log











−











+

++
+= ∑

=
+

n

i
ib

leak
b

leak

cbcb
n a

PEPE
PPCovPVarPVara (10) 

Note that to compute the expression in (6) we need to use the 
above expressions twice to calculate the final perturbed leakage. 
However, when one of the lognormals is subtracted the signs 
associated with its expected value and covariance terms in the 
above expressions are reversed. 

3.3 Yield Gradient 
To this point we have developed efficient approaches to perform 
statistical timing and power perturbation computation. Now, we 
will use these techniques to perform the computation of the 
gradient of yield in an efficient manner.  
The computation of yield gradient involves the computation of 
the perturbation in yield for small changes in the size of gates in 
the design. The pseudo-code for the computation of yield is 
included in Figure 6. After each resizing move, the non-linear 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Pseudo-code for the computation of the yield 
gradient 

CUTSETSSTA (n) 
 

  for each node (x ∈ ATSET (n))  
Compute AT(x);  
 

for each node (x ∈ CONVSET (n))  
   CT(x) ← convolution (AT(x), RT(x)) 

 

for each edge(x ∈ CUTSET (n)) 
     Tn ← maximum (Tn, CT(x)) 
 

 return Tn 

FASTYIELDGRADIENT (CIRCUIT, SIZE ) 
 

 for each gate (g ∈  CIRCUIT)  
update load cap and size of (g) using SIZE; 
 

 for each gate (g ∈  CIRCUIT)  
compute new gate delay & power of (g) 
 

T  ←  FORWARDSSTA (CIRCUIT) 
P  ←  STATPOWERANALYSIS (CIRCUIT) 
Y  ←  YIELD (P, T)  
do  REVERSESSTA (CIRCUIT) 

 

for each gate(g ∈ CIRCUIT) 
 save current state of CIRCUIT 
 s+  ←  SIZE(g)+ ∆SIZE(g) 
 compute new gate delay & power of g 

 

for each gate(i ∈ FANIN(g)) 
 update load cap and delay of i    

 T+ ←  CUTSETSSTA (CIRCUIT) 
P+ ←  INCREMSPA (CIRCUIT, P) 

  Y+ ←  YIELD (P+, T+)  
  ∇Y(g) ←  (Y+ -Y)/ ∆SIZE(g) 
  restore the original state of the CIRCUIT 
 

 return ∇Y 
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optimizer calls the yield computation routine 
“FastYieldGradient”. The first step is to initialize the circuit so 
that all nodes are assigned the correct load capacitance based on 
the sizes of the gates in its immediate fanout, and the correct 
leakage power based on its own size. Based on the load 
capacitance of the node each input of a node is assigned to a 
delay pdf, which represents the delay of the timing arc from that 
particular input to the output of the gate.  
After the initialization step, the next step involves the 
propagation of the AT from the source node to the sink node in 
the timing graph. This is represented as “ForwardSSTA” in the 
pseudo-code. The next step is to perform statistical power 
analysis and generate the leakage current pdf using 
“StatPowerAnalysis”. The “Yield” function is then used to 
compute the yield based on the timing and leakage power pdfs 
given a leakage power constraint P and a delay constraint D, as 
outlined in Section 2.  
To perform the computation of yield gradient, we first propagate 
the RAT from the sink node to the source node using 
“ReverseSSTA”. Then we go through each node in the circuit 
iteratively and perturb the size of each gate by a small amount. 
The load capacitance of the nodes in the fanin-set of the node 
and the delay pdf assigned to each timing arc of this node and 
the nodes in the fanin-set are updated. Then using the statistical 
timing and power perturbation computation techniques 
discussed in Sections 3.1-3.2 we compute the delay and leakage 
power pdfs of this perturbed circuit. The yield corresponding to 
the perturbed circuit is then calculated and the change in yield is 
used to define the particular component of the yield gradient.   
Let us consider the computational complexity of our proposed 
approach and compare it to the brute-force approach, where 
each iteration had a complexity of O(n2Ng). Each iteration, in 
our proposed approach, involves a single run of the complete 
yield analysis approach, as discussed above, which has a 
complexity of O(nNg). The timing and power perturbation 
computation is repeated O(n) times. The complexity of the 
incremental power analysis is O(Ng) since we require two sum 
operations of the lognormal RVs. For the statistical timing 
perturbation computation most of the max computations in the 
cutset can be reused by storing the information as a heap. Thus, 
the timing perturbation computation has a complexity of  O(Ng 
log(n)). Thus the overall complexity of the approach is 
O(nNglog(n)), which is a large improvement compared to the 
brute-force approach.  

4. Results and Implementation Details 
We implemented the proposed approach in C and compared our 
yield improvements to a deterministic circuit optimization 
technique. Our proposed approach for the computation of the 
yield gradient is written as a subroutine which the optimizer 
uses to calculate the gradient of the objective function. The yield 
analysis engine serves as the subroutine to calculate the 
objective function itself. Following, we present the accuracy 
and runtime results for the proposed approach.    
If we assume that reverse and forward SSTA give exact timing 
distributions at each node, then the procedure would be exact as 
well. However, as noted before, due to the Gaussian 
approximation considered while computing the maximum 
introduces a small inaccuracy while performing forward and 
reverse SSTA . Now, since this inaccuracy is a function of circuit 
topology and reconvergence structure the sensitivity of yield 
computed using only FORWARDSSTA based brute-force is 
negligible. Table 1 shows the runtime comparison and accuracy 
results of the proposed gradient computation procedure as 
compared to the naïve brute force approach. The circuit size in 
terms of the number of gates and the average cut-width over all 
nodes in the circuit is also reported in the second and the third 
columns, respectively. Runtime per gradient vector computation 

Table 1.Comparison of Yield gradient computation using 
FASTYIELDGRADIENT and brute-force approach.  

c432 257 46.8 0.6 0.1 7.0 1.2 6.7E-03
c499 545 96.0 5.2 0.7 7.1 0.3 3.4E-03
c880 501 103.8 4.8 0.6 7.9 0.2 1.2E-02
c1908 604 84.3 6.5 0.7 9.8 2.6 1.7E-02
c2670 781 248.2 5.7 1.1 5.3 5.2 1.0E-03
c3540 1164 140.6 41.9 3.5 12.1 1.0 1.5E-03
c5315 1693 295.1 130.3 13.1 9.9 7.4 2.4E-03
c6288 3835 297.9 991.3 51.0 19.5 1.8 1.4E-03
c7552 2153 317.8 979.4 51.1 19.2 1.8 1.4E-03

i2 193 105.0 214.8 20.3 10.6 2.0 1.5E-03
i4 265 105.8 0.4 0.1 2.9 1.3 1.8E-02
i5 424 137.5 0.6 0.2 2.8 8.0 9.4E-02
i6 462 177.8 3.2 0.7 4.5 0.1 2.3E-02
i7 770 252.3 2.0 0.7 3.0 1.8 6.0E-02
i8 1014 243.7 10.4 2.2 4.7 1.0 4.0E-02
i10 2483 413.0 19.6 3.8 5.2 2.3 2.3E-03

Bench. 
Circuit #gates

Average 
Cut-Size

Brute-
Force 

Fast 
Gradient Speed-up

Max. Error 
(%)

Avg. Error 
(%)

using the brute approach and the proposed procedure are given 
in Columns 4 and 5, respectively. The speed up of the proposed 
method over the brute-force approach is given in Column 6, and 
ranges between 3X to 20X and is found to be larger for bigger 
circuits. The maximum error, over all gates, found using 
gradient computation normalized with respect to the brute-force 
method is given in Column 7, and is found to be small in most 
cases with an average of 2.4%. The error averaged error over all 
gates in the circuit is given in the last columns of Table 1 and is 
found to be extremely small. 
4.1 Yield Optimization 
The gates in our standard cell library are characterized for a set 
of sizes in the range from minimum size to maximum size and 
the delay and leakage power for intermediate gate sizes is 
obtained using linear interpolation. All designs are then 
deterministically optimized for power under delay constraints 
using either design compiler or LANCELOT [18]. We use our 
statistical yield maximization approach to improve the yield of 
this optimized design for a set of different power and timing 
constraints. Our results indicate that performing statistical 
optimization can significantly improve the timing yield of the 
design. We compare our results based on the ISCAS85 [23] 
benchmarks which were synthesized in a 130 nm technology.   
The yield optimization results are given in Table 2. The first 
sub-section including columns 2, 3, 4 and 5 report the initial 
timing and power statistics resulting from a deterministically 
optimized circuit. The deterministic optimization was 
performed using nominal delay and power models. We present 
yield optimization results for two sets of constraints. The first 
set includes yield optimization for aggressive nominal value 
constraints. As a deterministic optimizer is unaware of the 
variation in power and timing and their correlation, the initial 
yield at nominal constraints is extremely small. However, the 
proposed variability aware yield optimization significantly 
improves the yield. For example, the yield for benchmark 
circuits c432, c499 and c880 dramatically improves from close 
to 0% to up to 40%. Column 6, 7, 8 and 9 report the post 
optimization timing and power statistics of the circuit. The 
initial yield subject to nominal value constraints and the yield 
after performing optimization are given in Columns 10 and 11, 
respectively. The second set of results report the performance of 
yield optimization under pessimistic constraints. For this case 
we use the nominal value offset by one standard deviation as the 
constraint for both power and timing while defining the 
objective function for optimization. Again columns 12, 13, 14 
and 15 list the post optimization statistics of the circuit whereas 
columns 16 and 17 report the results achieved after performing 
the proposed yield optimization. As the constraints are relaxed 
in this case the initial yield of the circuit improves and for the 
same reason the improvements achieved are relatively smaller 
as compared to the previous case. The maximum improvement 
in this case is found to be greater than 20% for the benchmark 
circuit c1908. 
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Table 2: Yield Optimization results for different power and timing constraints

Dm Ds Pm Ps Dm Ds Pm Ps Init. Opt. Dm Ds Pm Ps Init. Opt.
c432 669.75 23.194 10.35 3.78 627 22 10.2 3.72 ~0 48.7 650.7 22 9.98 3.62 42.07 48.83
c499 754.89 25.622 30.66 10.56 716 23 31.01 10.1 ~0 46.87 739 25 28.81 9.87 41.87 46.87
c880 701.86 23.005 25.48 8.83 669 21 23.1 7.99 ~0 45.26 695 22 23.2 8 42 45.2
c1908 924.83 27.311 16.09 5.47 928.1 27.48 15.4 5.2 1.25 19.25 938 31 4.8 1.6 42.6 65.7
c2670 684.82 23.241 6.3 2.16 690 23.5 6.1 2.09 0.98 19.28 657 22 6.15 2.15 42.1 49.22
c3540 1134.5 34.641 48.73 16.14 1126 34.6 46.1 15.2 0.05 29.3 1126 34.6 46.1 15.25 42 44.7
c5315 981.82 30.862 74.97 24.4 995 31 69.7 22.6 ~0 16.41 985 31 72.6 23.6 42.03 42.05
c6288 2638.7 71.818 98.37 30.66 2651 72 91.2 28 1.2 19.2 2591 70.95 96.5 30 42.1 47.62
c7552 1180.5 33.774 72.39 23.54 1186 34.5 67.4 21.8 ~0 19.1 1150 30.3 67.8 21 42.03 48.4

D < Dm + Ds, P < Pm +Ps
Delay(ps) Power (µW) Yield(%)

D < Dm, P < Pm
Delay(ps) Power (µW) Yield(%)

Bench. 
Circuits Delay(ps) Power (µW)

Initial solution

5. Conclusions 
To the best of our knowledge, we have presented the first 
approach to perform gate-level parametric yield optimization 
considering constraints on power and performance, along with 
their correlation. The approach for yield computation is shown 
to be computationally efficient and is shown to provide an 8X 
improvement in runtime, as compared to a brute-force gradient 
computation approach. The yield gradient is used to guide a 
large-scale non linear optimizer to improve the yield of a design 
that has been optimized deterministically, under varying power 
and delay constraints. The results show that we can achieve 
improvements in yield which are as large as 40%. 
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