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Abstract—With growing interest in the use of SRAM-based
FPGAs in space and other radiation environments, there is a
greater need for efficient and effective fault-tolerant design tech-
niques specific to FPGAs. Triple-modular redundancy (TMR) is a
common fault mitigation technique for FPGAs and has been suc-
cessfully demonstrated by several organizations. This technique,
however, requires significant hardware resources. This paper eval-
uates three additional mitigation techniques and compares them to
TMR. These include quadded logic, state machine encoding, and
temporal redundancy, all well-known techniques in custom circuit
technologies. Each of these techniques are compared to TMR in
both area cost and fault tolerance. The results from this paper
suggest that none of these techniques provides greater reliability
and often require more resources than TMR.

Index Terms—Dynamic testing, error propagation, FPGA, per-
sistence, proton accelerator, quadded logic, radiation, SEU, simu-
lator, state machine encoding, temporal redundancy, TMR.

I. INTRODUCTION

F IELD Programmable Gate Arrays (FPGA) offer many
advantages, such as flexibility and high throughput, to

the data-intensive signal processing applications often used in
space-based systems. Unfortunately FPGAs are very sensitive
to radiation-induced single-event upsets (SEUs). SEUs are
particularly detrimental to FPGAs because they not only can
change the state of user flip-flops and internal block memory,
but also the contents of the configuration memory which can
alter the behavior of the user circuit. This is much different
than in custom circuit technologies such as application-specific
integrated circuits (ASICs). In these custom technologies, the
routing and logic is considered insensitive to SEUs and so
only the latches need to be protected.1 In an FPGA, on the
other hand, the latches, logic and routing must all be protected.
Furthermore, since any added mitigation circuitry is itself im-
plemented in these radiation-soft resources, care must be taken
to eliminate or minimize the potential sensitivity introduced by
the mitigation circuitry itself.
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1In some cases the routing and logic may need protection from single-event
transients (SETs).

In order to reliably operate in a radiation environment, most
systems that use FPGAs apply SEU mitigation through some
form of design redundancy. The most common technique used
within FPGAs is triple-modular redundancy (TMR) [1]. TMR
involves triplicating all logic resources and adding simple ma-
jority voters to mask an error in one of the three replicates. De-
sign tools have been developed to automatically apply TMR
to user FPGA designs. TMR has been shown to be very effec-
tive for FPGAs as all resources are replicated including logic,
routing and flip-flops.

Although TMR has been shown to significantly improve de-
sign reliability, it carries a high overhead cost. At a minimum,
full TMR of a design requires three times the hardware to im-
plement three identical copies of a given circuit. In addition, ad-
ditional logic is required to implement the majority logic voters.
In the worst case, TMR can require up to six times the area of
the original circuit [2]. The additional hardware resources re-
quired to triplicate the original circuit result in other secondary
problems such as incread power and slower timing.

There are efforts to identify techniques for reducing the over-
head costs of TMR [3]–[5], but to the authors’ knowledge, only
Lima’s hybrid method has been shown to provide reliability
benefits equivalent to TMR at a lower cost [6]. The purpose of
this study is to investigate other alternatives to TMR that have
been introduced for non-FPGA custom circuits (e.g., ASICs).
In this study we will investigate temporal redundancy, state ma-
chine encoding, and quadded logic in FPGAs. The benefits of
each technique in custom circuit technologies are well-known
and have been the study of several different efforts [7]–[12]. We
will examine both the resource overhead cost and reliability ben-
efits of each method in FPGAs compared to TMR in order to do
a cost-benefit analysis.

Each of the techniques works better with different types of
circuits and/or applications, and some of the techniques may
only work for subsets of a circuit. As a result, our study used
different test circuits for each of the three methods. Therefore
we will only compare each technique to TMR and will not com-
pare compare each of these techniques against each other.

This paper will begin by reviewing the requirements for mit-
igating SEU effects in FPGAs and the different methodologies
for measuring SEU effects in FPGAs. Next, the TMR technique
for FPGAs will be described followed by an introduction to each
of the three proposed alternative SEU mitigation techniques. Fi-
nally, we will present results and compare and contrast each
technique to TMR in terms of overhead and reliability.

II. FPGA SINGLE-EVENT EFFECTS

The primary reliability concern for SRAM-based FPGAs
operating in a radiation environment is SEUs. An SEU occurs
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TABLE I
MEMORY BITS WITHIN THE VIRTEX XC4VLX60

when a single charged particle passes through a device and
transfers charge between the nodes of active regions. This
charge transfer can change the state of memory cells in the
device.

Devices that contain dense arrays of memory cells are es-
pecially sensitive to SEUs due to the large amount of memory
state within a relatively small amount of circuit area. SRAM,
DRAM and SRAM-based FPGAs are a few devices that fall
into this category. Of course SRAM and DRAM devices can
hold millions of bits, but most modern FPGAs also contain mil-
lions of memory cells for device configuration, internal block
memory, user flip-flops, etc. The Xilinx Virtex-4 4VLX60
FPGA, for example, contains almost eighteen million bits
of internal state (see Table I). As such, SRAM, DRAM and
SRAM-based FPGAs are all especially sensitive to radia-
tion-induced single-event effects.

Although FPGAs and memories (SRAM, DRAM, etc.) have
a similar sensitivity to SEUs, it is important to understand that
FPGAs have a fundamentally different and unique fault mecha-
nism. In memories, each memory cell simply stores data. Thus
an upset of one of these cells corrupts data. In an FPGA, how-
ever, the largest component of the memory cells store the func-
tionality of the user-designed FPGA circuit. These cells, called
the configuration memory, define the operation of the config-
urable logic blocks, routing resources, input/output blocks, and
other programmable FPGA resources. As a result, an upset in
an FPGA memory may actually change the operation of the in-
tended user circuit.

It is also worth pointing out that FPGAs have a much different
fault mechanism than ASICs or other custom circuit technolo-
gies. Custom circuit technologies have fixed functionality and
thus do not need to store their configuration in memory cells.
As such, the routing and logic in ASICs are usually consid-
ered insensitive to soft-errors. Consequently, soft-error mitiga-
tion techniques usually address only the latches within the cir-
cuit.2 In FPGAs, on the other, hand design reliability techniques
must mitigate against errors in the logic, routing, I/O, as well
the latches (i.e., flip-flops and block RAM). Since more FPGA
resources require error mitigation, the overhead for mitigating
failures is much higher in FPGAs.

The fault mechanism in FPGAs also presents another chal-
lenge. Since all FPGA resources are sensitive to SEUs, any ad-
ditional logic added to a circuit to improve the reliability can
itself be sensitive to SEUs. In other words, logic added for mit-
igation can increase the overall SEU sensitive cross-section of
a design. If this increase in cross section is greater than the re-
duction in cross section the scheme provides, there will be a net
loss in reliability. As such, any FPGA SEU mitigation technique

2This is not always true as upsets within logic and routing may generate tran-
sient errors that are latched within the sequential circuitry.

must eliminate or minimize the potential sensitivity introduced
by the mitigation circuitry itself.

III. MEASURING FPGA SEU SENSITIVITY

Each FPGA design has a unique SEU sensitivity profile be-
cause each design uses a different set of FPGA resources. This
set of FPGA resources corresponds to a custom combination
of internal configuration bits that define the behavior of these
resources. The number of configuration bits used to define the
resources within a design determines the SEU sensitivity of the
design. Larger designs using more FPGA resources are gener-
ally more sensitive to SEUs than smaller designs with fewer re-
sources. The metric to measure design reliability in this paper
is configuration sensitivity, or the number of configuration bits
within the device that, when upset, may affect the behavior of
the circuit.

To determine the benefit of any SEU mitigation approach,
it is necessary to accurately measure the SEU sensitivity of a
given FPGA design. A variety of techniques have been used to
estimate FPGA design sensitivity. Several common techniques
are summarized below:

• Stuck-At Fault Models: A common approach is to use
traditional “stuck-at” fault models for an FPGA design.
“Stuck-at” modeling involves gate-level simulation of a
design while forcing nodes within the design to zero or
one. Stuck-at nodes that modify circuit behavior are con-
sidered sensitive. While this approach is relatively straight-
forward, it significantly underestimates the SEU sensitivity
of a design as it does not model the fault mechanism in an
FPGA properly.

• Bitstream Analysis: Another approach involves analyzing
the bitstream of a design to determine how many configu-
ration bits are “active” within the design. While relatively
straight forward, this technique generally overestimates
design sensitivity as it does not consider logic masking
that typically occurs in both mitigated and unmitigated
designs.

• Radiation Testing: An accurate way of determining sensi-
tivity is to test a design using a radiation source. High-en-
ergy particles are applied to the device which induces up-
sets within all device resources. While statistically accu-
rate, this method is extremely expensive and time con-
suming and not practical for general design analysis.

• Fault Injection: A less expensive way of measuring SEU
sensitivity is to artificially insert upsets within the config-
uration memory using fault injection [13]. Johnson et al.
showed this method to predict more than 97% of upsets
compared to radiation testing. The small difference can be
attributed to single-event transients (SET) and SEUs in the
user flip-flops and global signals (e.g., configuration logic).
Despite this known error, fault injection provides accept-
able SEU sensitivity measurements with much less cost
and time than radiation testing [14]. Further, this technique
can be used to provide an exhaustive sensitivity map of the
configuration bitstream.

For our initial experiments we used fault injection to measure
SEU sensitivity. Fault injection is far less expensive than radi-
ation testing and the improvement (or reduction) in reliability
can be determined by comparing the SEU sensitivity of the un-
mitigated to the mitigated design.
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Fig. 1. Triple-modular redundancy fault masking.

TABLE II
TMR SENSITIVITY AND AREA RESULTS

IV. TMR

TMR is a static hardware redundancy scheme for masking
single faults in a digital circuit. Fig. 1 depicts the traditional
method for TMR. The circuit is replicated three times and a
simple majority voter is placed on the outputs. A failure in any
one of the three circuit copies will be masked by the majority
voter output.

The groundwork for this concept was developed by John von
Neumann in 1956 [1]. He proposed a technique of indepen-
dently computing a signal and using “restoring organs” (e.g.,
voters) to repair defects in the defective logical “organs” (i.e.,
circuit replicate). In this work, von Neumann proved mathemat-
ically that multiple-line redundancy can improve the reliability
of a system composed of unreliable components. Following this
seminal paper, numerous studies have introduced variations of
this technique and proved various properties of redundant hard-
ware systems [15].

A. TMR in FPGAs

TMR is a recognized technique for improving the reliability
of FPGAs in a radiation environment. Several projects have
demonstrated unique ways of implementing TMR within
FPGAs to improve reliability. For example, TMR was used on
a 8051-like micro-controller FPGA design and shown to com-
pletely remove design failures due to single-bit configuration
upsets [16]. Detailed instructions on using TMR within the
Xilinx architecture were created to describe several techniques
for efficiently implementing TMR [17].

Several tools have been developed for automating the process
of applying TMR [5], [18], [19]. The effectiveness of TMR cir-
cuits produced by these tools has been verified in radiation and
with fault injection [20]. For example, the BYU-LANL TMR

Tool (BLTMR) demonstrated over two orders of magnitude im-
provement in SEU sensitivity in both fault injection and radia-
tion testing (see Table II) [5].3 Commercial FPGA vendors have
also demonstrated significant improvements in design reliability
by automatically applying TMR [19].

In order for TMR to work properly in an FPGA there should
be no more than one upset in the configuration memory at any
given time. More than one upset could overwhelm the majority
voters and result in a functional error. Since it is inevitable in a
radiation environment that upsets will build up over time in the
configuration memory, something must be done to periodically
remove upsets. In an FPGA configuration memory scrubbing is
used. Scrubbing is simply the process of repeatedly correcting
upsets in the configuration memory. Carmichael et al. suggested
several methods for doing this [21]. If done fast enough for a
given environment, scrubbing can ensure there is no more than
one upset in the FPGA at a given time.

The number of allowable upsets at any given time varies
with the error correction capabilities of a given reliability
improvement scheme. The techniques studied in this paper all
have the same requirement as TMR, therefore implementations
of these schemes in an FPGA would require configuration
memory scrubbing at a rate fast enough to ensure no more than
one upset in the FPGA at a given time.

B. TMR Costs

Used in any technology, TMR comes at great cost. First, TMR
can negatively impact timing since the voters inserted are com-
binational logic and therefore increase path lengths. Second,
full TMR of a design requires, at a minimum, three times the
hardware to implement three identical copies of a given circuit.
Additional hardware is also required to perform the majority
voting on the three circuit modules. Some studies have shown
that TMR can require up to six times the area of the original cir-
cuit [2]. Third, the extra resources ultimately also require more
power.

While there are efforts to identify techniques for reducing the
cost of TMR [3], any use of redundant hardware to improve reli-
ability will require significant hardware resources. The purpose
of this work was to investigate alternative techniques for im-
proving the SEU reliability of FPGA circuits at a lower resource
cost than TMR.

V. TEMPORAL REDUNDANCY

The first alternative SEU mitigation technique we studied was
temporal redundancy. Unlike TMR which uses spatial redun-
dancy, temporal redundancy, like its name implies, uses redun-
dancy in time. A computation is repeated on the same hardware
at three different times. Many studies have shown the utility of
temporal redundancy in custom circuit technologies [7], [8].

The simplest method to implement temporal redundancy is
to repeat the exact same computation on the same hardware
module three times. This method, however, is inferior to TMR
since it only corrects transient errors. A permanent fault in a
module would produce incorrect results all three times (except

3This work did not perform triplication on clocks and I/O due to limitations
on the test fixture. A measurable amount of sensitive circuitry remain in these
areas.
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Fig. 2. Each row represents the computations performed at time steps t , t , and t respectively in temporal redundancy.

when the fault first manifests itself, in which case one, two or
all three results would be incorrect).

We will consider an SEU in the FPGA configuration memory
to be a permanent fault. After an SEU has changed the config-
uration of the circuit, the circuit will continue to malfunction
until the configuration is repaired by an outside process. Though
configuration scrubbing does repair the circuit, it will likely be
many clock cycles (thousands on average) after the SEU has oc-
curred, much longer than a typical transient event.

In order to make a fair comparison to TMR we only used
forms of temporal redundancy that correct both permanent and
transient faults. Fig. 2 shows the basic method. At time the
computation is performed. At time the inputs are encoded,
run through the same computation module, and then decoded.
At time the inputs are encoded with a different algorithm,
run through the same computation module, and then decoded
with a different algorithm. By uniquely encoding and decoding
the inputs on the second and third pass, two of the three execu-
tions will correctly compute the output even if the computation
module has a single permanent fault. Care should be taken to
ensure that the encoding scheme can handle permanent faults
which manifest themselves during one of the three computa-
tions. With two correct executions a final majority voter can se-
lect the correct output.

Hsu and Swartzlander devised an alternative method of tem-
poral redundancy for arithmetic computations they called time-
shared TMR (TSTMR) [7]. For example, TSTMR splits up an
addition module as well as the addition operation into three parts
[7]. This way, each of the three partial sums is computed si-
multaneously on three separate hardware modules as shown in
Fig. 3. The addition operation is performed in thirds, starting
with the least significant bits and simultaneously performed on
three addition modules. This approach has a relatively low hard-
ware cost since the three partitioned addition modules roughly
equal the size of the original module. The only hardware over-
head comes in the form of control logic and storage for inter-
mediate results. This method has been demonstrated with both
adders and multipliers.

Townsend et al. developed a slight variation of TSTMR they
called quadruple time redundancy (QTR) [8]. This method has
a slightly lower hardware cost than TSTMR, but a greater cost
in terms of latency.

One challenge with temporal redundancy is finding appro-
priate encoding and decoding blocks. To the authors’ knowl-
edge, a simple set of encoders and decoders has not been found
even for trivial arithmetic operations. A second challenge is that,

Fig. 3. Time-shared triple-modular redundancy error-correcting adder [7].

in an FPGA, the overhead logic (i.e., encoders, etc.) is suscep-
tible to SEUs and can potentially add more unreliability than the
reliability it adds to the original circuit.

A third challenge is that temporal redundancy can alter the
timing of the circuit. In addition, temporal redundancy requires
3 or more clock cycles to complete as the original computa-
tion, though the clock period may be reduced, depending on the
implementation used. Despite these challenges, temporal redun-
dancy methods use fewer resources than TMR, which, in some
situations, may be more important than timing considerations.

VI. STATE MACHINE ENCODING

The next technique we studied was error correcting codes
(ECC) to protect finite state machines (FSM) from SEUs. Pro-
tecting FSMs with an ECC is a well-studied problem for custom
circuit technologies. In independent efforts Rochet and Kumar
compared single-error ECCs to TMR in custom ASIC architec-
tures [9], [10].

For our study, we explored the following ECCs: explicit error
correction (EEC) [22], implicit error correction (IEC), [22], and
a technique proposed by Armstrong [23]. Unlike TMR where
an FSM is simply replicated entirely, ECCs redundantly encode
the FSM’s state variable.

• Explicit Error Correction: For explicit error correction
the state variables are encoded and additional circuitry is
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Fig. 4. Finite state machine implementation with explicit error correction.

added to detect and correct errors in the encoded state vari-
able. Fig. 4 shows a block diagram of an FSM protected
with EEC. The error correction circuitry is placed between
the state storage flip-flops and the next state and output
forming logic. This circuitry detects and corrects errors in
the state bits, providing a major advantage since the cor-
rect codeword is then available to the next state and output
forming logic.

• Implicit Error Correction: Unlike explicit error correc-
tion, implicit error correction (IEC) does not use addi-
tional hardware as error correction circuitry. Instead the
next state logic is expanded to include all the “erroneous”
states that are a Hamming code distance of one away from
valid states. The major advantage of this technique is there
is no need for additional error correcting logic. However,
with the added states, the next state forming logic is more
obtuse than in its original un-encoded form. “Don’t cares”
in the state logic are reduced because the set of invalid
and valid codewords must be handled instead of just the
valid codewords. The same principles must be applied to
the output forming logic to ensure the output is correct.

• Armstrong’s Error Correction Technique: Armstrong’s
FSM encoding method can be seen in Fig. 5 [23]. The out-
puts of the excitation circuit (including the next state code-
word and the system outputs) are divided into subunits.
Each subunit generates bits of the total set of outputs.
The input to each subunit is the only actual state variable.
Breaking the next state logic and output forming logic into
subunits reduces the chance that an SEU will affect the
logic that forms more than one output or next state bit.
Similar to the EEC technique, the inputs to the subunits
must be correct to form the correct outputs and next state.
Error correcting circuitry is placed before the inputs of
the subunits. The advantage of this system is that the sub-
units function independently of one another. Only the ac-
tual state bits need to be corrected while errors in the check
bits need not be corrected as the check bits are not used to
generate the next state or output of the system. The check
bits are used only to indicate which, if any, of the state bits
is in error. This method has the same disadvantages of error
correction circuitry that the EEC technique has.

A major advantage of ECCs is that the protected circuit is not
3 larger than the unmitigated circuit like with TMR. ECCs

Fig. 5. Armstrong’s proposed error correction method.

save resources by using minimal redundancy and no voters, al-
though some ECCs do require additional overhead for an error
correction circuit. As is the case with temporal redundancy, in an
FPGA the overhead logic can potentially add more unreliability
than the reliability it adds to the original circuit. Furthermore,
like voters, the overhead circuitry can negatively affect timing.

VII. QUADDED LOGIC

The final alternative SEU mitigation technique we studied
was quadded logic. Tryon and Pierce independently developed
quadded logic in the early 1960’s shortly after von Neumann
published his groundbreaking work on reliable computing [1],
[11], [12]. Pierce actually called his more generic theory inter-
woven logic. This work focused on quadded logic since it is the
minimally redundant version of interwoven logic.

Quadded logic is built on four main concepts:
1) the network of logic gates is a plane of alternating AND and

OR stages,
2) each logic gate is quadruplicated,
3) an error is corrected within two levels of logic from the

place of origin, and
4) the uncorrupted wires in the redundant digital signal mask

the error [11].
In [11], Tryon outlined the steps required to apply these four

principles to a circuit. First, the circuit must be specified as a
network of alternating AND and OR stages. Second, each logic
gate is replicated four times. Since each gate is quadruplicated,
four versions of each of the original signals now exist in the
quadded logic circuit. Finally, each gate receives two (of the
now four) versions of each input signal it took in the original
circuit. Tryon developed a regular pattern for selecting two of
the four signals which Pierce later generalized. Fig. 6 illustrates
a section of a circuit protected by quadded logic.

Unlike TMR which masks errors with voters, quadded logic
includes error correction in the same hardware that performs the
intended function. Fig. 7 illustrates how this works. In Fig. 7,
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Fig. 6. (a) An example network of two-input logic gates. (b) The resulting cir-
cuit after quadded logic is applied to the network in (a).

Fig. 7. Erroneous one from an AND being corrected in next level of AND [11].

AND gate A4 erroneously output a logical one. This error spread
to OR gates C3 and C4 to which the output of AND gate A4 is
connected. This caused gates C3 and C4 to also erroneously
output a logic one. However, these two errors were masked in
the next level of logic. The zero output of gates C1 and C2 forced
AND gates E1, E2, E3 and E4 to all output the correct value since
the outputs of AND gates C3 and C4 do not combine anywhere
in the next level of AND gates.

Since quadded logic has error correction embedded within
the functional logic it does not incur the overhead of voters like
TMR. Since voters require extra hardware and negatively im-
pact timing, quadded logic is a potentially attractive solution
for FPGAs. However, quadded logic requires 4 more gates
and 2 more inputs at each gate. This input count growth, in
particular, does not scale well in a look-up table (LUT) based
FPGA because LUT memory size grows exponentially with the
number of inputs.

Fig. 8. Simplified schematic of the SLAAC1-V configurable computing plat-
form.

VIII. TESTING METHODOLOGY

As mentioned in Section III, we used fault injection to mea-
sure SEU sensitivity. For this investigation we used a Xilinx
Virtex fault-injection tool based on the SLAAC1-V4 test fixture.
The fault-injection tool has been shown to provide over 97% ac-
curacy when compared to radiation testing [14].

A simplified schematic of the SLAAC1-V configurable
computing board is shown in Fig. 8. It has three Xilinx Virtex
XCV1000 FPGAs and one smaller Xilinx FPGA. FPGA X1
houses the circuit design under test (DUT). FPGA X2 holds a
second “golden” circuit (identical copy) programmed into X1.
FPGA X0 contains difference circuitry. When the outputs of
X1 and X2 do not match, X0 detects the difference. The fourth,
smaller FPGA labeled XVPI has the configuration circuitry to
program X0, X1 and X2.

The fault injection algorithm, depicted graphically in Fig. 9,
is as follows: A bit within the configuration bitstream is tog-
gled from its correct state. After a finite length of time, FPGA
X0 is queried to see if it detected differences in the outputs of
FPGAs X1 and X2. If X0 detected output errors, the toggled bit
is marked as sensitive in a file. Finally, the corrupted bit is tog-
gled again, restoring its original state.

Once all of the sensitive bits in a design have been identi-
fied, its sensitive dynamic cross section, , can be estimated
by taking the fraction of “sensitive” configuration bits identified
in the design, multiplied by the device’s measured static cross
section, , or stated mathematically,

(1)

where,

= estimated dynamic cross section,

and

= measured static device cross section.

Since has units of and the ratio of sensitive to total bits
is unit-less, the result has units of .

4Systems Level Applications of Adaptive Computing (SLAAC) board, ver-
sion 1, with Virtex FPGAs.
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Fig. 9. Fault injection flow diagram.

IX. RESULTS

For each of the different mitigation techniques we tested the
reliability of one or two example circuits using that method. We
also tested the reliability of those same circuits with just TMR
(using triplicated voters). We did not use the same circuits for
each method. Instead we picked sample circuits that had the best
chance of producing reliability and/or cost results better than
TMR.

For temporal redundancy we performed experiments on a
36-bit adder module using TSTMR and QTR. For state machine
encoding we tried EEC, IEC and Armstrong’s method on two
different FSMs. The first FSM is a Mealy state machine with
two inputs, one output, and eight states. The second FSM is also
a Mealy state machine, but it has seven inputs, four outputs, 16
states and more complicated state transitions. For quadded logic
we tested two arbitrary combinational circuits. Each has 10 in-
puts and one output. The first is an alternating plane of two-input
AND and OR logic gates. The second is an arbitrary combina-
tion of two-input logic gates (i.e., AND, OR, XOR, NOR etc.). Be-
cause no automated approaches are available for implementing
these techniques, our tests were limited to small, test circuits
that can be modified by hand. If initial results demonstrate that
these techniques do in fact provide improvements in reliability
or a reduction in cost, tools for automating the insertion of these

TABLE III
FAULT INJECTION SEU SENSITIVITY REDUCTION

AND AREA OVERHEAD RESULTS

techniques may be created. Such tools would be used to test full
applications and complex circuits.

The results, reported in Table III, suggest that none of the
techniques evaluated provide greater reliability than TMR and
that these techniques are often more costly than TMR. In fact,
the following mitigation techniques actually decreased the de-
sign reliability: TSTMR, QTMR, EEC and IEC. This was the
result of unprotected mitigation logic.

Despite the reliability decrease, TSTMR and QTR did have
a much lower area overhead than TMR—only 71% and 58%
more than the original circuit compared to 458% for TMR. As
a follow-on experiment, the overhead logic was itself protected
with TMR (indicated in Table III by an asterisk next to the de-
sign name) and tested again. In this case the circuits’ reliability
were comparable to the strictly TMR implementation, but the
area increase jumped to 621% and 588%.

Armstrong’s method and quadded logic did actually improve
reliability, but not by as much as TMR. For the FSM2 design,
TMR outperformed Armstrong’s method in sensitivity reduc-
tion by 299% and only required 131% more area than the Arm-
strong implementation. In other words, TMR had much higher
gains in reliability for a slightly larger area cost.

Quadded logic reduced the single-bit SEU sensitivity of
circuit1 by 14.8% compared to 27% with TMR. For circuit2,
quadded logic reduced the sensitivity only 1.9% while TMR
reduced the sensitivity about 27%. Unlike Armstrong’s method,
quadded logic also required more area than TMR with 866%
to 1133% area overhead compared to 233% for TMR. In
other words, TMR yielded much higher reliability in terms of
single-bit upsets at substantially smaller area costs.

X. CONCLUSION

In this work, we have evaluated three mitigation techniques
in an attempt to identify a technique that is more cost effective at
increasing reliability than TMR. This study evaluated the tech-
niques of quadded logic, state machine encoding, and temporal
redundancy and compared them in both area and SEU sensi-
tivity to TMR. The results of our study suggest that none of the
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techniques evaluated provide greater reliability than TMR and
that these techniques are often more costly than TMR.

The first observation from these results is that the reliability
of all of the techniques was worse than the reliability of TMR.
The increased sensitivity is due to the mitigation logic added to
the design. Unlike ASICs, the configuration of logic and routing
structures in FPGAs are stored in SRAM cells and thus are sen-
sitive to SEUs, in addition to SETs. As a result, any mitigation
technique that adds unprotected mitigation circuitry will add to
the SEU-sensitive cross section of the design. TMR does not
experience this increase in sensitivity because the added redun-
dant logic is protected by majority voters. All of the logic, in-
cluding the original unmitigated logic, is protected from single
event upsets due to the single error correction behavior of the
majority voters. Like the use of voters in TMR, any SEU miti-
gation technique that adds additional logic to a circuit must itself
be protected against SEUs.

The second observation from these results is that the area
overhead of these mitigation techniques was usually greater
than the area overhead required by TMR. These techniques
were initially investigated due to the prospect of lower over-
head. When mapped to FPGAs, however, these techniques
proved to be more costly than TMR. The high overhead of
these techniques can be attributed to the mismatch between the
mitigation technique and the LUT-based architecture of the
FPGA. These techniques require much larger input functions
thus exponentially increasing the number of look-up tables
used in the design. TMR, however, involved a linear increase in
logic to implement the two additional levels of redundancy and
voters. Any SEU mitigation technique mapped to FPGAs must
be adapted to the LUT-based architecture prevalent in modern
FPGA devices.

While the techniques described in this paper did not demon-
strate improvements in FPGAs, it is likely that they will fare
more favorably for ASICs and other non-volatile FPGAs. In
fact, some of these techniques have been implemented in ASICs
and have shown improvements in reliability in this technology.
The reason these techniques are more favorable on ASICs is
that the routing and logic functions are not susceptible to upsets
that can last thousands of clock cycles as they are in FPGAs.
The logic added to implement these techniques do not appre-
ciably increase the dynamic sensitive cross section of an ASIC
device as they do for SRAM-based FPGAs. While the added
logic may be sensitive to single event transients (SETs), the ef-
fects of SETs are small compared to the overall improvements
in reliability provided by the given technique.

Even though this study was not able to identify a technique
that is more cost effective than TMR, it helped clarify several
important issues pertaining to FPGA SEU mitigation. First, this
study reaffirmed the importance of TMR as a SEU mitigation
technique. To date, no other technique has been demonstrated
that produces lower-cost reliability. Second, the results of this
study emphasize the importance of adding SEU “insensitive”
mitigation circuitry to a design. Techniques that add unprotected
logic to a circuit may actually increase the sensitivity of the de-
sign. Third, this study suggests that mitigation techniques must
be adapted to a LUT based architecture in order to provide cost
effective SEU mitigation. We will continue to investigate other

mitigation techniques, including variations of TMR, to identify
improved methods for reducing the SEU sensitivity of FPGA
designs in a radiation environment.
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