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Abstract. This paper proposes a new adaptable FPGA logic element based on
fracturable 6-LUTs, which fundamentally alters the longstanding belief that a
4-LUT is the most efficient area/delay tradeoff.  We will describe theory and
benchmarking results showing a 15% performance increase with 12% area de-
crease vs. a standard BLE4.  The ALM structure is one of a number of archi-
tectural improvements giving Altera’s 90nm Stratix II architecture a 50% per-
formance advantage over its 130nm Stratix predecessor.

1   Introduction

Previous research on LUT-size for FPGAs [12][14][15][10] has consistently shown
that a 4-LUT provides the best area-delay product. This is based on the fact that larger
LUTs can absorb more logic and decrease the critical path length, but require in-
creasing resources for LUT-mask and input muxing. Mainstream Altera and Xilinx
SRAM-based FPGAs use a 4-LUT, though this sometimes comes with additional
hardware to compose base logic elements.

Here we show a new view of this tradeoff, illustrated in Figure 1.  By novel use of
input sharing and fracturability we are able to get the advantages of larger LUT sizes
without paying the high price of the additional inputs required to build 5 or 6-LUTs.

   
                 Fig. 1.  Area/delay Tradeoff                         Fig. 2.  BLE4 logic element
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The adaptive logic module developed in this paper allows us to decrease the criti-
cal path depth by 20% on average, but because the structure can be used either as a 6-
LUT, two 5-LUTs with sharing, or other combinations without the need for expensive
additional input muxing, we are able to achieve this without area penalty. With fur-
ther improvements built on the ALM we can actually show an area benefit.

2   Logic Element Architecture and Adaptive Logic Modules

In this paper the generic BLE4 of Figure 2 and it’s BLE5 and BLE6 analogs form the
base comparison for the new logic structure. Empirically as we map for larger values
of k nominal area and delay decrease. For BLE5 an average netlist uses 15% fewer
LUTs and has 25% shorter unit delay; for BLE6 this is (-22%, -36%) and for BLE7 (-
28%, -46%).  However, as we move from BLE4 to BLE5 we add 16-bits of SRAM
for the LUT-mask, and a new input mux to sample the neighboring connection block
(see [5] for terminology).  The true chip-area metric of #LEs * sizeof(LE) is mini-
mized at about k=4 as shown in Figure 1. Related previous work also involves the use
of heterogeneous LUT sizes [8], and hybrid PTERM/LUT architectures [9].

An interesting property of tech-mapping for larger LUTs is a decrease in effi-
ciency.  In a 6-LUT mapping, for example, only about 1/4 of LUTs end up as 6-input
functions, the rest are underutilized. A design mapping to 100 LUTs with k=4 will
map to 78 6-LUTs with a distribution of {23,32,17,9,13} LUT-{6,5,4,3,2} functions,
based on experiments with RASP/FlowMap [7][6] and confirmed with Altera tech-
mappers.

The cost of larger k is not just the LUT mask, though that is significant. Most
dominant is the input mux, which is roughly 30:1 in a Stratix LAB.  Though CLB and
LAB routing structures are rather different this is also roughly 30:1 for VirtexII,
based on quotes in [2]. The register, adder and other logic is unchanged.

Two reasons why a 6-LUT might be more preferable for depth than previously
seen are that both the area devoted to routing and the relative delay contribution of
interconnect to the critical path have been increasing consistently with new process
generations.  Also, the concept of LAB hierarchy and routing flexibility introduced in
Altera’s FLEX8K architecture, discussed in [3][1] and improved upon with depopu-
lation [11] has minimized the effect.  All modern FPGAs utilize some degree of clus-
ter-based hierarchy.  However, to use a 6-LUT effectively, we need to deal efficiently
with the increase in input muxing, and the wastage involved in building a 6-LUT
which is often underutilized.

If LUT-mask were the only concern, than we could compose multiple base LEs
into larger LUTs, as shown in Figure 3.

The drawback with this approach is the ensuing area cost. This structure has a total
of 19 input muxes, and 4 registers. When used as a 6-LUT, multiple signals have to
be routed repeatedly through the connection block, and 3 of the 4 registers and sets of
output muxing are wasted.  The netlist of 100 BLE4 LUTs quoted above will re-map
on average into 78 6-LUTs with a distribution of 23 LUT6, 32 LUT5, and 39 other.
To implement this directly in the structure of Figure 3 would cost well more than 100
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BLE4s in equivalent area.  Using BLE5 as the base (meaning you can’t use the BLE4
outputs) would help, but would still be more expensive than the BLE4 base.

Fig. 3. Composing BLE4 to build a LUT6.

Our solution to this problem is the fracturable logic module, shown abstractly in
Figure 4.  The logic structure has a total of 8 input-muxes, and provides 4 functional
outputs (2 comb, 2 reg), uses 64 bits of LUT-mask (6-input complete) and 2 bits of
arithmetic and registers.  We denote this a 6,2 fracturable LE, because it is a 6-LUT
with 2 additional inputs for use when fracturing to smaller LUTs. These extra inputs
are key to facilitating packing of non 6-input functions, without the overkill of adding
a complete set of 10 or more inputs.  Variants of this structure such as 4,2 are possi-
ble, but beyond the scope of this paper. Each of the two outputs (top and bottom) are
denoted as an ALUT. This terminology is necessary in order to account for area later.

The ALM can implement one 6-LUT, two 5-LUTs which share 2 inputs, or two
independent 4-LUTs, among other combinations.

Fig. 4.  Fracturable 6,2 adaptable logic module (first version).
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Observe that the logic module of Figure 4 is more comparable in area with two
BLE4 logic elements than with the four shown in Figure 3, because it has the same
number of input mux, FF, output mux and arithmetic cost; only the proportion of the
logic element devoted to the LUT-mask is increased.  In functional terms, it is closer
to the composition of two BLE5 logic elements.

Though the difference between composing two independent LEs and fracturing
one compound structure is subtle, the most important issue to understand is the differ-
ence in the area cost of the two approaches.

2.1   Outputs, LUT-Mask Sharing, and 7-Input Functions

We can make a number of improvements to this first version of the ALM. One issue
with Figure 4 is the number of outputs. We have partially addressed this by pushing
the output merging back one stage in order to incur a speed hit only on the 6th stage
input d2.  When in fractured mode we set the SRAM-bit to 0 to disconnect the upper
ALM-half from the lower.

However we can do better with the following transformation to Figure 5.  First we
duplicate the 2nd level muxes controlled by the 5th stage (d1 input), and add a new mux
which choose c1 or GND on the top ALUT and c2 or VCC on the bottom.  The effect
of the transformation is to remove the additional output muxing from the critical path
of the LE for all speed-paths, pushing it to the middle inputs only.  Routing interfaces
are identical to Figure 4 and are not shown.

As a further transformation, we introduce swap muxes controlled by R and T, for
reasons which will become clear shortly.

Fig. 5. 6,2 ALM with 2 outputs and shared LUT-mask.
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The operation of the logic module of Figure 5 is now a bit more complex.  We still
have two outputs and 8 inputs, and all previous properties.  However there is an addi-
tional benefit from the latter transformation that makes it particularly clever.  Note
that when a 6,2 ALM is used in 6-LUT mode, there are two outputs unused (wasted).
With the additional circuitry, which we call “shared LUT-mask” or SLM, we are now
able to configure the logic module to implement two 6-input functions that share 4
inputs as long as they share the identical LUT-mask function.  By setting R=1 and
T=1, S=0 and U=1, and reorganizing the LUT mask appropriately, SLM1 becomes a
6-LUT function of (a1,a2,b1,b2,c1,d1) and SLM2 becomes the same function, only of
(a1,a2,b1,b2,c2,d2).

This seemingly obscure property is incredibly useful in practice.  Designs which
contain multiple barrel shifters and crossbars will synthesize into many 4:1 muxes
with common data and different select lines, which fit perfectly into the SLM struc-
ture.  For example, a benchmark SPI-4 (posphy level 4) core is able to implement
about 12% of all ALMs as packed pairs of 6-LUTs implementing 4:1 muxes, meaning
a 12% overall savings in ALM area.

A further side-effect of this transformation is that the ALM of Figure 5 can also
implement a restricted set of 7-input functions.

Setting R=0 the upper two 4-LUTs are arbitrary functions of (a1,a2,b1,b2).  Setting
T=1 the bottom 4-LUTs are arbitrary functions of (a1,a2,b2,c2).  Setting S=1 makes
the upper shaded muxes controlled by c1 and the results of these controlled by d1.
When c1=0 out7 is driven by the L1 and L3 outputs chosen by d1.  When c1=0 out7
is driven by the L2 and L4 outputs chosen by d1.  The result is that we can compute a
class of 7-input functions using all the inputs except for d2.

Specifically, we can implement any 7-input function that can be expressed as
F1 = fn(a1,a2,b1,b2,d1),   F2 = fn(a1,a2,b2,c2,d1),   Out = mux(F1,F2,c1)

Thus we can compute the c1-controlled mux of two 5-input functions which share
4 of their inputs, differing only in b1 and c2.  The reason that the output of the func-
tional template is controlled by c1 rather than d1 as shown in the physical diagram
comes from the LUT-mask changes performed by synthesis to rotate the c1 and d1
effects (this does require some thought to see completely).

Figure 6 shows how to build an 8:1 mux in 2 ALMs (4 ALUTs) using this prop-
erty.  We first compute sub-functions y0 and y1.  Since y0 and y1 are 5 input func-
tions with two shared inputs they pack into a single ALM and generate the two out-
puts y0 and y1.  In the second ALM we compute the output of the 8:1 mux using
F1=fn(s0,s1,d3,y0,y1) and F2=fn(s0,s1,d7,y0,y1) and the 2:1 mux controlled by s2.
In both sub-functions one of the bridged inputs is unused, but nonetheless the result is
a partial 7-input function matching the above template.

An 8:1 mux implemented with simple BLE4 requires 5 BLE4 logic elements vs. 2
ALMs, which saves roughly the area of a BLE4.

It is worth noting that though the composable BLE4 structure of Figure 3 is not ef-
ficient for making 6-LUTs or 5-LUTs, it is quite useful for building muxes – it can
build an 8:1 mux in 4 composable BLE4s, which is comparable in area to the 2 ALM
solution.
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As a final comment on the choice of 6-LUTs as the basis for the ALM, we note
that in addition to 4:1 muxes, 6-input functions are natural implementations for many
other logical functions.  One such class of functions is DES encryption.

The core operation of DES is an array of 8 sboxes or substitution tables. Each sbox
has 6 inputs and produces 4 outputs. In a parallel implementation when targeting
speed, it is usual to produce 128 SBOXes, each of which needs 6 BLE4 for each of 4
outputs (3072 LEs).

The sbox has a natural implementation in 4 6-LUTs.  Due to the complex nature of
the function each of the 6-LUTs would otherwise require the worst-case 6 4-LUTs
shown in Figure 7. This behavior is typical of other encryption functions such as
Rijndael also, and is a further justification that 6-LUTs are a “natural” building block
for combinational functions.

For an area-optimized DES core, the ALM described in this paper uses 239 ALMs
vs. 736 in BLE4. For the speed-optimized version, we use 1465 ALMs vs. 5352
BLE4 logic elements.  This represents a roughly 35% and 45% overall area improve-
ment, respectively.

  
          Fig. 6. 7-input function for 8:1 mux               Fig. 7.  DES sbox with BLE4

In a naïve implementation, the total area of the Figure 5 ALM is a little larger than
two base BLE4s, roughly 15-20%. This comes from the additional LUT-mask SRAM
bits and extra 2:1 muxes and configuration. However, since layout of the ALM is
done as a pair, much of this can be clawed back with intelligent layout sharing. In
overall chip area the physical implementation of Figure 5 is roughly area-neutral with
the BLE4 architecture yet achieves the 36% decrease in logic depth.

3   Balanced Technology Mapping

It is critical to balance the distribution of LUT-sizes away from the natural distribu-
tion of tech-mapping to one which is more packable and facilitates SLM.

Consider Figure 8.  The network on the left can be covered by three ALUTs – two
6-LUTs and one 4-LUT (upper solution), and this is the solution that FlowMap will
generate.  After packing, the solution has depth 2 and 2 ½ ALMs. The solution to the
bottom, though it generates 4 ALUTs (all 5-LUTs), can be efficiently packed into just
2 ALMs while maintaining the depth-2 solution.
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We refer to modifying the distribution of LUT-sizes to improve packing as bal-
ancing.  The goal of balanced mapping is to maintain optimal critical path depth (unit
delay) while producing a more packable LUT distribution.

The primary issue to tech-mapping for a good distribution is to modify cost func-
tions to avoid 6-LUTs when they are not necessary for delay minimization.  Further
discussion is beyond the scope of this paper.  However, Figure 9 shows empirical
results from our prototype tools using default, balanced and aggressive balancing.

In the prototype we captured 7-LUT functions not by mapping to k=7, but rather
by specifically recognizing 8:1 muxes in RTL synthesis, and then post-processing the
netlist after tech-mapping.  On average, we find that 7% of all ALMs are able to im-
plement a 7-input function, a very significant area benefit.

  
  Fig. 8.  Better with balanced mapping.                       Fig. 9.  LUT-size distribution

4   Experimental Results

This section shows results on 80 large VHDL/Verilog industrial designs, using pro-
totype architecture development tools. Each design is synthesized and mapped by the
Quartus II architecture evaluation flow, then clustered, placed and routed by our pa-
rameterized architecture evaluation toll PMT. Architectures are generated automati-
cally by PMT based on the size of the design, to emulate as-full-as-possible chips.

For evaluating the ALM, the routing architecture of the LIM and global network
outside the LAB is held fixed.  However optimization sweeps for connectivity of the
input mux is performed for both the BLE4 and ALM 6,2 cases, so that each receives
its optimal layout and connectivity while maintaining routability. Timing delays for
the different delays through the BLE4 and ALM are obtained by Spice simulation
based on a preliminary layout on a common 130nm process.  Routing delays are also
obtained by Spice, and are common between the two architectures. Area models are
computed using preliminary layout estimation, also using common 130nm process
design rules.  Layout optimizations and rough transistor sizing is done to optimize the
BLE4 and ALM independently. As a caveat, design efforts were biased towards per-
formance over area, so results could change slightly with different emphasis.

Figure 10 shows performance results (as a ratio), overall a 15% geomean im-
provement.  Figure 11 shows chip area, with a 12% geomean improvement. For area,
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we capture the effect of clustering into LABs and routing architecture, by using the
metric “labsize * sizeof(lab)” as this is the fairest comparison.   Both architectures
route all designs.

The ALM structure introduced in this paper is one of a number of architectural
changes introduced in the Stratix II family of FPGAs recently announced by Altera,
further architectural changes were also made to the LAB and routing structure, and
these are in general additive.

Fig. 10.  Performance improvement of 6,2 ALM vs. BLE4

Fig. 11.  Area improvement of 6,2 ALM vs. BLE4

Figure 12 shows the breakdown of overall performance gains in the Stratix II ar-
chitecture over Stratix.  In contrast with the earlier discussion, these are bottom-line
results comparing production software and timing models in both cases and including
the 90nm process gains for Stratix II.
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Fig. 12.  Stratix II Silicon Performance Improvements vs. Stratix

5   Conclusions

This paper presents a new and novel adaptive logic module structure for FPGAs.
The goals of the ALM is to allow technology mapping to 6-input functions in order to
capture the depth benefits of wider functions without the unacceptable cost that would
be incurred with a BLE6 based logic element.

We showed the sources of area cost of building logic elements with more than 4
inputs and how those costs break down into both the obvious costs (LUT-mask size)
and the large but less apparent costs such as input and output muxing and appropriate
number of FFs and outputs per block.

We presented a specific logic element based on a 6-LUT that is fracturable into 5
LUTs, but that using sharing and other optimizations can be implemented with area
comparable to two BLE4 logic elements. Further extensions to the logic element
improve propagation delay through the logic function, allow for partial functions of
7-inputs, and allow two 6-input functions that share 4 inputs and the same LUT mask
to be implemented in the same logic element – a 2X area savings when used. Efficient
balancing is achieved through improved software, and by choosing the right balance
of extra inputs needed to achieve good packing results vs. the cost of providing them.

Overall comparisons between an FPGA architecture based on the 6,2 ALM and
based on a 4-input LUT on the same process and with no routing architecture changes
show an average performance gain of 15% and average decrease in chip area of 12%.

A version of the adaptable logic module described in this paper has been imple-
mented as a key component of the Stratix II family of commercial FPGAs from Al-
tera. The 15% performance improvement from the ALM along with further architec-
tural changes and process migration results in a 50% average performance improve-
ment between the 90nm Stratix II and it’s predecessor Stratix on 130nm technology.

Acknowledgements. Thanks to Richard Cliff, Misha Burich, David Mendel and Paul
Leventis for their reviews and comments improving the presentation of this paper.
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