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ABSTRACT
In this paper, an iterative technology mapping tool called
IMap is presented. It supports depth-oriented (area is a sec-
ondary objective), area-oriented (depth is a secondary objec-
tive), and duplication-free mapping modes. The edge delay
model, as opposed to the more common unit delay model, is
used throughout. Two new heuristics are used to obtain area
reductions over previously published methods. The first
heuristic predicts the effects of various mapping decisions
on the area of the final solution and the second heuristic
bounds the depth of the mapping solution at each node. In
depth-oriented mode, when targeting 5-LUTs, IMap obtains
depth optimal solutions that are 13.3% and 12.5% smaller
than those produced by CutMAP and FlowMAP-r0, respec-
tively. Targetting the same LUT size in area-oriented mode,
IMap obtains solutions that are 13.7% smaller than those
produced by duplication-free mapping.

1. INTRODUCTION
Previous work has shown that the depth minimization prob-
lem in lookup table (LUT) based FPGA technology mapping
can be solved optimally in polynomial time using a dynamic
programming procedure [1, 3]. However, the area minimiza-
tion problem was shown to be NP-hard for LUTs of size four
and greater [4, 5]. Thus, heuristics are necessary to solve the
area minimization problem. Early work considered the de-
composition of circuits into a set of trees which were then
mapped for area [6, 7, 8]. The area minimization problem
for trees is much simpler and can be solved optimally us-
ing dynamic programming. However, real circuits are rarely
structured as trees and tree decomposition prevents much
of the optimization that can take place across tree bound-
aries. In a duplication-free mapping, each gate in the initial
circuit is covered by a single LUT in the mapped circuit.
The area minimization problem in duplication-free mapping
can be solved optimally by decomposing the circuit into a
set of maximum fanout free cones (MFFCs) which are then

mapped for area [2]. Although the area minimal duplication-
free mapping is significantly smaller than the area minimal
tree mapping, the controlled use of duplication can lead to
further area savings. In [10], heuristics are used to mark a
set of gates as duplicable. Then area optimization is con-
sidered within an extended fanout free cone (EFFC) where
an EFFC is an MFFC that has been extended to include
duplicable gates.

Area minimization heuristics are typically used in concert
with techniques that produce depth-optimal mapping solu-
tions. In FlowMAP-r [2], following a depth-optimal mapping
procedure, noncritical parts of the circuit are remapped with
a duplication-free mapper. In CutMAP [9], two strategies
are used for selecting the gates covered by a LUT. Critical
parts of the circuit are mapped using a depth-minimizing
strategy and noncritical parts are mapped using a cost-
minimizing strategy that encourages LUT sharing.

This work describes the IMap technology mapping tool which
incorporates several novel features. First, it uses iteration
as a method of gathering data to guide the mapping process.
Second, it introduces two heuristics to solve the area min-
imization problem. The first heuristic, called area flow, is
closely related to the area of a mapping solution and can be
optimized using a dynamic programming formulation. Area
flow is similar to the area measurement techniques presented
in [10] (applicable to MFFCs) and [20] (applicable to stan-
dard cell mapping). The second heuristic determines a depth
bound that must be met by each LUT used to cover the ini-
tial circuit in order to meet some depth requirement in the
mapped circuit. An area efficient depth bounded mapping
solution can be obtained by selecting LUTs that meet the
depth bound requirement while minimizing area flow. Fi-
nally, in the interest of generality, IMap uses the edge de-
lay model of [11] rather than the more common unit delay
model. In the edge delay model, arbitrary delay values can
be assigned to each branch of a net. These delay values may
reflect an estimate of placement and routing delays, or in
the case of a remapping procedure such as [12], may reflect
actual delays from a placed and routed circuit.

2. PRELIMINARIES AND PROBLEM DEF-
INITION

The combinational portion of a boolean circuit can be repre-
sented as a directed acyclic graph (DAG) G = (V (G), E(G)).
A node in the graph v ∈ V (G) represents a logic gate,



primary input or primary output, and a directed edge in
the graph e ∈ E(G) with head, u = head(e), and tail,
v = tail(e), represents a signal in the logic circuit that is
an output of gate u and an input of gate v. The set of input
edges for a node v, iedge(v), is defined to be the set of edges
with v as a tail. Similarly, the set of output edges for v,
oedge(v), is defined to be the set of edges with v as a head.
A primary input (PI) node has no input edges and a pri-
mary output (PO) node has no output edges. An internal
node has both input edges and output edges. The set of
distinct nodes that supply input edges to v are referred to
as input nodes and is denoted inode(v). Similarly, the set
of distinct nodes that connect to output edges from v are
referred to as output nodes and is denoted onode(v). A node
v is K-feasible if |inode(v)| ≤ K. If every node in a graph
is K-feasible then the graph is K-bounded.

Each edge e has an associated delay denoted delay(e). The
length of a path is the sum of the delays of the edges along
the path. At a node v, the depth, depth(v), is the length of
the longest path from a primary input to v and the height,
height(v), is the length of the longest path from a primary
output to v. Both the depth for a PI node and the height
for a PO node are zero. At an edge e, the depth, depth(e), is
the length of the longest path from a primary input to e and
the height, height(e), is the length of the longest path from
a primary output to e. Both the depth and the height of
an edge include the delay due to the edge itself. The depth
or height of a graph is the length of the longest path in the
graph.

Every edge and node in the graph has an associated area
flow that represents an estimate of the area of the subgraph
below it. Area flow is denoted af (·) and is defined recursively
as follows. The area flow at an edge e is given by

af (e) =
af (head(e))

|oedge(head(e))| (1)

and the area flow at a node v is given by

af (v) = Av +
∑

i∈iedge(v)

af (i) (2)

where the area of a node, Av, is zero for primary input/output
nodes and is 1 for internal nodes. These equations treat the
area flowing into a node as the total area flowing in on the
input edges. The area flowing out of a node includes the
area flowing into the node as well as a component which
represents the area of the node itself. Furthermore, the area
flowing out of a node is evenly divided among the outgoing
edges.

A cone of v, Cv, is a subgraph consisting of v and some
of its nonPI predecessors such that any node u ∈ Cv has a
path to v that lies entirely in Cv. Node v is referred to as
the root of the cone. The size of a cone is the number of
nodes and edges in the cone, and it is this parameter that
determines the computational complexity of operations on
the cone. At a cone Cv, the set of input edges, iedge(Cv), are
the set of edges with a tail in Cv and the set of output edges,
oedge(Cv), are the set of edges with v as a head. With input
edges and output edges so defined, a cone can be viewed as
a node, and notions that were previously defined for nodes
can be extended to handle cones. Notions such as inode(·),

onode(·), depth(·), height(·), af (·), and K-feasibility all have
similar meanings for cones as they do for nodes.

A K-input lookup table (K-LUT) can implement any K-
feasible cone. Thus, the technology mapping problem for
LUTs is reduced to the problem of selecting a set of K-
feasible cones to cover the graph in such a way that every
edge is entirely within a cone or is an output edge of a cone.
In the depth-oriented mapping problem, the length of the
longest path through the cones selected to cover the graph is
to be minimized and in the area-oriented mapping problem,
the number of cones selected to cover the graph is to be
minimized. The roots of cones selected to cover the graph
are said to be visible in the mapping solution generated by
the covering.

For every non-root node v ∈ Cv, if all of its output edges
are also in Cv then the cone is termed duplication free (DF-
cone). A duplication free mapping solution is one that uses
DF-cones exclusively.

A cut, (X, X), is a partition of the nodes in G such that all
PI nodes are in X and all PO nodes are in X. Furthermore,
the cut is defined in such a way that any edge crossing the
cut has a head in X and a tail in X. The volume of a cut,
vol(X, X) is the number of internal nodes in X and the area
flow of a cut, af (X, X), is the sum of the area flows of the
edges crossing the cut.

A few examples will clarify the notions defined above. Fig-
ure 1 presents a graph, G, where edges are labeled with e, PI
nodes are labeled with i, PO nodes are labeled with o, and
internal nodes are labeled with v. The inputs and outputs
of node v3 are

iedge(v3) = {e2, e7}
oedge(v3) = {e10, e11}
inode(v3) = {i2, v1}
onode(v3) = {v5, v6}.

Every node has two or fewer inputs, thus the graph is 2-
bounded. The delay of each edge is specified on the graph,
separated from the edge’s label by a colon. These delays
can be used to determine the depth and height of the nodes
and edges in the graph as indicated in Table 1. The depth
(or height) of the graph is 6. Table 1 also provides the
area flow values for the nodes and edges in the graph. A
dashed line in Figure 1 indicates a cut, (X, X), where X
consists of the nodes v1, v2, v3, and v4, and X consists of
the nodes v5 and v6. Edges e1, e10, e11, and e12 cross the cut.
Both the volume, vol(X, X), and the area flow, af (X, X),
of the cut are 4. Figure 2 highlights three DF-cones in G.
These cones represent a potential mapping solution for G
if K ≥ 3. Nodes v1, v4 and v6 are visible in the mapping
solution generated by the cones. The inputs and outputs of
the cone rooted at v6 are

iedge(Cv6) = {e1, e2, e7}
oedge(Cv6) = {e14}
inode(Cv6) = {i1, i2, v1}
onode(Cv6) = {o1}.

Table 2 presents the depth, height, and area flow values for
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Figure 1: A graph G with a cut, (X, X), indicated by
the dashed line.

edge depth height af node depth height af
e1 4 6 0 i1 0 6 0
e2 2 5 0 i2 0 5 0
e3 1 5 0 i3 0 5 0
e4 1 5 0 i4 0 5 0
e5 1 5 0 i5 0 5 0
e6 1 5 0 i6 0 5 0
e7 2 4 0.5 v1 1 4 1
e8 3 3 0.5 v2 1 4 1
e9 4 4 1 v3 2 3 1.5
e10 3 3 0.75 v4 4 1 2.5
e11 4 3 0.75 v5 4 2 1.75
e12 5 1 2.5 v6 5 1 3.5
e13 5 2 1.75 o1 6 0 3.5
e14 6 1 3.5 o2 5 0 2.5

Table 1: Depth, height, and area flow values for
nodes and edges in G.

the nodes and edges defined by the cones of Figure 2. Each
cone is viewed as a node and values for depth, height, and
area flow are derived accordingly.

3. AN ITERATIVE TECHNOLOGY MAP-
PING ALGORITHM

3.1 Overview
A high level overview of IMap’s iterative technology map-
ping algorithm is presented in Figure 3. First, a call to Gen-
erateCones generates the set of all K-feasible cones for
every node in the graph. Then a series of forward and back-
ward graph traversals are started. The number of traversals
is limited by a user specified maximum, MaxI , which was
set to 8 in the experiments presented in Section 5. Higher
values of MaxI did not produce significantly better results.
The forward traversal, TraverseFwd, selects a cone for
each node and the backward traversal, TraverseBwd, se-
lects a set of cones to cover the graph. Iteration is beneficial
because every backward traversal influences the behavior of
the forward traversal that follows it. Finally, a call to Con-
esToLUTs converts the cones selected by the final back-
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Figure 2: A set of cones in G.

edge depth height af node depth height af
e1 4 5 0 i1 0 5 0
e2 2 3 0 i2 0 3 0
e3 1 4 0 i3 0 4 0
e4 1 4 0 i4 0 4 0
e5 1 2 0 i5 0 2 0
e6 1 2 0 i6 0 2 0
e7 2 2 0.5 v1 1 3 1
e8 3 3 0.5 v4 3 1 1.5
e12 4 1 1.5 v6 4 1 1.5
e14 5 1 1.5 o1 5 0 1.5

o2 4 0 1.5

Table 2: Depth, height, and area flow values ob-
tained with a set of cones in G.



1 GenerateCones()
2 for i ← 1 upto MaxI
3 TraverseFwd()
4 TraverseBwd()
5 end for
6 ConesToLUTs()

Figure 3: A high level overview of the iterative tech-
nology mapping algorithm.

K m c
4 6.47 4.63
5 15.1 7.37

Table 3: Values of m and c for K = 4 and K = 5.

ward traversal into LUTs.

The following sections examine the steps in the algorithm in
greater detail.

3.2 Generating allK-Feasible Cones
An algorithm described in [13, 10] is used to generate all
K-feasible cones in the graph. This algorithm is reviewed
here. The K-feasible cones are generated as the graph is tra-
versed in topological order from primary inputs to primary
outputs. At every internal node v, new cones are generated
by combining the cones at the input nodes in every possible
way. Node v is added to every new cone that is generated.
The new cones are then tested for K-feasibility and any cone
that is not K-feasible is discarded.

The generation of all K-feasible cones consumes most of
the execution time in IMap. When mapping the MCNC
circuits (see Section 5), cone generation consumes 80% and
98% of the overall execution time when K = 4 and K =
5, respectively. The time consumed by cone generation is
dependent on the average number of cones per node, m,
and the average size of a cone, c. The generation of new
cones at a node with two inputs takes O(cm2) time and the
test for K-feasibility takes O(c) time. Thus, the generation
of all K-feasible cones in a graph of n nodes takes O(cm2n)
time. Table 3 indicates the values of m and c observed on
the MCNC circuits when mapping with K = 4 and K = 5.

3.3 Forward Traversal
The algorithm used for forward traversal is presented in
Figure 4. During the traversal, the algorithm updates the
depth, and the area flow for every node and edge encoun-
tered. First, the algorithm initializes these values for PI
nodes and edges attached to PI nodes. Then the internal
nodes are examined in the topological order generated by
TSort. At each internal node v, a call to BestCone(v) is
used to select a cone rooted at v to be used in covering v
and some of its predecessors in a mapping solution. This
cone then determines the depth and area flow for v and its
output edges.

The quality of the mapping solution is determined by the
cones selected by BestCone. We now examine two possible

1 for v ∈ PI
2 depth(v) ← 0
3 af (v) ← 0
4 for e ∈ oedges(v)
5 depth(e) ← delay(e)
6 af (e) ← 0
7 end for
8 end for
9 for v ∈ TSort(V (G)− PI − PO)
10 Cv ← BestCone(v)
11 depth(v) ← depth(Cv)
12 af (v) ← af (Cv)
13 for e ∈ oedges(v)
14 depth(e) ← delay(e) + depth(v)

15 af (e) ← af (v)
|oedges(v)|

16 end for
17 end for

Figure 4: The algorithm used for forward traversal.

ways of selecting cones.

3.3.1 Depth-Oriented Cone Selection
In the depth-oriented mapping mode, the cone with the low-
est depth is selected and if cones are equivalent in depth,
then the one with the lowest area flow, is selected.

Selecting the cone that minimizes the depth at each node
leads to a mapping solution that is depth optimal. This is a
result that is true for both the unit delay model [1] and the
edge delay model [11].

Although this selection strategy works well during the first
forward traversal, there is additional information present
during the subsequent traversals that can be used to re-
duce the mapping area. It is assumed that the first for-
ward traversal has established the optimal mapping depth,
ODepth, and a preceding backward traversal has established
the height of each node. Using the optimal depth and the
height of a node v, a bound can be defined on the depth of
a cone Cv at v as follows

depth(Cv) ≤ ODepth − height(v). (3)

Cones that meet the bound requirement are preferred and
among a set of cones that meet the bound requirement, cones
with lower area flows are preferred. This selection strategy
ensures that the mapping solutions will still achieve the op-
timal depth but the greater flexibility in cone selection when
the depth bound has been met leads to mapping solutions
that are smaller in area.

3.3.2 Area-Oriented Cone Selection
In the area-oriented mapping mode, the cone with the lowest
area flow is selected and if cones are equivalent in area flow,
then the one with the lowest depth is selected.

Although the area flow is minimized, it is unclear how this
relates to the actual area of the mapping solution. The next
two theorems can be used to show that the that the area flow
and the actual area of the mapping solution are related.



Theorem 1. For any cut, (X, X), in G, vol(X, X) =
af (X, X).

Proof. The proof is by induction. In a cut of volume
zero, X contains PI nodes only. All PI nodes have an area
flow of zero therefore the cut has an area flow of zero. The
relation is assumed to hold for a cut of volume n. A cut of
volume n + 1 can be obtained from a cut of n by moving
a node v from X into X. The directional constraint on
the cut ensures that all input nodes of v are in X and all
output nodes of v are in X. Before v is moved, none of
its output edges cross the cut whereas all of its input edges
cross the cut. After v is moved, all of its output edges cross
the cut whereas none of its input edges cross the cut. By
Equations 1 and 2, the area flowing out of v on the output
edges includes the area flowing in on the input edges and
the area component of v which is one. The relation holds as
both the area flow and the volume are increased by one.

Theorem 2. In a duplication-free mapping, a node’s out-
put edges are either covered by a single cone or not covered
by any cone.

Proof. Follows directly from the definition of a duplication-
free mapping.

Theorem 1 shows that area flow can be used as a way of
counting the number internal nodes in a graph while Theo-
rem 2 shows that the number of output edges for a node does
not change under duplication-free mapping. Since the num-
ber of output edges is not changed, Equation 1 still holds
and area flow can be used as a way of counting the number
of duplication free cones.

Theorem 1 also suggests a way of optimizing the area flow.
When the graph is being traversed in topological order, the
set of nodes that have been examined (X) and the set of
nodes that have yet to be examined (X) form a cut, (X, X).
Every internal node that is encountered during the traver-
sal is thought to move from X into X. If a cone with the
minimum area flow is selected for each internal node as it is
added to X then the total area flow into the PO nodes and
consequently the mapping area will be minimized.

Under a general non-duplication-free mapping, the number
of output edges at a node will not be known until cones
have been selected for the node’s successors. Thus, the area
flow computed by Equations 1 and 2 will not be equal to
the mapping area. However, area flow can still be a rea-
sonably accurate predictor of mapping area if |oedge(·)| in
Equation 1 is replaced by an estimate, |oedge(·)|est . During
the first mapping iteration, |oedge(·)|est is equal to |oedge(·)|
but during the subsequent iterations, |oedge(·)|est is adjusted
based on the number of output edges observed during the
preceding mapping iterations. Specifically, the estimate of
the number of output edges at v depends on the previous
estimate, |oedge(v)|′est , and the number of output edges from
the preceding iteration, |oedge(v)|, as follows

|oedge(v)|est =
|oedge(v)|′est + α|oedge(v)|

1 + α
(4)

This equation is essentially a weighted average of two com-
ponents where the contribution of the second component to
the final value is determined by α. Values of α between 1.5
and 2.5 were found to work well when the number of itera-
tions was limited to 8. Note that there will be several nodes
that are not visible in a mapping solution. These nodes will
not have any output edges. The best results were obtained
when the number of output edges for these nodes was as-
sumed to be one.

3.4 Backward Traversal
The algorithm used for backward traversal is presented in
Figure 5. Internal nodes of the graph are visited in the re-
verse topological order generated by RTSort. Although all
internal nodes are visited, only the nodes that are required
to be visible in a mapping solution are expanded. During
the traversal, set S keeps track of the visible nodes. Initially,
set S contains the nodes that connect to PO nodes as they
are required to be visible. Then at every visible node v, the
cone selected for v during the preceding forward traversal,
Cv, is used to expand S. All input nodes of Cv are required
to be visible thus they are added to S.

During the backward traversal, the height of all internal
nodes is updated. It is assumed that before the algorithm is
run the height of all nodes and edges has been set to zero.
First, the algorithm updates the heights of edges attached
to PO nodes. At an internal node v, the maximum height of
the node’s output edges, h, is used to determine the height
of all nodes covered by Cv. A node may be part of several
cones, thus the new height h is only assigned to a node if it
is higher than its previous height. Similarly, an edge may
serve as an input to several cones, thus the height of the path
through Cv is only assigned to an edge if it is higher that its
previous height. The order of traversal (reverse topological
order) guarantees that the edge heights have settled into
their final values before they are actually used.

The height assigned to an internal node by the backward
traversal algorithm may be lower than its actual height in
a mapping solution. Once again, consider the graph of Fig-
ure 1. A potential mapping solution for the graph was given
in Figure 2. The backward traversal algorithm determines
the heights of v6, v5 and v3 to be 1. However, the height of 1
is only valid for the root of the cone, v6. A cone rooted at v5

will have a minimum height of 2 and a cone rooted at v3 will
have a minimum height of 3. The heights determined by the
backward traversal are only valid for those nodes that are
visible in the mapping solution. The depth bound for a cone
is influenced by the height assigned to its root (Equation 3),
and when the depth bound is used to select cones during a
depth-oriented mapping, a decision that is thought to meet
the depth optimality requirement at a node may turn out
to be incorrect. However, the correct decision at the nodes
that were visible in the previous mapping solution ensures
that the depth-optimal mapping solution is not lost.

3.5 Converting Cones into LUTs
The process of converting cones into LUTs is greatly simpli-
fied by the existence of the set of visible nodes, S, generated
by the preceding backward traversal. The conversion pro-
cess simply collapses the cone selected for each visible node



1 S ← ∅
2 for v ∈ PO
3 for e ∈ iedges(v)
4 height(e) ← delay(e)
5 end for
6 S ← S ∪ inode(v)
7 end for
8 for v ∈ RTSort(V (G)− PI − PO)
9 if v ∈ S
10 h ← max{height(e) : e ∈ oedges(v)}
11 for u ∈ V (Cv)
12 height(u) ← max{height(u), h}
13 end for
14 for e ∈ iedges(Cv)
15 height(e) ←

max{height(e), delay(e) + h}
16 end for
17 S ← S ∪ inode(Cv)
18 end if
19 end for

Figure 5: The algorithm used for backward traver-
sal.

v, Cv, into a LUT that implements the functionality of the
cone.

4. EFFECT OF ITERATION
Each mapping iteration in IMap gathers data used by the
following iteration to determine a bound on the depth of the
cone selected at each node (Equation 3) and to estimate the
fanout of each node under mapping (Equation 4). Table 4
presents the effect of iteration on the largest MCNC circuit,
clma, when IMap is used in its depth-oriented mode. The
table reports both the number of 4-LUTs and the total area
flow seen at the primary outputs (af ) for the mapping solu-
tions produced by each iteration. Data for two versions of
IMap are reported: the first uses only depth bounds (DB)
and the second uses both depth bounds and fanout estima-
tion (DB + FE ). Both versions of IMap produce identical
mapping results in the first iteration. Depth bounds and
fanout estimates are not available during the first iteration
thus each node is mapped for minimum depth, and area flow
is computed assuming that a node’s fanout under mapping
is identical to its unmapped fanout. When depth bounds
become available in the second iteration, significant area re-
ductions are made by both versions. However, the first ver-
sion does not make much progress in reducing area beyond
the second iteration. Area-oriented cone selection is guided
by area-flow values which are estimates of actual mapping
area. However, the first version does not use fanout esti-
mates and the area-flow values it computes are never close
to the actual mapping area. These inaccurate area-flow val-
ues hinder its progress beyond the second iteration. The
second version, which uses fanout estimates, makes steady
progress beyond the second iteration guided by increasingly
accurate area-flow values.

5. RESULTS
The MCNC circuits [16] were used to study the performance
of IMap’s depth-oriented and area-oriented mapping modes.

DB DB + FE
Iteration LUTs af LUTs af

1 5107 8207.27 5107 8207.27
2 4800 6026.07 4650 4591.57
3 4779 5930.34 4588 4472.88
4 4776 5927.66 4569 4510.6
5 4776 5927.66 4552 4531.77
6 4776 5927.66 4547 4538.2
7 4776 5927.66 4545 4524.06
8 4776 5927.66 4545 4534.39

Table 4: Effect of iteration on two versions of IMap:
one that uses depth bounds (DB) only and another
that uses both depth bounds and fanout estimates
(DB + FE).

Each circuit was first synthesized (SIS’s [17] script.rugged)
and decomposed into a network of two-input gates (SIS’s
speedup command) before being technology mapped into
both 4-LUTs (K = 4) and 5-LUTs (K = 5). Although 4-
LUTs have the greatest area efficiency [14] and are the most
common type of LUT present in modern FPGAs, the 5-LUT
mapping problem is important because some architectures
allow two 4-LUTs to be combined into a single 5-LUT [15].

Table 5 compares the area of IMap’s depth-oriented map-
ping solutions to those produced by two other mappers,
CutMap [9] and FlowMap-r0 [2]. All three mappers pro-
duce depth-optimal mapping solutions and contain heuris-
tics that reduce the area of the depth-optimal mapping solu-
tions. While IMap uses the edge-delay model, CutMap and
FlowMap-r0 use the unit-delay model. To produce compa-
rable results, IMap assumes that every edge in the input
graph is of unit delay. The RASP package [18], which con-
tains CutMap and FlowMap-r0, contains two postprocessing
operations called mppack [19] and flowpack [1]. These post-
processing operations can be used after technology mapping
is completed and can help reduce area even further. The
results presented include the application of the these oper-
ations. However, FlowMap-r0 is the only mapper that sees
the largest area benefit from the application of these post-
processing operations; the operations help reduce FlowMap-
r0’s area by 5% when K = 4 and 7.6% when K = 5. The
other two mappers see less than 2% area benefit when the
postprocessing operations are applied. Although the table
highlights results obtained for the 20 largest MCNC circuits,
the totals at the bottom are for the entire set of MCNC cir-
cuits (202 circuits). When K = 4, CutMap and FlowMap-r0
produce solutions that are 13.0% and 8.8% larger than the
solutions produced by IMap, respectively. When K = 5, the
area advantage enjoyed by IMap over the other two map-
pers increases; CutMap’s solutions are 15.3% larger while
FlowMap-r0’s solutions are 14.3% larger.

Although the problem of finding an area-optimal mapping
solution is NP-hard, an area-optimal duplication free map-
ping solution can be found in polynomial time. Thus, du-
plication free mapping is often used as a heuristic for mini-
mizing mapping area [2, 10].

When IMap is used in its area-oriented mapping mode, it



K = 4 K = 5
Circuit Depth IMap CutMaP FlowMap Depth IMap CutMaP FlowMap
C6288 26 895 544 549 23 647 655 713
alu4 8 1035 1207 1203 7 862 1027 1068
apex2 9 1201 1406 1441 8 1000 1212 1250
apex4 7 1086 1114 1130 7 877 1073 1085
bigkey 4 1594 1482 1370 4 916 915 1143
clma 16 4542 5250 5060 13 3728 4504 4688
des 7 1224 1359 1299 6 967 1030 1071
diffeq 13 842 1023 937 10 765 799 818
dsip 5 1150 1374 1598 4 1143 921 921
elliptic 17 2094 2734 2201 15 1875 2482 2028
ex1010 9 2524 2660 2676 9 1891 2264 2342
ex5p 8 918 1048 1025 6 820 875 892
frisc 22 2255 2919 2316 17 1935 2502 2028
i10 15 776 889 809 12 699 820 722
misex3 8 1086 1260 1259 7 907 1068 1096
pdc 11 1872 2144 2085 10 1452 1898 1864
s38417 11 3645 3786 3781 9 3026 3252 3135
s38584.1 11 3678 4423 3864 9 2761 3295 2983
seq 8 1089 1308 1291 6 969 1107 1161
spla 9 1333 1565 1566 8 1080 1262 1280
Total 58617 66252 63771 47542 54839 54332
Ratio 1.0 1.130 1.088 1.0 1.153 1.143

Table 5: Comparing IMap to CutMap and FlowMap-r0 when performing depth-oriented mapping with K = 4
and K = 5.

finds a mapping solution that minimizes area-flow. Table 6
compares the optimal area-flow mapping solution (AFlow)
to the area-optimal duplication free mapping solution (DFree).
The duplication free mapping solutions were also produced
by IMap. When IMap operates in its area-oriented mode
and uses duplication free cones exclusively, it produces an
area-optimal duplication free mapping solution. Once again
the table highlights the number of LUTs for the 20 largest
MCNC circuits, but the totals at the bottom are for all
MCNC circuits. When K = 4, the duplication free map-
ping solutions are 8.4% larger than the area-flow mapping
solutions, and when K = 5, the duplication free mapping
solutions are 15.9% larger. Remarkably, in none of the 202
MCNC circuits was the area-flow mapping solution larger
than the duplication free mapping solution.

6. SCALABILITY OF IMAP
The execution times for IMap remain reasonable when map-
ping with K set to 4 or 5. On a Pentium III 1 GHz computer,
when K = 4, the entire set of MCNC circuits was mapped
in 100 seconds. When K = 5, the mapping time for the
MCNC circuits rose to 30 minutes. For larger values of K,
the generation of all K-feasible cones takes far too long, and
pruning techniques such as those described in [10] will be re-
quired to reduce the number of K-feasible cones generated
for each node.

7. SUMMARY
This paper presented an iterative technology mapping tool
called IMap. Iteration was used in conjunction with two
heuristics to produce area efficient mapping solutions. The
first heuristic, called area-flow, is an estimation of actual
mapping area and can be optimized using a dynamic pro-

K = 4 K = 5
Circuit AFlow DFree AFlow DFree
C6288 1114 1413 1016 1384
alu4 1017 1053 840 896
apex2 1158 1228 962 1061
apex4 1008 1092 845 991
bigkey 1039 1275 696 1047
clma 4293 4562 3451 3898
des 1161 1221 906 1062
diffeq 839 904 744 828
dsip 1153 1164 916 931
elliptic 2086 2115 1895 1999
ex1010 2093 2296 1790 2091
ex5p 892 994 754 903
frisc 2252 2359 1933 2115
i10 754 852 636 746
misex3 1077 1139 891 986
pdc 1753 1852 1432 1580
s38417 3683 4083 3109 3573
s38584.1 3736 4076 2767 3397
seq 1079 1156 886 1001
spla 1277 1361 1065 1191
Total 56370 61109 45960 53284
Ratio 1.0 1.084 1.0 1.159

Table 6: Comparing the optimal area flow mapping
solution to the area-optimal duplication free map-
ping.



gramming formulation. The second heuristic is a method of
bounding the depth of cones selected at each node; any ex-
tra flexibility specified by the bound can be used in selecting
cones that reduce mapping area.

When mapping for depth, IMap produced solutions that
were between 8.1% and 13.3% smaller than solutions pro-
duced by CutMap and FlowMap-r0. When mapping for
area, IMap produced solutions that were between 7.8% and
13.7% smaller than the optimal duplication-free mapping
solutions.
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