
Cut Ranking and Pruning:

Enabling A General And Efficient FPGA Mapping Solution

Jason Cong and Chang Wu
Department of Computer Science

University of California, Los Angeles, CA

{cong,changwu}@cs.ucla.edu

Yuzheng Ding
Bell Laboratories

Abstract

Cut enumeration is a common approach used in a number
of FPGA synthesis and mapping algorithms for considera-
tion of various possible LUT implementations at each node
in a circuit. Such an approach is very general and flex-
ible, but often suffers high computational complexity and
poor scalability. In this paper, we develop several efficient
and effective techniques on cut enumeration, ranking and
pruning. These techniques lead to much better runtime and
scalability of the cut-enumeration based algorithms; they
can also be used to compute a tight lower-bound on the size
of an area-minimum mapping solution. For area-oriented
FPGA mapping, experimental results show that the new
techniques lead to over 160X speed-up over the original op-

timal duplication-free mapping algorithm, achieve mapping
solutions with 5-21% smaller area for heterogeneous FPGAs
compared to those by Chortle-crf [6], MIS-pga-new [9], and
TOS-TUM [4], yet with over 100X speed-up over MIS-pga-
new [9] and TOS-TUM [4].

1 Introduction

A Ii--lookup-table (K-LUT) is a basic functional block of
lookup-table based FPGAs, which can implement any Boolean
function with no more than x inputs. Homogeneous FPGAs
have LUTs with the same number of inputs, while heteroge-
neous FPGAs consist LUTs with different input sizes. For
example, Xilinx XC4K [15] has both 4- and 5-LUTs and
ORCAZC [12] has both 5- and 6-LUTs (and even 4-LUTs
with shared inputs). Vantis [13] recently announced a new
type of FPGAs with 3-, 4-, 5- and 6-LUTs.

One generic type of FPGA mapping algorithms are based
on cut enumeration. Since each K-LUT corresponds to a
K-cut (to be precisely defined later), these algorithms con-
struct a mapping solution by enumerating and evaluating
all (or a subset of) K-cuts for every node and choosing the
best K-cuts for a subset pf nodes to form LUTs to cover
the original circuit. For example, the algorithms in [9] enu-
merate a few cuts for each node and solve the cut selection
problem as a binate covering problem. The DFmap algo-
rithm [2] enumerates all the li-cuts within the maximum
fanout-free cone (MFFC) of each node and select one with
the minimum area to form an area-minimum duplication-
free mapping solution. For delay minimization of sequential

90095 Lucent Technologies, Murray Hill, NJ 07974

yuzheng.ding@lucent.com

circuits, the work in [lo] enumerates all the K-cuts and se-
lect one with the minimum label for each node to compute
an optimal mapping solution under retiming. In general,
cut-enumeration based approaches have the advantage that
they can handle different optimization objectives and can be
easily extended for heterogeneous FPGAs or FPGAs with
some special structures. As a comparison, other existing
approaches, especially those based on max-flow computa-
tion [l] may not be easily extended to handle special fea-
tures in FPGA architecture, such as non-uniform pin-to-pin
delays of an LUT.

However, the most serious problem in cut-enumeration
based approaches is high time complexity. For a circuit with
n nodes, the number of K-cuts (or different K-LUT forma-

tions) for a node can be as large as O(nK). Furthermore,
evaluating and selecting the best K-cuts (or K-LUTs) to
cover the entire circuit is difficult. [9] formulates the cut se-
lection problem as a binate-covering problem which is NP-
hard. DFmap algorithm [2] can find optimal duplication-free
solution in polynomial time. However, it cannot consider
duplication of nodes to reduce the area.

In this paper, we develop several efficient and effective
techniques on cut enumeration, ranking and pruning. These
techniquei lead to much better runtime and scalability of the
cut-enumeration based algorithms. They can also be used to
compute a tight lower-bound on the size of an area-minimum
mapping solution (finding such a solution is a NP-hard prob-
lem). We have applied these techniques to several applica-
tions, including (1) a faster area-optimal duplication-free
mapping algorithm; (2) area-minimal mapping for general
mapping with possible node duplication; and (3) extensions
of (I) and (2) to heterogeneous FPGA mapping. Experi-
mental results show significant improvements over existing
approaches.

The remainder of the paper is organized as follows. Sec-
tion 2 presents a brief problem formulation and basic def-
initions. Section 3 discusses our cut enumeration, ranking
and pruning techniques. Section 4 presents applications of
our techniques for area-oriented mappings. Our experimen-
tal results are reported in Section 5 and discussions are in
Section 6. Proofs of the theorems and some other details
are omitted due to page limit.

2 Problem Formulation and Definitions

In this work, we consider the FPGA technology mapping
problem for combinational circuits.’ A general circuit is
modeled as a directed acyclic graph in which nodes represent
logic elements, and edges represent interconnects. A node

‘For sequential circuits, we can cut at the flipflops to get combi-
national subcircuits and map each one separately.

29

without incoming edge is a primary input (PI) and a node
without outgoing edge is a primary output (PO).

A homogeneous FPGA consists of only one type of LUTs
with the same input size, while a heterogeneous FPGA con-
sists of LUTs with different input sizes. LUTs of different
input sizes may have different areas. We use K to denote the
input size of an LUT under discussion. The area-oriented
LUT-based FPGA mapping problem is to cover a gate-level
network with LUTs such that the total area of those LUTs is
minimum for either homogeneous or heterogeneous FPGAs.
This problem is NP-hard even for homogeneous FPGAs [5].

In this paper, we use Cv to denote a cone of node u,

FFC, a janout-free cone of v, MFFC, a maximum fanout-
free cone of v and F, the fanin cone of v. We refer readers

to [3] for the detailed definitions. A cone is K-feasible if its
input size is K or smaller.

A cut is a partitioning (X, x) of a cone C, such that x

is a cone of v. The node cut-set of the cut, denoted V(X, x)
consists of the inputs of cone 7. A cut is K-feasible if x
is a K-feasible cone. We may simply refer such a partition
(X, x) as a cut for node v, when discussing a fixed C,.

3 Cut Generation, Ranking and Pruning

The procedure of selecting a set of LUTs of proper sizes to
cover the gate-level network has three components:

1. Cut generation: For each node being considered, gen-
erate all or a subset of the K-feasible cuts, via enu-

meration or direct computation.

2. Cut ranking: Compare the cuts according to the given
optimization objectives when two or more cuts are gen-
erated for a node.

3. Node selection: Choose the nodes (and their best cuts)
for implementation using LUTs.

Each of these three steps may involve costly computa-
tions, due to the potentially large number of cuts and the
NP-hardness of the area minimization problem. Existing al-
gorithms generally alleviate this by heuristically restricting
the search scope, which often result in sub-optimality.

The set of general techniques that will be presented here
can significantly speed up the cut generation and selection
processes for area minimization in FPGA mapping. These
techniques are general in the sense that they are applicable
to any cut enumeration process, whether through the entire
solution space or a subset. They are also scalable since the
amount of computation per node can be made independent
of the size of the entire network and only associated with
the size of its input and the LUT size. Applications and
experimental results to be presented in subsequent sections
will show that they are also very effective.

3.1 Cut Generation

We first consider the enumeration of all K-feasible cuts of
a cone for a given node, then discuss how to share such
computation among nodes in a network for better efficiency.

3.1.1 Cut Enumeration Scheme

Given a node IJ and a cone C, of v, we associate a Boolean
variable to each node w E C, U input(&), also denoted as

w. A cut (Xv, x,,) of C v can be represented using a product
term (or a p-term in short) of the variables associated with

the nodes in the node cut-set of V(X,, 7,). In the rest
of this section we will often refer to a cut by the pterm
associated with it. A set of cuts can be represented by a
sum-of-product expression using the corresponding p-terms.
In this way we can represent the set of all K-feasible cuts of
C, by a unate Boolean function which we call the generating
function of the cuts.

For a node UI E C,, F, n C, is a cone of w, which
we call the projection of w in C, and is denoted as Pzv
or simply P, when Cv is clearly uEderstood in context. If

w E input(v) but w @ V(X,, X,), then (Xv, 5?v) de-

rives a cut (X,, yw) of P, where 7, = x, n P, and

V(XuJ, x,) E V(X,, 7,). We call (X,, ‘T,) a subcut
of v from w. If we extend this notion of subcut to nodes
w E input(v) f~ V(X,, x,) by saying that w itself (as the
Boolean variable) represents a subcut of v from node w, it
is easily seen that a cut of v can be obtained by merging
one subcut from each of its inputs together. By consider-
ing all possible combinations of all subcuts, we will be able
to generate all cuts. This implies a recursive definition of

the generating function. Specifically, let f,(K, v, w) for
w E C,, be the generating function for all K-feasible cuts

of P,“*, and define f,(K, v, w) = 0 for w E input(
Then, we can show

Lemma 1

f,(K, u, w) = @JR Iu +fJK, ‘u, UN, (1)
uEinput(w)

where operator + is Boolean OR, and @Ii is Boolean AND
but filtering out all resulting p-terms with more than K vari-
ables.

All K-feasible cuts of C,, are then enumerated by f,(K, u, v).

3.1.2 Efficient Computation via Subcut Sharing

The above formulation applies directly to any node v and
any cone C, of it in a network. Since f,(K, v, w) is a

function related to PzW, generally the computation can only
take place once C, is given, and intermediate results can not
be directly shared among cones, except for some particular

types of cones.

Cuts of Fanin Cones. If we want to enumerate all K-feasible
cuts of all nodes in a network, for every node w we will com-
pute f,(K, w, w) for C, = F,. Note that, however, for

any node v such that w E F,, P> = F,. That is, P,
remains the same for all successors of w. Therefore Eqn. (1)

simplifies to

f,(K, w, w) = ($- [u+ f,(K, u, u)], (2)

tie&put(w)

and can be iteratively computed in a topological order in
one pass for all nodes.

Cuts of MFFCs. Enumerating cuts of MFFCs is more com-
plicated since in general P,“” c* # M FFC,. To use the
one-pass method, for each node w, instead of f,(li, w, w)
we compute f,(K, V, w), such that MFFC, is the largest
MFFC containing w. In this case f,(K, u, w) is the gen-

erating function of the K-feasible cuts of PfFFCW, and
f,(K, w, w) can be easily derived from it. According to
the nesting property of MFFCs [2], we can easily show

30

Lemma 2 If w E MFFC, and u E MFFCU,
pMFFC,

then P,” = pf”“““.

3.2 Cut Ranking

Once a cut is generated it has to be evaluated or ranked.
In the case of FPGA mapping for area minimization the
evaluation is based on the effect of implementing this cut
on the overall area of the mapping solution: a cut is more
favorably ranked if, when used to implement this node, it
results in smaller mapped area of t,he entire network (or a
given portion of it).

Such ranking is generally not easy, because it effectively

requires computing an optimal mapping of the network (or
a portion of it) with one given LUT fixed.

3.2.1 Duplication-free Mapping

In the case of duplication-free mapping, it is shown in [2]
that an optimal mapping can be partitioned into a set of
MFFCs, and the minimum mapped area for each MFFC
can be computed independently.

First, consider a mapped M FFC, in which each node is

an LUT. Assume the area of a K-LUT is AI< (which does
not have to be always different for different values of K).
We define the eflectiwe area a() for each node and edge of
the network as follows. First, for any node w outside of the
MFFC we have o(w) = 0. Then iteratively, for each edge
< u, w > we have (Y(< u, w >) = o(u)/ 1 output(u) 1,
and for each node w inside the MFFC we have o(w) =

CusinpuQ~) a(< u, ti >) + A,inpuqW),. Intuitively, the ef-

fective area of a node 20 is the area of PflFFC”, except that
the portions that are shared with other projection cones are
divided proportionally and distributed into each cone con-
taining them. A shared portion is always a cone rooted at
a multiple output node; in duplication-fr:e mapping it will
have been mapped independently, and once the outputs re-
converge, the total area of that shared cone will be accounted
for. Based on these observations, we can easily shown

Lemma 3 The eflectiwe area ofz), the root of MFFC,, is

the real area of MFFC, under the given mapping solution.

This lemma is true for any mapping solution of MFFC,,

including any optimal solution. If the mappin
B

solution is

optimal, for any node w its projection cone P, FFCw must
also be optimally mapped, including its exclusive portion
as well as the shared portion (which will be mapped in-
dependently in a duplication-free mapping). Therefore the
effective area of w will be minimum with respect to all pos-
sible mapping solutions of PfFFCU. We call this minimum
effective area the effective cost of w, denoted y(w). (The ef-
fective cost for nodes outside MFFC, is still 0.) Obviously,
we have

Corollary 1 The eflective cost of v, the root of MFFC,,
is the minimum area of any mapping solution of MFFC,.

The importance of effective cost is that we can use it to

efficiently compute an optimal duplication-free mapping of
MFFC, including the evaluation of cuts in an MFFC. We
do so by extending it to any cut (X,, X,) of PgFFC”. The
effective cost of the cut is the sum of the effective cost of the
nodes in input(w) n V(X,, gW), and the effective cost of
the induced cuts of nodes that are in input but not in

V(XuJ, 5?,). With the effective cost of a cut so defined, we
can compute the effective cost of the nodes according to the
following rule.

Theorem 1 For any node UJ E MFFG,

Y(W) =
(Xlu,

$, [Y(Xw, X;w) + A, “(X,,X,),l. (3)
w ISa

K-feasible cut of MFFC,

Moreover, the cut that minimizes the y(w) of this equation

is the best I<-feasible cut of MFFC,.

If we compute the effective cost of each node in MFFC,,
in a topological order, for any node u E PwMFFCv the cost
of u as well as the cost of each cut of ‘~1 would have been
computed when y(w) is to be computed. For a K-feasible

cut the effective cost $X,,X,) can be evaluated in O(h-j
time, superior to the O(n,) method used in [2].

3.2.2 General Mapping

We can extend the effective area computation to general
mapping directly. For effective area under a given mapping
solution, we still define o(u) = 0 for any PI node V, Q(<
u, v >) = o(u)/ 1 output(u) 1 for any edge < u, v >, and

4~) = CuEianpuqv) o(< 11, 2, >) + Alinput(, Similarly,

we still define the efJective cost y(w) of a node v to be the
minimum effective area of u in any mapping solution.

Computing effective cost is more complicated. Note that
logic sharing among fanin cones are handled by distributing
the effective cost of the shared portion, which corresponds to
an optimal mapping of that part, evenly to all fanouts. By
doing so it implicitly assumes that the optimal mapping of
the shared portion, obtained independently, will be consis-
tently used in the optimal mapping of the cones that share
it. While this is true for duplication-free mapping, it is not
true for general mapping, as illustrated in Figure 1, where
node w is duplicated in mapping of F, but not in mapping
of F,. In this case, the accurate distribution of such cost
becomes complicated. In fact, the difficulty in determining
how to optimally map a multiple-output node is the reason
that FPGA mapping for area minimization is NP-hard [5].

Figure 1: General Mapping (K = 3) treats shared logic
differently.

To maintain efficiency, we still want to use the cost com-
putation method used in duplication-free mapping. Note
that, however, what we computed is no longer accurate ef-
fective cost. Let $() denote the cost we computed for general

mapping, we can prove that

Theorem 2 For any node v in the network, 9(v) 5 y(v).

As a result we can compute a lower bound of the mini-

mum mapped area of the network:

Corollary 2 C, ir (po +(v) is a lower bound on the mini-
mum area of all mapping solutions.

Our experimental results also show that using 9(w) as
the evaluation function for cut ranking is very effective.

31

3.3 Cut Pruning

Based on the ranking techniques we can select the most

desired cuts during the enumeration. On the other hand, it
is more efficient if we can eliminate undesired cuts without

even generating them. In this section we discuss various
pruning techniques that speed up the search.

3.3.1 Non-essential Subcuts

We first consider cut enumeration for duplication-free map-

ping. In this case, the cuts of MFFC, are constructed

partly with subcuts from w where w E MFFC, (recall

that a subcut of 21 from w is a cut of PzFFCv induced by

a cut of v). In particular, some subcuts from w are also

cuts of MFFC,; we call them internal subcuts from w. the
number of nodes in the node cut-set of an internal subcuts

from w that are in MFFC, is called the internal size.
A subcut can participate in the construction of many

cuts, which may be ranked differently. However, if no cut
constructed from a subcut S, can have the best rank, S,
is said to be non-essential A non-essential subcut can be

discarded without losing the best cut, thus speed up the

enumeration.
If we refine the ranking standard introduced in the pre-

ceding section such that a cut is ranked better if its cost
is smaller or with the same cost has a smaller cut size, we
have the following results regarding non-essential internal

subcuts.

Theorem 3 Let w E MFFC, and S, is an internal subcut
of w from w. S, is non-essential if

(1) S, is not a minimum cost cut of MFFC,; or

(2) there is another internal subcut of the same cost, whose
size is smaller than the internal size of S,.

In each of the two cases, for every cut of v constructed

from S, there will be another cut of v constructed from
S, that either has smaller cost or has the same cost but

smaller size. Note that if S, is not a minimum cost cut for
w, its node cut-set must contain at least one node inside

MFFC,.2 By replacing the node cut-set of S, with node
w in any cut of MFFC,, we will not increase the size of

the cut; moreover, we will not increase the cost of the cut
since MFFC, can now be optimally implemented, which

will save at least one LUT, thus offset the added cost of
implementing w.

Based on these properties we can set a few rules: _ -

Using these rules can usually limit the number of stored
cuts to a very small value, thus significantly reduce the

amount of computation in Eqn 1.
These reductions are also applicable to general mapping.

Note that the properties do not depend on the fact the
MFFC, is an MFFC; they are solely based on MFFC,
being an MFFC. Since cuts of F, include cuts of MFFC,,
we can reduce this set of subcuts using the above rules.

3.3.2 Common Subcuts

In the case of general mapping, multiple successors of a node
v can use the subcuts from 2, to construct its own cuts. and if

there are multiple subcuts that are equally desirable accord-
ing to the (approximate) ranking, two different successors

u1 and u2 may choose different subcuts form v to construct
their desired cuts independent of each other. If uz and u2

are both implemented by LUTs, however, nodes from both
node cut-sets, including the nodes from the two different

subcuts, must be implemented as well. This results in in-
creased number of LUTs in the form of unnecessary logic

duplication.
To alleviate this problem of excessive node duplication,

for cuts with the same cost, we sort and select them in a
predetermined order to avoid arbitrary selection of different
min-cost cuts. To sort all the cuts, we first number all the

nodes as ID(v) = 1,2, .., TZ for a circuit with n nodes and sort

nodes in a cut in increasing order of ID(v). Then we sort all

the cuts (WI, VUZ, .., VU~) with the same cost of a node based on

a lexicographic order of ID(vi) of all nodes 21; in the cuts. If
both cuts of each of the fanouts of v have the same cost, both

of the fanouts tend to choose the same cut of v to form their
best cuts. As a result, we tend to not duplicate the fanin

cone of TV and can achieve a mapping solution with smaller
area. Notice that, however, this ordering is just a heuristic

in helping to choose common cuts to reduce unnecessary
node duplication. To solve this problem optimally, however,
is NP-hard.

3.3.3 EFFC Based Enumeration

Another way to prevent excessive node duplication is to use
explicit duplication control by marking certain nodes as non-
duplicable. Once such nodes are marked, we generate only

the cuts that do not cover those marked nodes. Specifically,
we define extended MFFC of a node o, denoted EFFC,
to be a cone of v containing MFFC, and any unmarked
(duplicable) predecessor of v that has a path to v contained

in EFFC,. Then, instead of enumerating cuts in F,,. we do
it in EFFC,.

The general rule of selecting nodes that are to be marked
non-duplicable is that they are likely to be implemented by

LUTs. Examples include nodes with large fanout and roots

If MFFC, is K-feasible, then (0, MFFC,) is the only
best cut, and the only internal subcut needed for sub-

sequent cut generation of the successor nodes of w.

If MFFC,,, is not K-feasible, only certain minimum cost of large MFFCs. We can also perform some preprocessing

cuts of MFFC, need to be kept as internal subcuts to determine non-duplicable nodes.

for subsequent cut generation of successor nodes of w;
in particular, 3.3.4 Cost Based Pruning

if there are minimum cost cuts of MFFC, whose Even with subcut pruning we described, the number of saved

node cut-sets are completely contained in MFFC,“, cuts can still be very large especially when K is large. There-

keep only the one with smallest cut size; or fore, we keep a fixed number of cuts with small estimated

if there are minimum cost cuts whose node cut-sets
cost and prune those with larger estimated cost and in the

are not completely contained in MFFC,, keep
case of equal cost, ones with larger cut sizes. Since the esti-

only the ones whose internal sizes are smaller than
mated cost of a cut is a lower-bound on the minimum effec-

the size of any known minimum cost cut.
tive cost on the LUT represented by the cut in any mapping
solution, to prune cuts with large estimated cost is less likely

*If S, COWTS the entire MFFC,, it must be the best cut

32

to degrade the final mapping results. This is also confirmed
by our experimental data (to be presented in Section 6).

3.3.5 Decomposition vs. Shrinking

The complexity of Eqn. 1 clearly relates to the input size as
well as the number of nodes: More nodes require most steps
of computation, while larger input sizes result in slow com-
putation per step. In [2] a shrinking method is introduced to
reduce t,he number of nodes for duplication-free mapping. It
collapses all K-feasible MFFCs prior to cut generation, after
showing that the optimal solut~ion would not, be lost. It was
very successful in speeding up the cut enumeration there [2].

The opposite direction is decomposition, which decreases
input sizes by increasing the number of nodes. Decompo-
sition can provide more freedom in forming different LUTs
at the cost of more cuts to be enumerated. For area min-
imization, we first decompose the network into 2-bounded
one. Then, for a gate V, we shrink MFFC, into one node
if MFFC, is El-feasible. For heterogeneous FPGAs with
LUTs of input sizes of K1 < Ii2 < < K,, we only shrink
]<I-feasible MFFCs. The reason is doing this is that de-
composing a network into 2-bounded one can enlarge the
solution space and potentially lead to better results. How-
ever, most of the K-feasible MFFCs usually will be packed
into K-LUTs for smaller area. Shrinking those K-feasible
MFFCs usually will not affect the results, while can reduce
the number of K-cuts to be enumerated

4 Applications on FPGA Mapping for Area Minimization

In this section, we applied the cut enumeration, ranking and
pruning techniques discussed in Section 3 to FPGA mapping
for area minimization. The first application is to speed up
the optimal DFmap algorithm presented in [Z]. The sec-
ond application is to develop a general mapping algorithm
with consideration of node duplication for area minimiza-
tion. We shall also discuss how easily these algorithms can
be extended to heterogeneous FPGA mapping.

4.1 .Speedup of Optimal Duplication-Free Mapping

The DFmap algorithm [2] is the first pseudo polynomial time
algorithm to compute optimal duplication-free mapping so-
lutions. It first partitions the circuit into a set of MFFCs and
then maps each one independently. For one MFFC rooted
at a node V, after we select one K-feasible cut, the MFFC
can again be partitioned into a set of small MFFCs and each
one can also be mapped independently.

The major shortcomings of the approach are that, first,
the number of all the K-feasible cuts for a node in its MFFC
can grow exponentially with K. Second, to compute the cost
of each cut for a node v needs O(n) time by adding all the
area of sub-MFFCs included in the MFFC of w.

To speed up the DFmap algorithm [z], we use the afore-
mentioned cut enumeration, ranking and pruning techniques
as follows.

For each MFFC, after the MFFC partitioning, we pro-
cess all the nodes in a topological order from its inputs to its
output. For each node, we enumerate its K-feasible cuts by
combining the K-feasible cuts of its inputs. For an input i
to the MFFC,, its only K-feasible cut is a l-cut with only
i on the node cut-set. We rank each enumerated cut and
prune those dominated ones. Since no node duplication is
allowed, for a node u we will only select its best cut inside

MFFC,, i.e., we will select a cut V(X,T) with the min-

imum cost and 5? C M FFC,. To check if x 2 MFFC,
holds for a cut, we first construct the MFFC, and mark all
nodes inside MFFC, and all inputs to MFFC,. A cut is
includedin MFFC, if all nodes in the node cut-set V(X,x)
are marked.

4.2 General FPGA Mapping for Area Minimization

For duplication-free mapping, we select a best cut for ev-
ery node from K-cuts within the node’s MFFC. For general
mapping, however, we allow a cut to be selected from K-
cuts within the node’s EFFC. Recall that a node’s EFFC is
in general larger than its MFFC, with EFFC we can explore
a larger solution space than that the duplication-free map-
ping algorithm can. Usually the more duplicable nodes, the
larger each EFFC and the larger space the mapping algo-
rithm can explore. However, the excessive node duplication
may also be more serious and may finally lead to a poor
solution. The cut ordering technique presented in Section
3.3.2 can help to reduce excessive node duplication, but the
results are not good enough.

To better control the node duplication for better results,
we perform a two-phase mapping. In the first phase, we
mark every node as duplicable, thus, the EFFC of a node
is its complete fanin cone up to the Pls. Similar to the
duplication-free mapping algorithm discussed in the previ-
ous subsection, we use dynamic programming to processing
node in a topological order from Pls to POs.

At the completion of the first phase, we tentatively form
a mapping solution by constructing LUTs for nodes from
POs to Pls. Initially, all the POs are marked as LUT roots.
If a node is marked as an LUT root, we construct its LUT
based on its best cut and mark all inputs to the cut as LUT
roots. We repeat the process until all LUT roots are pro-
cessed. After constructing the mapping solution, we mark
all LUT roots as non-duplicable and the rest nodes in the
original circuit as duplicable and start the second phase of
re-mapping.

In the second phase, since many nodes are marked as
non-duplicable, the size of EFFC of each node will be re-
duced. A non-duplicable node u will not be included in a
node V’S LUT in the second phase if u is not in the EFFC of
V. By excluding 21, v may try to include some other dupli-
cable nodes in its LUT to either reduce the area directly or
reduce the cut size of the LUT of w to create more freedom
for a postprocessing of LUT packing to further reduce the
area.

.
K=3, Area=; K=3, Area=3

(a) lb)

Figure 2: Excessive duplication removal.

Let us look at the examples shown in Figure 2 with K =
3 and the area of every LUT be 1. In Phase 1, we may

33

I
circuit
Cl355
Cl908

C2670
c3540
c5315

C6288
C880
alu2

alu4
apex6

des
frg2

i6
i7
i8
i9

i10
k2

pair
rot

t481
toolarge

vda
average

+%

LB
63
78

133
271
310

39s
89
84

150
158
534

201
67

103

288
133

489
283
303

149
174
72

159

204

-11%

Heteroeeneous FPGAs with 5.6LUTs
PRAETOR CPb(s) CRF cpu+j MIS CPU(s)

66 0.4 88 0.2 66 37
99 1 .o 110 0.4 97 46

137 0.7 156 0.9 138 66
300 2.9 316 1.4 285 180
341 2.9 371 1.2 339 125

461 5.6 496 2.0 481 110
95 0.3 96 0.2 87 65

103 0.6 104 0.6 94 75

180 1.4 186 0.9 168 274
170 0.4 177 0.3 168 34
560 4.2 937 4.1 886 577

222 0.9 237 0.3 236 30
67 0.2 108 0.2 108 14

103 0.2 143 0.3 103 19
300 1.6 306 0.6 250 52

133 0.5 137 0.3 137 38

594 8.4 618 1.4 584 180
339 2.7 339 0.8 312 2391
345 1.6 361 0.6 344 42

177 0.4 180 0.3 176 38

195 2.8 198 17.5 194 413
82 0.4 80 0.4 74 80

191 2.3 191 0.4 172 47

229 1.8 258 1.5 239 214
1 I +13% 0.8X +5% 117x

I
TOS CPU(s)

84 8
115 29

193 103

379 2946
442 281

593 5533
100 79

44 489

121 1773

152 109

1282 5219

227 3016

67 0

103 5
335 15992
187 17326

813 1179
512 85601
445 416

222 580
393 4201
117 1161

274 5693

313 6597

+21% 3594x

Table 1: Comparison of PRAETOR with Chortle-crf (Column CRF), MIS-pga-new (Column MIS) and TOS-‘1’1JM (Columu
TOS) for Heterogeneous FPGAs with 5 and 6-LUTs.

generate a solution with four LUTs rooted at a, ~1, u2 and
v as shown in Figure 2(a). Obviously, to pack v into LUT,,
has no benefit because v needs to be implemented as an
LUT root according to LUT,,. In Phase 2, we will mark
a, ZJ, 211, ‘1~2 as non-duplicable. As a result, 2, $Z EFFC,, =
{a, ~1) and will not be packed into LUT,, . Instead, 211 will
select another cut by covering a to achieve a better solution
with area of 3 as shown in Figure 2(b).

4.3 Heterogeneous FPGA Mapping for Area Minimization

In the previous t,wo subsections we showed how to com-

pute duplication-free mapping or general mapping solutions.
With cut enumeration, both methods can be used for both
homogeneous and heterogeneous FPGAs. The only diffcr-
ence in handling the two types of FPGAs is that when con-
puting the cost of a K-feasible cut, the area of every cut is
the same for homogeneous FPGAs, while the area of differ-
ent cuts with different cut sizes may be different for hetero-
geneous FPGAs.

5 Experimental Results

We have implemented our cut enumeration, ranking and
pruning techniques and applied to both duplication-free map-
ping and general mapping. Our algorithm is named PRAE-

TOR. We have tested 23 MCNC combinational benchmarks
(loo-4K gates) and 6 large industrial examples (26K-100K
gates) on a SUN Enterprise 4000 with 1.5 GB memory.

To evaluate the efficiency and mapping quality of our al-
gorithm, we first compared PRAETOR with DFmap [2] for
optimal duplication-free mapping on the 6 large industrial
examples with li = 6. On average PRAETOR is over 165X

faster with almost the same area. The detailed data are
omitted due to space limit.

We also compared PRAETOR with Chortle-crf [6], MIS-

pga-new [9] and TOS-TUM [4, 141 for general mapping with
node duplication for FPGA with 6-LUTs. Our results show
that MIS-pga-new and TOS-TUM can achieve considerably
better results on some small examples, because both of them
use the Boolean optimization techniques to explore a much
larger solution space. However, for large designs, since they
cannot afford to search the entire solution space with Boolean
optimization, in practice they may not always be able to
generate better results than that a good mapping algorithm
can achieve. PRAETOR can outperform Chortle-crf for al-
most all the large industrial and MCNC examples (except,
for alu2 in which WC used only 3 more tj-LtJTs). On aver-
age, PRAETOR can achieve results with 18Y0, 11% or :$I’%,
fewer 6-LUTs comparing with Chortlecrf, MIS-pga-new and

‘I’OS-TUM, respectively. Moreover, I’ItAE’l’Ol~ can achieve
results which are only 14Y0 larger than the lower-bounds on
the minimum area computed based our cut enumeration and
evaluation techniques. As this set of results is similar to the

results for a more general heterogeneous FPGA mapping to
be shown in the next paragraph, we omit the detailed data

to save space. To show the scalability of our algorithm, we
also compared PRAETOR with Chortle-crf on the 6 large

industrial examples. (Neither MIS-pga-new nor TOS-TUM
is able to map those large examples in a reasonable amount

of time.) Our test results show that PRAETOR can achieve

results with 10% fewer 6-LUTs and in 53% shorter CPU time

on average.
For heterogeneous FPGAs, we compared PRAETOR with

Chortle-crf [6], MIS-pga-new [9] and TOS-TUM [4, 141 on
the set of MCNC examples.3 We tested for one type of
FPGA which has both I<-J,TJTs and (A+l)-L[JTs where

‘We did not compare with those in [7, 81, because they assumed a
dlffcrent kind of heterogeneous FI’GAs, where thr numbers of LUTs
with different sizes have a pre-determined ratio.

34

each (K+l)-LUT is twice as large as a K-LUT. This ar-
chitecture is similar to both ORCAZC FPGAs and Xilinx
XC4K FPGAs. In our test, we set K = 5. The script for
MIS-pga-new is recommended in [ll] for the best quality.
The script of TOS-TUM is based on the script mmaph_a_5.scr
for area minimization with high optimization effort recom-
mended in [4]. For TOS-TUM we run SIS commands col-
lapse to first collapse the circuits into 2 levels, because TOS-
TUM favors two level circuits. If collapse cannot finish in
30 minutes, we use reduce-depth to partially collapse the cir-
cuits for TOS-TUM.

Table 1 lists our experimental results. In all the mapping
solutions, we assign each LUT with 6 inputs as a 6-LUT,
each LUT with 5 or less inputs as a 5-LUT. For Chortle-crf,

MIS-pga-new and TOS-TUM, we tried mapping for both
K=5 and 6, and select the solution with smaller area for each
example. The CPU time in seconds includes the CPU time
for both run, except for MIS-pga-new we only list the CPU
time for K=5 because for all the examples its results with
K=5 are always better than the results with K=6. PRAE-
TOR, as a comparison, considers both 5- and 6-LUTs simul-
taneously. In Table 1, Columns PRAETOR, CRF, MIS and
TOS list the area of the results by our algorithm, Chortle-
crf, MIS-pga-new and TOS-TUM, respectively, for each ex-
ample. The results show PRAETOR can reduce the area
by 13% or 5% or 21% over Chortle-crf or MIS-pga-new or
TOS-TUM, respectively. Both PRAETOR and Chortle-crf
are very fast for this set of examples. They can finish in
a few seconds for every example. MIS-pga-new needs 214
seconds for K=5 on average. TOS-TUM needs more than
1.8 hours for two runs with K=5 and 6 on average.

circuit
big1
big2
big3
big4
big5
big6

average
ratio

1 with prunmg 1 without pruning 1
nodes total max total max
26138 1 44811 67 1 800466 173
52278 46712 31 2649413 303
29920 28206 37 1678626 424
30385 17476 55 1452035 523
92021 91005 47 5224315 276

101711 111541 53 2897107 310

56035 56625 48 2450327 335
1 1 43x 7x

Table 2: Effectiveness of cut pruning for K = 6.

Table 2 shows the effectiveness of our cut pruning tech-
niques (in combining with ranking) for K = 6 for the six
large industrial examples. Column “nodes” lists the number
of (2-input) gates in the original circuits. Columns “total”
list the total number of B-cuts enumerated for all the gates

with or without pruning. Columns “max” list the maximum
number of 6-cuts enumerated for every gate with or with-
out pruning. The results show that our pruning technique
can reduce the total number of g-cuts by a factor of 43, yet
with good mapping quality. Note that the total number of
K-cuts we enumerated may be less than the total number of
2-input gates in the original circuits, because our algorithm
will shrink many K-feasible MFFCs into sigle nodes.

6 Discussions and Future Work

In this paper, we present a set of efficient and effective
cut enumeration, ranking and pruning techniques for FPGA
mapping. Those techniques can be used to design highly ef-

ficient and adaptive algorithms for both homogeneous and
heterogeneous FPGAs and FPGAs with special architec-
tures, like carry and cascade chain. Our test results show
that our area-oriented algorithms based on those techniques
are highly scalable to both circuit size and LUT size, and
can outperform the state-of-the-art algorithms in both run-
time and quality. In the future, we plan to extend our cut
enumeration techniques for area/delay tradeoff.

7 Acknowledgements

This work is partially supported by National Science Foun-
dation Young Investigator Award MIP9357582 and grants
from Quickturn Design Systems and Lucent Technologies
under the California MICRO program.

References

PI

PI

[31

[41

151

161

[71

[81

191

PJI

PII

D21

1131

1141

P51

J. Cong and Y. Ding. FlowMap: An Optimal Technology
Mapping Algorithm for Delay Optimization in Lookup-Table
Based FPGA Designs. IEEE Trans. on Computer-Aided De-
sign of Integrated Circzlits And Systems, 13(1):1-12,1994.

J. Cong and Y. Ding. On Area/Delay Trade-off in LUT-
based FPGA Technology Mapping. IEEE Trans. on VLSI
Systems, 2(2):137-148, June 1994.

J. Cong and Y. Ding. Combinational Logic Synthesis for
SRAM Based Field Programmable Gate Arrays. ACM
Transactions on Design Automation of Electronic Systems,
1(2):145-204,1996.

K. Eckl, C. Legl, A. Lu, and B. Rohfleisch. TOS-2.2 Tech-
nology Oriented Synthesis. Institute of Electronic Design
Automation, Technical University of Mu&h, 1996.

A. Farrahi and M. Sarrafzadeh. Comnlexitv of the Lookuu-
Table Minimization Problem for FP-GA T”echnology Map-
ping. IEEE Trans. on Computer-Aided Design of Integrated
Circuits And Systems, 13(11):1319-1332, 1994.

R. J. Francis, 3. Rose, and Z. Vranesic. Chortle-&z Fast
Technology Mapping For Lookup Table-Based FPGAs. In
28th ACM/IEEE Design AzLtomation Conference, pages
613-619,199l.

J. He and J. Rose. Technology Mapping for Heterogeneous
FPGAs. In FPGA’92, 1994.

M. Korunolu. K. Lee. and D. Wane. Exact Tree-based
FPGA T&hnology Mapping for LogicvBlocks with Indepen-
dent LUTs. In Prod. 35th ACM/IEEE Desian Automation
Conference, pages 708-711, 1998:

R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Improved Logic Synthesis Algorithms For Table
Lookup Architectures. In IEEE International Conference on
CAD, pages 564-567,199l.

P. Pan and C. Liu. A New Retiming-based Technology Map-
ping Algorithm for LUT-based FPGAs. In ACM Int’l Symp.
on Field Programmable Gate Arrays, pages 35-42, 1998.

E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton, and
A. Sangiovti-VincenteIIi. SIS: A System for Seqzlential
CirczLit Synthesis. Electronics Research Laboratory, Memo-
randum No. UCB/ERL M92/41,1992.

Lucent Technologies. ORCA ORbC-A/ORsT-A Series FP-
GAs Data Sheet. Lucent Technologies, Inc., Allentown, PA, -
1996.

Vantis and AMD Company. Mantis VFl Field Programmable
Gate Array. 1998.

B. Wurth, K. Eckl, and K. Antreich. Functional Multiple-
Output Decomposition: Theory and an Implicit Algorithm.
In Proc. ACM/IEEE Design Automation Conference., pages
54-59,1995.

Xilinx. The Programmable Logic Data Book. Xilinx Inc.,
San Jose, CA, 1997.

35

