
2274 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST 2008

Fine-Grain SEU Mitigation for FPGAs
Using Partial TMR

Brian Pratt, Member, IEEE, Michael Caffrey, James F. Carroll, Student Member, IEEE, Paul Graham,
Keith Morgan, and Michael Wirthlin, Senior Member, IEEE

Abstract—The mitigation of single-event upsets (SEUs) in
field-programmable gate arrays (FPGAs) is an increasingly im-
portant subject as FPGAs are used in radiation environments
such as space. Triple modular redundancy (TMR) is the most
frequently used SEU mitigation technique but is very expensive
in terms of area and power costs. These costs can be reduced
by sacrificing some reliability and applying TMR to only part
of the FPGA design. Our partial TMR method focuses on the
most critical sections of the design and increases reliability by
applying TMR to continuous sections of the circuit. We introduce
an automated software tool that uses the Partial TMR method to
apply TMR incrementally at a very fine level until the available
resources are utilized. Thus the tool aims to gives the maximum
reliability gain for the specified area cost.

Index Terms—Aerospace industry, fault injection, fault toler-
ance, field programmable gate arrays (FPGAs), proton accelerator,
radiation effects, reliability, single-event upset (SEU), triple mod-
ular redundancy (TMR).

I. INTRODUCTION

T RIPLE modular redundancy (TMR) is a widely-used
fault tolerance method for protecting field-programmable

gate array (FPGA) designs against single-event upsets (SEUs)
caused by radiation. SRAM-based FPGAs are especially sus-
ceptible to these effects due to their reliance on SRAM memory
cells to hold the configuration of the device. TMR is popular
because of its straightforward implementation and reliable
results. TMR has been shown to greatly improve the reliability
of FPGA designs subject to SEUs [1], [2].

Although TMR can significantly improve the reliability of a
design, it is expensive in terms of circuit area, power, and speed
due to the extra logic required for implementation. Since TMR
involves the triplication of a circuit and the addition of majority
voters, the overhead area cost of TMR exceeds 200% of the
original design size. In some cases, the actual area cost of TMR
on an FPGA has been shown to be far greater [1], [3].

Due to resource constraints and/or system constraints, TMR
of an entire user FPGA design (full TMR) is not always fea-
sible. As commercial off-the-shelf (COTS) parts, FPGAs have
a hard limit of configurable resources available on-chip. Due

Manuscript received September 7, 2007; revised February 20, 2008. Current
version published September 19, 2008. This work was supported by the De-
partment of Energy at Los Alamos National Laboratory. Approved for public
release under LA-UR-08-0680; distribution is unlimited.

B. Pratt, J. F. Carroll, and M. Wirthlin are with the Department of Electrical
and Computer Engineering, Brigham Young University, Provo, UT 84604 USA.

M. Caffrey, P. Graham, and K. Morgan are with the Los Alamos National
Laboratory, Los Alamos, NM 87544 USA.

Digital Object Identifier 10.1109/TNS.2008.2000852

to the overhead of full TMR, unmitigated designs which utilize
more than one-third of the FPGA cannot be protected with full
TMR. In addition, a user FPGA design may have an artificial
resource usage limit due to area, power or other system design
constraints. Again, in these situations full TMR is not a viable
option.

In situations in which full TMR is not possible, partial tripli-
cation of the FPGA design may be the next best alternative. Mit-
igation of part of the design can increase the overall reliability
of the design at a lower cost than full TMR. Partial mitigation
methods cannot provide the same level of reliability as full mit-
igation approaches and therefore must focus on the components
that will most increase the reliability of the design.

We have previously introduced a method to apply TMR to
selective sections of an FPGA design and designed an associ-
ated automated software tool which implements this technique
[4]. This paper describes the methodology behind this type of
mitigation approach along with a demonstration of its effective-
ness. An automated software tool we have developed chooses
the most critical sections of the design for mitigation and applies
TMR incrementally at the logic (LUT) level. The tool focuses
on contiguous sections of logic to triplicate in order to reduce
the overhead of partial TMR and increase reliability. The auto-
mated nature of the tool allows it to work at a level too low for a
developer to do by hand, and the fine-grain addition of mitiga-
tion logic allows the tool to gain the highest reliability possible
by fully utilizing the available resources.

II. PARTIAL TRIPLE MODULAR REDUNDANCY

In some cases the high cost of full TMR may preclude it from
being a mitigation option. In these situations it may be beneficial
to apply TMR to only part of a target design. The goal of using
partial mitigation is to relax the amount of mitigation applied as
compared to full TMR to reduce the area overhead cost with a
minimal loss in reliability.

Several methods have been proposed for selecting the most
critical circuit structures, thus trading hardware cost for SEU
immunity. Samudrala et al. proposed the selective triple mod-
ular redundancy (STMR) method which uses signal probabili-
ties to find the SEU-sensitive sub-circuits of a design [5]. Chan-
drasekhar et al. proposed a modification to this method which
operates on look-up tables (LUTs) rather than logic gates [6].
We have proposed a partial mitigation method based on the con-
cept of persistence [7] called Partial TMR [4].

A. Prioritizing Mitigation

Any partial mitigation technique using TMR is based on the
idea that a subset of a design’s components will be protected

0018-9499/$25.00 © 2008 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 19, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

PRATT et al.: FINE-GRAIN SEU MITIGATION FOR FPGAS USING PARTIAL TMR 2275

with TMR by triplicating them and adding voters when neces-
sary. This subset must be carefully selected so that the resulting
partially mitigated design is as reliable as possible.

Our Partial TMR method uses the concept of persistence, de-
fined in detail in [7], as a first level of prioritization. A persis-
tent error is caused by an SEU which corrupts the internal state
of the circuit. While non-persistent errors are corrected simply
by repairing the FPGA configuration (i.e., re-loading the orig-
inal contents of the FPGA programming memory), persistent er-
rors remain even after the configuration is repaired. Partial TMR
gives priority to the circuit components which are susceptible to
persistent errors and applies TMR to them. Section III will ex-
plain the concept of persistence in more detail.

B. Voter Placement and Continuous Triplication

The number and placement of voters is another important
consideration when applying partial TMR. For traditional full
TMR, voters are needed only in feedback sections of the cir-
cuit. These voters are needed in order to correct any errors in-
troduced in one of the three TMR replicates in that feedback
section. Three voters are placed in each feedback loop in order
to restore the state for all three TMR branches, even if one tem-
porarily has an erroneous value [2].

Partial TMR implies that some of the components in a de-
sign are to be triplicated and others are not. When a triplicated
component is meant to drive a non-triplicated component, the
triplicated output of the first component must be reduced to a
single output. When a non-triplicated component drives a trip-
licated one, three inputs are needed from the single driver.

In the case of a triplicated component driving a non-tripli-
cated component, three outputs can be combined into one by
a majority voter, thus producing a single output. In the case of
a non-triplicated component driving a triplicated one, a single
output wire can be routed to drive three different inputs. In both
cases, however, the sensitive cross section of the design is in-
creased. Since both the logic and the routing of an FPGA are
sensitive to SEUs, the voters inserted and the added routing both
add to the SEU-sensitive cross-section of the design.

Fig. 1 illustrates the difference between choosing adjacent
components and non-adjacent components to triplicate. Circuit
components are numbered and voters are labeled with the letter
“V.” Fig. 1(a) represents the unmitigated circuit while Fig. 1(b)
and (c) represents two options when triplicating two circuit com-
ponents. The area of the circuit which is sensitive to SEUs is
shaded in the figure. Notice that in Fig. 1(c), there are more cir-
cuit components (including voters and routing) that are sensitive
to SEUs than in Fig. 1(b).

Due to this added cross section, it is important to limit the
transitions from triplicated to non-triplicated logic and vice
versa. The addition of hardware to split one domain into three
as well as combine three TMR branches into one can cause
more chip resources to be used and a larger overall design
cross-section sensitive to SEUs. More reliability gains can be
achieved by concentrating the triplicated sections to avoid these
situations. Any method that triplicates only part of a design
should choose contiguous regions for TMR application.

Fig. 1. Circuit flow diagrams illustrating voter placement options. The SEU-
sensitive portions of the circuit are highlighted. (a) The unmitigated circuit.
(b) Two contiguous modules triplicated. (c) Two non-contiguous modules trip-
licated.

III. PERSISTENCE

As mentioned in Section II-A, our Partial TMR method uses
the concept of persistence as a method of prioritizing the ap-
plication of TMR. We have previously proposed that an FPGA
design can be divided into two sections: a persistent section and
a non-persistent section [7]. When any SRAM configuration bit
is upset, it remains in error until it is corrected. Although up-
sets in the configuration memory can be repaired, an upset in
the persistent section of the design may leave errors in the state
of the circuit even after the configuration is corrected. Upsets in
the non-persistent section will not produce these persistent er-
rors. This section will explain the difference between these two
circuit sections and how this affects the application of partial
TMR.

A. Configuration Scrubbing

To effectively protect an FPGA design from SEUs, mitiga-
tion schemes such as TMR must be accompanied with config-
uration scrubbing. Since TMR can only function if at least two
of the three replicates of the circuit are functioning, any mal-
functioning replicates should be repaired as soon as possible. If
upsets in the configuration of the FPGA are allowed to build up,
even a circuit with full TMR in place will eventually fail.

Configuration scrubbing, or simply scrubbing, is a periodic
refresh of the FPGA configuration memory. A sufficiently fast
scrubbing rate can insure that only a single fault exists in the
configuration at one time, allowing TMR to properly mitigate
functional errors.

Scrubbing coupled with TMR is not bullet-proof, however.
The random nature of upset occurrence means that no scrub-
bing rate can guarantee that two faults will not occur within the
same scrubbing period. Also, TMR has been shown to fail in
the presence of a single upset in some instances [8]. It is also
feasible that a single multi-bit upset (MBU) could affect more
than one triplicated module and cause TMR to fail.

It is important to understand that scrubbing does not prevent
errors from occurring in the circuit. It can only restore the con-
tents of the configuration memory of the FPGA. An unmiti-
gated circuit may operate incorrectly during the time between
the upset and the repair of the configuration. The way the circuit

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 19, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

2276 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST 2008

behaves after the configuration is repaired determines whether
the affected component is labeled persistent or non-persistent.

B. Persistent Circuit Structures

Each of the components in a circuit can be categorized as
persistent or non-persistent. When an SEU affects the persis-
tent components of a design, the resulting fault may trap the cir-
cuit in an undesired state that can only be corrected by resetting
the FPGA system. System resets can dramatically affect system
availability due to the time required for a full restart and should
be avoided if possible. Non-persistent components do not have
the same effect. An upset affecting a non-persistent component
does not require a system reset to recover.

The circuit structures that correspond to persistent configura-
tion bits can be identified through static circuit analysis. Specifi-
cally, circuit primitives that affect feedback structures within the
design are those which cause the persistent error behavior. If a
circuit fault propagates an error into a feedback structure, the in-
correct values produced by the faulty circuit alter the feedback
state. Once the state of the feedback section has been corrupted,
the circuit may not behave correctly until the circuit state has
been reinitialized with a global reset. Although configuration
scrubbing will repair the faulty circuit, it will not restore the
proper circuit state.

The sample schematics in Fig. 2 illustrate the major subsec-
tions of a simple circuit that may cause persistent configuration
faults. Fig. 2(a) highlights a feedback structure in a sample
design. A fault within this feedback structure will generate
and/or indefinitely propagate incorrect values within the state
registers. Fig. 2(b) highlights the logic which feeds into feed-
back structures. Upsets within this section may also cause
persistent configuration faults since computations made in
these input-to-feedback structures contribute to the state values
within the feedback section of the circuit. For example, a
metastability filter that feeds into a state machine falls into this
input-to-feedback category and is part of the persistent section
of the design. Fig. 2(c) highlights logic structures driven by
the feedback section or that operate independently of feedback.
These sections make up the non-persistent section of the circuit
and upsets within these sections do not cause persistent faults.

Dividing the circuit into these three areas guides the choice
of which components of the design to triplicate under area con-
straints. Our Partial TMR approach mandates that the feedback
section of the design be given priority when choosing which de-
sign components to triplicate. This section will give the highest
gains in reliability against persistent errors when mitigated. The
second priority is the input-to-feedback section since it also
contributes to the persistent cross-section of the design. The
feed-forward section is the last priority since it consists only of
non-persistent logic.

IV. BYU-LANL TMR (BLTMR) TOOL

The Brigham Young University-Los Alamos National Labo-
ratory TMR (BYU-LANL TMR or BLTmr) tool performs triple
modular redundancy on an FPGA design automatically. It uses
the methods developed for Partial TMR to provide the max-
imum gain in reliability for a given cost in terms of FPGA re-

Fig. 2. Simple representation of a circuit with different sections highlighted.
(a) The feedback section. (b) The input to the feedback section. (c) The feed-
forward logic section.

Fig. 3. Circuit flow diagram for a simple sample circuit.

sources. The tool gives the designer control over how much miti-
gation to apply and automatically selects the components to mit-
igate in order to achieve the highest reliability.

Applying the Partial TMR method, the BLTmr tool focuses
on the persistent components of a design. In order to divide the
design into persistent and non-persistent components, the con-
nectivity of the circuit is analyzed. The design is separated into
the different sections described in Section III-B. As an example,
see the circuit flow diagram in Fig. 3. This sample circuit con-
tains three feedback loops, comprised of nodes 2–4, 5–7, and
10–12. These nodes are classified as the feedback section of the
circuit. Nodes 1, 9, and 13 all feed into the feedback section of
the circuit and together make up the input-to-feedback section.
These two sections make up the persistent section of the circuit.
The rest of the nodes do not contribute to the feedback state of
the circuit and are thus part of the feed-forward or non-persis-
tent section. This sample circuit flow diagram will be used to
further explain how the BLTmr tool works.

A. Application of Partial TMR

The BLTmr tool uses the methods suggested in Section II in
attempt to obtain the maximum reliability possible for the re-

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 19, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

PRATT et al.: FINE-GRAIN SEU MITIGATION FOR FPGAS USING PARTIAL TMR 2277

sulting mitigated design. The top priority of the tool is to focus
on the persistent section of the design. This reduces the number
of system resets needed, increasing the availability of the design.
The second priority of the tool is to apply TMR to continuous
sections of logic to avoid unnecessary transitions between trip-
licated and non-triplicated logic. This prevents the addition of
unnecessary voters and routing which reduces the SEU-sensi-
tive cross-section of the design.

As explained in Section III-B the primary focus of Partial
TMR is the feedback section of a design. These portions of the
circuit should be the first to be mitigated. When only a portion of
the feedback section of a design can be triplicated, however, it is
important to focus on the part that has the greatest effect on the
rest of the feedback section. The BLTmr tool gives the highest
priority to the components which come first in a topological
ordering of the feedback section. These components have the
potential to cause the most failures since they can affect more
of the circuit than those further down in the topology. In the case
of the sample circuit, the feedback loop comprising nodes 2–4
are the highest priority followed by the feedback loop made up
of nodes 10–12 and finally nodes 5–7.

Once the feedback section of the circuit has been triplicated,
the input-to-feedback section is the next priority. In this sec-
tion, however, the topologically-first components are not the
highest priority. Section II-B explained that transitions between
triplicated and non-triplicated components are undesirable. The
BLTmr tool therefore begins with the components which feed
directly into components in the feedback section of the design
which have already been triplicated. Triplication should then
continue backwards topologically until reaching the primary de-
sign inputs. This reduces the number of transitions between trip-
licated and non-triplicated logic and more effectively increases
the reliability of the design. In the sample circuit, nodes 1 and
9 have priority over node 13 since they are topologically closer
to the feedback section.

After the feedback and the input-to-feedback sections have
been triplicated, the persistent cross-section of the design should
be eliminated. Only the non-persistent, or feed-forward, logic
remains. Since contiguous sections of logic should be triplicated
as much as possible, the BLTmr tool breaks up the feed-forward
section further.

The third section that the BLTmr tool focuses on is the por-
tion of the feed-forward section of the circuit which is driven
by the feedback section of the design. Motivated by the same
reasoning as in the input-to-feedback section, triplication starts
with the direct outputs of the feedback section and proceed for-
ward topologically until reaching the primary outputs of the cir-
cuit. Again, it is important to preserve the continuity of triplica-
tion status when choosing components to add. If only a subset
of this feedback output section can be triplicated due to area or
other constraints, the components closest to the feedback sec-
tion are chosen first. Nodes 8, 14, and 15 of the sample circuit
are all part of this feedback output section with nodes 8 and 14
having higher priority than node 15.

If all of the previous sections are able to be triplicated, the last
section of the design is the logic that is not related to feedback.
That is, it does not affect the feedback state of the design nor is
it driven by the logic in the feedback section. When this section

cannot be fully triplicated, components are chosen according to
their topological ordering, again minimizing the transitions be-
tween triplicated logic and non-triplicated logic. In the sample
circuit, this section is made up of nodes 16–18. Nodes 16 and
17 have priority over node 18 since they connect directly to pre-
viously-triplicated logic.

B. Fine Grain Partial TMR

While applying the Partial TMR approach, the BLTmr tool is
able to perform TMR at fine increments, giving the FPGA de-
sign engineer a large design space to utilize. As previously re-
ported, the BLTmr tool could only apply mitigation at a coarse
level. A design was divided into four major sections based on
their relationship to the persistent sections of the design [4].
Each section was either triplicated as a whole or left unmiti-
gated.

This coarse level of granularity does not give much flexibility
and results in lower reliability than is possible. For example,
if one of these four large sections of logic is too large to be
triplicated, none of the logic in that section would be protected
with TMR. Similarly, if TMR were performed at the module
level, a large subcircuit could require more area than is available
on the chip to fully triplicate. At this level of granularity, there
could be a significant amount of unused resources on the FPGA.

If smaller components in the circuit are considered for TMR,
many of these sub-modules may be triplicated even if the full
module cannot be. More fully utilizing the FPGA resources by
triplicating parts of these larger modules or sections can increase
the overall reliability of the FPGA design. The BLTmr tool uses
the considerations explained in Section II to work at the logic
(LUT) level rather than a higher module level and can effec-
tively use the entire FPGA for the highest reliability possible.
The data reported in Section V show that this approach gives
results at much finer increments and offers a larger design space
of mitigated circuits.

C. Other Issues

The BLTmr tool is designed to handle different variations on
standard TMR. Standard full TMR, for example, triplicates all
inputs and outputs as well as the clock lines. When partially
triplicating a design, triplicated clocks and I/O may not be pos-
sible. The tool automatically inserts a voter when outputs are
not triplicated and splits a signal to three domains when an input
is not triplicated. The clock is triplicated where possible, and a
single clock line is delivered to non-triplicated logic. As with
any non-triplicated logic, SEUs affecting non-triplicated clocks
and I/O will cause undetected errors in the circuit.

In addition, the BLTmr tool has unoptimized, default han-
dling for structures such as block memories, bi-directional I/O,
and other specialized modules embedded in the FPGA. The user
may modify the default behavior of the tool for these types of
modules, but the specifics are beyond the scope of this paper.

V. FAULT INJECTION

A. Test Methodology

To validate the effectiveness of the mitigation produced by
the BLTmr tool, the sensitivity and persistence of several input

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 19, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

2278 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST 2008

Fig. 4. The sensitivity and persistence vs. amount overhead logic of 200 incremental outputs of the BLTmr tool resulting from a single input file for two different
designs. Fault injection results are shown for both design while the synthetic design plot also includes data from radiation experiments for three design points.

designs processed by the tool were measured using fault in-
jection. The sensitivity of a design is the percentage of upsets
causing both persistent and non-persistent errors. The persis-
tence is the percentage of upsets causing only persistent errors.
This fault-injection tool has been shown to predict sensitivity
and persistence rates well as compared to radiation testing [7],
[9].

The fault-injection tool used uses an FPGA board on a PCI
card with three Xilinx Virtex 1000 (V1000) FPGAs. The first
FPGA is loaded with the original, unmitigated design. The
second FPGA is configured with the design under test (DUT):
the partially mitigated output design from the BLTmr tool. The
third FPGA feeds the first two FPGAs with identical inputs and
compares their outputs every clock cycle, detecting when the
DUT fails to match the original. The three FPGAs are run at
10 MHz. The fault injection tool, which runs as software on
the host PC, inserts faults into the configuration of the DUT
and records output errors as captured by the third FPGA. Any
configuration upset which causes an output error is a sensitive
upset. Upsets which cause output errors that are not repaired
by configuration scrubbing alone are additionally classified as
persistent upsets. After a persistent error, the FPGA board is
reset in order to re-synchronize the first and second FPGAs and
testing continues.

This fault-injection tool is designed to test only single-bit up-
sets in the configuration memory cells of the DUT FPGA. The
tool currently does not simulate single-event functional inter-
rupts (SEFIs) nor was it configured to simulate MBUs for the
results reported in this paper. In [10], the authors reported that
the configuration memory made up 97.4% of the total static
cross-section of the V1000 FPGA. Block RAM contribute 2.1%
of the cross-section, user flip-flops make up 0.4%, and SEFIs
contribute less than 0.0021%. Thus the vast majority of upsets
are covered through configuration fault injection. Also, though
SRAM FPGAs are susceptible to MBUs [11], the gains in re-
liability provided by Partial TMR can still be demonstrated by
simulating SEUs.

B. Results

The plots in Fig. 4 illustrates the reduction in sensitivity and
persistence that can be obtained by incrementally adding TMR
to a design with the BLTmr tool. Each plot was generated using
our fault injection tool using a single input circuit. The first de-
sign, called the Synthetic design, consists of counters, multi-
pliers, and adders. All modules output results every clock cycle
and no functional masking occurs. The unmitigated design oc-
cupies 24% of the slices in the V1000. The second design is a
digital signal processing application called the DSP Kernel de-
sign. The unmitigated DSP Kernel occupies 50% of the V1000
slices.

Each point on the plots represents a single mitigated design
generated by the BLTmr tool with a different level of TMR re-
quested based on device utilization. For each design, 200 runs
of the BLTmr tool were evaluated by our fault injection tool.
The vertical axis measures the sensitivity and persistence of the
output design in terms of the percentage of FPGA configuration
memory cells which are sensitive or persistent. The horizontal
axis represents the percentage of overhead logic added to the
original design in terms of flip-flops plus LUTs.

The plots show the reduction in both the sensitivity and per-
sistence of the configuration cells as mitigation is incrementally
increased. The sensitivity of each design, represented by the
open circles, is the percentage of FPGA configuration memory
cells that cause the design to fail when their contents are modi-
fied by an SEU. The persistence of each design, represented by
the closed circles, is the percentage of the configuration cells (a
subset of the sensitive cells) which result in a persistent failure
in the design when their contents are modified by an SEU. As
discussed earlier, a system reset is required in order to recover
from a persistent failure.

Because the BLTmr tool is designed to focus on the persis-
tent components of the design first, the plots show that as the
number of FPGA resources used for redundancy is increased
incrementally, the persistence of each design rapidly declines

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 19, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

PRATT et al.: FINE-GRAIN SEU MITIGATION FOR FPGAS USING PARTIAL TMR 2279

TABLE I
RESULTS FROM RADIATION TESTING AT INDIANA UNIVERSITY CYCLOTRON FACILITY (IUCF) COMPARED WITH FAULT INJECTION DATA. THREE PARTIALLY

MITIGATED VERSIONS OF THE SYNTHETIC DESIGN WERE IRRADIATED WITH 65 MEV PROTONS

until it is nearly eliminated.1 The sensitivity of each design also
decreases since the persistent components are a subset of the
sensitive components. Once the persistent components of a de-
sign have been protected with TMR and the persistence of the
circuit has been eliminated, the focus is shifted to the non-per-
sistent portions of the design. As the number of resources uti-
lized increases, an incremental decrease in overall sensitivity
results. In the case of the Synthetic design, both the sensitivity
and persistence are reduced to nearly zero. In the case of the
DSP Kernel, the design is too large to be fully triplicated and
it is not possible to completely eliminate the sensitivity of the
design. The persistence, however, is quickly reduced to nearly
zero and the sensitivity is reduced by about 40% as compared
to the unmitigated design.

These plots illustrate the fine-grain results that can be
achieved in terms of reliability and area. Each design point
offers a different amount of mitigation and associated resource
cost for a different level of sensitivity and persistence. Note that
each plot is fairly continuous rather than a step function, which
would be the case for a larger level of granularity. Between
design points in the Synthetic design, for example, there is an
average of 72 LUTs plus flip-flops or about 1,014 sensitive
configuration memory cells. The tool can operate at even finer
increments as well, but this was not done in this test simply to
avoid too much computation in terms of placing and routing
and reliability evaluation of each design point. Given reliability
and area constraints imposed on a system, the BLTmr tool can
be used to find the optimum balance of the two using these
incremental results for a particular design and situation.

VI. RADIATION TESTING

A. Test Methodology

The benefits of Partial TMR were also demonstrated in a radi-
ation test. While the fault injection experiments provide a large
amount of data at a very low cost, radiation testing more accu-
rately simulates the space radiation environment. Thus the goal
of this test was to validate the results of our fault injection ex-
periments through dynamic radiation testing. This study was not
concerned with static measurements of device cross section, but
the behavior of the partially mitigated designs when exposed to
radiation-induced upsets at run-time. The radiation source can
further verify the effectiveness of an SEU mitigation technique
by providing a random distribution of configuration upsets, user
flip-flop upsets, and SEFIs.

1Due to limitations in the test fixture, the clock, I/O, and global reset were
not triplicated. Measurable amounts of sensitivity and persistence remain even
with “full” mitigation.

The test occurred at the Indiana University Cyclotron Facility
(IUCF) at Indiana University Bloomington. The IUCF cyclotron
was tuned to produce 65 MeV protons and sensitivity and persis-
tence data were collected for each of the chosen design points.
Three design points from the set of partially mitigated Synthetic
designs were chosen for testing at IUCF: those which added
25%, 100%, and 175% overhead mitigation cost to the orig-
inal design. In order to accelerate testing, the proton fluxes used
(shown in Table I) were much greater than those encountered in
orbital environments. For example, the 65 MeV proton flux in
a 560 KM, 35.0 degree inclination low earth orbit during solar
maximum is approximately 35 particles/cm /s. This is approxi-
mately six orders of magnitude lower than the flux at the accel-
erator.

The test fixture used for radiation testing is very similar to
the fault injection tool. The same board with three FPGAs is
used to perform the test. In this case, the DUT is placed in
front of the beam and the rest of the board is shielded. While
running, the configuration of the DUT is periodically exam-
ined to record upsets caused by the charged particles. When
upsets occur, the configuration of the FPGA is refreshed with
configuration scrubbing and any output errors are recorded. As
with fault injection, output comparisons are made every clock
cycle and the sensitivity and persistence of each test design is
recorded and the system is reset after persistent errors. In addi-
tion, the FPGA board must be power-cycled in the event of a
SEFI, which, as mentioned, was not part of our fault-injection
experiments. The proton beam is on while the platform is active,
including during resets and partial reconfiguration. The beam is
stopped only when a SEFI is detected or when changing designs
or other test parameters.

B. Results

Table I shows the numerical results collected during radiation
testing compared with fault injection results for the same design
points. These results are also plotted along side the fault injec-
tion data in Fig. 4.

The data presented here shows a similar reduction in sensi-
tivity and persistence as presented in the fault injection data.
Notice, however, that these data points show consistently lower
percentages in both of these categories. The data collected in
the radiation tests measures lower (in general) than the figures
predicted by the fault injection experiments. Table I shows the
percentage difference between the fault injection and radiation
experiments. We feel confident, however, that the trends in the
data demonstrate the same reduction in sensitivity and persis-
tence as the finer grain results from the fault injection tool and
validate those findings.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 19, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

2280 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST 2008

We do not fully understand why the results from the radiation
testing do not correlate better with the fault injection results. In
the course of our investigation, we learned that the FPGA chips
used in these radiation experiments used a different manufac-
turing process than the chips originally used to compare with
our fault injection tool. These new Virtex 1000 parts, which use
a smaller geometry than the previous versions, do not correlate
as closely with our fault injection tool. Past experimental results
have shown a uniform distribution of upset probability across all
configuration bits. We suspect that this is no longer true in these
new chips, which would cause our data to be skewed somewhat.

Initial experiments to verify our conjectures show that the
upset rate on these new parts is about half that of the old parts
in the same environment. We have also seen that by running
our fault injection experiments with the configuration upsets ob-
served during the radiation tests rather than injecting random
faults assuming uniform upset probability, the results are more
highly correlated with the data obtained at the accelerator. We
are actively pursuing this line of reasoning in order to obtain
more concrete results.

VII. CONCLUSION

This paper introduced an automated tool for applying TMR
to selective portions of an FPGA design. The BLTmr tool used
the Partial TMR method to automatically choose the most crit-
ical sections of the design and applies TMR to those areas first.
The tool gives higher priority to persistent components which,
when upset by an SEU, cause a design failure that must be cor-
rected with a system reset. The tool also focuses on providing
continuous sections of triplicated logic in order to maximize the
reliability gains achieved.

The BLTmr tool is designed to provide the maximum relia-
bility possible under FPGA resource constraints. For situations
in which FPGA resources are limited, the tool can be used to
apply TMR to as much of the design as possible in small incre-
ments in order to fully utilize those resources. The fine gran-
ularity of the BLTmr tool is more effective at using all of the

available resources than a higher-level, coarse-grain solution.
By more fully utilizing the available resources in conjunction
with a focus on the most critical design components, the BLTmr
tool provides better reliability for resource-limited FPGA de-
signs in an automated tool.

REFERENCES

[1] N. Rollins, M. Wirthlin, M. Caffrey, and P. Graham, “Evaluating TMR
techniques in the presence of single event upsets,” in Proc. Conf. Mil-
itary and Aerospace Programmable Logic Devices (MAPLD), Wash-
ington, DC, Sep. 2003, pp. P63–P63.

[2] C. Carmichael, Triple Module Redundancy Design Techniques for
Virtex FPGAs, xAPP197 (v1.0), Xilinx Corp., 2001.

[3] S. Rezgui, G. Swift, K. Somervill, J. George, C. Carmichael, and
G. Allen, “Complex upset mitigation applied to a re-configurable
embedded processor,” IEEE Trans. Nucl. Sci., vol. 52, no. 6, pp.
2468–2474, Dec. 2005.

[4] B. Pratt, M. Caffrey, P. Graham, E. Johnson, K. Morgan, and M.
Wirthlin, “Improving FPGA design robustness with partial TMR,”
presented at the IRPS Conf., Mar. 2006.

[5] P. K. Samudrala, J. Ramos, and S. Katkoori, “Selective triple modular
redundancy (STMR) based single-event upset SEU tolerant synthesis
for FPGAs,” IEEE Trans. Nucl. Sci., vol. 51, no. 6, pp. 2957–2969, Oct.
2004.

[6] K. Veezhinathan, S. N. Mahammad, V. Muralidaran, V. Narayanan,
and V. Chandrasekhar, “Reduced triple modular redundancy for toler-
ating SEUs in SRAM-based FPGAs,” presented at the MAPLD Conf.,
Sep. 2005.

[7] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and M.
Wirthlin, “SEU-induced persistent error propagation in FPGAs,” IEEE
Trans. Nucl. Sci., vol. 51, no. 6, pp. 2438–2445, Dec. 2005.

[8] L. Sterpone, M. Violante, and S. Rezgui, “An analysis based on fault
injection of hardening techniques for SRAM-based FPGAs,” IEEE
Trans. Nucl. Sci., vol. 53, no. 4, pp. 2054–2059, Aug. 2006.

[9] E. Johnson, M. Caffrey, P. Graham, N. Rollins, and M. Wirthlin, “Ac-
celerator validation of an FPGA SEU simulator,” IEEE Trans. Nucl.
Sci., vol. 50, no. 6, pp. 2147–2157, Dec. 2003.

[10] P. Graham, M. Caffrey, M. Wirthlin, D. E. Johnson, and N. Rollins,
“Reconfigurable computing in space: From current technology to re-
configurable systems-on-a-chip,” in Proc. IEEE Aerospace Conf., Big
Sky, MT, Mar. 2003, pp. T07_0603.1–12.

[11] H. Quinn, P. Graham, J. Krone, M. Caffrey, and S. Rezgui, “Radiation-
induced multi-bit upsets in SRAM-based FPGAs,” IEEE Trans. Nucl.
Sci., vol. 52, no. 6, pp. 2455–2461, Dec. 2005.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 19, 2009 at 13:40 from IEEE Xplore. Restrictions apply.

