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ABSTRACT 
Due to process parameter variations, a large variability in circuit delay 
occurs in scaled technologies affecting the yield. In this paper, we 
propose a sizing algorithm to ensure the speed of a circuit under process 
variation with a certain degree of confidence while maintaining the area 
and power budget within a limit. This algorithm estimates the variation 
in circuit delay using statistical timing analysis considering both inter- 
and intra-die process variation and resizes the circuit to achieve a 
desired yield. Experimental results on several benchmark circuits show 
that one can achieve up to 19% savings in area (power) using our 
algorithm compared to the worst-case design. 

Categories and Subject Descriptors 
B.8.2[Performance and Reliability]:Performance Analysis and Design 
Aids 
General Terms: Algorithms, Performance, Design, Reliability. 

1. INTRODUCTION 
    As silicon industry is moving towards the end of the roadmap, the 
device parameters (such as channel length, oxide thickness, threshold 
voltage, random placement of dopants in channel, etc) are expected to 
have large variations. Consequently, a large variability in performance 
among different chips is expected. The process variations can be 
classified as systematic or random. While systematic variations are 
deterministic in nature and are caused by the structure of a particular 
gate and its topological environment, random variations are 
unpredictable in nature. Random variations include variations in the 
effective channel length of devices, doping profiles, oxide thickness and 
transistor width. Variations in doping profile are very important in 
advanced technologies because it may lead to potentially large change in 
threshold voltage [1]. Furthermore, intrinsic fluctuations are independent 
of transistor location on a chip. The process parameter fluctuations 
cannot be eliminated by external control of the manufacturing process 
and hence, a statistical design methodology is required considering the 
randomness of the process parameter variation. Various aspects of the 
process parameter variation including methodology, analysis, synthesis 
and modeling are addressed in [2]. 
    Conventional sizing tools size the gates to optimize area and power 
consumption while meeting the desired delay constraint [3], [4]. Usually 
these tools find the critical points of the circuit through static timing 
analysis, which affect the critical path delay. The tool then sizes the 
transistor widths to meet the desired delay constraint while keeping the 

power consumption and area within a limit. However, due to random 
process parameter variation, a large number of chips may not meet the 
required delay. Consider an example pdf (probability density function) 
of delay shown in Figure 1due to process variation. In this example, the 
distribution is assumed to be normal [5]. This figure shows that 50% of 
the total number of dies will not meet the desired delay constraint, which 
will affect the final yield drastically. One way to counter this effect is to 
set the target delay considering worst case process variation. For 
example, one can choose the 6σ point in Figure 1as the target delay for 
designing under worst case process variation. Consequently, while the 
yield is expected to improve significantly, the area and power overhead 
to meet the worst case delay constraint may not be acceptable. This is 
because, only a very few dies will have the worst case delay due to 
process variation, and setting the target delay based on those dies will 
result in unacceptable power consumption in most of the dies. Hence, 
beyond a certain point the improvement in yield will be masked by the 
increase in the area and the power overhead.  
    Furthermore, resizing the gate also changes the delay spectrum of the 
circuit (i.e. σ also changes along with the mean of delay distribution). 
This is because the variation in the transistor threshold voltage (hence, 
the variation in delay) is a strong function of transistor width due to the 
random placement of dopants in very short-channel devices [6]. A 
proper design technique is therefore, necessary to achieve optimum 
yield with minimum increase in the area and power overhead.   
    Several attempts have been made to model the effect of process 
variation on delay using statistical timing analysis [7],[8],[9]. These 
analyses considered inter- and intra-die process variation and in some 
cases also modeled spatial correlations between transistors [8]. However, 
attempts have rarely been made to size the gates considering the 
statistical nature of process variation. In [10], the gate sizing considering 
a statistical delay model was proposed using non-linear programming. 
However, the use of non-linear programming makes it less practical in 
real circuits.  
    In this paper, we propose a statistical design technique considering 
both inter- and intra-die variation of process parameters. The idea is to 
resize the transistor widths with minimal increase in area and power 
consumption while improving the confidence that the circuit meets the 
delay constraint under process variation. We have developed a sizing 
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Figure 1. pdf of delay due to process variation: an example. 
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tool using Lagrangian relaxation algorithm [11] for global optimization 
of transistor widths. The algorithm first estimates the expected delay 
variation at the primary output of a given circuit based on statistical 
static timing analysis. Using the delay distribution obtained at the 
primary output and the desired yield, the algorithm optimizes the area by 
increasing the size of transistors to achieve desired delay while reducing 
the transistor sizes in the off critical paths. The contribution of this work 
is to provide a sizing algorithm to ensure the speed of a circuit under 
process variations with a certain degree of confidence while keeping the 
area and power budget within a limit. We consider the variations not 
only in channel length, width, oxide thickness, threshold voltage of the 
transistor but the effect of random placement of dopants as the dominant 
parameters for process variation. While the variations in channel length, 
width and oxide thickness are expected to have spatial correlation 
between adjacent transistors [8], random placement of dopants make 
every transistor in the circuit independent. We model these variations in 
our analysis and incorporate them into the sizing tool. We also consider 
inter- and intra-die variation of process parameters to achieve more 
realistic design. We used the proposed sizing tool to synthesize several 
ISCAS benchmark circuits and compare the estimated yield with the 
circuit synthesized by conventional sizing tool.   
    The rest of the paper is organized as follows. In section 2, we discuss 
the statistical timing analysis of a circuit considering both inter- and 
intra-die variations. Section 3 describes the sizing algorithm based on 
Lagrangian relaxation in detail. In section 4, we discuss the experimental 
results on ISCAS benchmark circuits. Section 5 draws the conclusion. 

2. STATISTICAL TIMING ANALYSIS 
    Statistical static timing analysis is performed to estimate the 
variability in circuit delay under process variation. Process variations 
can be categorized as inter-die and intra-die variations. Due to inter-die 
variations, the same device on a chip can have different characteristics 
across different dies (i.e., dies from one wafer, from wafer to wafer, and 
from wafer lot to wafer lot). Intra-die variations, on the other hand, are 
the variations of transistor characteristics within a single chip. Both 
inter- and intra-die variations are expected to be truly random in nature 
in future technologies. While intra-die variations in terms of transistor 
length, transistor width and oxide thickness, are expected to exhibit 
spatial correlations among devices located close to each other, random 
placement of dopants in sub-50 nanometer transistors is expected to 
make every transistor in a die independent in terms of threshold voltage. 
We incorporate both inter- and intra-die variations in our timing analysis.  
    The most accurate way of incorporating the process variation effects 
into timing analysis is to perform a full-scale transistor-level Monte-
Carlo simulation of a circuit, which requires large computational 
overhead. Hence, in our analysis the effect of process parameter 
variations on the gate delay is pre-characterized and accessed on the fly 
during statistical timing analysis. The pre-characterization table contains 
statistical information on the delay of a gate considering process 
variation. It is assumed that inter- and intra-die process variations are 
statistically independent [8]. This reduces the complexity of statistical 
timing analysis because the effects of inter- and intra-die process 
parameter variation on delay can be analyzed in isolation. 
   For example, we model the variation in transistor length Ltotal as the 
sum of inter-die variation (Linter) and intra-die variation (∆Lintra) as 
follows. 

2
LLL intraintertotal ∆+= σσσ 22  

where σ is the standard deviation. Accordingly, the effect of the 
variation in transistor length on the delay can be simplified to [8]: 

2
,

2
,

2
, intradelayinterdelaytotaldelay σσσ +=  

The effects of variation in the threshold voltage, oxide thickness, and 
transistor width on delay are also incorporated in a similar way.  
    As explained above, inter- and intra-die variations are analyzed in 
isolation. That is, σdelay,inter and σdelay,intra  are independently calculated 
and combined to obtain the overall distribution of delay. During 
statistical timing analysis, the signal arrival time is calculated at each 
gate by propagating the delay from the primary input in the circuit. 
Under process variation, the signal arrival time is also a distribution 
which is propagated during the timing analysis. The variation in the 
arrival time is obtained from the statistical information stored in the pre-
characterization table. We maintain two tables - one for inter-die 
variation and the other for intra-die variation. In the following 
subsections, we explain how to propagate the effect of process variation 
during statistical timing analysis considering both inter- and intra-die 
variation. 

2.1 Inter-die variation 
    Considering that transistor parameters remain constant within a single 
die, evaluation of the effect of inter-die variation on circuit delay is 
straightforward. For example, due to inter-die variation, if the device 
length in a die becomes 'L+∆L', this will remain the same for all 
transistors in that die. Hence, under inter-die process variations, all 
identical gates in a die will have the same delay. It is therefore, easy to 
pre-characterize the delay of gates for all possible combination of 
process parameters. We generate the pre-characterization table through 
Monte-Carlo simulation using SPICE considering the inter-die 
variations in threshold voltage, oxide thickness, transistor width and 
transistor length. We assume normal distribution [5] for all inter-die 
process parameter variations. It is also assumed that the corresponding 
gate delay variation can be modeled as normal distribution. Figure 2 (a) 
shows one example of delay variation for an inverter obtained using 
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SPICE Monte-Carlo simulation for BPTM 70nm technology [12] under 
inter-die variation. It can be observed from the figure that the above 
assumption is reasonable.  
    Each point in the delay distribution represents the delay of a gate in a 
die for a corresponding process corner. The circuit delay is calculated 
for all process corners and the overall delay distribution for the circuit 
under inter-die process variation is obtained. Figure 2 (b) shows the 
delay distribution at the primary output of an example circuit (ISCAS 
c432) under inter-die variation. It can be seen from the figure that the 
distribution can also be approximated as normal distribution. 

2.2 Intra-die variation 
    Unlike inter-die variation, transistors within a die are expected to 
have different process parameters under intra-die variation. In static 
timing analysis, signal arrival time at the output of a gate is calculated 
by adding the gate delay to the signal arrival time at the input. 
Considering intra-die process variation, both gate delay and input signal 
arrival time are to be considered as random variables. For example, in a 
two-input gate, the random variable Ao, which represents the worst-case 
arrival time at the output, can be expressed as  

( )2211 ,max DADAAo ++=    (1) 
where A1 and A2 are the random variables which represent input arrival 
times, respectively. Random variables D1 and D2 represent the 
corresponding pin-to-pin delays. Then fAo(x), the probability density 
function for Ao, can be calculated as below.  

( ) ( ) ( ) ( ) ( )xfxFxFxfxf DADADADAAo 22112211 ++++ +=  

FA(x) represents the probability that A ≤ x. Although we assume that A1 
and D1 (A2 and D2) have normal distributions, this does not guarantee 
that Ao can also be modeled by normal distribution. However, authors in 
[13] showed that the error in assuming normal distribution for Ao is 
negligible. Therefore, in our analysis, Ao is assumed to have normal 
distribution. 
     The relationship shown in eq. (1) imposes additional constraints on 
the pre-characterization of multiple input gates under intra-die variation. 
Unlike the switching under inter-die variation (where both input arrival 
time and slope are considered to be a single value in a die), both input 
arrival time and slope are now represented by a distribution. Let us 
consider the switching of a two-input NAND gate shown in Figure 3. 
The arrival time at the output, A0, depends on the input signals, In1 and 
In2, and the gate delay. Input signals consist of signal arrival time (A1, 
A2) and the slope (S1, S2). In our analysis, both signal arrival time and 
slope are considered as normal distributions. Therefore, the statistical 
property (σAo, σSo) of the signal at the output of the gate is a function of 
input arrival times, slopes and temporal correlations between them. 
Considering this, we generate the pre-characterization table for σ (intra-
die variation), while the mean of the arrival time and slope at the output 

are calculated on the fly using Sakurai’s delay model [15]. For the ease 
of analysis, the temporal proximity of two latest-arriving inputs is 
considered for multiple input gates.  

2.3 Random placement of dopants 
    In scaled CMOS devices, there exists a statistical fluctuation in the 
number of dopants, which can be translated into a threshold-voltage 
variation [6]. This discrete dopant effect on threshold voltage variation 
is incorporated by employing the following equation [6] into the 
simulator while generating the pre-characterization table for both inter- 
and intra-die variation. 

LW
WN

C
q dma

ox
Vth 3

0
=σ  

σVth represents the standard deviation of threshold variation due to 
random placement of dopants, q is electron charge, Cox is the oxide 
capacitance, Na is the substrate doping concentration, and Wdm

0 
represents the maximum depletion layer width.  L and W are the 
channel length and width of the transistor, respectively. 

3. SIZING ALGORITHM FOR YIELD 
IMPROVEMENT 
In this section, a gate-sizing algorithm is proposed to improve the yield 
of a circuit under process variation. The algorithm proposed here is 
based on a well-known technique to a nonlinear optimization problem: 
Lagrangian relaxation (LR) [10]. First, we explain the sizing algorithm 
based on LR and then describe our proposed algorithm for sizing 
considering process variation. 

3.1 Lagrangian relaxation 
    Chen et. al [14] proposed the use of LR for simultaneous sizing of 
gate and interconnects of a combinational circuit to optimize the total 
area while maintaining a delay constraint. The convergence of the 
algorithm was proven and the optimality was verified. In our 
experiments, it is assumed that there are no interconnect components in 
the circuit. However, this algorithm can be extended to incorporate the 
interconnect sizing as well, as explained in [14].  
  Figure 4  shows an example circuit representation for LR. The circuit 
consists of n gates, which are to be resized, and s primary inputs. Logic 
gates and primary inputs are called components. In addition, we add 
two virtual components, one connecting all primary inputs (component 
9 in Figure 4) and the other connecting primary outputs (component 0). 
Therefore, for a circuit with n gates and s inputs, there are n+s+2 
components. Edge numbers follow their driver gates, i.e., the output of 
gate i is denoted as edge i. Components and edges are numbered in 
reverse topological order.  
    Our objective is to minimize the total area (or equivalently the power 
consumption) which can be represented by  Σαixi, i=1,...,n where xi is 
the gate size and αi is an arbitrary constant multiplier for gate i, which 
can vary depending on the objective of optimization. Conventionally, 
the gates are sized (i.e., all transistors in a particular gate are sized by the 
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same factor) to achieve minimum area of the circuit while meeting a 
given delay constraint. In our analysis, in addition to the delay 
constraint at the primary output, A0, we also have the yield constraint, γ0 
Hence, the sizing problem is formulated as follows.  

0

0

1

,...,1
γγ

α

≥
=≤≤

∈∀≤∑

∑

∈

=

Yield
niUxL

PpADtoSubject

xMinimize

iii

pi
i

n

i
ii

 

Li and Ui represent the lower bound and upper bound of the size of gate 
i, respectively. P is the set of possible paths in a circuit. Di represents the 
delay of gate i in a path p. Compared to the original problem formulated 
in [14], we added an extra constraint for yield. Note that the complexity 
of the problem is exponentially dependent on the number of 
components in the circuit (O(en)). To reduce the complexity to a linear 
one, the delay constraints on all the paths are transformed into the delay 
constraints on each gate in the circuit. Therefore, the sizing problem 
(which is called the primal problem; PP) is redefined as follows.  

PP: Sizing for yield 
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(2) 

ai represents the signal arrival time at edge i and Di is the delay 
associated with gate i. Note that the path-based problem  is transformed 
to a global problem where A0 is now the constraint on the circuit delay, 
not on any specific path in a circuit.   
    In solving this problem, PP is first translated into a mathematical 
equation introducing a Lagrangian multiplier λ [11] for each constraint 
on arrival time as follows. 
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00

1
,:

λλ

λαλ

  (3) 

λji corresponds to the input edge j and output edge i of gate i. m in λmi is 
equal to n+s+1 (virtual input node). 
    Minimizing Lλ using LR consists of iterating the following two steps: 
1) calculating the optimal size of the circuit for the current λ values and 
2) updating λ to the direction of the optimal solution. Calculation of the 
optimal size involves the sizing of each gate in such a way that Lλ is 

locally minimized. Since Di in Lλ is a function of gate size xi, the 
optimal  size of a gate can be obtained by solving dLλ/dxi = 0. In [14], 
Elmore delay model was used for Di, however, we use Sakurai's delay 
model [15] for better accuracy in our analysis. While updating λ in step 
2), arrival-time information at each gate input/output of a circuit is 
utilized. That is, λ for the next iteration is determined by the current 
status of delay constraints imposed on each gate after calculating the 
optimal size (step 1)) [14]. 
    Minimizing Lλ provides the minimum size of a circuit while 
satisfying the delay constraint, A0 at the primary output. A more detailed 
explanation including mathematical proofs on sizing algorithm based on 
LR can be found in [14].  

3.2 Sizing considering process variation 
    In this subsection, we explain the proposed algorithm for resizing 
considering process variation. Conventional sizing method based on LR 
algorithm explained above considers the delay constraint A0 and also the 
circuit delay as constant values. However, in our analysis delay at the 
primary output is represented by a probability density function (pdf) 
considering the process variation. The delay pdf is obtained using 
statistical timing analysis as explained in section 2. Also note that unlike 
conventional sizing method, we have introduced an additional constraint 
for yield as shown in eq. (2). We incorporate this by modifying the delay 
constraint based on the delay pdf at the primary output. 
    Figure 5 shows an example on how the yield constraint is introduced 
into the sizing algorithm. Assuming a normal distribution of delay at the 
primary output, the modified delay constraint, A0’ should be equal to A0 
- σ in order to achieve, for example, 84.1% yield under process 
variation, where σ is the standard deviation of the pdf. Similarly, for any 
different type of delay distribution and yield constraint, the delay 
constraint can be modified accordingly. Figure 6 shows the flow 
diagram of the proposed sizing algorithm with yield consideration. It 
starts with a given delay constraint A0 and yield constraint γ0. Then the 
initial λ values are chosen so that λ in Ωλ, where Ωλ represents the set of 
λ values that satisfies the optimality condition [14]:  

( ) ( )
snkfor

kinputj
jk

koutputi
ki +≤≤= ∑∑

∈∈
1λλ   

µ

σ

A0A0′

Normal
delay pdf
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Figure 5 Calculating A0’ in sizing algorithm 
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Figure 6. Sizing algorithm for yield improvement 
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The algorithm then calculates the optimal size of gates for λ and 
subsequently statistical timing analysis is performed to obtain the delay 
pdf at the primary output. Note that the delay pdf changes after each 
iteration because the variation in the threshold voltage (hence, the 
variation in delay) is a strong function of transistor width [6]. Based on 
the given yield constraint γ0 and the delay pdf, A0 is modified to a new 
constraint A0' as illustrated above. Unlike conventional sizing 
methodology, the delay constraint is modified after each iteration during 
the minimization of Lλ in eq. (3). λ is then updated based on the delay 
constraint A0' and the timing information in the circuit. This is repeated 
until Lλ is minimized, i.e., Σαx – Q(λ) is less than a user-defined error 
bound, where Q(λ) is the optimal solution for Lλ at each iteration.   
    The modification of delay constraint A0' after each iteration as 
explained in our algorithm is however, not straightforward in a circuit 
with multiple primary outputs. For example, let us assume that there are 
two primary outputs in a circuit; gate i and gate j. Also assume that 
statistical timing analysis after kth iteration shows that µi < µj, where µi 
and µj represent the mean delays at the output of the gate i and gate j, 
respectively. Under the assumption of normal delay pdf and the target 
yield of 84.1%, there can be two cases depending on the value of σ (it is 
also assumed that the delay distributions at different primary output 
gates are correlated):  
1.  µi + σi < µj + σj  (Figure 7 (a)) 

New delay constraint A0' is equal to A0 - σj based on the delay 
variation at the output of gate j.  

2. µi + σi > µj + σj  (Figure 7 (b)) 
In this case, the calculation of A0' should be different. Note that 
although gate i is considered to produce the worst-case delay under 
process variation, conventionally gate j provides the worst delay 
without considering the process variation (µi < µj). Hence, the new 
delay constraint, A0' for (k+1)th iteration is equal to A0 - σi + (µj - µi).  

On the other hand, if we modify the delay constraint as explained in 
case 1), the algorithm will size the gates to meet the delay constraint A0 
- σi  at the output of gate j resulting in larger area.  
    It is mathematically proven in [14] that sizing algorithm using LR 
always converges to an optimal solution. Considering process variation, 
we modify the delay constraint in each iteration based on the delay 
distribution at the primary output (A0' = A0 - σ). Hence, the convergence 
with A0' is guaranteed as long as the change in σ is small. It is observed 
that the change in σ due to the change in circuit size from iteration to 
iteration is considerably small, which ensures the convergence of the 
algorithm.  
    In the following section, we discuss the experimental results on 
several ISCAS benchmark circuits implemented using our proposed 
sizing algorithm.  

4. EXPERIMENTAL RESULTS 
    Our proposed sizing algorithm was used to resize several ISCAS 
benchmark circuits considering the process parameter variations. All the 
circuits were synthesized with BPTM 70nm technology [12]. We 
assumed 15% (3σ) variation in all the process parameters such as the 
width, length and the oxide thickness in our analysis for both inter- and 
intra-die variations. The variation in the transistor threshold voltage was 
governed by the effect of the random placement of dopants as 
mentioned in section 2.3. 
    Considering that our sizing algorithm resizes the circuit to meet a 
certain delay constraint, it is important to know the possible range of the 
delay that can be achieved for a circuit and the desired delay constraint. 
For example, consider the area-vs.-delay curve (Figure 8) for ISCAS 
benchmark circuit ‘c432' obtained using LR sizing algorithm. The area 

(the sum of transistor width) in the plot represents the minimum circuit 
size for the corresponding delay. In the plot, ‘min delay’ represents the 
minimum delay that can be achieved by resizing the circuit and ‘max 
delay’ is the circuit delay with all gates having minimum size. The 
difference between the min delay and the max delay is denoted as 
slackdel. Also shown in the figure is the standard deviation (σ) for the 
delay variation due to inter- and intra-die variation, which is obtained 
from statistical timing analysis. Let us first assume that our delay 
constraint corresponds to the 50% of slackdel. Then by using the 
proposed algorithm, the circuit can be resized to meet, for example, 
84.1% yield for the minimum increase in the area (∆area). Compared to 
this ∆area, the increase in area in the case of delay constraint equal to 
90% of slackdel is much smaller as shown in the figure. Therefore, the 
effectiveness of our sizing algorithm in terms of minimum increase in 
area is dependent on target delay constraint. 
    The differences in ∆area for the benchmark circuits are summarized in 
Table 1. The second column shows the slackdel of different circuits in 
terms of σ (when the circuit delay is minimum, i.e., min delay) . It 
varies from 1.99 to 6.59 for different circuits. The third and fourth 
columns represent the percentage increase in area for 84.1% yield with 
delay constraints equal to 50% and 90% of slackdel, respectively. As 
expected, in the case of smaller target delay (50% of slackdel), the 
increase in area is larger for the same yield improvement under process 
variation. 
    We also compared our algorithm with the worst-case design 
methodology. For this purpose, we assume the target delay as the 90% 
of slackdel for all benchmark circuits. The comparison results are shown 
in Table 2. In our experiment, circuits are first sized without considering 
process parameter variation. This corresponds to the sizing of the circuit 
for ‘designed delay’ shown in Figure 1. The area for the ‘Nominal' 
design (without the variability taken into account, i.e., 50% yield) is 
shown in the third column of the table which represents the sum of 
transistor widths. The fourth column shows the area after resizing the 
circuits using our algorithm considering process variation. It can be seen 
that with small increase in area the yield can be improved to 84.1% 
(corresponding to σ) under process variation. The sixth column shows 
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Figure 7. Calculation of A0’ for different scenarios 
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the optimum area for 99.9% yield using our algorithm. We assume that 
the target delay is reduced by 3σ (99.9% yield) from the nominal design 
while resizing under process variation. In this case, while the yield 
improves, the increase in area is larger than the previous case. Hence, 
one can make a trade off between the yield and the area (power) budget. 
Furthermore, in some circuits (c1980, c6288, c74181), it is not possible 
to achieve 99.9% yield by resizing the gate. This is because for any 
circuit, there is a minimum delay that can be achieved by resizing the 
gate. The eighth column in the table (labeled as ‘Worst design area') 
shows the circuit area for the worst-case design. For worst-case design, 
the circuit is sized assuming the worst process corner, i.e., all transistors 
will have worst parameter variations. For example, the transistor length 
is assumed to be 'L + ∆L', where ∆L represents the worst-case variation 
in L. Other process parameters are also considered in a similar way. It 
should be noted that while the yield under process variation is expected 
to improve in the worst-case design, the increase in area is large. It can 
be seen that the saving in area is as large as 19% (c74L85) using our 
proposed sizing algorithm compared to the worst-case design. 
Furthermore, in many cases (denoted as * in the table), it is impossible 
to size the circuit to achieve the desired delay using the worst-case 
design methodology. Columns 10 and 11 show the ratio of σ to mean 
delay with 84.1% yield for inter- and intra-die variation, respectively. It 
is observed while the ratio remains almost same for inter-die variation, 
the ratio for intra-die variation varies depending on the depth of the 
circuit. It should also be noted that the overall variation in delay is 
dominated by inter-die variation. The last column shows the runtime of 
our sizing algorithm for 84.1% yield. As explained in section 2, both 
inter- and intra-die process variations are considered through statistical 
timing analysis. It is observed in the experiments that the majority of the 
program runtime is attributed to the analysis of inter-die variation. In 
each iteration, the circuit was simulated for 10,000 different process 
corners to incorporate the inter-die variation as explained in section 2. 
The runtime can be reduced by decreasing the number of this 

simulation while maintaining the accuracy by using intelligent sampling 
techniques as explained in [16].  

5. SUMMARY 
    We proposed an algorithm to size a circuit for statistical design 
considering both inter- and intra-die variation. This algorithm 
estimates the variation in circuit delay based on statistical timing 
analysis and sizes the circuit to achieve a desired yield with 
minimum increase in the area and power consumption. 
Experimental results on several benchmark circuits show that the 
savings in area (hence the power) can be as large as 19% using 
our algorithm than the worst-case design. It was also shown that it 
is not possible to achieve the desired delay in many circuits using 
the worst-case design methodology. 
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Table 1. The dependence of ∆area  on delay constraint  
∆area (%) when target delay is  slackdel / σ 0.5 slackdel 0.9 slackdel 

c432 4.95 1.57 0.65 
c499 2.79 11.57 1.85 
c1908 2.35 6.33 0.97 
c2670 2.41 0.78 0.26 
c3540 2.06 0.51 0.16 
c6288 2.01 2.15 0.15 
c74181 1.99 8.95 1.52 
c74182 4.27 2.49 1.08 
c74283 6.59 5.80 0.54 
c74L85 4.43 3.83 2.67 

Table 2. Experimental results of applying the sizing algorithm to ISCAS benchmark circuits  

 No. of 
TR 

Normal (50% yield) 
Area (um) 

84.1% yield 
area (um) 

% increase 
in area 

99.9% yield 
area (um) 

% increase 
in area 

Worst design 
area (um) 

% increase 
in area 

σinter/µdelay 
(%) 

σintra/µdelay 
(%) 

Run time 
(sec) 

c432 590 178.16 179.32 0.65 182.83 2.62 185.8 4.29 5.87 1.22 35 
c499 1816 537.15 547.10 1.85 717.42 33.56 * * 5.35 0.88 367 
c1908 1582 473.83 478.41 0.97 * * * * 5.29 0.78 316 
c2670 2394 668.23 669.96 0.26 686.95 2.80 * * 5.17 0.92 222 
c3540 3638 1126.58 1128.43 0.16 1150.94 2.16 * * 5.25 0.57 430 
c6288 9472 2444.07 2447.84 0.15 * * * * 5.28 0.15 2875 
c74181 372 106.58 108.20 1.52 * * * * 5.12 1.26 51 
c74182 92 29.56 29.88 1.08 31.24 5.68 34.31 16.41 5.34 2.85 7 
c74283 188 62.46 62.80 0.54 64.83 3.79 67.19 7.57 5.42 1.71 13 
c74L85 148 39.02 40.06 2.67 45.51 16.63 52.89 35.55 5.39 2.66 11 

                                                                                                                                                                                (* sizing failed for the corresponding scheme) 

459


