Timing yield driven post-layout Vdd-level assignment
Observation and Motivation:
Timing yield is reduced with programmable dual-Vdd due to the fact that number of near-critical paths increases. I’ve extended the SSTA considering dual-Vdd in interconnects. Using alu4 as an example, the following figure compares the delay PDF in two cases, (I) single-VddH (VddH) and (II) VddP interconnects using EdTLC-LP algorithm (VddP). VddH case considers the delay overhead due to Vdd-programmability. Therefore the worse delay distribution in VddP case is only due to the larger number of near-critical paths and larger variance of VddL switches. The delay distributions for VddH and VddP are N(19.44ns, 2.85ns) and N(21.74ns, 3.26ns), respectively. The mean and standard deviation overhead are 12% and 14% respectively. When evaluated with a cut-off delay of 25.1ns (mean+2sigma in VddH), the timing yield decreases from 97.7% to 85.1% for VddP case.

[image: image4.jpg]0.14

0.12

0.1

0.08

0.06

0.04

0.02

— VddH
— VddP

35

40

The following figure compares the path-length (delay) distribution for the two cases. VddP increases percentage of near-critical paths (90%-100% delay of critical path delay) from 0.15% to 15% due to the fact that timing slack is used for VddL switches. It therefore exacerbates the delay distribution.

[image: image2.emf]0%

5%

10%

15%

20%

25%

30%

00.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

VddH

VddP

Proposed problem formulation: given a cut-off delay and target timing yield, perform Vdd-level assignment for statistical power minimization. In addition, statistical power minimization is equal to minimize mean power due to the fact that a smaller mean will lead to a smaller standard deviation.

Proposed algorithms,

· greedy sensitivity-based assignment algorithm, use SSTA in each iteration, high complexity

	Sort all switches in i) reverse topological order ii) non-decreasing order of power sensitivity

While exists an unmarked candidate switch {

 Find the unmarked candidate switch with highest sensitivity;

 Assign VddL to this switch and mark this switch;

 Perform SSTA and obtain timing yield;

 If timing yield < target timing yield {

 Assign VddH to this switch;

 Assign all of its upstream switch to VddH;

 }

}

Complexity is O(m(V+E) N), where m is number of variation sources (global and spatial), V and E are number of vertices and edges in the timing graph respectively, N is number of switches.

· timing slack budgeting based algorithm
phase I: deterministic timing slack budgeting use network flow formulation (EdTLC-NW) with the worst case complexity O(V2E log(VK)).
phase II: iterative bottom-up assignment, phase
Notation:

Slack_VddH(i, j): slack of net i sink j in VddH case;
Slack_VddP(i, j): slack of net i sink j in VddP case after phase I;

Original_Allocated_Slack(i, j): allocated timing slack for net i sink j in phase I;

C: near-criticality parameter

Adjust_Allocated_Slack(i, j): adjusted allocated timing slack for net i sink j based on C;

	timing_yield = -1;

C_up = 1.0; C_low = 0.0; C = 0.95;

while (timing_yield – target_timing_yield > small_number || timing_yield < target_timing_yield)

{

 for all (i, j)

 {

 if(1-Slack_VddH(i, j)/Tcrit > C) Adjust_Allocated_Slack(i, j) = 0;

 else if(1-Slack_VddP(i, j)/Tcrit > C)

 {

 scale_factor = [Slack_VddH(i, j) - (1-C) * Tcrit] / Slack_VddH(i, j);

Adjust_Allocated_Slack(i, j) = Original_Allocated_Slack(i, j) * scale_factor;
 }

 }

 for each net i

 BottomUpAssignVddL(Adjust_Allocated_Slack(i), i);

 SSTA and obtain timing_yield;
 if(timing_yield > target_timing_yield) {

 C_low = C; C = (C_up + C_low)/2;

 }

 else {

 C_up = C; C = (C_up + C_low)/2;

 }

}

The above algorithm is essentially an iterative bottom up assignment based on binary search for C. In each iteration, we guarantee that using VddL will not increase the percentage of near-critical paths (with delay larger than C*Tcrit). C is iteratively relaxed or constrained based on SSTA. A range of 0 to 1 for C guarantee all solution space, i.e., C=0 for VddH case and C=1 for deterministic VddP case. Complexity is O(h*m(V+E)) where h is the number of iterations.
The following figure shows an example.

[image: image3]
Ta: edge delay of (i, j) in VddH case

Tb+Tc: Original_Allocated_Slack(i, j)

Tb+Tc+Td: Slack_VddH(i, j)

Td: Slack_VddP(i, j)
Tc +Td: (1-C) * Tcrit

Te: the delay of edge (i, j) such that it will be in a near-critical path

scale_factor = Tb/(Tb+Tc+Td) = (Tb+Tc+Td –Tc – Td)/(Tb+Tc+Td)

 = [Slack_VddH(i, j) - (1-C) * Tcrit] / Slack_VddH(i, j)

 = 1 - (1-C) * Tcrit / Slack_VddH(i, j)

Adjust_Allocated_Slack(i, j)
= (Tb+Tc) * scale_factor

= Original_Allocated_Slack(i, j) * scale_factor

Theorem: in each iteration, the near-critical path (delay larger than C*Tcrit) number will not increase after bottom-up assignment.
Brief proof: It is correct for a single path design without branch. For each path considering branch, both scale_factor and Original_Allocated_Slack are smaller, therefore Adjust_Allocated_Slack is smaller which results in the above theorem.
phase III: local refinement

Mark all VddL switches and unmark all VddH switches from phase II and then perform greedy sensitivity-based assignment. Complexity is O(m(V+E) eta* N), where eta*N is the number of VddH switches.
The worst case overall complexity is worse than the greedy algorithm due to network flow formulation. However, it has been shown in practical the network flow budgeting runs 10X faster than the LP based budgeting with linear time complexity. In addition, the number of SSTA operations is expected to be much smaller compared to the greedy algorithm. Therefore, we expect this overall algorithm runs faster than the greedy one.

· More sophisticated algorithms are to be developed.
Td

Tc

Tb

Ta

Te

[image: image1]