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Abstract 

Cut enumeration is a common approach used in a number 
of FPGA synthesis and mapping algorithms for considera- 
tion of various possible LUT implementations at each node 
in a circuit. Such an approach is very general and flex- 
ible, but often suffers high computational complexity and 
poor scalability. In this paper, we develop several efficient 
and effective techniques on cut enumeration, ranking and 
pruning. These techniques lead to much better runtime and 
scalability of the cut-enumeration based algorithms; they 
can also be used to compute a tight lower-bound on the size 
of an area-minimum mapping solution. For area-oriented 
FPGA mapping, experimental results show that the new 
techniques lead to over 160X speed-up over the original op- 

timal duplication-free mapping algorithm, achieve mapping 
solutions with 5-21% smaller area for heterogeneous FPGAs 
compared to those by Chortle-crf [6], MIS-pga-new [9], and 
TOS-TUM [4], yet with over 100X speed-up over MIS-pga- 
new [9] and TOS-TUM [4]. 

1 Introduction 

A Ii--lookup-table (K-LUT) is a basic functional block of 
lookup-table based FPGAs, which can implement any Boolean 
function with no more than x inputs. Homogeneous FPGAs 
have LUTs with the same number of inputs, while heteroge- 
neous FPGAs consist LUTs with different input sizes. For 
example, Xilinx XC4K [15] has both 4- and 5-LUTs and 
ORCAZC [12] has both 5- and 6-LUTs (and even 4-LUTs 
with shared inputs). Vantis [13] recently announced a new 
type of FPGAs with 3-, 4-, 5- and 6-LUTs. 

One generic type of FPGA mapping algorithms are based 
on cut enumeration. Since each K-LUT corresponds to a 
K-cut (to be precisely defined later), these algorithms con- 
struct a mapping solution by enumerating and evaluating 
all (or a subset of) K-cuts for every node and choosing the 
best K-cuts for a subset pf nodes to form LUTs to cover 
the original circuit. For example, the algorithms in [9] enu- 
merate a few cuts for each node and solve the cut selection 
problem as a binate covering problem. The DFmap algo- 
rithm [2] enumerates all the li-cuts within the maximum 
fanout-free cone (MFFC) of each node and select one with 
the minimum area to form an area-minimum duplication- 
free mapping solution. For delay minimization of sequential 
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circuits, the work in [lo] enumerates all the K-cuts and se- 
lect one with the minimum label for each node to compute 
an optimal mapping solution under retiming. In general, 
cut-enumeration based approaches have the advantage that 
they can handle different optimization objectives and can be 
easily extended for heterogeneous FPGAs or FPGAs with 
some special structures. As a comparison, other existing 
approaches, especially those based on max-flow computa- 
tion [l] may not be easily extended to handle special fea- 
tures in FPGA architecture, such as non-uniform pin-to-pin 
delays of an LUT. 

However, the most serious problem in cut-enumeration 
based approaches is high time complexity. For a circuit with 
n nodes, the number of K-cuts (or different K-LUT forma- 

tions) for a node can be as large as O(nK). Furthermore, 
evaluating and selecting the best K-cuts (or K-LUTs) to 
cover the entire circuit is difficult. [9] formulates the cut se- 
lection problem as a binate-covering problem which is NP- 
hard. DFmap algorithm [2] can find optimal duplication-free 
solution in polynomial time. However, it cannot consider 
duplication of nodes to reduce the area. 

In this paper, we develop several efficient and effective 
techniques on cut enumeration, ranking and pruning. These 
techniquei lead to much better runtime and scalability of the 
cut-enumeration based algorithms. They can also be used to 
compute a tight lower-bound on the size of an area-minimum 
mapping solution (finding such a solution is a NP-hard prob- 
lem). We have applied these techniques to several applica- 
tions, including (1) a faster area-optimal duplication-free 
mapping algorithm; (2) area-minimal mapping for general 
mapping with possible node duplication; and (3) extensions 
of (I) and (2) to heterogeneous FPGA mapping. Experi- 
mental results show significant improvements over existing 
approaches. 

The remainder of the paper is organized as follows. Sec- 
tion 2 presents a brief problem formulation and basic def- 
initions. Section 3 discusses our cut enumeration, ranking 
and pruning techniques. Section 4 presents applications of 
our techniques for area-oriented mappings. Our experimen- 
tal results are reported in Section 5 and discussions are in 
Section 6. Proofs of the theorems and some other details 
are omitted due to page limit. 

2 Problem Formulation and Definitions 

In this work, we consider the FPGA technology mapping 
problem for combinational circuits.’ A general circuit is 
modeled as a directed acyclic graph in which nodes represent 
logic elements, and edges represent interconnects. A node 

‘For sequential circuits, we can cut at the flipflops to get combi- 
national subcircuits and map each one separately. 
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without incoming edge is a primary input (PI) and a node 
without outgoing edge is a primary output (PO). 

A homogeneous FPGA consists of only one type of LUTs 
with the same input size, while a heterogeneous FPGA con- 
sists of LUTs with different input sizes. LUTs of different 
input sizes may have different areas. We use K to denote the 
input size of an LUT under discussion. The area-oriented 
LUT-based FPGA mapping problem is to cover a gate-level 
network with LUTs such that the total area of those LUTs is 
minimum for either homogeneous or heterogeneous FPGAs. 
This problem is NP-hard even for homogeneous FPGAs [5]. 

In this paper, we use Cv to denote a cone of node u, 

FFC, a janout-free cone of v, MFFC, a maximum fanout- 
free cone of v and F, the fanin cone of v. We refer readers 

to [3] for the detailed definitions. A cone is K-feasible if its 
input size is K or smaller. 

A cut is a partitioning (X, x) of a cone C, such that x 

is a cone of v. The node cut-set of the cut, denoted V(X, x) 
consists of the inputs of cone 7. A cut is K-feasible if x 
is a K-feasible cone. We may simply refer such a partition 
(X, x) as a cut for node v, when discussing a fixed C,. 

3 Cut Generation, Ranking and Pruning 

The procedure of selecting a set of LUTs of proper sizes to 
cover the gate-level network has three components: 

1. Cut generation: For each node being considered, gen- 
erate all or a subset of the K-feasible cuts, via enu- 

meration or direct computation. 

2. Cut ranking: Compare the cuts according to the given 
optimization objectives when two or more cuts are gen- 
erated for a node. 

3. Node selection: Choose the nodes (and their best cuts) 
for implementation using LUTs. 

Each of these three steps may involve costly computa- 
tions, due to the potentially large number of cuts and the 
NP-hardness of the area minimization problem. Existing al- 
gorithms generally alleviate this by heuristically restricting 
the search scope, which often result in sub-optimality. 

The set of general techniques that will be presented here 
can significantly speed up the cut generation and selection 
processes for area minimization in FPGA mapping. These 
techniques are general in the sense that they are applicable 
to any cut enumeration process, whether through the entire 
solution space or a subset. They are also scalable since the 
amount of computation per node can be made independent 
of the size of the entire network and only associated with 
the size of its input and the LUT size. Applications and 
experimental results to be presented in subsequent sections 
will show that they are also very effective. 

3.1 Cut Generation 

We first consider the enumeration of all K-feasible cuts of 
a cone for a given node, then discuss how to share such 
computation among nodes in a network for better efficiency. 

3.1.1 Cut Enumeration Scheme 

Given a node IJ and a cone C, of v, we associate a Boolean 
variable to each node w E C, U input(&), also denoted as 

w. A cut (Xv, x,,) of C v can be represented using a product 
term (or a p-term in short) of the variables associated with 

the nodes in the node cut-set of V(X,, 7,). In the rest 
of this section we will often refer to a cut by the pterm 
associated with it. A set of cuts can be represented by a 
sum-of-product expression using the corresponding p-terms. 
In this way we can represent the set of all K-feasible cuts of 
C, by a unate Boolean function which we call the generating 
function of the cuts. 

For a node UI E C,, F, n C, is a cone of w, which 
we call the projection of w in C, and is denoted as Pzv 
or simply P, when Cv is clearly uEderstood in context. If 

w E input(v) but w @ V(X,, X,), then (Xv, 5?v) de- 

rives a cut (X,, yw) of P, where 7, = x, n P, and 

V(XuJ, x,) E V(X,, 7,). We call (X,, ‘T,) a subcut 
of v from w. If we extend this notion of subcut to nodes 
w E input(v) f~ V(X,, x,) by saying that w itself (as the 
Boolean variable) represents a subcut of v from node w, it 
is easily seen that a cut of v can be obtained by merging 
one subcut from each of its inputs together. By consider- 
ing all possible combinations of all subcuts, we will be able 
to generate all cuts. This implies a recursive definition of 

the generating function. Specifically, let f,(K, v, w) for 
w E C,, be the generating function for all K-feasible cuts 

of P,“*, and define f,(K, v, w) = 0 for w E input( 
Then, we can show 

Lemma 1 

f,(K, u, w) = @JR Iu +fJK, ‘u, UN, (1) 
uEinput(w) 

where operator + is Boolean OR, and @Ii is Boolean AND 
but filtering out all resulting p-terms with more than K vari- 
ables. 

All K-feasible cuts of C,, are then enumerated by f,(K, u, v). 

3.1.2 Efficient Computation via Subcut Sharing 

The above formulation applies directly to any node v and 
any cone C, of it in a network. Since f,(K, v, w) is a 

function related to PzW, generally the computation can only 
take place once C, is given, and intermediate results can not 
be directly shared among cones, except for some particular 

types of cones. 

Cuts of Fanin Cones. If we want to enumerate all K-feasible 
cuts of all nodes in a network, for every node w we will com- 
pute f,(K, w, w) for C, = F,. Note that, however, for 

any node v such that w E F,, P> = F,. That is, P, 
remains the same for all successors of w. Therefore Eqn. (1) 

simplifies to 

f,(K, w, w) = ($- [u+ f,(K, u, u)], (2) 

tie&put(w) 

and can be iteratively computed in a topological order in 
one pass for all nodes. 

Cuts of MFFCs. Enumerating cuts of MFFCs is more com- 
plicated since in general P,“” c* # M FFC,. To use the 
one-pass method, for each node w, instead of f,(li, w, w) 
we compute f,(K, V, w), such that MFFC, is the largest 
MFFC containing w. In this case f,(K, u, w) is the gen- 

erating function of the K-feasible cuts of PfFFCW, and 
f,(K, w, w) can be easily derived from it. According to 
the nesting property of MFFCs [2], we can easily show 
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Lemma 2 If w E MFFC, and u E MFFCU, 
pMFFC, 

then P,” = pf”“““. 

3.2 Cut Ranking 

Once a cut is generated it has to be evaluated or ranked. 
In the case of FPGA mapping for area minimization the 
evaluation is based on the effect of implementing this cut 
on the overall area of the mapping solution: a cut is more 
favorably ranked if, when used to implement this node, it 
results in smaller mapped area of t,he entire network (or a 
given portion of it). 

Such ranking is generally not easy, because it effectively 

requires computing an optimal mapping of the network (or 
a portion of it) with one given LUT fixed. 

3.2.1 Duplication-free Mapping 

In the case of duplication-free mapping, it is shown in [2] 
that an optimal mapping can be partitioned into a set of 
MFFCs, and the minimum mapped area for each MFFC 
can be computed independently. 

First, consider a mapped M FFC, in which each node is 

an LUT. Assume the area of a K-LUT is AI< (which does 
not have to be always different for different values of K). 
We define the eflectiwe area a() for each node and edge of 
the network as follows. First, for any node w outside of the 
MFFC we have o(w) = 0. Then iteratively, for each edge 
< u, w > we have (Y(< u, w >) = o(u)/ 1 output(u) 1, 
and for each node w inside the MFFC we have o(w) = 

CusinpuQ~) a(< u, ti >) + A,inpuqW),. Intuitively, the ef- 

fective area of a node 20 is the area of PflFFC”, except that 
the portions that are shared with other projection cones are 
divided proportionally and distributed into each cone con- 
taining them. A shared portion is always a cone rooted at 
a multiple output node; in duplication-fr:e mapping it will 
have been mapped independently, and once the outputs re- 
converge, the total area of that shared cone will be accounted 
for. Based on these observations, we can easily shown 

Lemma 3 The eflectiwe area ofz), the root of MFFC,, is 

the real area of MFFC, under the given mapping solution. 

This lemma is true for any mapping solution of MFFC,, 

including any optimal solution. If the mappin 
B 

solution is 

optimal, for any node w its projection cone P, FFCw must 
also be optimally mapped, including its exclusive portion 
as well as the shared portion (which will be mapped in- 
dependently in a duplication-free mapping). Therefore the 
effective area of w will be minimum with respect to all pos- 
sible mapping solutions of PfFFCU. We call this minimum 
effective area the effective cost of w, denoted y(w). (The ef- 
fective cost for nodes outside MFFC, is still 0.) Obviously, 
we have 

Corollary 1 The eflective cost of v, the root of MFFC,, 
is the minimum area of any mapping solution of MFFC,. 

The importance of effective cost is that we can use it to 

efficiently compute an optimal duplication-free mapping of 
MFFC, including the evaluation of cuts in an MFFC. We 
do so by extending it to any cut (X,, X,) of PgFFC”. The 
effective cost of the cut is the sum of the effective cost of the 
nodes in input(w) n V(X,, gW), and the effective cost of 
the induced cuts of nodes that are in input but not in 

V(XuJ, 5?,). With the effective cost of a cut so defined, we 
can compute the effective cost of the nodes according to the 
following rule. 

Theorem 1 For any node UJ E MFFG, 

Y(W) = 
(Xlu, 

$, [Y(Xw, X;w) + A, “(X,,X,),l. (3) 
w ISa 

K-feasible cut of MFFC, 

Moreover, the cut that minimizes the y(w) of this equation 

is the best I<-feasible cut of MFFC,. 

If we compute the effective cost of each node in MFFC,, 
in a topological order, for any node u E PwMFFCv the cost 
of u as well as the cost of each cut of ‘~1 would have been 
computed when y(w) is to be computed. For a K-feasible 

cut the effective cost $X,,X,) can be evaluated in O(h-j 
time, superior to the O(n,) method used in [2]. 

3.2.2 General Mapping 

We can extend the effective area computation to general 
mapping directly. For effective area under a given mapping 
solution, we still define o(u) = 0 for any PI node V, Q(< 
u, v >) = o(u)/ 1 output(u) 1 for any edge < u, v >, and 

4~) = CuEianpuqv) o(< 11, 2, >) + Alinput(, Similarly, 

we still define the efJective cost y(w) of a node v to be the 
minimum effective area of u in any mapping solution. 

Computing effective cost is more complicated. Note that 
logic sharing among fanin cones are handled by distributing 
the effective cost of the shared portion, which corresponds to 
an optimal mapping of that part, evenly to all fanouts. By 
doing so it implicitly assumes that the optimal mapping of 
the shared portion, obtained independently, will be consis- 
tently used in the optimal mapping of the cones that share 
it. While this is true for duplication-free mapping, it is not 
true for general mapping, as illustrated in Figure 1, where 
node w is duplicated in mapping of F, but not in mapping 
of F,. In this case, the accurate distribution of such cost 
becomes complicated. In fact, the difficulty in determining 
how to optimally map a multiple-output node is the reason 
that FPGA mapping for area minimization is NP-hard [5]. 

Figure 1: General Mapping (K = 3) treats shared logic 
differently. 

To maintain efficiency, we still want to use the cost com- 
putation method used in duplication-free mapping. Note 
that, however, what we computed is no longer accurate ef- 
fective cost. Let $() denote the cost we computed for general 

mapping, we can prove that 

Theorem 2 For any node v in the network, 9(v) 5 y(v). 

As a result we can compute a lower bound of the mini- 

mum mapped area of the network: 

Corollary 2 C, ir ( po +(v) is a lower bound on the mini- 
mum area of all mapping solutions. 

Our experimental results also show that using 9(w) as 
the evaluation function for cut ranking is very effective. 
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3.3 Cut Pruning 

Based on the ranking techniques we can select the most 

desired cuts during the enumeration. On the other hand, it 
is more efficient if we can eliminate undesired cuts without 

even generating them. In this section we discuss various 
pruning techniques that speed up the search. 

3.3.1 Non-essential Subcuts 

We first consider cut enumeration for duplication-free map- 

ping. In this case, the cuts of MFFC, are constructed 

partly with subcuts from w where w E MFFC, (recall 

that a subcut of 21 from w is a cut of PzFFCv induced by 

a cut of v). In particular, some subcuts from w are also 

cuts of MFFC,; we call them internal subcuts from w. the 
number of nodes in the node cut-set of an internal subcuts 

from w that are in MFFC, is called the internal size. 
A subcut can participate in the construction of many 

cuts, which may be ranked differently. However, if no cut 
constructed from a subcut S, can have the best rank, S, 
is said to be non-essential A non-essential subcut can be 

discarded without losing the best cut, thus speed up the 

enumeration. 
If we refine the ranking standard introduced in the pre- 

ceding section such that a cut is ranked better if its cost 
is smaller or with the same cost has a smaller cut size, we 
have the following results regarding non-essential internal 

subcuts. 

Theorem 3 Let w E MFFC, and S, is an internal subcut 
of w from w. S, is non-essential if 

(1) S, is not a minimum cost cut of MFFC,; or 

(2) there is another internal subcut of the same cost, whose 
size is smaller than the internal size of S,. 

In each of the two cases, for every cut of v constructed 

from S, there will be another cut of v constructed from 
S, that either has smaller cost or has the same cost but 

smaller size. Note that if S, is not a minimum cost cut for 
w, its node cut-set must contain at least one node inside 

MFFC,.2 By replacing the node cut-set of S, with node 
w in any cut of MFFC,, we will not increase the size of 

the cut; moreover, we will not increase the cost of the cut 
since MFFC, can now be optimally implemented, which 

will save at least one LUT, thus offset the added cost of 
implementing w. 

Based on these properties we can set a few rules: _ - 

Using these rules can usually limit the number of stored 
cuts to a very small value, thus significantly reduce the 

amount of computation in Eqn 1. 
These reductions are also applicable to general mapping. 

Note that the properties do not depend on the fact the 
MFFC, is an MFFC; they are solely based on MFFC, 
being an MFFC. Since cuts of F, include cuts of MFFC,, 
we can reduce this set of subcuts using the above rules. 

3.3.2 Common Subcuts 

In the case of general mapping, multiple successors of a node 
v can use the subcuts from 2, to construct its own cuts. and if 

there are multiple subcuts that are equally desirable accord- 
ing to the (approximate) ranking, two different successors 

u1 and u2 may choose different subcuts form v to construct 
their desired cuts independent of each other. If uz and u2 

are both implemented by LUTs, however, nodes from both 
node cut-sets, including the nodes from the two different 

subcuts, must be implemented as well. This results in in- 
creased number of LUTs in the form of unnecessary logic 

duplication. 
To alleviate this problem of excessive node duplication, 

for cuts with the same cost, we sort and select them in a 
predetermined order to avoid arbitrary selection of different 
min-cost cuts. To sort all the cuts, we first number all the 

nodes as ID(v) = 1,2, .., TZ for a circuit with n nodes and sort 

nodes in a cut in increasing order of ID(v). Then we sort all 

the cuts (WI, VUZ, .., VU~) with the same cost of a node based on 

a lexicographic order of ID(vi) of all nodes 21; in the cuts. If 
both cuts of each of the fanouts of v have the same cost, both 

of the fanouts tend to choose the same cut of v to form their 
best cuts. As a result, we tend to not duplicate the fanin 

cone of TV and can achieve a mapping solution with smaller 
area. Notice that, however, this ordering is just a heuristic 

in helping to choose common cuts to reduce unnecessary 
node duplication. To solve this problem optimally, however, 
is NP-hard. 

3.3.3 EFFC Based Enumeration 

Another way to prevent excessive node duplication is to use 
explicit duplication control by marking certain nodes as non- 
duplicable. Once such nodes are marked, we generate only 

the cuts that do not cover those marked nodes. Specifically, 
we define extended MFFC of a node o, denoted EFFC, 
to be a cone of v containing MFFC, and any unmarked 
(duplicable) predecessor of v that has a path to v contained 

in EFFC,. Then, instead of enumerating cuts in F,,. we do 
it in EFFC,. 

The general rule of selecting nodes that are to be marked 
non-duplicable is that they are likely to be implemented by 

LUTs. Examples include nodes with large fanout and roots 

If MFFC, is K-feasible, then (0, MFFC,) is the only 
best cut, and the only internal subcut needed for sub- 

sequent cut generation of the successor nodes of w. 

If MFFC,,, is not K-feasible, only certain minimum cost of large MFFCs. We can also perform some preprocessing 

cuts of MFFC, need to be kept as internal subcuts to determine non-duplicable nodes. 

for subsequent cut generation of successor nodes of w; 
in particular, 3.3.4 Cost Based Pruning 

if there are minimum cost cuts of MFFC, whose Even with subcut pruning we described, the number of saved 

node cut-sets are completely contained in MFFC,“, cuts can still be very large especially when K is large. There- 

keep only the one with smallest cut size; or fore, we keep a fixed number of cuts with small estimated 

if there are minimum cost cuts whose node cut-sets 
cost and prune those with larger estimated cost and in the 

are not completely contained in MFFC,, keep 
case of equal cost, ones with larger cut sizes. Since the esti- 

only the ones whose internal sizes are smaller than 
mated cost of a cut is a lower-bound on the minimum effec- 

the size of any known minimum cost cut. 
tive cost on the LUT represented by the cut in any mapping 
solution, to prune cuts with large estimated cost is less likely 

*If S, COWTS the entire MFFC,, it must be the best cut 
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to degrade the final mapping results. This is also confirmed 
by our experimental data (to be presented in Section 6). 

3.3.5 Decomposition vs. Shrinking 

The complexity of Eqn. 1 clearly relates to the input size as 
well as the number of nodes: More nodes require most steps 
of computation, while larger input sizes result in slow com- 
putation per step. In [2] a shrinking method is introduced to 
reduce t,he number of nodes for duplication-free mapping. It 
collapses all K-feasible MFFCs prior to cut generation, after 
showing that the optimal solut~ion would not, be lost. It was 
very successful in speeding up the cut enumeration there [2]. 

The opposite direction is decomposition, which decreases 
input sizes by increasing the number of nodes. Decompo- 
sition can provide more freedom in forming different LUTs 
at the cost of more cuts to be enumerated. For area min- 
imization, we first decompose the network into 2-bounded 
one. Then, for a gate V, we shrink MFFC, into one node 
if MFFC, is El-feasible. For heterogeneous FPGAs with 
LUTs of input sizes of K1 < Ii2 < < K,, we only shrink 
]<I-feasible MFFCs. The reason is doing this is that de- 
composing a network into 2-bounded one can enlarge the 
solution space and potentially lead to better results. How- 
ever, most of the K-feasible MFFCs usually will be packed 
into K-LUTs for smaller area. Shrinking those K-feasible 
MFFCs usually will not affect the results, while can reduce 
the number of K-cuts to be enumerated 

4 Applications on FPGA Mapping for Area Minimization 

In this section, we applied the cut enumeration, ranking and 
pruning techniques discussed in Section 3 to FPGA mapping 
for area minimization. The first application is to speed up 
the optimal DFmap algorithm presented in [Z]. The sec- 
ond application is to develop a general mapping algorithm 
with consideration of node duplication for area minimiza- 
tion. We shall also discuss how easily these algorithms can 
be extended to heterogeneous FPGA mapping. 

4.1 .Speedup of Optimal Duplication-Free Mapping 

The DFmap algorithm [2] is the first pseudo polynomial time 
algorithm to compute optimal duplication-free mapping so- 
lutions. It first partitions the circuit into a set of MFFCs and 
then maps each one independently. For one MFFC rooted 
at a node V, after we select one K-feasible cut, the MFFC 
can again be partitioned into a set of small MFFCs and each 
one can also be mapped independently. 

The major shortcomings of the approach are that, first, 
the number of all the K-feasible cuts for a node in its MFFC 
can grow exponentially with K. Second, to compute the cost 
of each cut for a node v needs O(n) time by adding all the 
area of sub-MFFCs included in the MFFC of w. 

To speed up the DFmap algorithm [z], we use the afore- 
mentioned cut enumeration, ranking and pruning techniques 
as follows. 

For each MFFC, after the MFFC partitioning, we pro- 
cess all the nodes in a topological order from its inputs to its 
output. For each node, we enumerate its K-feasible cuts by 
combining the K-feasible cuts of its inputs. For an input i 
to the MFFC,, its only K-feasible cut is a l-cut with only 
i on the node cut-set. We rank each enumerated cut and 
prune those dominated ones. Since no node duplication is 
allowed, for a node u we will only select its best cut inside 

MFFC,, i.e., we will select a cut V(X,T) with the min- 

imum cost and 5? C M FFC,. To check if x 2 MFFC, 
holds for a cut, we first construct the MFFC, and mark all 
nodes inside MFFC, and all inputs to MFFC,. A cut is 
includedin MFFC, if all nodes in the node cut-set V(X,x) 
are marked. 

4.2 General FPGA Mapping for Area Minimization 

For duplication-free mapping, we select a best cut for ev- 
ery node from K-cuts within the node’s MFFC. For general 
mapping, however, we allow a cut to be selected from K- 
cuts within the node’s EFFC. Recall that a node’s EFFC is 
in general larger than its MFFC, with EFFC we can explore 
a larger solution space than that the duplication-free map- 
ping algorithm can. Usually the more duplicable nodes, the 
larger each EFFC and the larger space the mapping algo- 
rithm can explore. However, the excessive node duplication 
may also be more serious and may finally lead to a poor 
solution. The cut ordering technique presented in Section 
3.3.2 can help to reduce excessive node duplication, but the 
results are not good enough. 

To better control the node duplication for better results, 
we perform a two-phase mapping. In the first phase, we 
mark every node as duplicable, thus, the EFFC of a node 
is its complete fanin cone up to the Pls. Similar to the 
duplication-free mapping algorithm discussed in the previ- 
ous subsection, we use dynamic programming to processing 
node in a topological order from Pls to POs. 

At the completion of the first phase, we tentatively form 
a mapping solution by constructing LUTs for nodes from 
POs to Pls. Initially, all the POs are marked as LUT roots. 
If a node is marked as an LUT root, we construct its LUT 
based on its best cut and mark all inputs to the cut as LUT 
roots. We repeat the process until all LUT roots are pro- 
cessed. After constructing the mapping solution, we mark 
all LUT roots as non-duplicable and the rest nodes in the 
original circuit as duplicable and start the second phase of 
re-mapping. 

In the second phase, since many nodes are marked as 
non-duplicable, the size of EFFC of each node will be re- 
duced. A non-duplicable node u will not be included in a 
node V’S LUT in the second phase if u is not in the EFFC of 
V. By excluding 21, v may try to include some other dupli- 
cable nodes in its LUT to either reduce the area directly or 
reduce the cut size of the LUT of w to create more freedom 
for a postprocessing of LUT packing to further reduce the 
area. 

. 
K=3, Area=; K=3, Area=3 

(a) lb) 

Figure 2: Excessive duplication removal. 

Let us look at the examples shown in Figure 2 with K = 
3 and the area of every LUT be 1. In Phase 1, we may 
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I 
circuit 
Cl355 
Cl908 

C2670 
c3540 
c5315 

C6288 
C880 
alu2 

alu4 
apex6 

des 
frg2 

i6 
i7 
i8 
i9 

i10 
k2 

pair 
rot 

t481 
toolarge 

vda 
average 

+% 

LB 
63 
78 

133 
271 
310 

39s 
89 
84 

150 
158 
534 

201 
67 

103 

288 
133 

489 
283 
303 

149 
174 
72 

159 

204 

-11% 

Heteroeeneous FPGAs with 5.6LUTs 
PRAETOR CPb(s) CRF cpu+j MIS CPU(s) 

66 0.4 88 0.2 66 37 
99 1 .o 110 0.4 97 46 

137 0.7 156 0.9 138 66 
300 2.9 316 1.4 285 180 
341 2.9 371 1.2 339 125 

461 5.6 496 2.0 481 110 
95 0.3 96 0.2 87 65 

103 0.6 104 0.6 94 75 

180 1.4 186 0.9 168 274 
170 0.4 177 0.3 168 34 
560 4.2 937 4.1 886 577 

222 0.9 237 0.3 236 30 
67 0.2 108 0.2 108 14 

103 0.2 143 0.3 103 19 
300 1.6 306 0.6 250 52 

133 0.5 137 0.3 137 38 

594 8.4 618 1.4 584 180 
339 2.7 339 0.8 312 2391 
345 1.6 361 0.6 344 42 

177 0.4 180 0.3 176 38 

195 2.8 198 17.5 194 413 
82 0.4 80 0.4 74 80 

191 2.3 191 0.4 172 47 

229 1.8 258 1.5 239 214 
1 I +13% 0.8X +5% 117x 

I 
TOS CPU(s) 

84 8 
115 29 

193 103 

379 2946 
442 281 

593 5533 
100 79 

44 489 

121 1773 

152 109 

1282 5219 

227 3016 

67 0 

103 5 
335 15992 
187 17326 

813 1179 
512 85601 
445 416 

222 580 
393 4201 
117 1161 

274 5693 

313 6597 

+21% 3594x 

Table 1: Comparison of PRAETOR with Chortle-crf (Column CRF), MIS-pga-new (Column MIS) and TOS-‘1’1JM (Columu 
TOS) for Heterogeneous FPGAs with 5 and 6-LUTs. 

generate a solution with four LUTs rooted at a, ~1, u2 and 
v as shown in Figure 2(a). Obviously, to pack v into LUT,, 
has no benefit because v needs to be implemented as an 
LUT root according to LUT,,. In Phase 2, we will mark 
a, ZJ, 211, ‘1~2 as non-duplicable. As a result, 2, $Z EFFC,, = 
{a, ~1) and will not be packed into LUT,, . Instead, 211 will 
select another cut by covering a to achieve a better solution 
with area of 3 as shown in Figure 2(b). 

4.3 Heterogeneous FPGA Mapping for Area Minimization 

In the previous t,wo subsections we showed how to com- 

pute duplication-free mapping or general mapping solutions. 
With cut enumeration, both methods can be used for both 
homogeneous and heterogeneous FPGAs. The only diffcr- 
ence in handling the two types of FPGAs is that when con- 
puting the cost of a K-feasible cut, the area of every cut is 
the same for homogeneous FPGAs, while the area of differ- 
ent cuts with different cut sizes may be different for hetero- 
geneous FPGAs. 

5 Experimental Results 

We have implemented our cut enumeration, ranking and 
pruning techniques and applied to both duplication-free map- 
ping and general mapping. Our algorithm is named PRAE- 

TOR. We have tested 23 MCNC combinational benchmarks 
(loo-4K gates) and 6 large industrial examples (26K-100K 
gates) on a SUN Enterprise 4000 with 1.5 GB memory. 

To evaluate the efficiency and mapping quality of our al- 
gorithm, we first compared PRAETOR with DFmap [2] for 
optimal duplication-free mapping on the 6 large industrial 
examples with li = 6. On average PRAETOR is over 165X 

faster with almost the same area. The detailed data are 
omitted due to space limit. 

We also compared PRAETOR with Chortle-crf [6], MIS- 

pga-new [9] and TOS-TUM [4, 141 for general mapping with 
node duplication for FPGA with 6-LUTs. Our results show 
that MIS-pga-new and TOS-TUM can achieve considerably 
better results on some small examples, because both of them 
use the Boolean optimization techniques to explore a much 
larger solution space. However, for large designs, since they 
cannot afford to search the entire solution space with Boolean 
optimization, in practice they may not always be able to 
generate better results than that a good mapping algorithm 
can achieve. PRAETOR can outperform Chortle-crf for al- 
most all the large industrial and MCNC examples (except, 
for alu2 in which WC used only 3 more tj-LtJTs). On aver- 
age, PRAETOR can achieve results with 18Y0, 11% or :$I’%, 
fewer 6-LUTs comparing with Chortlecrf, MIS-pga-new and 

‘I’OS-TUM, respectively. Moreover, I’ItAE’l’Ol~ can achieve 
results which are only 14Y0 larger than the lower-bounds on 
the minimum area computed based our cut enumeration and 
evaluation techniques. As this set of results is similar to the 

results for a more general heterogeneous FPGA mapping to 
be shown in the next paragraph, we omit the detailed data 

to save space. To show the scalability of our algorithm, we 
also compared PRAETOR with Chortle-crf on the 6 large 

industrial examples. (Neither MIS-pga-new nor TOS-TUM 
is able to map those large examples in a reasonable amount 

of time.) Our test results show that PRAETOR can achieve 

results with 10% fewer 6-LUTs and in 53% shorter CPU time 

on average. 
For heterogeneous FPGAs, we compared PRAETOR with 

Chortle-crf [6], MIS-pga-new [9] and TOS-TUM [4, 141 on 
the set of MCNC examples.3 We tested for one type of 
FPGA which has both I<-J,TJTs and (A+l)-L[JTs where 

‘We did not compare with those in [7, 81, because they assumed a 
dlffcrent kind of heterogeneous FI’GAs, where thr numbers of LUTs 
with different sizes have a pre-determined ratio. 
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each (K+l)-LUT is twice as large as a K-LUT. This ar- 
chitecture is similar to both ORCAZC FPGAs and Xilinx 
XC4K FPGAs. In our test, we set K = 5. The script for 
MIS-pga-new is recommended in [ll] for the best quality. 
The script of TOS-TUM is based on the script mmaph_a_5.scr 
for area minimization with high optimization effort recom- 
mended in [4]. For TOS-TUM we run SIS commands col- 
lapse to first collapse the circuits into 2 levels, because TOS- 
TUM favors two level circuits. If collapse cannot finish in 
30 minutes, we use reduce-depth to partially collapse the cir- 
cuits for TOS-TUM. 

Table 1 lists our experimental results. In all the mapping 
solutions, we assign each LUT with 6 inputs as a 6-LUT, 
each LUT with 5 or less inputs as a 5-LUT. For Chortle-crf, 

MIS-pga-new and TOS-TUM, we tried mapping for both 
K=5 and 6, and select the solution with smaller area for each 
example. The CPU time in seconds includes the CPU time 
for both run, except for MIS-pga-new we only list the CPU 
time for K=5 because for all the examples its results with 
K=5 are always better than the results with K=6. PRAE- 
TOR, as a comparison, considers both 5- and 6-LUTs simul- 
taneously. In Table 1, Columns PRAETOR, CRF, MIS and 
TOS list the area of the results by our algorithm, Chortle- 
crf, MIS-pga-new and TOS-TUM, respectively, for each ex- 
ample. The results show PRAETOR can reduce the area 
by 13% or 5% or 21% over Chortle-crf or MIS-pga-new or 
TOS-TUM, respectively. Both PRAETOR and Chortle-crf 
are very fast for this set of examples. They can finish in 
a few seconds for every example. MIS-pga-new needs 214 
seconds for K=5 on average. TOS-TUM needs more than 
1.8 hours for two runs with K=5 and 6 on average. 

circuit 
big1 
big2 
big3 
big4 
big5 
big6 

average 
ratio 

1 with prunmg 1 without pruning 1 
nodes total max total max 
26138 1 44811 67 1 800466 173 
52278 46712 31 2649413 303 
29920 28206 37 1678626 424 
30385 17476 55 1452035 523 
92021 91005 47 5224315 276 

101711 111541 53 2897107 310 

56035 56625 48 2450327 335 
1 1 43x 7x 

Table 2: Effectiveness of cut pruning for K = 6. 

Table 2 shows the effectiveness of our cut pruning tech- 
niques (in combining with ranking) for K = 6 for the six 
large industrial examples. Column “nodes” lists the number 
of (2-input) gates in the original circuits. Columns “total” 
list the total number of B-cuts enumerated for all the gates 

with or without pruning. Columns “max” list the maximum 
number of 6-cuts enumerated for every gate with or with- 
out pruning. The results show that our pruning technique 
can reduce the total number of g-cuts by a factor of 43, yet 
with good mapping quality. Note that the total number of 
K-cuts we enumerated may be less than the total number of 
2-input gates in the original circuits, because our algorithm 
will shrink many K-feasible MFFCs into sigle nodes. 

6 Discussions and Future Work 

In this paper, we present a set of efficient and effective 
cut enumeration, ranking and pruning techniques for FPGA 
mapping. Those techniques can be used to design highly ef- 

ficient and adaptive algorithms for both homogeneous and 
heterogeneous FPGAs and FPGAs with special architec- 
tures, like carry and cascade chain. Our test results show 
that our area-oriented algorithms based on those techniques 
are highly scalable to both circuit size and LUT size, and 
can outperform the state-of-the-art algorithms in both run- 
time and quality. In the future, we plan to extend our cut 
enumeration techniques for area/delay tradeoff. 
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