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Abstract
In this paper, we present an improvement of the

FlwoMap algorithm, named CutMap, which combines
depth and area minimization during the mapping process by
computing min-cost min-height K-feasible cuts for critical
nodes for depth minimization and computing min-cost K-
feasible cuts for non-critical nodes for area minimization.
CutMap guarantees depth-optimal mapping solutions in
polynomial time as the FlowMap algorithm but uses
considerably fewer K-LUTs. We have implemented
CutMap and tested it on the MCNC logic synthesis
benchmarks. For depth-optimal mapping solutions,
CutMap uses 15% fewer K-LUTs than FlowMap. We also
tested CutMap followed by the depth relaxation routines in
FlowMap_r algorithm, which achieves area minimization
by depth relaxation. CutMap followed FlowMap_r
performs better than FlowMap_r.

1. Introduction
Previous work on lookup table (LUT) based FPGA

technology mapping aims at either area minimization, or
depth minimization, or routability optimization as their
primary goal. Mappers such as Chortle [FrRC90], Mis-pga
[MuNS90], Xmapa [Ka91a], FGMap [LaPV93] focus on
minimizing the number of LUTs. Mappers such as
Chortle-d [FrRV91b], Mis-pga-delay [MuSB91], DAG-
Map [ChCD92], FlowMap [CoDi94a] focus on minimizing
the delay of the LUT network. Other mappers, such as
Rmap [ScKC92] optimize the routability of the mapping
solution.

Delay minimization has been achieved through
various approaches. Chortle-d algorithm minimizes depth
of LUT network using optimal tree based mapping
algorithm and bin packing procedure. Mis-pga-delay
combines technology mapping with layout synthesis for
delay minimization. DAG-Map uses Lawler’s labeling
algorithm for depth minimization. An important advance in
K-LUT based FPGA depth minimization is the FlowMap
algorithm [CoDi94a] which guarantees depth-optimal
mapping solutions in polynomial time for general K-
bounded networks. On average, FlowMap outperforms
Chortle-d by 4.8% in depth and 50.4% in area, DAG-Map
by 2.4% in depth and 8.6% in area, and Mis-pga-delay by
7.1% in depth and 9.8% in area [CoDi94a].

However, one limitation of the FlowMap algorithm is that
area minimization is not considered in the mapping process,
but achieved by a separate sequence of post-processing
operations, such as gate-decomposition, predecessor-
packing [ChCD92] and FlowPack [CoDi94a] . These post-
processing operations, although effective, may lead to sub-
optimal solutions in terms of area minimization.

In this paper, we present an improvement of the
FlowMap algorithm, named CutMap, which combines
depth and area minimization during the mapping process by
computing min-cost min-height K-feasible cuts for critical
nodes for depth minimization and computing min-cost K-
feasible cuts for non-critical nodes for area minimization.
The min-cost K-feasible cut computation encourages
sharing for K-LUTs when mapping different parts of the
circuits. CutMap still guarantees depth-optimal mapping
solutions in polynomial time but uses considerably fewer
K-LUTs. We have implemented CutMap and tested it on
the MCNC logic synthesis benchmarks. For depth-optimal
mapping solutions, CutMap uses 15% fewer K-LUTs than
FlowMap. In addition, we tested CutMap followed by
depth relaxation routines in FlowMap_r [CoDi94b] for
further area minimization. CutMap followed FlowMap_r
also performs better than FlowMap_r in term of number of
LUTs in the mapping solution.

The remainder of this paper is organized as follows.
Section 2 gives the problem formulation and defines the
basic terminology. Section 3 reviews FlowMap algorithm
and present our CutMap algorithm. Experimental results
are presented in Section 4. Section 5 gives conclusion and
future research direction. The proofs of all theorems in this
paper are omitted due to page limitation and can be found in
[CoHw95].

2. Problem Formulation
We use the notions defined in [CoDi94b]. A

combinational Boolean network can be represented by a
directed acyclic graph (DAG) where a node represents a
logic gate and a directed edge (u,v) represents a connection
from the output of gate u to the input of gate v. A primary
input (PI) node is a node of in-degree zero and a primary
output (PO) node is a node with no outgoing edge. Other
nodes are called internal nodes. The depth of a node v is
the number of edges on the longest path from any PI to v. A
PI node has a depth of zero. The depth of a network is the
largest node depth among POs. Let input (v) denote the set
of nodes which are fanins of node v and output (v) denote
the set of nodes which are fanouts of node v. Given a



subgraph H of a Boolean network, let input (H) represent
the set of distinct nodes outside H which supply inputs to
the gates in H. A network is K-bounded if | input (v) | ≤ K
for every v in the network.

A cone at v, denoted as Cv , is a subgraph of logic
gates (excluding PIs) consisting of v and its predecessors
such that every path connecting a node in Cv and v lies
entirely in Cv . Node v is said the root of Cv . The fanin
cone at v is the cone at v of largest size. A cone Cv is K-
feasible if input (Cv) ≤ K. A K-feasible cone can be
implemented by a K-LUT. When a K-LUT LUTv
implements a cone Cv , we say LUTv covers Cv or LUTv
implements v. In this paper, we study the following
problem.

Bounded-Depth Min-Area Mapping Problem
(BDMAM Problem): Given a K-bounded network and a
depth bound D, cover the entire network using K-LUTs to
form a functionally equivalent LUT-based network of depth
no larger than D and use as few K-LUTs as possible.

It has been shown recently that the area-optimal
technology mapping problem for K-bounded networks is
NP-hard[FaMa93]. The BDMAM problem is a more
general problem because the solution is additionally
constrained by a depth bound D. When D is sufficiently
large, the BDMAM problem becomes the area-optimal
mapping problem. Hence, the BDMAM problem is also
NP-hard. We shall develop efficient heuristic algorithm for
the BDMAM problem.

We introduce some concepts of cuts in the rest of this
section. Given a network N = (V (N),E (N)) with a source s
and a sink t, a cut (X,X

hh
) is a partition of V (N) such that

s ∈ X and t ∈ X
hh

. For a given cut (X,X
hh

), the edge set of the
cut, denoted es (X,X

hh
), is defined as

es (X,X
hh

) = { (u,v) | (u,v) ∈ E (N),u ∈ X,v ∈ X
hh

} and the node
set of the cut, denoted ns (X,X

hh
), is defined as

ns (X,X
hh

) = { u | (u,v) ∈ es (X,X
hh

),v ∈ V (N)}. The
edge(node) cut-size of a cut is the cardinality of its
edge(node) set. For a given network with a source and a
sink, a min-edge(node) cut is a cut of minimum edge(node)
cut-size. To compute a min-edge cut for a network, one can
assign unit capacity to every edge and run a max-flow
algorithm. To compute a min-node cut, we assign infinite
capacity to every edge, divide each node into two nodes
which are linked by a directed edge with unit capacity, and
run a max-flow algorithm. The edge set of the modified
network corresponds to the node set of the min-node cut in
the original network.

For LUT-based technology mapping, it is natural to
consider node set instead of edge set of a cut. For the rest
of the paper, we refer min-cut as min-node cut, cut set as
node set, and cut-size as node cut-size. A cut (X,X

hh
) is K-

feasible if its cut-size is no more than K. To bias for certain
nodes in a cut set, we assign a cost of either zero or one to
every node in the network. A node is a preferred node if it

has a cost of zero. In the CutMap algorithm, the preferred
nodes are those which have been implemented or likely to
be implemented using K-LUTs. The cost of a cut is the
summation of the cost of nodes in the cut set. A min-cost
cut is a cut of minimum cost. A min-cut is not necessary a
min-cost cut. A min-cost cut may not always be K-feasible.
In general, we are interested in the min-cost K-feasible cut
because of its low cost and implementability by a K-LUT.

3. CutMap Algorithm
In this section, we discuss the CutMap algorithm and

the min-cost K-feasible cut algorithm, which is used by the
CutMap algorithm to map each implemented node during
the mapping process. First, we briefly review the FlowMap
algorithm, which is the basis of the CutMap algorithm.

3.1. Review of FlowMap Algorithm
FlowMap is a LUT-based FPGA mapper which

produces depth-optimal mapping solution for K-bounded
Boolean networks. Given a K-bounded Boolean network N,
let Nv denote the subnetwork consisting of node v and all
the predecessors of v. The label of v, denoted label (v), is
defined as the depth of the optimal K-LUT mapping
solution of Nv . Let D opt(N) denotes the largest label (v) for
all v ∈ V (N), i.e., D opt(N) = max{ label (u) | u ∈ V (N)}. In
the first phase, FlowMap calculates a label for every node in
topological sorting order. Consider the computation of
label (v) for a node v in the sorting list. Let p be the largest
label of nodes in Nv , excluding v. Then node v has a label
of either p or p + 1[CoDi94a]. When node u is a fanin node
of node v, collapsing node u into v denotes the operation of
removing u from Nv and replacing every edge (t,u) ∈ E (Nv)
by (t,v). To determine the label for v, FlowMap collapses
all nodes u with label (u) = p into v and computes a min-cut
in Nv . If the min-cut is K-feasible, v has a label of p (since
every node in the cut-set has a label of p − 1 or less) and the
K-feasible min-cut is stored at v. Otherwise v has a label of
p + 1 and the cut (V (Nv) − { v},{ v}) is stored at v. In either
case, we said a min-height cut is calculated for node v.
Clearly, all stored cuts are min-height K-feasible min-cuts.

In the second phase, FlowMap generates a mapping
solution. Let (Xv ,X

hh
v) be the cut stored at v in the first phase

and support of v, denoted sp (v), be the cut set of (Xv ,X
hh

v),
i.e. sp (v) = ns (Xv ,X

hh
v). Initially, let Q be the set of all PO

nodes. FlowMap repeats the following three steps in the
second phase until Q contains only PI nodes: (1) remove a
node v from Q, (2) implement v by a K-LUT covering X

hh
v ,

and (3) add nodes in sp (v) to Q. A number of post-
processing routines (gate-decomposition, predecessor-
packing and FlowPack) are carried out to decrease the
number of LUTs. FlowMap’s mapping solution has the
property that every LUT LUTv on v has the minimum depth
equal to label (v). In fact, this is unnecessary for those
LUTs on non-critical paths in order to have a depth-optimal
mapping solution. Applying depth relaxation operations



and re-mapping can further decrease the number of LUTs in
the FlowMap mapping solution as reported in FlowMap_r
[CoDi94b].

3.2. Overview of CutMap Algorithm
In our approach, we do not store a cut for each node

in the first phase, instead, we compute either a min-height
K-feasible cut or a min-cost K-feasible cut depending on the
depth criticality of the mapped node. We define following
attributes to measure the depth criticality of a node v:

label (v) depth of LUTv in the mapping solution
latest (v) largest depth of LUTv in order to have

depth-optimal mapping solution
slack (v) latest (v) − label (v)

A node v is on the critical path if slack (v) = 0, i.e.,
label (v) = latest (v). In the CutMap algorithm, label (v) can
only increase, latest (v) can only decrease, and
label (v) ≤ latest (v) always holds. Whenever a cut is
computed in the CutMap algorithm, these attributes are
updated to reflect most current depth criticality.

CutMap algorithm has two phases. In the first phase,
CutMap calculates label (v) using FlowMap algorithm for
each node v. The optimal depth D opt(N) is then computed.
If D opt(N) > D, the given depth bound, CutMap stops and
claims that no solution exists with respect to the given depth
bound. Otherwise, CutMap proceeds to assign
latest (v) = D opt(N) for every v ∈ V (N). In the second
phase, CutMap initializes Q by the set of all POs and
repeats the following four steps until Q contains only PIs.
(1) Remove the node v of minimal slack from Q. (2)
Assign costs of nodes in Nv based on predicting which
nodes will be implemented (to be discussed in Section 3.3).
(3) Compute a proper K-feasible cut depending on slack (v).
If slack (v) = 0, CutMap collapses all nodes u with
label (u) = label (v) in Nv as in FlowMap and computes a
min-cost K-feasible cut. The resulting cut is a min-cost
min-height K-feasible cut. If slack (v) > 0, no node-
collapsing is performed and CutMap computes a min-cost
K-feasible cut. In either case, an optimal min-cost K-
feasible cut algorithm is used and will be discussed in detail
in Section 3.4. And (4) add sp (v) to Q.

Whenever a cut is computed for a mapped node v, for
every nodes u ∈ sp (v), we update latest (u) according to the
following rule: latest (u) = min(latest (u), latest (v) − 1). In
FlowMap algorithm, we always have label (v) ≥ label (u) + 1
for each LUT. However, in CutMap algorithm, since we no
longer compute a min-height K-feasible cut for v when
slack (v) > 0, it might happen that for some node u ∈ sp (v)
we have label (v) = label (u). In this case, label (v) will be
increased by one. In addition, we need to recompute label
for every node t which is a successor of v, since v might be
in the cut set of t when the CutMap implements node t later
on. However, we would like to point out that CutMap still

returns a depth-optimal mapping solution if the given depth
D ≥ D opt(N) since node v is not on any critical path in this
case. CutMap algorithm takes O (lM) time to return a
solution where l is the number of LUTs in the solution
(bounded by the number of nodes in N) and M is the time
required by each execution of min-cost K-feasible cut
procedure (discussed in Section 3.4). We have the
following result:

Theorem 1 For a given K-bounded Boolean network
N and a depth bound D, the CutMap algorithm returns a
functionally equivalent LUT network T in O (lM) time if
D ≥ D opt(N), where D opt(N) is the optimal depth of N, l is
the number of LUTs in the mapping solution, and M is the
time taken by the min-cost K-feasible cut computation.

3.3. Predictive Cost Assignment
A min-cost K-feasible cut is computed for every node

v ∈ Q in the execution of CutMap algorithm. During the
execution of CutMap algorithm, a node is assigned a cost of
zero if it has been implemented or likely to be implemented
later on by a LUT. Otherwise, it is assigned a cost of one
(in this case, we have to introduce a new LUT if we include
this node in the cut). The cost assignment is an important
decision that CutMap has to make in order to achieve the
goal of area minimization. At any time, a node u is
assigned a cost of zero if u has been implemented. Primary
input nodes are always assigned a cost of zero since there is
no need to implement them using LUTs. Primary output
nodes are also assigned a cost of zero because they must be
implemented anyway.

Clearly, the population of zero-cost nodes increases
as the mapping process proceeds since more and more
nodes are implemented. However, at the beginning of
phase two, there are very few zero-cost nodes (only PI and
PO nodes). Hence, a min-cost cut is a min-cut in most
cases. In order to influence the min-cost cut procedure to
choose the ‘‘appropriate’’ nodes in the cut, we use the
MFFC concept to predict which nodes are likely to be
implemented later on. A fanout-free cone (FFC) at v,
denoted FFCv , is a cone of v such that for every
u≠v ∈ FFCv , output (u) ⊆ FFCv . The MFFC at v, denoted
MFFCv , is the fanout-free cone at v of maximal number of
nodes [CoDi94b]. The MFFCs have the following
properties: (i) If w ∈ MFFCv , then MFFCw ⊆ MFFCv . (ii)
Two MFFCs are either disjoint or one contains another.
(iii) Let (Xv ,X

hh
v) be a min-cut of Nv . Then for each MFFCi

in the MFFC decomposition of Nv , either Xv ∩ MFFCi = ∅
or MFFCi ⊆ Xv [CoDi94b, CoLB94]. We decompose the
network into MFFCs. Such decomposition is unique. If the
size of MFFCv is sufficiently large, node v is very likely to
be implemented by a LUT. Otherwise, a K-feasible cut
through MFFCv will force more nodes to be implemented.
Hence, we assign roots of large MFFC’s a cost of zero.
Another advantage of such assignment is based on the fact
that roots of MFFC are multiple fanout nodes. It provides



opportunity for sharing the LUTs and leads to better area
minimization result. We observed that when MFFC-root
based cost assignment method is used, CutMap produces
consistently better results. In our implementation, roots of
MFFCs which contain five or more nodes are assigned a
cost of zero.

3.4. Min Cost K-Feasible Cut
In the second phase of the CutMap algorithm, a min-

cost K-feasible cut is calculated for each node v in the
queue Q. In this section, we present an efficient optimal
min-cost K-feasible cut algorithm.

3.4.1. Optimal Min Cost K-Feasible Cut
Let Nv be a Boolean network of single primary output

v. Assume all nodes in the network have been assigned a
cost of either zero or one, according to the principle
discussed in the previous section. Our goal is to find a K-
feasible cut with sink v such that the cost of the cut is
minimum. A trivial approach enumerates all cuts of size no
more than K and selects the one of the minimum cost. But
it takes [C (n, 2) + . . . + C (n,K)].O (m) = O (mn K +1) time
where n is the number of nodes in Nv , m is the number of
edges in Nv , and C (n,K) is the number of K-combinations
from n numbers. In the remainder of this section, we
present a more efficient optimal algorithm which takes
2.[C (n, 1) + . . . + C (n, QK/2P)].O (Km) = O (2Kmn QK/2P+1)
time. For n = 1000, K = 5, and m = 3n (i.e., average fanout
of each node is 3), mn K +1 = 3.1021 while
2Kmn QK/2P+1 = 3.1013. Therefore, our algorithm is
significantly faster than the trivial method.

Let V 0 and V 1 be the sets of nodes of cost zero and
one, respectively. Our strategy is to search the cut from low
cost end toward high cost end. Suppose there exists a cut
(Xv ,X

hh
v) of cost zero. It must be the case that

ns (Xv ,X
hh

v) ∩ V 1 = ∅. To check for this case, we define
capacity for every node as follows: capacity (u) = ∞ if
u ∈ V 1 and capacity (u) = 1 if u ∈ V 0. Since PI nodes have
a cost of zero, this capacity assignment guarantees a finite
maximal flow of value no more than the number of PIs. In
this case, it is easy to see that a K-feasible zero-cost cut
exists if and only if the flow is not larger than K.

When there does not exist a zero-cost K-feasible cut,
we proceed to search for a cut of unit-cost. Suppose there
exists a K-feasible cut (Xv ,X

hh
v) of cost one, it must be the

case that | ns (Xv ,X
hh

v) ∩ V 1 | = 1. In our algorithm, we
repeatedly pick a node u out from V 1, add u to V 0, and test
for a zero-cost cut in the resulting network Nv(u). Clearly,
a zero-cost cut in Nv(u) including u corresponds to a unit-
cost cut in Nv . If the zero-cost cut in Nv(u) is not K-
feasible, u is put back to V 1 and another node u′ ∈ V 1 is
chosen to form Nv(u′) for further testing. This process
terminates when a unit-cost cut is found or every node in
V 1 has been tested. In general, for a cost c, we repeatedly

choose a subset S of V 1 such that | S | = c, assign nodes in S
with zero-cost to form a new network Nv(S) and test to see
if Nv(S) has a zero-cost K-feasible cut. It is easy to see that
Nv(S) has a zero-cost cut including S if and only if Nv has a
cut of cost c with S in the cut set.

When cost c exceeds QK/2P, we assign nodes in a
different way to reduce the computational complexity. If a
K-feasible cut (Xv ,X

hh
v) has a cost c, it must be the case that

| ns (Xv ,X
hh

v) ∩ V 0 | ≤ K − c. Hence, we choose a set S
consisting of K − c zero-cost nodes, set their node capacities
to zero (i.e., to force them to be in the cut set), set the
capacities of remaining zero-cost nodes to infinity, set the
capacities of unit-cost nodes to one and denote the resulting
network Nv(S). Then we compute a max-flow in Nv(S). It
is easy to see that a K-feasible cut of cost c exists in Nv if
and only if the max-flow in Nv(S) has a value c. If the
max-flow in Nv(S) is larger than c, another set S of size c
will be tried, until all possible S sets have been tested. It
can be shown the max-flow in Nv(S) is at least c.
Otherwise, a K-feasible cut of cost smaller than c should
have been discovered in earlier steps. Using this method,
we reduce the number of max-flow computation from
C (n 1,c) to C (n 0,K −c) for testing the existence of K-
feasible cut of cost c, where n 0 = | V 0 | and n 1 = | V 1 | , both
of them are bounded by n. This method limits the growth
of computational complexity. When c = K, we simply need
a single min-cut computation. Because Nv is K-bounded, a
K-feasible cut must exist. When no cut of cost K − 1 or less
is found, the min-cut must be the min-cost cut. Figure 1
gives the pseudo code for the optimal min-cost K-feasible
cut algorithm. We have the following result:

Theorem 2 The min-cost-K-feasible-cut algorithm
computes an optimal min-cost K-feasible cut in a K-
bounded network Nv in O (2Kmn QK/2P+1) time, where n is the
number of nodes in Nv and m is the number of edges in Nv .

3.4.2. Speed-Up of the Min-Cost K-feasible
Cut Algorithm

We present a theorem which can be used to further
speed up the computation of the min-cost K-feasible cut.
Suppose the algorithm fails in c = 0 pass to return a cut. Let
flow function f 0 denotes the flow in c = 0 pass and
value (f 0) denotes the value of the max-flow. Then
value (f 0) > K. Let f 0(u) represent the amount of flow
through node u. If there exists a K-feasible cut (Xv ,X

hh
v) of

cost one, let u 1 be the node of cost one in such a cut.
According to the flow conservation property,

u ∈ ns (Xv ,X
hh

v)
Σ f 0(u) = value (f 0)

Since other nodes in (Xv ,X
hh

v) have capacity one, we have
f 0(u 1) + (K − 1) ≥ value (f 0), i.e., f 0(u 1) ≥ value (f 0) − K + 1.
In general, we have the following theorem:



iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Procedure Min_Cost_K_Feasible_Cut(Nv , v, K)

V 0 = { u | cost (u) = 0}, V 1 = { u | cost (u) = 1};

for c = 0 to QK/2P do
for each subset S of V 1 such that | S | = c do

V 1 = V 1 − S, V 0 = V 0 ∪ S;
capacity (u) = 1 for all u ∈ V 0;
capacity (u) = ∞ for all u ∈ V 1;
fc(S) = Max_Flow(Nv);
if value (fc(S)) ≤ K

a cut of cost c is found, return the cut;
V 1 = V 1 ∪ S, V 0 = V 0 − S;

end for
for c = QK/2P + 1 to K − 1 do

for each subset S of V 0 such that | S | = K − c do
V 0 = V 0 − S;
capacity (u) = 0 for all u ∈ S;
capacity (u) = ∞ for all u ∈ V 0;
capacity (u) = 1 for all u ∈ V 1;
fc(S) = Max_Flow(Nv);
if value (fc(S)) ≤ c

a cut of cost c is found, return the cut;
V 0 = V 0 ∪ S;

end for
for c = K to K do

return a min-cut;
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Figure 1 Optimal Min Cost K-feasible Cut Algorithm

Theorem 3 Let f 0(u) be the flow at node u at the end
of c = 0 pass. If there exists a K-feasible cut of cost c, and
u 1, u 2, ... , uc are those unit-cost nodes in the cut set, then
f 0(u 1) + f 0(u 2) + . . . + f 0(uc) ≥ value (f 0) − K + c.

We may use this theorem to speed up the cut
computation. For example, assume K = 5 and value (f 0) = 7
in the c = 0 pass. Then in c = 1 pass, we need not compute a
cut in Nv(u) for those nodes u of flow f 0(u) < 3. Similarly,
in c = 2 pass, those pair of nodes u 1,u 2 such that
f 0(u 1) + f 0(u 2) < 4 are out of consideration. The flow
function f 1 in c = 1 can also be used in a similar way to
reduce the search space in the followed passes. In our
experiments, we are able to reduce the search space by as
much as 350 times even for small benchmarks. For large
benchmarks, the impact is more significant.

3.5. Summary of CutMap Algorithm
The CutMap algorithm produces a depth-optimal

mapping solution for a given K-bounded network N and a
given depth bound D. CutMap has two phases. In the first
phase, CutMap calculates a label for each node in N using
FlowMap algorithm. In the second phase, CutMap exploits

depth criticality of mapped nodes and computes either a
min-height K-feasible cut for nodes on critical path or a
min-cost K-feasible cut for nodes not on critical path. The
cut computation is based on an optimal min-cost K-feasible
cut algorithm developed in this paper. The complexity of
such algorithm is O (2Kmn QK/2P+1) where n is the number of
nodes and m is the number of edges in the network. We
give a theorem based on which we can speedup the
computation for min-cost K-feasible cut. CutMap uses a a
predictive cost assignment method, which is based on the
MFFC decomposition of the Boolean network, to assign
cost of nodes and achieve area minimization.

4. Experimental Results
We have implemented the CutMap algorithm using

the C language on Sun SPARC workstations. Given a
general Boolean network, we uses the input/output and
general utilities provided by MIS/SIS [BrRS87] to
decompose it into a 2-input network of simple gates. Then
we apply CutMap algorithm on the decomposed network to
obtain a depth-optimal K-LUT mapping solution. Post-
processing operations, including gate-decomposition,
predecessor-packing [ChCD92] and FlowPack [CoDi94a],
are applied to further reduce the number of LUTs in the
solution. In our experiments, we target a 5-LUT based
mapping solution to reflect, e.g., the X3000 FPGA family
produced by Xilinx. It has been reported in [CoDi94a] that
FlowMap outperforms other speed-oriented mapper such as
Chortle-d, DAG-Map and MIS-pga-delay by as much as
50% in area and 7.1% in depth. Hence, we compare
CutMap mapping solutions with only those by FlowMap.

We test the CutMap algorithm on 18 MCNC
benchmarks, which were obtained by a sequence of
technology independent optimization for both area and
speed using MIS, and the resulting networks had been used
by Chortle-d and FlowMap in their experiments. These
benchmarks are already 2-input networks, so no
preprocessing steps are required to guarantee a K-bounded
network. Their sizes range from 48(z4ml) to 3263(des)
nodes. Experimental data is shown in Table 1. We use FM,
CM and PP to refer to FlowMap, CutMap and post-
processing respectively. Results in columns FM and CM
are the number of LUTs in the mapping solutions by
FlowMap and CutMap without post-processing operations,
respectively. Results in columns FM/PP and CM/PP are the
number of LUTs in the FlowMap and CutMap solutions
followed post-processing operations for area minimization.
CutMap uses 22% fewer LUTs than FlowMap does without
post-processing and 15% fewer LUTs with the post-
processing routines. In this experiment, both FlowMap and
CutMap produces solutions with optimal depth D opt .

We evaluate the impact of applying Theorem 3 in the
optimal min-cost K-feasible cut algorithm by reporting
number of times that max-flow routine is executed in c = 1
and c = 2 passes. Table 2 shows the numbers reported by



iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CKT FM CM FM CM D opt

PP PPiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
5xp1 29 24 25 24 3
9sym 75 68 61 65 5
9symml 66 62 58 59 5
C499 183 148 154 138 5
C880 258 213 233 205 8
alu2 173 148 162 145 8
alu4 292 255 267 252 10
apex6 300 244 257 242 4
apex7 109 82 90 80 4
count 93 62 76 58 3
des 1524 1059 1308 989 5
duke2 219 191 187 178 4
e64 209 164 166 162 3
misex1 19 19 15 16 2
rd84 49 45 43 45 4
rot 315 255 268 237 6
vg2 54 40 45 38 4
z4ml 16 13 13 12 3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Total 3983 3092 3428 2945
1 0.78 1 0.86iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 1 Result from FlowMap and CutMap (LUTs)

CutMap for six small benchmarks. Numbers in row I and II
are the numbers reported by CutMap without and with
applying Theorem 3 for speed-up, respectively. It is clear
that CutMap gains significant speedup based on the result of
Theorem 3.

In Table 3, we showed the results of FlowMap_r
[CoDi94b] and CutMap followed by depth relaxation
routines in FlowMap_r on 11 MCNC benchmarks for
relaxed depth X = 0,1,2,3. It has been shown in [CoDi94b]
that depth relaxation decreases the number of LUTs
substantially on these benchmarks. FlowMap_r was
originally designed to perform depth relaxation and
remapping on a depth-optimal solution produced by
FlowMap for area minimization. We modified FlowMap_r
so that it can be applied to any given mapping solutions,
including those produced by CutMap for depth relaxation
and area minimization. In column D opt+X of Table 3, we
record the number of LUTs in the LUT-networks of depth
D opt+X produced by FlowMap_r and CutMap followed

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
z4ml 5xp1 misex1 vg2 rd84 9symiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

I 730 891 811 2217 7430 24594
II 42 110 79 22 21 78iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 2 Number of Times that Max-Flow is Executed in
c = 1 and c = 2 passes in CutMap

FlowMap_r (separated by a slash ‘‘/’’), respectively. If no
solution is found for a particular depth, we leave a ‘‘-’’ in
the entry. The total of each column is computed as the
summation of numbers of LUTs in the mapping solutions
which satisfy the depth bound and have minimal number of
LUTs. Note that when X = 0, the mapping solution is still
depth-optimal. It is not surprising that for X = 0 case,
FlowMap_r reduces the number of LUTs in FlowMap’s
mapping solution considerably, but CutMap followed
FlowMap_r does not reduce the number of LUTs as
effectively, since depth relaxation has been exploited by
CutMap during the mapping process. The solutions
produced by CutMap followed FlowMap_r are overall
better than those produced by FlowMap_r for X = 0,1,2. As
the relaxation bound X increases, the results become
comparable because in this case FlowMap_r generates a
new mapping solution after depth relaxation and
remapping, which is quite different from the input solution.

5. Conclusion and Future Work
In this paper, we study the simultaneous depth and

area minimization for LUT-based FPGA technology
mapping problem. Our goal is to generate depth-optimal
mapping solutions using as few LUTs as possible for the
given K-bounded Boolean networks. Our algorithm, called
CutMap, not only achieve depth optimality as the FlowMap
algorithm but also exploits depth relaxation and achieves
area minimization in the mapping process, instead of
considering them in the post-processing stages. The depth
relaxation is based on dynamic updating of depth criticality
for nodes in the network. The area minimization is
achieved by using an optimal min-cost K-feasible cut
algorithm designed in this work. Our optimal min-cost K-
feasible cut algorithm takes O (2Kmn QK/2P+1) time, where n
is the number of nodes and m is the number of edges in the

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CKT D opt+0 D opt+1 D opt+2 D opt+3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
rd84 47/43 39/41 37 38
count 77/63 60/60 -/- -/-
apex7 83/79 79/76 -/- -/-
duke2 188/182 167/173 151/153 -/-
alu2 154/146 143/142 137/136 135/133
C880 206/207 195/196 176/183 -/177
rot 248/238 229/230 225/218 216/217
C499 134/142 130/129 -/- -/-
alu4 254/250 247/242 243/237 238/232
apex6 234/241 225/222 225/- 224/-
des 1140/989 1093/- 985/979 954/-iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Total 2765/2580 2607/2500 2448/2431 2400/2416

1/0.93 1/0.96 1/0.99 1/1.01iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3 Number of LUTs in the solutions produced
by FlowMap_r and CutMap+FlowMap_r.



network. We further reduce its runtime using the max-flow
information.

The recent algorithm named FlowSYN [CoDi93b]
uses functional decomposition based re-synthesis during the
FlowMap mapping process and achieves good results in
terms of both depth and area minimization. In most cases,
FlowSYN outperforms CutMap in terms of both depth and
area, but require longer runtime. We are in the process of
extending ideas of FlowSYN and integrating resynthesis
techniques during CutMap mapping process.
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