
Statistical Critical Path Analysis Considering Correlations

Yaping Zhan, Andrzej J. Strojwas, Mahesh Sharma*, David Newmark*
Department of ECE, Carnegie Mellon University, Pittsburgh, PA,

 Advanced Micro Devices Inc., Austin, TX*

Abstract

Critical Path Analysis is always an important task in timing
verification. For today’s nanometer IC technologies, process
variations have a significant impact on circuit performance. The
variability can change the criticality of long paths [1].
Therefore, statistical approaches should be incorporated in
Critical Path Analysis. In this paper, we present two novel
techniques that can efficiently evaluate path criticality under
statistical non-linear delay models. They are integrated into a
block-based Statistical Timing tool with the capability of
handling arbitrary correlations from manufacturing process
dependence and also path sharing. Experiments on ISCAS85
benchmarks as well as industrial circuits prove both accuracy
and efficiency of these techniques.

1. Introduction

For today’s increasing complexity of VLSI designs and
tighter timing constraints, timing verification has become a more
challenging and important task. Timing information is very
useful for both design optimization and yield improvement in
manufacturing. Meanwhile, as IC technologies are scaled down
to the nanometer regions, circuit delays become highly
dependent on manufacturing process variations, especially the
intra-die variations, of both gates and interconnects. Due to the
correlations among component (gate and interconnect) delays,
corner case analysis using traditional Static Timing Analysis
(STA) tools is very pessimistic and not capable of finding the
circuit delay in variational environments.

As a solution, Statistical Static Timing Analysis algorithms
(SSTA) have been proposed recently. Instead of propagating
fixed delay values through gates and interconnect, SSTA
propagates delay distributions characterized by delay Probability
Density Functions (PDFs) [2-8].

Path-based SSTA algorithms perform delay analysis path by
path [2][3]. They are accurate, good at capturing correlations,
and able to report statistical critical paths for circuit
optimizations. However, due to the large number of long paths in
commercial circuits, we cannot afford to analyze all those paths.
Usually, only the top K longest paths are selected and passed to
the path-based algorithms for analysis. The task of selecting the
top paths before statistical analyses, when both inter-die and
intra-die variations are present, is a very challenging one. Since
non-critical paths in some part of the process space might
become critical in the other part of the process space, no one
knows whether a path may or may not become critical in a
particular variational environment without statistical analyses.
Therefore, some statistical critical paths may not be included in
the path set, thus not be analyzed by the path-based SSTA
algorithms. All these paths that are not in the top path set will
never be reported for optimization which makes the sizing of the
reported long paths not effective.

On the other hand, block-based algorithms [4-8] are efficient
and incremental, but they often do not provide good estimates on

critical paths. Since block-based approaches are breadth-first and
done level by level, no critical paths are reported to circuit
designers. However, from the circuit designers’ standpoint,
critical paths are equally valuable as the final circuit delay
distributions, since designers can improve circuit performance
by optimizing critical path delays. Meanwhile, to ensure correct
timing behavior, it is a common practice to include testing of a
set of critical paths. Critical paths are very useful for test
engineers to generate the test vectors as well. Moreover, the
critical paths can be treated as the top K longest paths for path-
based SSTA algorithms that enable us to do more specific
analyses for better timing accuracy. Therefore, for block-based
algorithms, accurate critical path analysis is very useful.

As we know, under statistical delay model assumptions,
many paths will change their rankings due to process variations.
Non-critical paths under nominal delay environment may
become critical under certain variations. Therefore, traditional
critical path analysis must be extended to statistical critical path
analysis. Moreover, the correlations resulting from path sharing
as well as manufacturing process dependence make this problem
even more challenging.

In this paper, we propose two novel approaches for path
criticality analysis with the capability of handling any delay
correlations between any two paths. Both approaches have been
integrated into our block-based SSTA tool as a post-processing
step. The approaches require little CPU overhead and provide
very accurate results. The organization of the rest of the paper is
as follows: In Section 2, we review previous research on path
criticality calculations. We propose our two efficient approaches
and discuss our algorithms in Section 3. Experimental results for
both ISCAS85 and industrial circuits are given in Section 4. We
conclude this paper in Section 5.

2. Background

Traditionally, critical paths are defined as the longest
sensitizable paths under fixed delay models. However, under
statistical delay models, each path has a delay distribution. A
path may be longer than another path under some process
variations, but shorter in other cases. The criticality probability
is associated with certain circumstances under which a
sensitizable path is critical, i.e., it determines the delay of the
circuit. Any path that has a non-zero probability of being critical
is defined as one of the statistical critical paths. The sum of the
criticality probabilities of all statistical critical paths is one. The
statistical critical paths are ranked by their criticalities. The path
with the largest criticality probability is most important and is
the one that circuit designers should look at first for performance
and yield optimization.

To calculate path criticality in the nanometer process
technologies, correlations between paths must be taken into
account. There are two major sources of correlations. The first
source is from re-convergent fan-outs of the circuit, and the
other source comes from the spatial correlations of process
parameters, such as inter-die variations and systematic intra-die

 0-7803-9254-X/05/$20.00 ©2005 IEEE. 698

variations. To consider these correlations, we use the
parameterized SSTA technique to represent all the delays and
arrival times. Quadratic delay models are used to account for
nonlinear delays. Suppose X=(x1,x2,...,xn) is a set of independent
process parameters with normalized Gaussian distributions,
which can be derived from a Principal Component Analysis
(PCA) approach. We can represent any gate/interconnect delay
Di and signal arrival time ATi in the following forms:
 (1) DiDiDi

T
i CXBXAXD ++=

 (2) ATiATiATi
T

i CXBXAXAT ++=
In a previous research [5], the authors proposed their path

criticality calculation method in a block-based SSTA
methodology. In a timing graph, each edge is annotated with an
Arrival Tightness Probability (ATP), which is the probability
that the edge determines the arrival time of its sink node. The
probability of a path being critical is calculated as the product of
the ATP’s of all edges along the path. However, this method is
valid only when the criticality probabilities of any two paths are
independent to each other. When complicated correlations are
present in modern circuits, this assumption is not true. To
demonstrate this, let us examine the circuit example with re-
convergent fan-outs and process spatial correlations shown in
Figure 1.

We assume that the delay of each circuit node consists of two
parts, the systematic part due to spatial correlations and the
independent random part. More specifically, we assume the
systematic delays of all nodes are equal to d0 due to their close
locations, and the random parts are independent normalized
Gaussian variables (dA through dE). This assumption is not
necessary for our analysis, but just to simplify the criticality
calculations for this example.

Figure 1 Circuit example with re-convergent fan-outs

Table 1. Node delays and arrival times of the example in
Figure 1

Node Delay Output Arrival Time
A d0+dA d0+dA
B d0+dB d0+dB
C d0+dC 2d0+dC+max(dA,dB)
D d0+dD 2d0+dB+dD

E d0+dE
3d0+dE+max(dB+dD,

dC+max(dA,dB))

The delays and arrival times of all the nodes are listed in
Table 1. Based on our simplified assumption, the true criticality
probabilities of all the paths can be manually obtained from path
analyses. For path B-C-E to be longer than path A-C-E,
condition dB>dA must be satisfied, and for it to be longer than
path B-D-E, dC>dD should be true. Since conditions dB>dA and
dC>dD are independent, the criticality of path B-C-E is equal to
P(dB>dA)*P(dC>dD), which is 0.25. Path A-C-E and B-D-E are
symmetric when compared to path B-C-E, so their criticalities
are equal. The true criticalities of all the paths are listed as the
second column of Table 2.

The ATP of each edge is obtained from a block-based SSTA
algorithm and marked directly in Figure 1. The last two columns
of Table 2 show path criticalities calculated as the products of all
ATP’s along the paths, and their corresponding errors compared
to the true criticalities.

Table 2. Path criticalities from ATP products
Path True Independence Error

A-C-E 0.375 0.5*0.6268=0.3134 16.4%
B-C-E 0.25 0.5*0.6268=0.3134 25.4%
B-D-E 0.375 1.0*0.3736=0.3736 0.4%

From the above example, we find that the method proposed
in [5] does not work correctly on the circuits with the re-
convergent fan-outs.

Let us now consider the path B-C-E as an example to see the
cause of the errors. Operator AT(.) denotes the node output
arrival time. The probability for path B-C-E of being critical is:

)]()(|)()([
)]()([

)]}()([)]()({[1

AATBATDATCATP
AATBATP

DATCATAATBATPp

>>
•>=

>∩>=
 (3)

while under the independence assumption, the probability is
instead calculated as the product of ATP’s:

)]()([)]()([2 DATCATPAATBATPp >•>= (4)
As we know from probability theorems, only when events

AT(C)>AT(D) and AT(B)>AT(A) are statistically independent,
(3) and (4) are equivalent. Due to the re-convergent fan-out,
when AT(A)>AT(B), it is more probable that AT(C)>AT(D),
because AT(C)=d0+dC+AT(A) and AT(D)=d0+dD+AT(B).
Therefore, when correlations are present, we have to use
conditional probabilities instead of the products of individual
ATP’s. On the other hand, for paths like B-D-E, because the
tightness variables at node D and E are independent, the
previous method still results in good accuracy. A 0.5

C 0.6268
0.5 3. Criticality calculation E

1.0 0.3736

Figure 2 Path criticality

From Section 2, we know that conditional probabilities
should be used when the correlations exist. Figure 2 shows a
general case for path criticality calculation. If a path with l nodes
is considered, APi (1≤i≤l) is the arrival time of the on-path signal
of the i-th node. We also assume that at this node, there are ki
side-inputs and ASi,j (1≤ i ≤ l,1≤ j≤ ki) is the signal arrival time of
its j-th side input.

After a block-based statistical timing analysis is performed,
we have arrival times of all nodes as quadratic functions of all
the process parameters. Accordingly, the criticality probability
can be defined by the following conditions:

]})([{
1 1

,I I
l

i

k

j
jii

i

ASAPPp
= =

>= (5)

∑
=

=
l

i
ikm

1

 (6)

B D

i-1
APi-1 APi i i+1

APi+1

ASi,2

ASi-1,1 ASi,1 ASi+1,1

 699

In (5), the inner intersection operation defines the local
conditions at a particular node, which requires the on-path signal
to arrive later than all side-input signals. This is consistent with
the calculation of the ATP’s. The outer intersection operation
requires that the local conditions of all nodes along the path to
be satisfied at the same time. The total number of conditions in
(5) is m.

The path criticality calculation turns out to be equivalent to
the problem of finding the probability of a sub-space formed by
all these m conditions. Figure 3 illustrates a two-dimensional
(with two process parameters) sub-space example with three
hypothetical linear conditions. Because all process parameters
are assumed to be normalized Gaussian random variables, the
sub-space is defined by the 3σ bounding box and all the
conditions. The shaded area indicates the sub-space for the
assumed linear conditions:

)0(
)0()0(

3132

21221112
>−−∩

>−−∩>−−
bXaX

bXaXbXaX
 (7)

and its probability is what we want to know.
For general cases with n process parameters and m nonlinear

conditions, the sub-space can be similarly represented by a
hyper-plane. To derive the sub-space is very complicated and
computationally expensive. However, since only the probability
of the sub-space is sought, we hereby propose two efficient
techniques to solve this problem.

Figure 3 Sub-space example

3.1 Max approach

The first proposed solution is to use max operation. To use
max operation, we hereby re-write (5) as:

]0),...,,A
,

,,...,,A

,,...,,([

]})0([{

,2,1,

2,222,221,2

1,112,111,1

1 1
,

2

1

<−−−
•••

−−−

−−−=

<−=
= =

lklllll

k

k

l

i

k

j
iji

APASAPASAPS

APASAPASAPS

APASAPASAPASmaxP

APASPp

l

i

I I

 (8)

Because we have already derived all the m conditions as
quadratic functions, we can do the max operation pair-wise by
moment matching techniques [7]. Equations (9)-(12) present the
quadratic approximation of the max operation, where inputs D1
and D2 are quadratic condition functions.

γβα ++== ∑ ∑
ji i

iijiij xxxDDmaxD
,

21),((9)

ni1DxE i
xx

i
n

≤≤=)(
),...(1

β (10)























⋅

⋅
⋅

•























=























+

−

)(
)(

)(
)(

1111
1311

1131
1113

2

2
2

2
1

1

1

22

11

DE
DxE

DxE
DxE

n

n

nn

M

444 3444 21
L

L

MMOMM

L

K

M

γ
α

α
α

 (11)

nji 1DxxE ji
xx

ij
n

≤<≤=)(
),...,(1

α (12)

The detailed derivation of the moments
 can be found in [7]. Based

on this moment matching technique, we are able to fit the result
of a max operation with two quadratic inputs back to a new
quadratic function of the same parameters. After m-1 max
operations over all the m conditions, we get the final quadratic
function X

)(and),(),(),(2 DxxEDxEDxEDE jiii

TAX+BX+C that represents the condition sub-space,
where A, B and C are the fitted quadratic approximation
coefficients of the sub-space defined by all the m conditions. The
path criticality can thus be obtained by numerical integrations
over the normalized Gaussian distributed process parameters X:

)0(<++= CBXAXXPp T (13)
As the max operation is the core of this approach, both accuracy
and efficiency of this solution rely on the max operation. X2

3σ 3.2 Monte Carlo integration

The second proposed solution is to use Monte Carlo
integration to get the sub-space probability. In (5), we know all
the conditions for a given path to become critical from the block-
based SSTA. The path criticality is the probability for all the
conditions to be satisfied simultaneously. To calculate this
criticality, we generate N sets of random process parameters and
substitute them into (5). A counter will be used to calculate how
many process parameter sets satisfy all the conditions. The path
criticality is calculated as the final counter value divided by N.
The accuracy of Monte Carlo Integration is determined by the
number of simulations N: [9]

-3σ
3σ X1X2-a3X1-b3>0

-3σ X2-a2X1-b2>0 X2-a1X1-b1>0

 N
fEfEVfEVdVf)()(22

)(−⋅±⋅≈∫ (14)

where f is the function that bounds the sub-space defined by all
the m conditions, V is the corresponding multidimensional
volume, and E(.) is the expectation operator. From (14), the error
of Monte Carlo Integration is proportional to

N
1 . Therefore, a

10,000-point Monte Carlo integration holds the error to the order
of 0.01, which usually gives good enough accuracy.

3.3 Algorithm

Both approaches have been integrated into our block-based
SSTA tool. The algorithm is illustrated in Figure 4.

The algorithm takes three input variables: path_set, the paths
to analyze; mode, the working mode; and PT, probability
threshold. Path_set is a set of sorted long paths to be evaluated
for criticality. They can be the long paths (both critical and non-
critical) under nominal delays from STA tools, sorted in a
descending order of their delays. The mode input indicates
whether we use max operation or Monte Carlo Integration for

 700

criticality calculation. PT, the probability threshold can be
interpreted as a performance/cost tradeoff criterion. We evaluate
the criticality probability path by path. Once the total criticality
of those paths that have already been evaluated reaches PT, the
algorithm exits. If PT is too small, some important paths may be
missing during the analysis, while if it is set to 1, we will obtain
all statistical critical paths including those that only have tiny
probabilities of being critical. This will increase the
computational cost. For example, if PT is set to 0.95, our
algorithm will report the top 95% critical paths. Suppose you
have a simple circuit with 10 paths. Among them, path A has a
criticality probability of 0.70 and path B has a criticality
probability of 0.26, while other paths have small criticalities.
When path_set includes all the 10 paths, the algorithm
terminates exactly when both path A and B have been reported.

Statistical_Critical_Path_Analysis (path_set, mode, PT)
 {
 Block_Based_SSTA();
 if(mode==Monte Carlo) {
 generate_random_vectors();
 }
 While(path_set!=NULL && total_probability<PT)
 {
 pick_next_path();
 get_all_conditions();
 prob=get_criticality(mode);
 total_probability+=prob;
 }
}

Figure 4 Critical path analysis algorithm

After the algorithm is launched, a block-based SSTA
algorithm is first applied to get arrival times of all the nodes in a
circuit. Then the first path from path_set is selected and the
conditions for it to be critical are derived at all on-path nodes.
On each node, the conditions are that the on-path signal arrives
later than all side-input signals. Next, one of the proposed
approaches will be used to calculate the probability when all the
conditions are satisfied. After one path is evaluated, the next
longest path in path_set will be analyzed until either all paths are
evaluated or the probability threshold PT is reached.

In path-based SSTA algorithms, criticality of a certain path is
highly dependent to all the other paths being analyzed. If some
statistical critical paths are missing, the criticalities of all the
analyzed paths will be overestimated. Therefore, unless all the
statistical critical paths are considered in the path-based SSTA,
the path criticalities obtained are not accurate. Our path
criticality analysis is much more robust since path’s criticality is
independent to the other paths and totally determined by the
analysis on itself. Moreover, due to the probability threshold, not
all paths in path_set are necessary to be evaluated. Therefore, we
recommend that path_set includes non-critical long paths under
nominal delays as well. This is very important especially when
we are analyzing large industrial circuits. If due to limited
resources, the analysis of all paths can’t finish, the outputs of
path-based SSTA’s are useless. However, in our approach, even
partial results are still very useful to circuit designers.

When we apply the two proposed approaches to the example
in Figure 1, the corresponding results are shown in Table 3.

Column True lists the correct path criticalities, column Max
shows the criticalities from proposed max approach and column

MC is the result from the proposed Monte Carlo with 10,000-
point Monte Carlo integrations. Comparing them to the
Independence results in Table 2, we can see that the proposed
approaches are much more accurate.

Table 3. Result of our algorithm on the example in Figure 1
Path True Max MC

A-C-E 0.375 0.371 0.379
B-C-E 0.25 0.248 0.246
B-D-E 0.375 0.381 0.375

3.4 Gate criticality

As mentioned earlier, path criticalities can be used in
statistical gate sizing for circuit optimizations. The long paths
with high criticalities are the statistical critical paths that should
be optimized. However, sizing different gates on the same
critical path has different impacts on final circuit delays. To look
into this problem further, we hereby introduce a measurement of
the importance of a particular gate to the final circuit
performance: gate criticality. A simple calculation of gate
criticalities from statistical critical path criticalities will be
discussed as well.

We can group all the gates in a circuit into three categories:
• Gates that are not on any statistical critical paths

For this type of gates, their criticalities are zero. These
gates are always on non-critical paths in all the process
space, which means that they have no impact on the
final circuit delay under any process environments.

• Gates that are on one statistical critical path
Their criticalities are the criticalities of the paths
passing through them. These gates are only on one
statistical path. It means that only when that specific
long path becomes critical, will these gates determine
the circuit delay. In other parts of the process space,
sizing of these gates does not help in improving the
circuit performance.

• Gates that are on multiple statistical critical paths
The criticalities of these gates are the sum of the
criticalities of all the paths that pass through them.
Intuitively, the more critical paths go through a gate,
the more important this gate is.

Upon the definition, gate criticality is a non-negative value
from zero to one. If a gate has a criticality of one, all statistical
critical paths of the circuit go through this gate. With gate
criticalities, circuit designers can size up the highly critical gates
or switch from high Vt to low Vt on these gates for better circuit
performance.

 I10

I1 G1 G5 I22

Figure 5 Gate criticalities of circuit C17

Here we use an example to show the gate criticality concept.
In Figure 5, C17 circuit from ISCAS85 benchmark is shown. Let
us assume that path I6-G2-I11-G3-I16-G5-I22 (the solid line)

G2

G3

G4

G6

I7

I3

I2 I16

I11I6
I19

I23

 701

and I6-G2-I11-G4-I19-G6-I23 (the pointed line) are the two
statistical critical paths in the circuit with criticality of p and q
respectively, where p+q=1.

Based on our definition of gate criticality, gate G1 belongs to
Category 1, which has a zero criticality. Gates G3, G4, G5 and
G6 belong to Category 2, with criticalities of p, q, p and q,
accordingly. Gate G2 is on both critical paths, thus it has a
criticality of p+q=1. Therefore, from our analysis, G2 is the first
priority for optimization.

4. Experiments

The algorithm in Figure 4 has been integrated into our block-
based SSTA tool in C++. In this section, extensive experiments
are performed for the ISCAS85 benchmark circuits as well as an
industrial circuit M1 with 1K gates, under 90nm process
technology conditions. The results from different approaches are
compared for both accuracy and efficiency. In the experiments,
PT is set to 0.95 to get top statistical critical paths up to 95%
probability, and 10,000-point simulations are used in our
proposed Monte Carlo approach. All experiments were
performed on an AMD Athlon MP 2600+ Linux workstation.

Table 4 lists the probabilities of the top statistical critical path
of all the experimented circuits. The Independence experiment
assumes path independence and calculates path criticalities as
the product of the tightness of all the on-path nodes. The
Proposed Max and the Proposed MC columns show the results
from our algorithm described in Section 3. To verify the
accuracy of these three methodologies, we performed a true
Monte Carlo experiment as well. In this true Monte Carlo
experiment, we randomly select 10,000 variational process
parameter sets based on the parameters’ distributions, and
perform Static Timing Analysis under fixed delay models for
every condition. In each STA run, we collect the static critical
path of the circuit. The top statistical critical paths are those
paths that are reported as critical under most given process
conditions. The true Monte Carlo has the best accuracy but is too
expensive for practical circuits. It is hundreds of times slower
than the other three approaches. The CPU runtimes of all four
experiments to get up to 95% statistical critical paths are listed in
Table 5.

Compared to the True Monte Carlo approach, the
Independence, the proposed Max, and the proposed Monte Carlo
approach have an average error of 8.69%, 1.51%, and 0.39%
respectively over all the eleven circuits. When we look more
closely at the Independence approach, we find that for some
circuits, it is very accurate, but for some others, the errors are as
large as 38.37%. Its accuracy is strongly related to circuit
topologies. For those circuits with many re-convergent fan-outs
and/or strong spatial correlations, such as C6288, the accuracy
deteriorates considerably.

If we compare the two proposed approaches, the proposed
Monte Carlo approach excels over the proposed Max approach
in terms of accuracy with similar CPU run times. The reasons
can be justified as follows. Based on (14), the accuracy of the
proposed Monte Carlo approach is only determined by the
number of Monte Carlo integrations N, and irrelevant to the
number of process parameters involved. On the contrary, the
accuracy of the proposed Max approach relies on the number of
process parameters as well as the number of conditions.
Although we have used a non-linear approximation for the max
operation, errors may still accumulate during the max operations
of conditions, especially when we have a large number of

conditions. Unfortunately, this is often the case in large circuits.
The results in Table 6 can justify this issue further. Table 6
shows the criticalities of all the statistical critical paths up to
95% probability threshold of benchmark circuit C2670. The true
Monte Carlo experiment and the proposed Monte Carlo
approach both report four statistical critical paths while the
proposed Max approach reports five. The proposed Monte Carlo
approach gets very good results on all top critical paths while the
max approach doesn’t do very well on the third and fourth
critical paths. That is because, for shorter paths, the arrival times
of on-path signals and side-inputs become closer. This can cause
the mean values of the max operands, , to be very
close, which is the case when max operation suffers from largest
errors in approximations. Of course, the smaller criticalities on
shorter paths also make the relative errors look larger.
Nevertheless, we want to point out that the reported statistical
critical paths from both proposed approaches match the ones
from the true Monte Carlo approach, which gives circuit
designers and test engineers correct set of paths to focus on.
Also, if higher order max operation is used, the proposed max
approach should show much better accuracy.

iji APAS −,

The complexities of both proposed approaches of calculating
a single path criticality are linear with respect to the number of
conditions m. The number of conditions of a circuit is bounded
by the number of the gate fan-ins times the path length. In
modern digital circuits, the number of gate fan-ins is typically
less than 4, and the path length is less than 20. This guarantees
the efficiency of our approaches. Compared between the two
proposed approaches, the max approach needs m-1 max
operations, and the complexity of max operation is linear to the
number of process parameters and super linear to the number of
sampling points for numerical calculations [7]. On the contrary,
the complexity of the proposed Monte Carlo approach is linear
to the number of simulations, which is 10,000 in our
experiments. Moreover, when the proposed Monte Carlo
approach verifies the conditions, once a condition is violated, it
just skips all the other conditions and goes on with the next
Monte Carlo simulation. This makes the approach very efficient.

5. Conclusions

In this work, we proposed and developed two efficient
statistical critical path analysis approaches for block-based
SSTA tools. Our algorithm reports good results for statistical
critical path analysis in circuits with arbitrary correlations
caused by re-convergent fan-outs and process spatial
correlations. They enable block-based algorithms to get accurate
critical paths with little computing overhead. The algorithm can
be added to any block-based SSTA tools as a post-processing
step and benefit both circuit designers and test engineers.

Compared to the path-based SSTA algorithms, our
approaches are much more robust and efficient in calculating
path criticalities. In path-based SSTA, if we don’t include all
long paths in the analysis, the accuracy of all criticalities will be
impaired. However, if we analyze a large number of paths, the
computational cost increases considerably, since before all paths
are evaluated, we do not know the criticality of any path. In our
approaches, even if not all statistical critical paths are
considered, the criticalities of those analyzed paths are still
accurate. Moreover, a large path set usually does not hurt the
speed, because most non-critical paths will not be analyzed due
to the probability threshold.

 702

6. Acknowledgement

This work was supported by the MARCO Focus Center for
Circuit & System Solutions (C2S2, www.c2s2.org) under
contract 888 and Advanced Micro Devices.

7. Reference

[1] A. Gattiker, S. Nassif, R. Dinakar and C. Long, “Static
Timing Analysis Based Circuit-Limited-Yield Estimation”,
IEEE International Symposium on Circuits and Systems, 2002.
Volume 5, 26-29 May 2002
[2] M. Orshansky and K. Keutzer, “A General Probabilistic
Framework for Worst Case Timing Analysis”, Proc. DAC, pp
556-561, June 2002
[3] J. A. G. Jess and K. Kalafala et al, “Statistical timing for
parametric yield prediction of digital integrated circuits”, Proc.
DAC, pp. 932-937, June 2003

[4] H. Chang, S. S. Sapatnekar, “Statistical timing analysis
considering spatial correlations using a single PERT-like
traversal”, IEEE ICCAD, pp. 621-625 November 2003
[5] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker,
S. Narayan, “First-Order Incremental Block-Based Statistical
Timing Analysis”, Proc. 2004 DAC, pp. 331-336, June 2004
[6] J. Le, X. Li, L. T. Pileggi, “STAC: Statistical Timing
Analysis with Correlation”, Proc. 2004 DAC, pp. 343-348, June
2004
[7] Y. Zhan, A. J Strojwas, X. Li, L. T. Pileggi, D. Newmark,
M. Sharma, “Correlation-Aware Statistical Timing Analysis with
Non-Gaussian Delay Distributions”, Proc. 2005 DAC, June 2005
[8] H. Chang, V. Zolotov, S. Narayan, C. Visweswariah,
“Parameterized Block-Based Statistical Timing Analysis with
Non-Gaussian Parameters and Nonlinear Delay Functions”,
TAU workshop, 2005
[9] J. M. Hammersley and D. C. Handscomb, Monte Carlo
Methods, Methuen’s monographs, London, 1964

Table 4. Probabilities of the top statistical critical path

True MC Independence Proposed Max Proposed MC Circuit Probability Probability Error (%) Probability Error (%) Probability Error (%)
C432 0.8682 0.8147 -6.16 0.8696 0.16 0.8686 0.05
C499 0.8603 0.7591 -11.76 0.8664 0.71 0.8611 0.09
C880 0.6966 0.6849 -1.68 0.6844 -1.75 0.6953 -0.19

C1355 0.8108 0.7637 -5.81 0.8241 1.64 0.8148 0.49
C1908 0.8723 0.8810 1.00 0.8874 1.73 0.8739 0.18
C2670 0.3556 0.3790 6.58 0.3504 -1.46 0.3587 0.87
C3540 0.9963 0.9991 0.28 1.0000 0.37 0.9967 0.04
C5315 0.8279 0.8119 -1.93 0.8069 -2.54 0.8253 -0.31
C6288 0.3706 0.2284 -38.37 0.3689 -0.46 0.3720 0.38
C7552 0.3805 0.4000 5.12 0.3603 -5.31 0.3870 1.71

M1 0.5502 0.4575 -16.85 0.5478 -0.44 0.5501 0.02

Table 5. CPU run time of getting top 95% statistical critical paths

Circuit True MC Independence Proposed Max Proposed MC
C432 845.58 2.90 6.39 3.01
C499 978.6 1.81 5.07 2.03
C880 1357.01 1.88 3.70 3.65

C1355 2455.24 4.72 4.92 4.84
C1908 3221.11 3.15 3.90 3.28
C2670 4188.79 5.89 11.74 6.73
C3540 6102.67 6.85 7.51 6.78
C5315 9766.77 22.23 25.23 22.77
C6288 11690.84 22.03 28.49 27.80
C7552 12830.86 20.21 19.99 20.19

M1 4505.38 11.80 12.01 12.07

Table 6. Criticalities of top 95% statistical critical paths of C2670

True MC Proposed Max Proposed MC Path Rank Criticality Criticality Error (%) Criticality Error (%)
1 0.3556 0.3504 -1.46 0.3587 0.87
2 0.3471 0.3305 -4.78 0.3476 0.14
3 0.2291 0.2056 -10.26 0.2271 -0.87
4 0.0340 0.0457 34.41 0.0326 -4.12
5 N/A 0.0182 N/A N/A N/A

 703

	Statistical Critical Path Analysis Considering Correlations
	Abstract
	1. Introduction
	
	
	Figure 2 Path criticality
	Figure 3 Sub-space example

	Both approaches have been integrated into our block-based SSTA tool. The algorithm is illustrated in Figure 4.

	Statistical_Critical_Path_Analysis (path_set, mode, PT)
	{

