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Abstract 

Critical Path Analysis is always an important task in timing 
verification. For today’s nanometer IC technologies, process 
variations have a significant impact on circuit performance. The 
variability can change the criticality of long paths [1]. 
Therefore, statistical approaches should be incorporated in 
Critical Path Analysis. In this paper, we present two novel 
techniques that can efficiently evaluate path criticality under 
statistical non-linear delay models. They are integrated into a 
block-based Statistical Timing tool with the capability of 
handling arbitrary correlations from manufacturing process 
dependence and also path sharing. Experiments on ISCAS85 
benchmarks as well as industrial circuits prove both accuracy 
and efficiency of these techniques. 
  
1. Introduction 
 

For today’s increasing complexity of VLSI designs and 
tighter timing constraints, timing verification has become a more 
challenging and important task. Timing information is very 
useful for both design optimization and yield improvement in 
manufacturing. Meanwhile, as IC technologies are scaled down 
to the nanometer regions, circuit delays become highly 
dependent on manufacturing process variations, especially the 
intra-die variations, of both gates and interconnects. Due to the 
correlations among component (gate and interconnect) delays, 
corner case analysis using traditional Static Timing Analysis 
(STA) tools is very pessimistic and not capable of finding the 
circuit delay in variational environments.  

As a solution, Statistical Static Timing Analysis algorithms 
(SSTA) have been proposed recently. Instead of propagating 
fixed delay values through gates and interconnect, SSTA 
propagates delay distributions characterized by delay Probability 
Density Functions (PDFs) [2-8].  

Path-based SSTA algorithms perform delay analysis path by 
path [2][3]. They are accurate, good at capturing correlations, 
and able to report statistical critical paths for circuit 
optimizations. However, due to the large number of long paths in 
commercial circuits, we cannot afford to analyze all those paths. 
Usually, only the top K longest paths are selected and passed to 
the path-based algorithms for analysis. The task of selecting the 
top paths before statistical analyses, when both inter-die and 
intra-die variations are present, is a very challenging one. Since 
non-critical paths in some part of the process space might 
become critical in the other part of the process space, no one 
knows whether a path may or may not become critical in a 
particular variational environment without statistical analyses. 
Therefore, some statistical critical paths may not be included in 
the path set, thus not be analyzed by the path-based SSTA 
algorithms. All these paths that are not in the top path set will 
never be reported for optimization which makes the sizing of the 
reported long paths not effective. 

On the other hand, block-based algorithms [4-8] are efficient 
and incremental, but they often do not provide good estimates on 

critical paths. Since block-based approaches are breadth-first and 
done level by level, no critical paths are reported to circuit 
designers. However, from the circuit designers’ standpoint, 
critical paths are equally valuable as the final circuit delay 
distributions, since designers can improve circuit performance 
by optimizing critical path delays. Meanwhile, to ensure correct 
timing behavior, it is a common practice to include testing of a 
set of critical paths. Critical paths are very useful for test 
engineers to generate the test vectors as well. Moreover, the 
critical paths can be treated as the top K longest paths for path-
based SSTA algorithms that enable us to do more specific 
analyses for better timing accuracy. Therefore, for block-based 
algorithms, accurate critical path analysis is very useful.  

As we know, under statistical delay model assumptions, 
many paths will change their rankings due to process variations. 
Non-critical paths under nominal delay environment may 
become critical under certain variations. Therefore, traditional 
critical path analysis must be extended to statistical critical path 
analysis. Moreover, the correlations resulting from path sharing 
as well as manufacturing process dependence make this problem 
even more challenging.  

In this paper, we propose two novel approaches for path 
criticality analysis with the capability of handling any delay 
correlations between any two paths. Both approaches have been 
integrated into our block-based SSTA tool as a post-processing 
step. The approaches require little CPU overhead and provide 
very accurate results. The organization of the rest of the paper is 
as follows: In Section 2, we review previous research on path 
criticality calculations. We propose our two efficient approaches 
and discuss our algorithms in Section 3. Experimental results for 
both ISCAS85 and industrial circuits are given in Section 4. We 
conclude this paper in Section 5. 
 
2. Background 
 

Traditionally, critical paths are defined as the longest 
sensitizable paths under fixed delay models. However, under 
statistical delay models, each path has a delay distribution. A 
path may be longer than another path under some process 
variations, but shorter in other cases. The criticality probability 
is associated with certain circumstances under which a 
sensitizable path is critical, i.e., it determines the delay of the 
circuit. Any path that has a non-zero probability of being critical 
is defined as one of the statistical critical paths. The sum of the 
criticality probabilities of all statistical critical paths is one. The 
statistical critical paths are ranked by their criticalities. The path 
with the largest criticality probability is most important and is 
the one that circuit designers should look at first for performance 
and yield optimization.  

To calculate path criticality in the nanometer process 
technologies, correlations between paths must be taken into 
account. There are two major sources of correlations. The first 
source is from re-convergent fan-outs of the circuit, and the 
other source comes from the spatial correlations of process 
parameters, such as inter-die variations and systematic intra-die 
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variations. To consider these correlations, we use the 
parameterized SSTA technique to represent all the delays and 
arrival times. Quadratic delay models are used to account for 
nonlinear delays. Suppose X=(x1,x2,...,xn) is a set of independent 
process parameters with normalized Gaussian distributions, 
which can be derived from a Principal Component Analysis 
(PCA) approach. We can represent any gate/interconnect delay 
Di and signal arrival time ATi in the following forms:  
         (1) DiDiDi

T
i CXBXAXD ++=

        (2) ATiATiATi
T

i CXBXAXAT ++=
In a previous research [5], the authors proposed their path 

criticality calculation method in a block-based SSTA 
methodology. In a timing graph, each edge is annotated with an 
Arrival Tightness Probability (ATP), which is the probability 
that the edge determines the arrival time of its sink node. The 
probability of a path being critical is calculated as the product of 
the ATP’s of all edges along the path. However, this method is 
valid only when the criticality probabilities of any two paths are 
independent to each other. When complicated correlations are 
present in modern circuits, this assumption is not true. To 
demonstrate this, let us examine the circuit example with re-
convergent fan-outs and process spatial correlations shown in 
Figure 1.  

We assume that the delay of each circuit node consists of two 
parts, the systematic part due to spatial correlations and the 
independent random part. More specifically, we assume the 
systematic delays of all nodes are equal to d0 due to their close 
locations, and the random parts are independent normalized 
Gaussian variables (dA through dE). This assumption is not 
necessary for our analysis, but just to simplify the criticality 
calculations for this example.  
 

 

 

 

Figure 1  Circuit example with re-convergent fan-outs 

Table 1. Node delays and arrival times of the example in 
Figure 1 

Node Delay Output Arrival Time 
A d0+dA d0+dA 
B d0+dB d0+dB 
C d0+dC 2d0+dC+max(dA,dB) 
D d0+dD 2d0+dB+dD 

E d0+dE 
3d0+dE+max(dB+dD, 

dC+max(dA,dB)) 

The delays and arrival times of all the nodes are listed in 
Table 1. Based on our simplified assumption, the true criticality 
probabilities of all the paths can be manually obtained from path 
analyses. For path B-C-E to be longer than path A-C-E, 
condition dB>dA must be satisfied, and for it to be longer than 
path B-D-E, dC>dD should be true. Since conditions dB>dA and 
dC>dD are independent, the criticality of path B-C-E is  equal to 
P(dB>dA)*P(dC>dD), which is 0.25. Path A-C-E and B-D-E are 
symmetric when compared to path B-C-E, so their criticalities 
are equal. The true criticalities of all the paths are listed as the 
second column of Table 2. 

The ATP of each edge is obtained from a block-based SSTA 
algorithm and marked directly in Figure 1. The last two columns 
of Table 2 show path criticalities calculated as the products of all 
ATP’s along the paths, and their corresponding errors compared 
to the true criticalities.  

Table 2. Path criticalities from ATP products 
Path True Independence Error 

A-C-E 0.375 0.5*0.6268=0.3134 16.4% 
B-C-E 0.25 0.5*0.6268=0.3134 25.4% 
B-D-E 0.375 1.0*0.3736=0.3736 0.4% 

From the above example, we find that the method proposed 
in [5] does not work correctly on the circuits with the re-
convergent fan-outs.  

Let us now consider the path B-C-E as an example to see the 
cause of the errors. Operator AT(.) denotes the node output 
arrival time. The probability for path B-C-E of being critical is: 
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    (3) 

while under the independence assumption, the probability is 
instead calculated as the product of ATP’s:  

)]()([)]()([2 DATCATPAATBATPp >•>=     (4) 
As we know from probability theorems, only when events 

AT(C)>AT(D) and AT(B)>AT(A) are statistically independent, 
(3) and (4) are equivalent. Due to the re-convergent fan-out, 
when AT(A)>AT(B), it is more probable that AT(C)>AT(D), 
because AT(C)=d0+dC+AT(A) and AT(D)=d0+dD+AT(B). 
Therefore, when correlations are present, we have to use 
conditional probabilities instead of the products of individual 
ATP’s. On the other hand, for paths like B-D-E, because the 
tightness variables at node D and E are independent, the 
previous method still results in good accuracy. A 0.5 

C 0.6268  
0.5 3. Criticality calculation E 

1.0  0.3736 
 

 

 

 

Figure 2    Path criticality 

From Section 2, we know that conditional probabilities 
should be used when the correlations exist. Figure 2 shows a 
general case for path criticality calculation. If a path with l nodes 
is considered, APi (1≤i≤l) is the arrival time of the on-path signal 
of the i-th node. We also assume that at this node, there are ki 
side-inputs and ASi,j (1≤ i ≤ l,1≤ j≤ ki) is the signal arrival time of 
its j-th side input.  

After a block-based statistical timing analysis is performed, 
we have arrival times of all nodes as quadratic functions of all 
the process parameters. Accordingly, the criticality probability 
can be defined by the following conditions: 
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In (5), the inner intersection operation defines the local 
conditions at a particular node, which requires the on-path signal 
to arrive later than all side-input signals. This is consistent with 
the calculation of the ATP’s. The outer intersection operation 
requires that the local conditions of all nodes along the path to 
be satisfied at the same time. The total number of conditions in 
(5) is m. 

The path criticality calculation turns out to be equivalent to 
the problem of finding the probability of a sub-space formed by 
all these m conditions. Figure 3 illustrates a two-dimensional 
(with two process parameters) sub-space example with three 
hypothetical linear conditions. Because all process parameters 
are assumed to be normalized Gaussian random variables, the 
sub-space is defined by the 3σ bounding box and all the 
conditions. The shaded area indicates the sub-space for the 
assumed linear conditions: 

)0(
)0()0(

3132

21221112
>−−∩

>−−∩>−−
bXaX

bXaXbXaX
    (7) 

and its probability is what we want to know.  
For general cases with n process parameters and m nonlinear 

conditions, the sub-space can be similarly represented by a 
hyper-plane. To derive the sub-space is very complicated and 
computationally expensive. However, since only the probability 
of the sub-space is sought, we hereby propose two efficient 
techniques to solve this problem.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3    Sub-space example 
 
3.1 Max approach 
 

The first proposed solution is to use max operation. To use 
max operation, we hereby re-write (5) as: 
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Because we have already derived all the m conditions as 
quadratic functions, we can do the max operation pair-wise by 
moment matching techniques [7]. Equations (9)-(12) present the 
quadratic approximation of the max operation, where inputs D1 
and D2 are quadratic condition functions. 
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The detailed derivation of the moments 
 can be found in [7]. Based 

on this moment matching technique, we are able to fit the result 
of a max operation with two quadratic inputs back to a new 
quadratic function of the same parameters. After m-1 max 
operations over all the m conditions, we get the final quadratic 
function X

)(   and ),( ),( ),( 2 DxxEDxEDxEDE jiii

TAX+BX+C that represents the condition sub-space, 
where A, B and C are the fitted quadratic approximation 
coefficients of the sub-space defined by all the m conditions. The 
path criticality can thus be obtained by numerical integrations 
over the normalized Gaussian distributed process parameters X: 

)0( <++= CBXAXXPp T          (13) 
As the max operation is the core of this approach, both accuracy 
and efficiency of this solution rely on the max operation. X2  

3σ 3.2 Monte Carlo integration 
 

The second proposed solution is to use Monte Carlo 
integration to get the sub-space probability. In (5), we know all 
the conditions for a given path to become critical from the block-
based SSTA. The path criticality is the probability for all the 
conditions to be satisfied simultaneously. To calculate this 
criticality, we generate N sets of random process parameters and 
substitute them into (5). A counter will be used to calculate how 
many process parameter sets satisfy all the conditions. The path 
criticality is calculated as the final counter value divided by N. 
The accuracy of Monte Carlo Integration is determined by the 
number of simulations N: [9] 

-3σ 
3σ X1X2-a3X1-b3>0 

-3σ X2-a2X1-b2>0 X2-a1X1-b1>0

 N
fEfEVfEVdVf )()( 22

)( −⋅±⋅≈∫      (14) 

where f is the function that bounds the sub-space defined by all 
the m conditions, V is the corresponding multidimensional 
volume, and E(.) is the expectation operator. From (14), the error 
of Monte Carlo Integration is proportional to 

N
1 . Therefore, a 

10,000-point Monte Carlo integration holds the error to the order 
of 0.01, which usually gives good enough accuracy.  
 
3.3 Algorithm 
 

Both approaches have been integrated into our block-based 
SSTA tool. The algorithm is illustrated in Figure 4.  

The algorithm takes three input variables: path_set, the paths 
to analyze; mode, the working mode; and PT, probability 
threshold. Path_set is a set of sorted long paths to be evaluated 
for criticality. They can be the long paths (both critical and non-
critical) under nominal delays from STA tools, sorted in a 
descending order of their delays. The mode input indicates 
whether we use max operation or Monte Carlo Integration for 
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criticality calculation. PT, the probability threshold can be 
interpreted as a performance/cost tradeoff criterion. We evaluate 
the criticality probability path by path. Once the total criticality 
of those paths that have already been evaluated reaches PT, the 
algorithm exits. If PT is too small, some important paths may be 
missing during the analysis, while if it is set to 1, we will obtain 
all statistical critical paths including those that only have tiny 
probabilities of being critical. This will increase the 
computational cost. For example, if PT is set to 0.95, our 
algorithm will report the top 95% critical paths. Suppose you 
have a simple circuit with 10 paths. Among them, path A has a 
criticality probability of 0.70 and path B has a criticality 
probability of 0.26, while other paths have small criticalities. 
When path_set includes all the 10 paths, the algorithm 
terminates exactly when both path A and B have been reported.  

Statistical_Critical_Path_Analysis (path_set, mode, PT) 
 {  
    Block_Based_SSTA(); 
    if(mode==Monte Carlo) { 
        generate_random_vectors(); 
    }  
    While(path_set!=NULL && total_probability<PT) 
    { 
        pick_next_path();  
        get_all_conditions(); 
        prob=get_criticality(mode); 
        total_probability+=prob;  
    }  
}  

Figure 4    Critical path analysis algorithm 

After the algorithm is launched, a block-based SSTA 
algorithm is first applied to get arrival times of all the nodes in a 
circuit. Then the first path from path_set is selected and the 
conditions for it to be critical are derived at all on-path nodes. 
On each node, the conditions are that the on-path signal arrives 
later than all side-input signals. Next, one of the proposed 
approaches will be used to calculate the probability when all the 
conditions are satisfied. After one path is evaluated, the next 
longest path in path_set will be analyzed until either all paths are 
evaluated or the probability threshold PT is reached.  

In path-based SSTA algorithms, criticality of a certain path is 
highly dependent to all the other paths being analyzed. If some 
statistical critical paths are missing, the criticalities of all the 
analyzed paths will be overestimated. Therefore, unless all the 
statistical critical paths are considered in the path-based SSTA, 
the path criticalities obtained are not accurate. Our path 
criticality analysis is much more robust since path’s criticality is 
independent to the other paths and totally determined by the 
analysis on itself. Moreover, due to the probability threshold, not 
all paths in path_set are necessary to be evaluated. Therefore, we 
recommend that path_set includes non-critical long paths under 
nominal delays as well. This is very important especially when 
we are analyzing large industrial circuits. If due to limited 
resources, the analysis of all paths can’t finish, the outputs of 
path-based SSTA’s are useless. However, in our approach, even 
partial results are still very useful to circuit designers. 

When we apply the two proposed approaches to the example 
in Figure 1, the corresponding results are shown in Table 3.  

Column True lists the correct path criticalities, column Max 
shows the criticalities from proposed max approach and column 

MC is the result from the proposed Monte Carlo with 10,000-
point Monte Carlo integrations. Comparing them to the 
Independence results in Table 2, we can see that the proposed 
approaches are much more accurate. 

Table 3. Result of our algorithm on the example in Figure 1 
Path True Max MC 

A-C-E 0.375 0.371 0.379 
B-C-E 0.25 0.248 0.246 
B-D-E 0.375 0.381 0.375 
 

3.4 Gate criticality 
 

As mentioned earlier, path criticalities can be used in 
statistical gate sizing for circuit optimizations. The long paths 
with high criticalities are the statistical critical paths that should 
be optimized. However, sizing different gates on the same 
critical path has different impacts on final circuit delays. To look 
into this problem further, we hereby introduce a measurement of 
the importance of a particular gate to the final circuit 
performance: gate criticality. A simple calculation of gate 
criticalities from statistical critical path criticalities will be 
discussed as well.  

We can group all the gates in a circuit into three categories:  
• Gates that are not on any statistical critical paths 

For this type of gates, their criticalities are zero. These 
gates are always on non-critical paths in all the process 
space, which means that they have no impact on the 
final circuit delay under any process environments.  

• Gates that are on one statistical critical path 
Their criticalities are the criticalities of the paths 
passing through them. These gates are only on one 
statistical path. It means that only when that specific 
long path becomes critical, will these gates determine 
the circuit delay. In other parts of the process space, 
sizing of these gates does not help in improving the 
circuit performance. 

• Gates that are on multiple statistical critical paths 
The criticalities of these gates are the sum of the 
criticalities of all the paths that pass through them. 
Intuitively, the more critical paths go through a gate, 
the more important this gate is. 

Upon the definition, gate criticality is a non-negative value 
from zero to one. If a gate has a criticality of one, all statistical 
critical paths of the circuit go through this gate. With gate 
criticalities, circuit designers can size up the highly critical gates 
or switch from high Vt to low Vt on these gates for better circuit 
performance.  

 I10
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Figure 5    Gate criticalities of circuit C17 

Here we use an example to show the gate criticality concept. 
In Figure 5, C17 circuit from ISCAS85 benchmark is shown. Let 
us assume that path I6-G2-I11-G3-I16-G5-I22 (the solid line) 
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and I6-G2-I11-G4-I19-G6-I23 (the pointed line) are the two 
statistical critical paths in the circuit with criticality of p and q 
respectively, where p+q=1. 

Based on our definition of gate criticality, gate G1 belongs to 
Category 1, which has a zero criticality. Gates G3, G4, G5 and 
G6 belong to Category 2, with criticalities of p, q, p and q, 
accordingly. Gate G2 is on both critical paths, thus it has a 
criticality of p+q=1. Therefore, from our analysis, G2 is the first 
priority for optimization. 

 
4. Experiments 
 

The algorithm in Figure 4 has been integrated into our block-
based SSTA tool in C++. In this section, extensive experiments 
are performed for the ISCAS85 benchmark circuits as well as an 
industrial circuit M1 with 1K gates, under 90nm process 
technology conditions. The results from different approaches are 
compared for both accuracy and efficiency. In the experiments, 
PT is set to 0.95 to get top statistical critical paths up to 95% 
probability, and 10,000-point simulations are used in our 
proposed Monte Carlo approach. All experiments were 
performed on an AMD Athlon MP 2600+ Linux workstation. 

Table 4 lists the probabilities of the top statistical critical path 
of all the experimented circuits. The Independence experiment 
assumes path independence and calculates path criticalities as 
the product of the tightness of all the on-path nodes. The 
Proposed Max and the Proposed MC columns show the results 
from our algorithm described in Section 3. To verify the 
accuracy of these three methodologies, we performed a true 
Monte Carlo experiment as well. In this true Monte Carlo 
experiment, we randomly select 10,000 variational process 
parameter sets based on the parameters’ distributions, and 
perform Static Timing Analysis under fixed delay models for 
every condition. In each STA run, we collect the static critical 
path of the circuit. The top statistical critical paths are those 
paths that are reported as critical under most given process 
conditions. The true Monte Carlo has the best accuracy but is too 
expensive for practical circuits. It is hundreds of times slower 
than the other three approaches. The CPU runtimes of all four 
experiments to get up to 95% statistical critical paths are listed in 
Table 5.  

Compared to the True Monte Carlo approach, the 
Independence, the proposed Max, and the proposed Monte Carlo 
approach have an average error of 8.69%, 1.51%, and 0.39% 
respectively over all the eleven circuits. When we look more 
closely at the Independence approach, we find that for some 
circuits, it is very accurate, but for some others, the errors are as 
large as 38.37%. Its accuracy is strongly related to circuit 
topologies. For those circuits with many re-convergent fan-outs 
and/or strong spatial correlations, such as C6288, the accuracy 
deteriorates considerably. 

If we compare the two proposed approaches, the proposed 
Monte Carlo approach excels over the proposed Max approach 
in terms of accuracy with similar CPU run times. The reasons 
can be justified as follows. Based on (14), the accuracy of the 
proposed Monte Carlo approach is only determined by the 
number of Monte Carlo integrations N, and irrelevant to the 
number of process parameters involved. On the contrary, the 
accuracy of the proposed Max approach relies on the number of 
process parameters as well as the number of conditions. 
Although we have used a non-linear approximation for the max 
operation, errors may still accumulate during the max operations 
of conditions, especially when we have a large number of 

conditions. Unfortunately, this is often the case in large circuits. 
The results in Table 6 can justify this issue further. Table 6 
shows the criticalities of all the statistical critical paths up to 
95% probability threshold of benchmark circuit C2670. The true 
Monte Carlo experiment and the proposed Monte Carlo 
approach both report four statistical critical paths while the 
proposed Max approach reports five. The proposed Monte Carlo 
approach gets very good results on all top critical paths while the 
max approach doesn’t do very well on the third and fourth 
critical paths. That is because, for shorter paths, the arrival times 
of on-path signals and side-inputs become closer. This can cause 
the mean values of the max operands, , to be very 
close, which is the case when max operation suffers from largest 
errors in approximations. Of course, the smaller criticalities on 
shorter paths also make the relative errors look larger. 
Nevertheless, we want to point out that the reported statistical 
critical paths from both proposed approaches match the ones 
from the true Monte Carlo approach, which gives circuit 
designers and test engineers correct set of paths to focus on. 
Also, if higher order max operation is used, the proposed max 
approach should show much better accuracy. 

iji APAS −,

The complexities of both proposed approaches of calculating 
a single path criticality are linear with respect to the number of 
conditions m. The number of conditions of a circuit is bounded 
by the number of the gate fan-ins times the path length. In 
modern digital circuits, the number of gate fan-ins is typically 
less than 4, and the path length is less than 20. This guarantees 
the efficiency of our approaches. Compared between the two 
proposed approaches, the max approach needs m-1 max 
operations, and the complexity of max operation is linear to the 
number of process parameters and super linear to the number of 
sampling points for numerical calculations [7]. On the contrary, 
the complexity of the proposed Monte Carlo approach is linear 
to the number of simulations, which is 10,000 in our 
experiments. Moreover, when the proposed Monte Carlo 
approach verifies the conditions, once a condition is violated, it 
just skips all the other conditions and goes on with the next 
Monte Carlo simulation. This makes the approach very efficient.  
 
5. Conclusions 
 

In this work, we proposed and developed two efficient 
statistical critical path analysis approaches for block-based 
SSTA tools. Our algorithm reports good results for statistical 
critical path analysis in circuits with arbitrary correlations 
caused by re-convergent fan-outs and process spatial 
correlations. They enable block-based algorithms to get accurate 
critical paths with little computing overhead. The algorithm can 
be added to any block-based SSTA tools as a post-processing 
step and benefit both circuit designers and test engineers. 

Compared to the path-based SSTA algorithms, our 
approaches are much more robust and efficient in calculating 
path criticalities. In path-based SSTA, if we don’t include all 
long paths in the analysis, the accuracy of all criticalities will be 
impaired. However, if we analyze a large number of paths, the 
computational cost increases considerably, since before all paths 
are evaluated, we do not know the criticality of any path. In our 
approaches, even if not all statistical critical paths are 
considered, the criticalities of those analyzed paths are still 
accurate.  Moreover, a large path set usually does not hurt the 
speed, because most non-critical paths will not be analyzed due 
to the probability threshold.  
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Table 4. Probabilities of the top statistical critical path 

True MC Independence Proposed Max Proposed MC Circuit Probability Probability Error (%) Probability Error (%) Probability Error (%) 
C432 0.8682 0.8147 -6.16 0.8696 0.16 0.8686 0.05 
C499 0.8603 0.7591 -11.76 0.8664 0.71 0.8611 0.09 
C880 0.6966 0.6849 -1.68 0.6844 -1.75 0.6953 -0.19 

C1355 0.8108 0.7637 -5.81 0.8241 1.64 0.8148 0.49 
C1908 0.8723 0.8810 1.00 0.8874 1.73 0.8739 0.18 
C2670 0.3556 0.3790 6.58 0.3504 -1.46 0.3587 0.87 
C3540 0.9963 0.9991 0.28 1.0000 0.37 0.9967 0.04 
C5315 0.8279 0.8119 -1.93 0.8069 -2.54 0.8253 -0.31 
C6288 0.3706 0.2284 -38.37 0.3689 -0.46 0.3720 0.38 
C7552 0.3805 0.4000 5.12 0.3603 -5.31 0.3870 1.71 

M1 0.5502 0.4575 -16.85 0.5478 -0.44 0.5501 0.02 

Table 5. CPU run time of getting top 95% statistical critical paths 

Circuit True MC Independence Proposed Max Proposed MC 
C432 845.58 2.90 6.39 3.01 
C499 978.6 1.81 5.07 2.03 
C880 1357.01 1.88 3.70 3.65 

C1355 2455.24 4.72 4.92 4.84 
C1908 3221.11 3.15 3.90 3.28 
C2670 4188.79 5.89 11.74 6.73 
C3540 6102.67 6.85 7.51 6.78 
C5315 9766.77 22.23 25.23 22.77 
C6288 11690.84 22.03 28.49 27.80 
C7552 12830.86 20.21 19.99 20.19 

M1 4505.38 11.80 12.01 12.07 

Table 6.   Criticalities of top 95% statistical critical paths of C2670 

True MC Proposed Max Proposed MC Path Rank Criticality Criticality Error (%) Criticality Error (%) 
1 0.3556 0.3504 -1.46 0.3587 0.87 
2 0.3471 0.3305 -4.78 0.3476 0.14 
3 0.2291 0.2056 -10.26 0.2271 -0.87 
4 0.0340 0.0457 34.41 0.0326 -4.12 
5 N/A 0.0182 N/A N/A N/A 
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