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SEU-Induced Persistent Error Propagation in FPGAs
Keith Morgan, Michael Caffrey, Paul Graham, Eric Johnson, Brian Pratt, and Michael Wirthlin

Abstract—This paper introduces a new way to characterize the
dynamic single-event upset (SEU) cross section of an FPGA design
in terms of its persistent and nonpersistent components. An SEU
in the persistent cross section results in a permanent interruption
of service until reset. An SEU in the nonpersistent cross section
causes a temporary interruption of service. These cross sections
have been measured for several designs using fault-injection and
proton testing. Some FPGA applications may realize increased re-
liability at lower costs by focusing SEU mitigation on just the per-
sistent cross section.

Index Terms—Dynamic testing, error propagation, FPGA,
persistence, proton accelerator, radiation, simulator, single-event
upset (SEU).

I. INTRODUCTION

F IELD programmable gate arrays (FPGAs) are an attractive
solution for space system electronics. The dense array of

programmable logic and block memories supports the use of
sophisticated, high-throughput signal processing applications in
space systems. However, FPGAs are susceptible to radiation-in-
duced single-event upsets (SEUS). SEU mitigation must be pro-
vided to insure reliable operation of FPGA devices in a radiation
environment [1]–[3].

FPGAs have a static sensitive cross section that has been char-
acterized by device manufacturers [4]. When programmed with
a specific circuit design, the device has a dynamic cross sec-
tion that depends upon the circuit’s utilization of logic elements,
flip-flops, and other programmable resources. Because a given
design does not use all of the FPGA resources, the dynamic
cross section is smaller than the static cross section. The dy-
namic cross section of a specific FPGA design can be accurately
characterized by fault-injection tools and radiation testing [5].
Extensive tests have characterized the dynamic cross section for
a variety of FPGA applications [6].

Well-defined techniques such as triple-modular redundancy
(TMR) exist to mitigate the dynamic cross section of a design
[2]. These methods tend to provide increased reliability, but at
high resource costs. They increase reliability by applying redun-
dancy to the entire dynamic cross section.
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In this paper we will show that the dynamic cross section of
an FPGA design can be separated into two components. Fur-
thermore, we will show that acceptable levels of reliability may
be realized at lower costs, by focusing mitigation on just one of
these two components.

The first component is the “persistent” dynamic cross section
[7]. An SEU in this cross section results in a permanent inter-
ruption of service until reset. The second component consists of
the remaining “nonpersistent” structures. An SEU in this cross
section will cause a temporary interruption of service, before the
design returns to proper operation.

This paper will begin by reviewing the dynamic cross section
of an FPGA design. Next, the persistent cross section will be
introduced and contrasted with the nonpersistent component.
We will present examples of circuits with a persistent cross
section and demonstrate how the circuit’s outputs are affected
by an SEU in that cross section. The results of several tests
performed using fault-injection and proton irradiation will be
presented. We will forecast SEU, data-loss and failure rates
for a sample application in several different orbits. Finally we
will draw conclusions and propose ideas for future work.

II. DYNAMIC FPGA CROSS SECTION

A device’s static cross section is a function of the surface area
and sensitive volume of nodes susceptible to an SEU-induced
upset of stored state [8]. Typically manufacturers measure the
size of this cross section and report it in a device’s data sheets
[4]. The static cross section of an FPGA is independent of a
user design, meaning that upsets of stored state can occur in
all portions of the device regardless of its configuration. Like
SRAM memory, an FPGA’s static cross section scales with the
size of the device.

Physical structures which contribute to an FPGA’s SEU static
cross section include configuration memory, user flip-flops,
BRAMs, half-latches, etc. The configuration memory is the
largest fraction of the cross section. For example, in the
Xilinx Virtex XCV1000, a 0.22 m 5-layer epitaxial process
FPGA, there are approximately 5.8 10 configuration latches
compared to 24 10 user flip-flops. Consequently, users are
typically most concerned with the configuration memory.

When programmed with a specific circuit design, an FPGA’s
configuration memory has a unique dynamic cross section. A
design’s utilization of programmable routing, logic, and I/O re-
sources determines its dynamic cross section. Since a design
never uses all of an FPGA’s resources, the dynamic cross sec-
tion is generally much smaller than the static cross section.

A. Measuring Dynamic Cross Section

Since the dynamic cross section varies for each design, it is
useful to measure cross section of a specific design. A dynamic
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Fig. 1. Test setup at Crocker Nuclear Laboratory, Davis, CA. (63 MeV
protons).

cross section estimate allows a user to predict mean time be-
tween failures (MTBF) for specific environments and to eval-
uate the effectiveness of an SEU mitigation technique.

We have developed two techniques for measuring dynamic
cross section. We use fault-injection to predict, or estimate, a
design’s cross section. We use proton irradiation to validate our
predictions and to also make more formal measurements.

For fault-injection, we use a tool developed at Brigham Young
University [9]. This tool estimates the dynamic cross section
for a given FPGA design by artificially upsetting individual bits
within the configuration memory of a device under test (DUT).
The tool identifies which configuration bits, when upset, cause
any type of circuit output error. This tool can rapidly test all
configuration bits in a bitstream to create an accurate and com-
plete characterization of a given FPGA design. The size of the
dynamic cross section is equal to the fraction of “sensitive” con-
figuration bits multiplied by the device static cross section.

We also use proton testing to make more formal measure-
ments of dynamic cross section. At Crocker Nuclear Labora-
tory in Davis, CA, we use 63 MeV protons to induce SEUs.
The physical test setup is illustrated in Fig. 1. Here, our test fix-
ture records data about the time and location of configuration
upsets, in addition to the time of output errors. The size of the
dynamic cross section is equal to the number of configuration
upsets which cause output errors divided by the product of the
total fluence and incident particle angle.

B. Dynamic Cross Section Measurements

Fault-injection and proton irradiation were used to estimate
the dynamic cross section for many FPGA designs. The results
are summarized in columns two and three of Table I. This table
reports the dynamic cross section of the design as a fraction of
the total device static cross section. For example, the dynamic
cross section of a DSP Kernel design is approximately one-tenth
the size of the 1.28 10 cm [4] static cross section of a Xilinx
Virtex XCV1000 FPGA.

A careful examination of Table I, reveals that our tool is a
good estimate of dynamic cross section. In fact, previous work
has shown that the error of our tool compared to proton testing
is within 1% [5].

A useful by-product of estimating cross section is the ability
to evaluate the effectiveness of design mitigation techniques
such as TMR. For example, full TMR1 was applied to a simple
counter design. We then used fault-injection and proton irradia-
tion to measure the effective reduction in cross section. Table I

1It should be noted that here and throughout this paper, the “full TMR” we
used does not triplicate the clock, reset and I/O signals.

TABLE I
RATIOS OF THE DYNAMIC AND PERSISTENT CROSS SECTION TO THE STATIC

DEVICE CROSS SECTION FOR SELECTED DESIGNS

shows that the dynamic cross section of the counter design is al-
most two orders of magnitude smaller after TMR was applied.

III. PERSISTENT FPGA CROSS SECTION

Typically, users are most interested in measuring the dynamic
cross section of an FPGA design because it measures fluence
to interruption of service. This section will show that there are
actually different modes of disruption. As a result, the dynamic
cross section can be subdivided into smaller components.

Separation of cross section is not a new idea. Turflinger et al.
reported multiple cross sections from different error modes in an
ADC [10]. Others have proposed separating the Single Event
Functional Interrupts (SEFI) cross section from the dynamic
SEU cross section. Our approach simply divides the dynamic
cross section into persistent and nonpersistent components, each
characterized by the duration of a service interruption induced
by an SEU in the respective cross section component.

To the user, a service disruption means lost or corrupted data,
or in other words, functional errors. The persistent and nonper-
sistent dynamic cross sections are characterized by the duration
of the functional errors induced by an SEU in the respective
cross section. Nodes which, when upset, cause persistent func-
tional errors, or a permanent interruption of service, are part of
the persistent dynamic cross section. Upset nodes which induce
nonpersistent functional errors, or a temporary disruption of ser-
vice, belong to the nonpersistent dynamic cross section.

A key concept related to error persistence is configuration
scrubbing. This section will begin by describing this mitigation
technique. We will then introduce nonpersistent and persistent
functional errors.

A. Configuration Scrubbing

One of the most common SEU mitigation techniques for
FPGAs is configuration scrubbing [11]. Scrubbing prevents
the buildup of configuration faults by repeatedly scanning and
cleaning configuration upsets. External scrubbing circuits are
added to a system to read the configuration memory, compare it
against a golden copy, and repair the configuration when faults
are found. The process is repeated throughout the configuration
memory in a round-robin manner.

Unrepaired, an upset configuration bit in the dynamic cross
section can induce functional errors indefinitely. Configuration
scrubbing reduces the duration of dynamic functional errors and
eliminates the buildup of multiple faults. Furthermore, systems
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must employ configuration scrubbing before any reliability en-
hancement is observed for circuit mitigation techniques such
as TMR. Without scrubbing, these techniques are ineffective.
The buildup of multiple faults would eventually break the re-
dundancy.

Although upsets within the configuration memory will be re-
paired through scrubbing, there is a finite time between a con-
figuration fault and the corresponding repair. Upsets among the
sensitive configuration memory bits will cause functional faults
and design failures during this time period. The circuit will op-
erate incorrectly and possibly produce incorrect data for at least
as long as it takes to detect and repair the configuration fault
through scrubbing.

B. Nonpersistent Errors

The use of configuration scrubbing limits the time in which
an SEU-induced fault is present in an FPGA’s configuration
memory. Once a configuration scrub has completed, all faults
in the bitstream have been repaired and the circuit’s original
configuration has been restored. In many cases, the functional
output errors that occur after an SEU are temporary. Once the
configuration fault has been repaired, there is no sign of system
failure. In other cases, the functional output errors persist indef-
initely beyond repair. The concepts of persistence and nonper-
sistence are based on this idea that, in a system with scrubbing,
the duration of some functional errors is finite.

Temporary functional errors are termed nonpersistent be-
cause they do not persist in a design and are flushed after
configuration scrubbing. Once the errors have flushed, the
system exhibits no signs of failure. These transient errors
represent a temporary interruption of service. The system does
not require a reset to recover. We will refer to configuration
faults which cause nonpersistent errors as nonpersistent upsets.

The concept of nonpersistent errors can be demonstrated by
an example. Two data streams were collected from two identical
circuits operating within our fault-injection tool. The arithmetic
difference between these two data streams can be computed to
identify the impact of configuration upsets. When the two cir-
cuits are operating correctly, the arithmetic difference is zero.
When one of the circuits has functional errors, the arithmetic
difference is nonzero.

Fig. 2 illustrates the arithmetic difference between two data
streams generated by identical designs. The figure depicts a non-
persistent error. For the first 64 time steps, the difference be-
tween the two data streams is zero indicating that both circuits
are operating in sync. At time step 65 a nonpersistent configu-
ration bit is upset in one circuit. This upset causes the corrupted
circuit to operate incorrectly. The faulty operation induces func-
tional errors and immediately the outputs diverge. At time step
130 the bitstream is repaired through configuration scrubbing.
At this point the corrupted circuit resumes proper operation and
shortly thereafter the difference between the data streams re-
turns to zero. There are no longer any signs of functional errors.
In this example, the nonpersistent configuration upset caused a
temporary interruption of service from time step 65 to 130.

A circuit which exhibits the characteristics of nonpersistence
is a feed-forward multiplier. The circuit computes the product

Fig. 2. Plot of the difference between the outputs of a DUT and golden circuit
before, during and after an upset within the nonpersistent cross section.

between two binary values. The output only depends on the cur-
rent inputs. If an SEU occurs anywhere within the dynamic cross
section of the design, the circuit will temporarily compute prod-
ucts incorrectly (temporary service interruption). However, after
scrubbing repairs the fault, the multiplier circuit will be repaired
and begin to correctly perform multiplication.

C. Persistent Errors

Sometimes an SEU-induced fault within the configuration
memory of an FPGA will introduce functional errors which in-
definitely propagate within a circuit, even after configuration
scrubbing repairs the fault. In these cases, the fault happened
within the persistent cross section, introducing persistent func-
tional errors. Unlike nonpersistent errors, persistent errors do
not disappear after configuration scrubbing. Although scrubbing
repairs the circuit structure, the temporary circuit failure inserts
incorrect state into the system that cannot be corrected, and will
not self-correct, without a global system reset. To the user, per-
sistent functional errors look like a SEFI. However, persistent
functional errors are specific to the configuration programmed
into the FPGA, not to the specific device. In addition, persistent
errors can be removed with a global system reset while a SEFI
usually requires a system power off/on to recover [12].

Persistent errors are caused by an SEU within the configu-
ration memory corresponding to circuit structures that contain
feedback and store internal state. The feedback structures “trap”
the incorrect state and store this erroneous state until appropriate
reset measures are taken. We will refer to configuration faults
which cause persistent errors as persistent upsets.

Fig. 3 illustrates a persistent error, or permanent service in-
terruption. Like the nonpersistent example in Fig. 2, the output
stream for the two circuits match for the first 64 time steps. At
time step 65 a bit in the persistent cross section of one circuit was
upset. Immediately the arithmetic difference becomes nonzero.
At time step 130 the bitstream is repaired through configuration
scrubbing. Unlike the nonpersistent example, the output streams
in this example did not converge. The internal state trapped the
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Fig. 3. Plot of the difference between the outputs of a DUT and golden circuit
before, during and after an upset within the persistent cross section.

errors and continued to propagate them even after the config-
uration bit was repaired. The application continued to produce
faulty data after repair and will therefore need a system reset to
recover.

The exact error signatures in Figs. 2 and 3, both in magnitude
and time, are a function of the design used as well as the upset
bit and set of input vectors. In a general sense, however, the error
signatures represent the typical effect of a nonpersistent versus
persistent upset. The difference between the outputs of the DUT
and golden circuit will always return to zero after a nonpersis-
tent upset, whereas after a persistent upset, the difference will
indefinitely remain nonzero.

A circuit which exhibits the characteristics of persistence is
a binary counter. A counter depends on the count of the pre-
vious cycle to compute the next value in the counting sequence.
If an SEU occurs within the persistent cross section of the de-
sign, the counter will likely start counting out of sequence. Even
after scrubbing repairs the circuit fault, the counter will likely
not return to the correct counting sequence (permanent service
interruption). The internal state will propagate the error indefi-
nitely without the intervention of an external reset.

IV. MEASURING PERSISTENT CROSS SECTION

Two of our main goals in testing were to validate the exis-
tence of a persistent cross section and estimate its size for sev-
eral designs. In this section we will explain how we measured
the persistent cross section using our two testing methodologies,
fault-injection and proton irradiation. We will also report the re-
sults of our tests.

In this and the following sections we will refer to several de-
signs we used in our testing. The first is an array of feed-forward
multipliers with no internal state. The second is a large array of
8-bit counters (each containing count state). The third is a miti-
gated implementation of the 8-bit counter array using full TMR.
The fourth design is a digital signal processing (DSP) kernel de-
veloped at Los Alamos National Laboratory. The final design
is a mitigated implementation of the DSP Kernel, with TMR

TABLE II
DEVICE UTILIZATION FOR SELECTED DESIGNS

applied to just circuit elements in the persistent cross section.
Table II lists the various designs and their utilization of logic in
the Xilinx Virtex XCV1000 FPGA.

A. Testing Methodologies

We extended the fault-injection tool mentioned in Sec-
tion II-A to predict the size of a design’s persistent cross
section. In addition to sensitive bits, the tool now also identifies
configuration bits which, when upset, induce a persistent error.
These bits constitute the persistent cross section.

The time-line in Fig. 4 shows the sequence of events used to
determine if an individual configuration memory bit contributes
to persistent errors. At the beginning of the test, marked by the
diamond, the tool emulates an SEU by corrupting a bit in the
configuration memory. Some of those result in a dynamic error.
The delay is introduced to emulate the average time required
for scrubbing to repair the bitstream, or mean time to repair
(MTTR). Next, the bit is corrected. Finally, if functional errors
occurred, the design is allowed to operate for an additional finite
amount of time to see if the errors flush. If any errors persist
then the originally corrupted bit is classified as contributing to
persistent errors. The size of the persistent cross section is equal
to the fraction of persistent configuration bits multiplied by the
device static cross section.

We also measured the persistent cross section at Crocker Nu-
clear Laboratory in Davis, CA, using proton irradiation and a
method very similar to measuring the dynamic cross section. A
63 MeV proton source caused the SEUs. The time of all upsets
and output errors was recorded. In addition to recording the time
of all output errors, the record of each output error was appended
with a flag indicating if the error persisted or not.

Fig. 5 illustrates the sequence of events used to determine if a
single configuration bit contributes to persistent errors. To com-
pensate for the dynamic length of the scrub time , we used
an extended flush time to cover both the worst-case (longest)
scrub time and the minimum alloted time to allow functional
errors to flush. Errors which persisted beyond the flush time
were classified as persistent. Post processing of data matched
persistent errors to configuration upsets [13]. The size of the per-
sistent cross section is equal to the number of configuration up-
sets which cause persistent output errors divided by the product
of the total fluence and incident particle angle.

Although the persistence fault-injection tool and radiation
testing environment operate almost identically, there are some
known differences that will affect the testing results. The first
difference between the two testing methodologies is the number
of the configuration bits tested. The fault-injection tool will test
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Fig. 4. Fault-injection test time-line: Sequence of events in a single trial to test
a configuration bit for persistence.

Fig. 5. Proton-irradiation test time-line: Sequence of events in a single trial to
test a single configuration bit for persistence.

every configuration bit while the radiation test will only test a
small subsection of the configuration memory. Sampling limita-
tions of the radiation test may produce slightly different results
from the exhaustive fault-injection tool.

The second difference between the two testing methodolo-
gies is the timing of the configuration upsets. In the fault-in-
jection tool, the configuration upsets are carefully controlled
and synchronized with the run time and flush time of the per-
sistence test. The arrival of proton upsets in the radiation test,
however, is random and cannot be correlated with run time and
flush time. Although the average arrival time of protons can be
controlled by the proton flux, the inter arrival of protons will
follow a Poisson distribution. It is expected that secondary con-
figuration upsets will occur during the flush time of a trial. If
this does occur, the first upset configuration bit will falsely be
tagged as persistent. The number of such false persistent events
can be estimated through statistical analysis.

After accounting for the known error in radiation testing,
the data we collected indicates that fault-injection is a reliable
method of measuring the persistent cross section. Columns 4
and 5 in Table I list the ratio of the persistent cross section to
the device static cross section for several designs. Predicted and

TABLE III
RAW DATA COLLECTED AT CROCKER NUCLEAR LABORATORY, DAVIS, CA

measured values are reported. In all cases, fault-injection is at
least as good as a first-order estimate of the persistent cross sec-
tion.

B. Persistent Cross Section Measurements

Using both fault-injection and proton irradiation we found
that, as expected, the persistent cross section does exist. We
also found that, for our applications, the persistent cross section
is significantly smaller than the overall dynamic cross section.
Table III lists the “raw” data values collected at Crocker labo-
ratory. Trials which had multiple upsets (SEUs) during the test
flush time were removed [13].

In Table I we list both the dynamic and persistent cross section
as a ratio of the overall static cross section. Both the predicted
and measured values are given. For all the designs, the dynamic
cross section is at least one order of magnitude smaller than the
static cross section. Of course, the relative size of the dynamic
cross section depends on the application’s resource utilization.
Our measurements also indicate that the persistent cross section
is significantly smaller than the dynamic cross section. Again,
the absolute size is application dependent.

To emphasize the relative magnitude of the persistent to dy-
namic cross section and its application dependence, we plotted
the resource layout for the DSP Kernel and non-TMR counter
array designs along with a graphical representation of the dy-
namic and persistent cross sections of those resources in Figs. 6
and 7.

In Figs. 6 and 7, the left graphic represents the design layout
and resource utilization as rendered by the Xilinx FPGA Ed-
itor tool. The center and right graphics represent the fraction of
configuration bits which constitute the dynamic and persistent
cross sections respectively. These diagrams were created using
Matlab in conjunction with the fault-injection tool mentioned in
Section II.

The Counter Array design largely consists of feedback struc-
tures so it is not surprising that its persistent cross section nearly
mirrors its dynamic cross section. The DSP Kernel design, on
the other hand, has only a few scattered feed-back structures for
control. Its persistent cross section is over an order of magnitude
smaller than its dynamic cross section. It is not surprising then
that the graphical representation of the DSP Kernel persistent
cross section is nearly blank.

V. MEAN TIME BETWEEN FAILURES

An important motivation for measuring cross section is to de-
termine how often a given system will fail. Like dynamic and
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TABLE IV
MEAN TIME BETWEEN FAILURE FOR A DSP KERNEL DESIGN

Fig. 6. The diagram on the left is a screen capture of the layout of the DSP Kernel design. The center and right diagrams are graphical representations of the
portion of the DSP Kernel design layout which constitute the dynamic and persistent cross sections respectively.

persistent cross section, MTBF is application dependent. How-
ever, MTBF also depends on the destined system environment,
or more specifically the environment’s SEU rate. Additionally,
MTBF depends on the application’s definition of failure. Some
applications may have a higher tolerance of service interrup-
tions. A user can leverage a design’s persistent cross section and
its tolerance level to improve MTBF at a lower cost.

In this section we will first introduce the different tolerance
levels of application service interruption. Next, we will esti-
mate the static SEU rate for several orbits. We will then forecast
MTBF for the DSP Kernel application. Finally, we will show
how we made low-cost improvements of MTBF for the DSP
Kernel by mitigating just its persistent cross section.

A. Application Service Interruption Tolerance

Most applications cannot tolerate permanent service interrup-
tions (persistent errors), but some applications can tolerate tem-
porary service interruptions (nonpersistent errors). To aid our
discussion we will classify applications as either tolerant or in-
tolerant, based on their tolerance of service interruptions.

“Intolerant” applications cannot tolerate temporary nor per-
manent service interruptions. Either type of service interruption
would be considered an application failure. Because nonpersis-
tent upsets cause temporary service interruptions and persistent
upsets cause permanent service interruptions, it follows that any
dynamic upset will cause an intolerant system to fail. In addition
to scrubbing, a mitigation technique such as TMR would need
to be applied to the entire circuit to insure uninterrupted service
[2].

“Tolerant” applications can tolerate temporary service inter-
ruptions. As Fig. 2 illustrates, these service interruptions simply
cause a temporary loss of data. Put another way, an application
is tolerant if it can withstand temporary data loss. Only perma-
nent service interruptions cause a tolerant application to fail. It

then follows that only persistent upsets cause a tolerant applica-
tion to fail. We intend to show that only circuit components in
the persistent cross section need mitigation like TMR to elimi-
nate these failures.

It is important to point out the trade-offs made by treating
an application as tolerant. The benefit of treating an application
as tolerant is that failure only occurs after persistent upsets. In
many designs the persistent cross section is orders of magnitude
smaller than the dynamic cross section. Consequently, a tolerant
application, even without any mitigation, will fail less often.
On the other hand, even though nonpersistent upsets will not
cause “failure” in a tolerant application, data will be lost after
all nonpersistent upsets (see Fig. 2).

The ability to tolerate temporary service interruptions, i.e.,
data-loss, is application specific. Ultimately an application’s tol-
erance level depends on the criticality of a continuous stream
of uncorrupted output data. The user must decide an applica-
tion’s level of tolerance because it directly affects MTBF and
the amount of SEU mitigation required.

B. On-Orbit SEU Rate

It is useful to estimate and contrast MTBF for both tolerant
and intolerant applications. In order to predict MTBF it is nec-
essary to first know the static SEU rate for the destined envi-
ronment. To estimate static SEU rates (SEU/hour) we modeled
the environment energy spectra for a few sample orbits. For
the trapped proton and solar proton environments we used the
AP-8 and JPL models respectively. For the heavy ion environ-
ment we used the CREME96 model.2 We then used the Xilinx
static proton and heavy-ion cross section data for a single Xiliinx
Virtex XCV1000 reported in [4], combined with the forecast en-
ergy spectra, to predict static SEU rates for our sample orbits
[15].

2A detailed explanation of the process and software we used to predict static
SEU rates can be found in [14].
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Fig. 7. The diagram on the left is a screen capture of the layout of the Counter Array design. The center and right diagrams are graphical representations of the
portion of the Counter Array design layout which constitute the dynamic and persistent cross sections respectively.

TABLE V
STATIC SEU RATE FORECAST FOR A SINGLE XILINX VIRTEX XCV1000

Table V lists our predicted static SEU rates in solar minimum,
stormy (average flare flux) solar maximum and worst day (peak
flare flux) solar maximum conditions. From the static SEU rate,
one can derive the dynamic and persistent SEU rates, and sub-
sequently MTBF, for a specific application.

C. On-Orbit MTBF

Using the static SEU rates from Table V and our estimated
cross section measurements from Table I, we predicted MTBF
for the DSP Kernel application. Our predictions are summarized
in Table IV. The first set of values (columns 4–6) in Table IV
corresponds to an intolerant scenario. The second set of values
(columns 7–9) in Table IV corresponds to a tolerant scenario. In
both cases, the system only implements configuration scrubbing.

Since intolerant applications are service interruption averse,
they will “fail” after all upsets. A tolerant application, on the
other hand, will only “fail” after persistent upsets, or perma-
nent service interruptions. As an intolerant application, the DSP
Kernel on a system in a low-earth orbit (LEO) at 560 km alti-
tude and 35.0 inclination will fail once every 17 days during
Solar Minimum. As a tolerant application in the same orbit, it
will only fail once every 980 days.

D. Increasing MTBF Through Partial Mitigation

Increasing an application’s MTBF requires some form of
mitigation. However, increasing a tolerant application’s MTBF
does not require a comprehensive mitigation strategy such
as full TMR. By applying TMR to just circuit components
within the persistent cross section of a design that is tolerant of
temporary service interruptions, a significant increase in MTBF
can be realized at a much lower cost than full TMR.

The final set of values (columns 10–12) in Table IV corre-
spond to a tolerant scenario for the DSP Kernel, but with TMR

TABLE VI
MEAN TIME BETWEEN DATA-LOSS FOR A DSP KERNEL DESIGN

applied to its persistent components. As a result, nearly all con-
figuration upsets will only cause temporary service interrup-
tions. In the same 560 km orbit, we predict that the DSP Kernel,
as a tolerant partially mitigated application, will only fail once
every 216 years, a factor of approximately 80 less often.

It is important to analyze the trade-offs made by applying
TMR to just the persistent cross section. Since full TMR and
other comprehensive mitigation techniques are costly in terms
of area and power [1], [16], the positive benefit of partial TMR
is a reduction in required mitigation circuitry. For example,
Table II shows that a completely unmitigated implementation
of the DSP Kernel design utilized 5775 slices. Full TMR would
require at least a 200% increase. A partial TMR implemen-
tation, on the other hand, needed only 7936 slices, or a 37%
increase.

The negative trade-off for only applying partial TMR, is that
the nonpersistent cross section is still vulnerable to SEUs. How-
ever, in a tolerant application scenario, the system will only tem-
porarily lose data after nonpersistent upsets.

Since a tolerant application will lose data after nonpersistent
upsets, it is useful to also forecast the average number of days
between data-loss. Table VI reports the mean time between data-
loss (MTBL) for the DSP Kernel in a tolerant scenario. In the
560 km orbit example, we predict that the DSP Kernel, as a
tolerant application, will lose data once every 17.8 days. Note
that it does not make sense to predict data-loss for an intolerant
application because, by definition, data-loss means failure.

Clearly an application’s design, tolerance level and destined
orbit strongly affect its failure and data-loss rates; and subse-
quently its SEU mitigation requirements. Some applications
will require more extensive mitigation strategies while others
stand to realize tremendous savings in area and power by
limiting mitigation.
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VI. CONCLUSION

In this paper, we have reviewed the dynamic SEU cross sec-
tion of an FPGA design. For our applications, we have con-
firmed that the dynamic cross section is much smaller than the
device static cross section. Further, the dynamic cross section is
different for each FPGA design and can be characterized using
our fault-injection tool or performing a proton radiation test.
We have performed these tests for a variety of designs and have
shown that our fault-injection provides a suitable alternative to
proton radiation tests.

We have also confirmed that the dynamic cross section can be
divided into two different categories. The persistent component
corresponds to those upsets that cause trapped errors, or in other
words a permanent service interruption. Only a global reset or
global reconfiguration, in addition to configuration scrubbing,
can flush such errors. Nonpersistent errors or temporary service
interruptions, however, are flushed from a design through tradi-
tional configuration scrubbing and may not pose a problem for
certain FPGA applications.

The presence of a persistent and consequently a nonpersis-
tent dynamic cross section has a significant impact on the cost
of mitigation. If an FPGA design can tolerate temporary nonper-
sistent errors, then comprehensive mitigation such as TMR may
not be needed. Instead, mitigation can be limited to the persis-
tent cross section that introduces trapped errors into the system.
Tolerant FPGA designs may even forgo comprehensive mitiga-
tion if forecast dynamic SEU rates are low enough.

Since the persistent component of the dynamic cross section
is substantially smaller than the overall dynamic cross section,
limited TMR can significantly reduce the cost of mitigation. In
the future, a tool that can identify and mitigate just circuit el-
ements in the persistent cross section may save resources sub-
stantially over comprehensive mitigation.
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