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Abstract—In this paper, we present new Boolean matching
methods for lookup table (LUT)-based programmable logic blocks
(PLBs) and their applications to PLB architecture evaluations
and field programmable gate array (FPGA) technology mapping.
Our Boolean matching methods, which are based on functional
decomposition operations, can characterize functions for com-
plex PLBs consisting of multiple LUTs (possibly of different
sizes) such as Xilinx XC4K CLBs. With these techniques, we
conducted quantitative evaluation of four PLB architectures on
their functional capabilities. Architecture evaluation results show
that the XC4K CLB can implement 98% of six-input and 88%
of seven-input functions extracted from MCNC benchmarks,
while a simplified PLB architecture is more cost effective in terms
of function implementation per LUT bit. Finally, we proposed
new technology mapping algorithms that integrate Boolean
matching and functional decomposition operations for depth
minimization. Technology mapping results show that our PLB
mapping approach achieves 12% smaller depth or 15% smaller
area in XC5200 FPGAs and 18% smaller depth in XC4K FPGAs,
compared to conventional LUT mapping approaches.

Index Terms—FPGA architecture, logic synthesis.

I. INTRODUCTION

T HE FIELD programmable gate array (FPGA) was
introduced in the mid-1980s as an alternative for the

implementation of application-specific integrated circuits
(ASICs). In contrast to the cell library technology and the
mask-programmable gate array technology for ASICs, an
FPGA does not need to go through the fabrication process for
circuit implementation and is field programmable and often
field reprogrammable. Although the FPGA in general has a
lower gate density and slower circuit speed, its advantages of
programmability, shorter design turnaround time, and lower
initial nonrecurring engineering cost (good for low to medium
volume production) often offset its disadvantages. A wide range
of applications has been developed using FPGAs, including
fast ASIC implementation, rapid system prototyping, logic
emulation, and reconfigurable computing.
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FPGAs consist of three kinds of programmable elements:
programmable logic blocks (PLBs), routining resources, and
input–output (I/O) blocks. Each logic block contains combina-
tional components such as multiplexers (MUXs), simple gates
(e.g.,AND andOR), programmable lookup tables (LUTs), and
sequential components such as flip-flops. Routing resources
include segmented interconnects and switching blocks. The
segmented interconnects connect to the inputs and outputs of
logic blocks while the switching blocks link the segments to
form long routing tracks to implement routing topology. The
I/O blocks can be programmed to become the primary inputs
(PIs) or primary outputs (POs) of the circuits on FPGAs.

LUTs are the basic logic blocks in many FPGAs today. A
-input LUT ( -LUT) consists of static random access

memory (SRAM) cells that can store the truth table of an
arbitrary -input function. In many FPGAs, small LUTs are
connected by fast local connections to form a PLB for imple-
mentation flexibility, better performance, and better utilization
of silicon area. In contrast, some FPGAs use MUX-based
logic blocks or product-term-based logic blocks. These blocks,
although having more than input ports, cannot guarantee
an implementation for an arbitrary-input function. New
universal logic module (ULM)-based FPGA logic blocks [34]
had been proposed for better covering of-input functions,
but the coverage was still incomplete (99% of four-input
functions using an eight-input ULM). Since LUT is widely
used in today’s major FPGAs and is a true ULM for functions
of its input size, we focus on implementing functions using
LUT-based PLBs in this paper.

A PLB can often implement one arbitrary-input function,
where is determined by the PLB architecture or somewide
function of more than inputs. Unfortunately, it is generally a
difficult problem to determine if an arbitrary given wide func-
tion can be implemented by a PLB. This is called theBoolean
matching for PLBproblem. Most existing technology mapping
algorithms first produce a -LUT mapping solution, then pack
LUTs into PLBs [9], [10], [18], [19], [21], [27], [30], [31], [39].
A comprehensive survey of recent FPGA technology mapping
approaches can be found in [11].

In this paper, we study Boolean matching for PLB problems.
We focus on two classes of (LUT-based) PLBs: PLB1 and
PLB2, as shown in Fig. 1(a) and (b), respectively. Both PLBs
contain two LUTs, and , at the first stage and another
element at the second stage where is a 3-LUT in PLB1
and a two-input MUX in PLB2. The sets of input signals to,

, and are denoted as , , and , respectively, and
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(a) (b)

Fig. 1. Two generic PLB architectures. (a) PLB1. (b) PLB2.

the output signals of , , and are denoted as , , and
, respectively. For PLB1, the 3-LUT H has inputs, ,

and external signal . For PLB2, the MUX H selects either
or to output depending on the value of external selection

signal .
The LUT sizes and and the appearance of are

architecture parameters that may vary from one PLB to another.
Therefore, we shall represent PLB1 as PLB1 ,
where the first two parameters are the sizes of LUTsand

, and if the line exists, otherwise . Sim-
ilarly, we shall represent PLB2 as PLB2 . Under
this notation, is identical to the logic block of
Xilinx XC4K series FPGAs [38], which is called the config-
urable logic block (CLB), while is the logic block
of Lucent’s ORCA series FPGAs [33], which is called the pro-
grammable function unit, and is the Xilinx XC5200
CLB. When there is no confusion in the context, we refer to the
two PLBs as PLB1 and PLB2.

Boolean matching for PLBs may lead to significant re-
duction on mapping area and circuit delay. For example,
consider a six-variable function (in the Xilinx test suite used
in Section VI-A), which is represented by the following
sum-of-product form:

We compare three implementations of produced by
Chortle-crf [19], FlowMap [9], and Boolean matching algo-
rithms, using XC4K CLBs. For the first two implementations,
we applied the optimization scriptrugged in the sequen-
tial circuit synthesis system SIS [32], mapped the resulting
gate-level network using the area-oriented mapper Chortle-crf
and the depth-optimal mapper FlowMap respectively, and
packed the resulting LUTs into CLBs using the efficient CLB
packing procedures in [15]. The CLB networks that result from
Chortle-crf and FlowMap have three levels with seven and six
CLBs, respectively. However, a Boolean matching approach
can obtain a single CLB implementation of (Fig. 2) with
each LUT implementing the following function:

Fig. 2. Single CLB implementation of functionf(X).

In this implementation, and are bridged inputs of LUTs
and (i.e., and are shared by and ) and is a

bridged input of LUTs and . Prior to this paper, it was an
open problem of how to perform Boolean matching for PLBs,
especially when bridged inputs are taken into consideration.

Most existing Boolean matching approaches are for ASIC
design synthesis using cell libraries. A good survey can be
found in [3]. Very few are targeted for LUT-based logic blocks.
Boolean matching approaches were proposed in [4] and [40]
for Actel’s MUX-based FPGAs [1]. Their approaches cannot
be applied to LUT-based PLBs directly. Mapping algorithms
targeted for PLBs were proposed in [8], where linear pro-
gramming was employed to compute LUT covers and PLB
packings simultaneously. Functional decomposition-based
mapping approaches [20], [24], [26], [37] were proposed
for LUT network synthesis. None of them were targeted to
implementing wide functions using PLBs. A recent work [29]
studied bidecomposition of Boolean functions and applied the
results to Boolean matching for some LUT-based PLBs. The
results were limited. For example, the researchers were unable
to solve the Boolean matching problem for the XC4K CLB
completely. In this paper, we present new Boolean matching
methods for PLBs. Our methods are based on classical and
new functional decomposition techniques and provide a
more general solution to the Boolean matching problem for
LUT-based PLBs. For example, our results give exact solutions
for matching functions to the XC4K CLBs. We apply our
techniques to quantitative evaluation of PLB architectures
(in terms of logic implementation capability) as well as to



CONG AND HWANG: BOOLEAN MATCHING FOR LUT-BASED LOGIC BLOCKS 1079

technology mapping for FPGAs that are widely used today.
Our Boolean matching approaches for PLB1 and PLB2 may be
extended to other LUT-based PLBs.

This paper is organized as follows. Section II formulates the
Boolean matching problem. After the introduction of classical
and recent functional decomposition results in Section III,
Boolean matching methods for PLB1 and PLB2 are presented
in Sections IV and V, respectively. Section VI reports Boolean
matching and architecture evaluation experimental results.
In Section VII, we present technology mapping algorithms
that employ our Boolean matching methods and report the
experimental results in Section VIII. Section IX concludes the
paper. Preliminary results of this study were presented in [13]
and [14].

II. PROBLEM FORMULATION

Given a multilevel network of logic gates, combinational
logic synthesis transforms the given network into a network
of PLBs. This transformation usually includes two major
steps: 1)logic optimizationand 2)technology mapping. Logic
optimization transforms the given network into an equivalent
network that is suitable for mapping into PLBs, e.g., into
a network of fewer gates and/or smaller gates. Technology
mapping then transforms the resulting network into a PLB
network of minimal cost, where the cost could be network area
of delay. Conventional technology mapping usually include
covering the gate-level network with LUTs and packing LUTs
into PLBs. The FlowMap and the Chortle-crf algorithms are
two widely used technology mapping algorithms. However, as
shown in the previous section, they could generate suboptimal
solutions compared to Boolean matching approaches. In this
paper, we focus on the Boolean matching for PLBs and then
apply our results to technology mapping.

For each LUT-based PLB architecture, we define thecharac-
teristic number of the PLB to be the largest number such that
any function of or fewer variables is realizable by the PLB.
Functions of more than variables are calledwide functions
with respect to the PLB. Clearly, if the PLB has more than
inputs, it can implement some wide functions. For example, if

in PLB1 and PLB2, then either PLB can im-
plement any function of up to five variables or some
wide function of up to nine variables. The Boolean matching
problem for PLB is to determine, for a given wide function with
respect to the PLB, whether the function can be implemented
by the PLB.

Boolean Matching for PLB:Given a wide function
with respect to a PLB , determine if can be realized by
a single PLB .

In general, Boolean matching considers input negation and/or
permutation, output inversion, bridging of inputs, and constant
assignments to some inputs. For LUT-based PLBs, however,
input negation, input permutation and bridging in one LUT,
output inversion, and constant assignments to unused inputs do
not affect the matching feasibility. Therefore, only input parti-
tioning and input sharing among LUTs are relevant factors to
our Boolean matching for PLB problem.

III. FUNCTIONAL DECOMPOSITION

Our solution to the Boolean matching for PLB problem relies
on functionally decomposing wide functions. In this section, we
shall introduce decomposition forms that are closely related to
PLB matching and review existing results and present new re-
sults on functional decomposition.

A. Preliminaries

Let denote Boolean function ,
where . If PLB1 implements ,
we can represent as , where

. This implies the existence of a
functional decomposition of . If PLB2 implements ,
we can represent as . This
is the Shannon expansion of with respect to the variable

. Therefore, decomposition of functions plays an important
role in our Boolean matching approaches. Before presenting
our approaches, we will give a brief review of classical and
recent functional decomposition results.

Given a Boolean function , let and denote the co-
factors of with respect to variable . Cofactors of
with respect to multiple variables are defined in a similar way.
For example, . The Shannon expan-
sion of with respect to is . The
Shannon expansion of with respect to multiple variables
is defined in a similar way. The cofactor set of with re-
spect to a set , denoted , is the set of alldistinct
cofactors of with respect to the variables in. We denote
the support of function as .

Given a function and a set ,
the disjoint functional decompositionof under repre-
sents in the following form:

We call the set the bound setand the set of
remaining variables thefree set of the decomposition.
The decomposition isnontrivial if . If , it
is called a simple disjoint decomposition. Each is
called anencoding function. Let and

. We can write the de-
composition as .

Two other functional decomposition forms are closely related
to the disjoint decomposition: the nondisjoint decomposition
and the partially dependent decomposition. Anondisjointde-
composition of is the case when some bound set variables
appear in the support of. Let for some

. Then, a nondisjoint functional decomposition of is
to represent as . The decom-
position is nontrivial when . Variables in are
callednondisjoint variables. When , the decomposition
becomes disjoint.

A partially dependentdecomposition is the case when the
support of some encoding function is astrict subsetof , e.g.,

, where . Such an en-
coding function is called apartially dependentencoding func-
tion. If the support of some partially dependent encoding func-
tion contains only one variable, this encoding function can be
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replaced by the variable; hence, the decomposition becomes a
nondisjoint decomposition.

If can be represented in the form ,
where , it is called abidecompositionof .
A bidecomposition isdisjoint if , otherwise, it
is nondisjoint. Bidecomposition plays an important role in the
Boolean matching for PLB1 when the line is not used or
when there are bridged inputs.

For any implementation of on PLB1, existence of
bridged inputs implies nondisjoint functional decomposition or
bidecomposition of or a combination of them. For PLB2,
existence of bridged inputs implies the two cofactors share
common variables.

B. Existence Conditions

We now briefly review the existence conditions for various
forms of functional decomposition. Ashenhurst [2] gave the ex-
istence condition for simple disjoint decomposition.

Theorem 1: There exists a simple disjoint decomposition
of under the bound set if and only

if [2].
The condition was extended to general disjoint decomposi-

tion by Curtis [17].
Theorem 2: There exists a disjoint decomposition

of under the bound set if and
only if [17].

The existence of disjoint bidecomposition
of can be determined by verifying

the existence of simple disjoint decomposition of under
the bound sets and , respectively. In other words, a
disjoint bidecomposition can be obtained by combining two
simple disjoint decompositions. This result is implied by the
following theorem.

Theorem 3: Let be a disjoint partition of .
A functional decomposition of

exists if and only if there exists simple disjoint decompo-
sition of under each bound set , respec-
tively [2].

For nondisjoint bidecompositions of , it was shown in
[29] that they can be obtained by applying disjoint bidecomposi-
tion to the cofactors of . In fact, a few forms of nondisjoint
decomposition that correspond to different PLB input bridging
patterns can be obtained in a similar way. Because of this, we
shall defer to the next section to present the existence condi-
tion when we introduce the Boolean matching approach for each
PLB input bridging pattern.

A few approaches for partially dependent decomposition and
nondisjoint decomposition were proposed in the past few years
[13], [20], [25], [26], [28], with different perspectives and al-
gorithmic characteristics. In particular, an existence condition
for both partially dependent decomposition and nondisjoint de-
composition was given in [13]. The condition can be used to
compute one partially dependent encoding function or nondis-
joint variable efficiently.

Theorem 4: Let . There exists a partially dependent
decomposition of under the bound set

with if and only if can be partitioned
into two sets and such that [13]

and

Proof—Only If: Assume and
. Let be a minterm in the Boolean space de-

fined on the variable set . Define the set
. Let denote the set of cofactors

with respect to variables in
. First, the set of cofactors is a subset of

because every function has the form

Second, because must be a subset
of , the set of cofactors

with respect to variables . Therefore,
. Similarly, define

and we have
. If and form a

partition of , we have proved the condition. Otherwise,
consider . Then, and form a partition
that satisfies the necessary condition.

If: Assume and
each contains at most members. Let be a minterm
in the Boolean space defined on the variable set. Then,

represents a cofactor in . Define Boolean
function to be if
and if . Let
be an arbitrary cofactor in . We define to be

if and
if for every

minterm . Then, the cofactor set of under the bound set
is identical to , which contains

at most members.
According to Theorem 2, there exists a disjoint decomposition

of under the bound set with encoding functions:
.Similarly, let

be an arbitrary cofactor in . Define function to be
if and

if for every minterm . Then,
thereexistsadisjointdecompositionof with encoding
functions: . Because

, we have . Define
and . Then, we have

This proves the sufficient condition.
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For finding multiple partially dependent encoding functions,
the authors in [13] took an approach similar to that in [36] and
[37]. The existence of nondisjoint decomposition of with
the nondisjoint variable can be checked by setting

in Theorem 4. For the general case of multiple nondisjoint
variables, we have the following theorem.

Theorem 5 : Given a bound set and a set of nondisjoint
variables , there exists a nondisjoint decomposition

of if and only if
for every cofactor [13].

Proof: We prove it by mathematical induction on .
Basis: This theorem holds for according to The-

orem 4 with . Without loss of generality, assume
. Then, . The only possible partition

is and . Theorem 4 then implies the
basis.

Hypothesis: Assume this theorem holds for .
Now, we prove the case for .

Only If: Without loss of generality, assume . De-
fine . Then, ,
a decomposition with nondisjoint variables. According
to induction hypothesis, every cofactor satisfies

. Similarly, every cofactor
satisfies . However,

. Therefore, for every .
If: Assume for every . De-

fine . Since ,
every cofactor satisfies . Ac-
cording to induction hypothesis, ,
where . Similarly, and

. Define and , where
and . Then, we have

This proves the theorem.

IV. BOOLEAN MATCHING APPROACHES FORPLB1

In this section, we consider matching wide functions to PLB1
in Configurations A, B, C, and D shown in Fig. 3 obtained from
different bridging status of input . In Configuration A,
does not feed to LUT ; in Configuration B, feeds to LUT

only; in Configuration C, feeds to all three LUTs, while in
Configuration D, feeds to LUTs and . For each config-
uration, there might be bridged inputs to LUTsand , shown
as dash lines in Fig. 3. There can be multiple bridged inputs to

and as long as the total number of distinct inputs matches
that of the wide function. For example, up to two bridged inputs
to and are allowed when we consider matching a six-vari-
able function to a XC4K CLB in Configuration D. It should be
clear that the four configurations exhaust all possible ways of
using PLB1. Hence, the Boolean matching problem for PLB1
can be solved by matching functions to the four configurations
individually.

(a) (b)

(c) (d)

Fig. 3. Four PLB1 configurations. (a) Configuration A. (b) Configuration B.
(c) Configuration C. (d) Configuration D.

A. PLB1 in Configuration A

If PLB1 in Configuration A implements , a bidecom-
position must exist for . If bridged
inputs exist in the implementation, the decomposition is nondis-
joint. Otherwise, it is disjoint. For the case without bridged in-
puts, an implementation, if it exists, can be obtained by com-
bining simple disjoint decompositions of under the bound
sets and , respectively (according to Theorem 3).

We now consider the case when PLB1 implements with
bridged inputs. Let and , where

is the set of bridged inputs. In general, . For the
case where input is bridged, we have the following theorem.

Theorem 6 : Let .
A nondisjoint bidecomposition of

exists if and only if there exist bidecompositions
and

such that [29].

To determine if a function can be implemented with
PLB1 in Configuration A, we first enumerate bipartitions of
and test for disjoint bidecompositions based on Theorem
3. If none can be found, we choose variables inas bridged
inputs enumeratively and test for nondisjoint bidecompo-
sitions based on Theorem 6. When multiple bridged inputs are
explored, we decompose cofactors recursively. For example, to
test for a matching with bridged inputs and , we compute
all nondisjoint bidecompositions for cofactors and with

being the nondisjoint variable and then determine if the re-
sulting bidecompositions can satisfy the condition in Theorem
6 with being the nondisjoint variable. If the condition can be
satisfied, then bidecompositions of with two bridged in-
puts and exist.

Note that the bidecompositions of cofactors and are
not unique in general. When we compute nondisjoint bidecom-
positions, in order to check if can be equal to for some
feasible bidecompositions, we invert , , or both
and compute the correspondingfunction under each case. In
total, we obtain four equivalent bidecompositions of. Then,
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we compare each resulting functionwith for a match. Since
, we have exhausted all bidecompositions of.

A special case that requires particular attention is when one
of the cofactors is a constant (zero or one). For example, assume
that is a constant. Then, we can always obtain a nondisjoint
bidecomposition of by duplicating for followed by
producing constant encoding functions and
such that will return the same value as . The condition in
Theorem 6 is, thus, satisfied for this special case. When both co-
factors are constant, we choose an arbitrary two-input function,
e.g., theXOR function, for both and function and choose
(constant) encoding functions accordingly.

We illustrate the special case by an example. Let
and .

We want to check if a nondisjoint bidecomposition
exists. According to

Theorem 6, we first compute two cofactors with respect to
and obtain and . Note that can be
easily decomposed into the form ,
where , , and

. In order to obtain a nondisjoint bidecomposi-
tion of , we would like to represent as
such that . We choose
with and . Then, combining the two de-
compositions, we have ,
where

, and
. To achieve efficient computation, func-

tional decomposition operations are performed using ordered
binary decision diagrams [5] in our implementation, as in
approaches such as [6], [25], and [26].

B. PLB1 in Configuration B

If PLB1 in Configuration B implements , a decomposi-
tion must exist for . There could
be bridged inputs between LUTs and , but does not
bridge to either of them.

Let . We consider two cases: 1)
or 2) . (It is impossible

that because any function can only
be one of zero, one, , or .) In Case 1, there exists a
disjoint decomposition of under the bound set
with two encoding functions (according to Theorem 2). Let

be the decomposition.
Then, PLB1 in Configuration B can implement if and
only if the encoding functions are feasible for LUTs and

. This implies a partially dependent decomposition such that
and . By checking every

possible input variable for , we can determine the existence
of a match for Case 1 based on Theorem 4.

In Case 2, a simple disjoint decomposition
of exists under the bound set , which does not
match directly to configuration B. However, it is possible
to replace a large encoding function with two
small encoding functions. In particular, we proved that a
function can be represented as

when the following condition holds.

Theorem 7: Let and
. A partially dependent decomposition

of exists if and only if a bidecomposition
of exists.

Proof—Only If: Consider . Because
or , we have or . On

the other hand,
. Therefore, or

. In either case, a bidecomposi-
tionof is found.

If: Since
, the necessary

condition is proved.
Note that Cases 1 and 2 cover all possible implementations

of on PLB1 in Configuration B. Therefore, using the par-
tially dependent decomposition algorithm in [13] and Theorem
7, we can determine if a wide function can be implemented on
PLB1 in Configuration B. Note that is not ex-
cluded in both cases. Therefore, bridged inputs to LUTsand

have been considered implicitly.

C. PLB1 in Configuration C

If PLB1 in Configuration C implements , a decompo-
sition of must exist where
belongs to and . Besides , other bridged inputs to
LUTs and may exist in the implementation. We proved the
following theorem for matching to Configuration C.

Theorem 8: Let , ,
and . A decomposition of the form

for exists if and only if there
exist bidecompositions and

.
Proof—Only If: Define ,

, and .
Then, . Similarly, define

, ,
and . Then,

. The necessary condition is proved.
If: Define ,

, and .
Then, implies

A decomposition is then
obtained.

To test the matching of a function to Configurations C
of PLB1, we enumerate from and compute bidecompo-
sitions for the cofactors and such that the condition in
Theorem 8 is satisfied. Because feeds to LUTs , , and ,
the existence condition for Configuration C is less constrained
compared to Configurations A and D (Section IV-D).

D. PLB1 in Configuration D

If PLB1 in Configuration D implements , a decompo-
sition of must exist with

. Other bridged inputs to LUTs and may exist. We prove
the following result.
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Theorem 9: Let and . A de-
composition of the form for ex-
ists if and only if and

such that .
Proof: The proof is similar to that of Theorem 8 except

that we require .
To implement a function on a PLB1 in Configurations

D, we select each in turn from followed by computing
bidecompositions of and to satisfy the condition in
Theorem 9. Since bidecompositions of functions are not unique,
for every bidecomposition of , we
derive another bidecomposition with inverted encoding function

. Both bidecompositions are then tested for the condi-
tion in Theorem 9. Note that we do not derive four bidecom-
positions, as in the matching to Configuration A, because it is

and under comparison rather thanand .
A special case that requires particular attention is when

one of the cofactors is a constant (zero or one). For example,
assume that is a constant. Then, we can always obtain
a decomposition of by duplicating for after
obtaining the bidecomposition of followed by producing

such that its value does not depend on the
input (e.g., , where is the constant ).
Therefore, the condition in Theorem 9 is always satisfied for
the special case. When both cofactors are constant, we set both

and to constant and construct and accordingly to
obtain a decomposition.

If there is no bridged input between LUTs and (i.e.,
), we may also use the following theorem for

efficient matching to Configuration D.
Theorem 10:Let and . A decom-

position of the form for exists if
and only if a simple disjoint decomposition
and a nondisjoint decomposition of

both exist.
Proof—Only If: The two decompositions and of

can be obtained by collapsing and into , respec-
tively. The necessary condition is proved.

If: Since , the existence of simple dis-
joint decomposition of implies the existence of a
simple disjoint decomposition of under the bound set ,
which in turn implies the existence of decomposition form

for . This proves the sufficient
condition.

Using Theorem 10 is more efficient than using Theorem 9 for
matching to Configuration D when there is no bridged inputs
between LUTs and . We first compute a simple disjoint de-
composition under and then identify a nondisjoint variable

in . If both are successful, we compute the whole decom-
position. Since computing a simple disjoint decomposition and
identifying a nondisjoint variable can be performed efficiently,
we save runtime for the case when .

V. BOOLEAN MATCHING FOR PLB2

Boolean matching for PLB2 is simpler than that for PLB1
(but PLB2 is not as powerful as PLB1 for implementing wide
functions as shown in Section VI). It is easy to see that bridging

to LUTs or does not help in matching wide functions to
PLB2. Such a matching can be obtained by performing Shannon
expansions.

Theorem 11:PLB2 can implement if and only if a
Shannon expansion can be
obtained for some .

Therefore, given a wide function, we enumerate every input
as the MUX selection signal and check if the supports of two
cofactors contain no more than and variables, re-
spectively. Once the constraints are met, we obtain a matching
for PLB2.

VI. BOOLEAN MATCHING-BASEDARCHITECTUREEVALUATION

We applied our Boolean matching approaches in two exper-
iments. First, we employed them to map 1868 benchmark cir-
cuits provided by Xilinx, Inc. All circuits are known to be im-
plementable in one XC4K CLB, but only up to 76% of them
were mapped successfully with Xilinx internal tools or any other
commercial FPGA tools [23]. Using Boolean matching tech-
niques developed in this paper, we were able to achieve 100%
single CLB implementation for this set of circuits. Second, we
employed the matching approaches in the evaluation of four dif-
ferent PLB architectures (shown in Fig. 5) based on the per-
centage of wide functions (extracted from MCNC benchmarks)
that can implemented with each PLB. Our quantitative approach
can help design better FPGA logic blocks.

A. Boolean Matching for XC4K CLB

Since , wide functions are functions with
six to nine variables for the XC4K CLB. We refine the XC4K
CLB architecture into the configurations a to h shown in Fig. 4,
with respect to the input sizes of six, seven, eight, and nine. For
example, the configurations 6.b and 6.c are instances of Con-
figurations A and C, respectively. Bridged inputs are explicitly
shown in Fig. 4. There are as many as eight configurations for
circuits with six inputs while there is only one configuration for
circuits with nine inputs. Note that the configurations are not
exclusive. For example, configurations 6.a, 6.b, 6.c, and 6.d are
increasingly more capable in implementing six-input functions
(but also require longer and longer runtime).

Refined configurations that involve multiple bridged inputs
(e.g., 6.g) may combine some Configurations A, B, C, and D.
Therefore, matching functions to configurations of multiple
bridged inputs may require a sequence of functional decom-
position operations described in Section IV. For example,
configuration 6.d is a combination of Configurations A and C.
In order to implement wide functions in configuration 6.d, we
apply matching procedures for both Configuration C (based on
Theorem 8) and Configuration A (based on Theorem 6). Given
a function , denote the bridged inputs in configuration
6.d as (to all LUTs) and (to LUTs and only).
According to Theorem 8, it requires that both cofactors
and have (nondisjoint) bidecompositions with being
the nondisjoint variable. Consequently, we verify that both
cofactors and have (disjoint) bidecompositions
that satisfy Theorem 6 and similarly for and .
If the verification results are positive, then can be
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(a)

(b)

(c)

(d)

Fig. 4. Elaborated configurations of XC4K CLB. (a) Six-input configurations. (b) Seven-input configurations. (c) Eight-input configurations. (d) Nine-input
configuration.

decomposed in a way that matches configuration 6.d. Clearly,
matching to configuration 6.g (which involves three bridged
inputs) is the most time-consuming procedure, while matching
to configurations without bridged inputs (6.a, 7.a, 8.a, 8.b,
and 9.a) employs only simple disjoint decompositions. It is
worth noting that configurations 6.h and 8.d are instances of
Configuration B to which partially dependent decomposition
is employed for a match. Since bridged inputs are taken into
account implicitly in partially dependent decomposition, there
is no need for computing cofactors using Shannon expansions
with bridged inputs.

Initially, 20 out of 1868 Xilinx benchmark circuits had five or
less inputs. After applying the SISruggedscript, we obtained
an additional 292 circuits of five or less inputs. The remaining
1576 circuits consist of 393, 371, 423, and 389 circuits of six,
seven, eight, and nine inputs, respectively. Each circuit was then
matched to the refined configurations in alphabetical order (i.e.,
6.a before 6.b before 6.c, etc.) so that implementation of the
least bridged inputs could be obtained. The results are presented
in Table I. Note that 30 circuits of six inputs are matched to
configuration 6.g which involves three bridged inputs.

TABLE I
NUMBER OF CIRCUITS MATCHED TO THE CONFIGURATIONS

B. PLB Architecture Evaluation

In this section, we present our evaluation on four PLB
architectures which are variations in PLB1 and PLB2 families.
Their diagrams are shown in Fig. 5, where (a) XC4K CLB is

; (b) could have different sizes of
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(a) (b)

(c) (d)

Fig. 5. Four PLB architectures. (a) XC4K CLB. (b)PLB2(�; 4). (c)
PLB1(1;4; 1). (d)PLB1(�;4; 0).

TABLE II
IMPLEMENTATION OF CUTS ONXC4K IN VARIOUS CONFIGURATIONS

LUT but LUT has four inputs; (c) has a
degenerated LUT of wire connection; and (d)
does not have the line and LUT has four inputs.

We evaluate PLBs based on the number of wide functions
(extracted from MCNC benchmarks) that each PLB can imple-
ment and the number of SRAM bits in LUTs. The bits in LUTs
(for storing truth tables) are calledLUT bits in the sequel. Our
approach is as follows. First, we compute for each node the com-
plete set of seven-feasible cuts [16] (where eachcutcorresponds
to the inputs to a supernode at the node). The number of cuts
largely depends on the size of the circuit. For example, there are
285, 422, and 734 instances of five cuts, six cuts, and seven cuts
in 5xp1, while there are 28 875, 65 245, and 157 028 instances
of five cuts, six cuts, and seven cuts indes. Second, for each cut
(i.e., supernode), we compute its function and match the func-
tion to PLBs. We say a cut can be implemented by a PLB if the
corresponding function can be matched to the PLB. We report
the percentage of successful implementation of cuts in Tables II
and III. Finally, we divide the number of implemented cuts by
the number of LUT bits for each PLB to represent PLB func-
tional capability. In other words, we measure the efficiency of
LUT bits in wide function implementation. Our measurement,
of course, is only one aspect of PLB architectures. Other impor-
tant factors such as required routing resources are not taken into
account in the evaluation. Nevertheless, we think that it is im-
portant to see the capability of various PLBs in implementing
wide functions.

We match six cuts to XC4K CLB in Configurations A, B, C,
and D, and report the average percentages of matched cuts in
Table II. Additionally, we report the results on Configuration
A while disallowing input bridging (A-br) to see its impact on
wide function implementation. Comparing the results of Con-
figurations A versus A-br as well as the results of Configura-

TABLE III
IMPLEMENTATION OF CUTS ONPLB2(�;4);PLB1(1;4; 1), AND

PLB1(�;4; 0)

tions C versus D, we see the percentages of matches increase
substantially when the inputs to LUTs, , and are allowed
to bridge with each other. Also, we notice that each of Config-
urations A, B, and C alone can implement over 90% of six cuts
in the MCNC benchmarks. Overall, 99% of six cuts (all) can be
implemented using the XC4K CLB.

For the implementation of seven cuts on XC4K CLBs, it is
interesting to see that Configuration B (based on partially de-
pendent decomposition) is more capable than other configura-
tions (based on bidecompositions). Overall, 92% of seven cuts
can be implemented using the XC4K CLB.

In the evaluation of architectures, we con-
sider three configurations: , , and

. In other words, we fixed LUT G as a 4-LUT and
considered LUT F as a 3-LUT, 4-LUT, and 5-LUT, respectively.
Note that it is not guaranteed that a single can
realize an arbitrary five-input function. However, experimental
results in Table III show that implements 98%
of five cuts. Experiments also show that and

implement only 5% and 8% of six cuts, respec-
tively, while implements 98% of 6-LUTs. It is
worth noting that shrinking LUT F from 4-LUT to 3-LUT
loses marginally in terms of functional capability but saves
substantially on LUT bits (25%). Also, by expanding LUT
F from 4-LUT to 5-LUT, PLB2 gains substantial capability
on six-input function implementation with an additional 25%
more LUT bits.

has the least LUT bits among the four PLBs
under evaluation. Although implementation of five cuts is not
guaranteed, experiments show that 96% of five-cuts can be im-
plemented by applying simple disjoint decomposition (SD) on
the five-input functions. If nondisjoint decomposition (ND) is
also applied, an additional 2% of five cuts can be implemented.

also implements 85% of six cuts (using SD) as
well.

For , we considered two architectures
and . Although implementation of

five cuts is not guaranteed, we found that can
implement most five cuts and of six cuts, and
can implement 97% of five cuts and 89% of six cuts.

We compared these PLBs in terms of the unit-bit implemen-
tation capability (UBIC), which is defined as the number of cuts
that a PLB can implement divided by the number of LUT bits in
that PLB. The comparison is presented in Table IV. Among the
four evaluated PLB architectures, has the highest
UBIC for five cuts and six cuts. In addition, we notice that

has high UBIC for five cuts and has
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TABLE IV
FUNCTIONAL CAPABILITY PER EACH LUT BIT FOR PLBs

high UBIC for six cuts. The XC4K CLB has very high UBIC
for seven cuts.

VII. A PPLICATION TOTECHNOLOGYMAPPING FORFPGAS

In this section, we incorporate our Boolean matching tech-
niques into technology mapping algorithms for depth minimiza-
tion. Our mapping algorithms are targeted to the XC4K CLB

and the XC5200 CLB architec-
tures. However, they are applicable to general PLB1 and PLB2
types of FPGAs. We formulate the following problem.

Technology Mapping for XC4K/XC5200 Series
FPGAs: Given a network , compute a functionally
equivalent PLB network of XC4K CLBs or XC5200 CLBs
such that the depth of the PLB network is minimum.

Our approaches inherit the polynomial-time FlowMap algo-
rithm [9] that can guarantee the minimum depth in LUT map-
ping solutions. Given a Boolean network of logic gates that
have no more than fan-ins, FlowMap first computes the min-
imum level for each node in all LUT mapping solutions. This
level is called theLUT labelof , denoted as in this
paper. After computing the labels, FlowMap generates a map-
ping solution based on them.

Computing node labels is the key operation in FlowMap and
is briefly reviewed as follows. Every PI has a minimum level
of zero. Remaining node labels are computed from PIs to POs
in a topological order. Let denote the subnetwork rooted
at node . A cut in is a set of nodes that separatesfrom
PIs. A cut is feasible if the node cutset contains at most
nodes. Theheight of a cut is defined as the largest label for
nodes in the cut. Let be the largest label among the fan-ins
of . It was shown in [9] that if there is a

-feasible cut of height in , which can be verified
using the max-flow min-cut algorithm. If such a cut cannot be
found, then . Our mapping algorithms take
similar steps to compute the minimum depth in CLB networks.

A. Technology Mapping for XC4K FPGAs

In parallel to the definition of LUT label, the minimum level
of node in any CLB network is called theCLB label of ,
denoted . In general, .

The largest CLB label in a network is called the CLB depth
of the network.

Our mapping algorithm for the XC4K CLB is called
BM-Map. Before mapping, the input network is decomposed
into a two-bounded network. BM-Map has three phases:
initialization, labeling, and mapping. In initialization, BM-Map
computes the set of all five-feasible cuts for every node

. (Wide cuts are generated using five-feasible cuts
for runtime consideration). In the labeling phase, BM-Map
computes both and using the set

. Nodes are proceeded in a topological order in both
procedures. Finally, BM-Map produces a XC4K CLB network
in the mapping phase.

The cutset is obtained using cut enumeration tech-
niques in [16]. It computes -feasible cuts in by merging
the cuts of the fan-ins of and rejecting those cuts that are not

feasible. In theory, the number of-feasible cuts grows ex-
ponentially with respect to . However, for , this com-
putation is efficient in practice. For most benchmarks, we see
about 30–70 five-feasible cuts per node.

Let be the largest LUT label among the fan-ins of. Instead
of using max-flow min-cut procedures, BM-Map determines if

by looking for a cut of height in the cutset
. To compute the , let be the largest CLB

label among the fan-ins of. BM-Map performs the following
two checks.

(C1) If there exists a -feasible cut of height in ,
then .

(C2) Otherwise, if there exists a nine-feasible cut of height
of which the corresponding wide function can

be successfully matched to the XC4K CLB, then
.

If both checks fail, then .
We take two actions to save runtime in label computation.

First, we do not exhaust all XC4K configurations in Boolean
matching. We only test configurations (in Fig. 4) 6.a and 6.c
for six cuts, 7.c and 7.f for seven cuts, 8.c for eight cuts, and
9.a for nine cuts because they have high matching percentages
(Table II) with relatively low decomposition complexity.
Second, to obtain wide cuts (of six to nine nodes) at each node
, we simply merge the cuts in and , where

and are fan-ins of . By doing so, we trade the completeness
of nine-feasible cuts for runtime.

After every node in the network has been labeled,
BM-Map generates a CLB mapping solution that re-
spects labels. A PO node is a critical PO node if

. For those critical POs
and their fan-in networks, BM-Map covers them with CLBs
to guarantee the CLB depth computed in the labeling phase.
For the remaining noncritical POs and their fan-in networks,
BM-Map covers them with LUTs to save area. At last, BM-Map
packs LUTs into CLBs using an efficient procedurematch4k
proposed in [15]. The BM-Map algorithm is outlined in Fig. 6.

B. Technology Mapping for XC5200 FPGAs

While the XC4K CLB can implement a large number of six
cuts and seven cuts, it was shown in previous sections that the
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Fig. 6. BM-Map algorithm.

XC5200 CLB implements only a very small percentage of them.
However, we can exploit the XC5200 CLB architecture based
on an interesting result observed in our experiments.

Let us first introduce two concepts. A wide function
is fully implementableon a XC5200 CLB if each cofactor
and depends on at most four variables for some
(Theorem 11), while is partially implementableif only
one of the two cofactors satisfies the condition. In Table V, the
columns titled “fit” and “ -fit” show the number of cuts that
are fully and partially implementable on XC5200 CLBs, respec-
tively. Although very few six cuts and seven cuts are fully im-
plementable, most of them are partially implementable. Based
on this observation, we consider using XC5200 CLBs for par-
tially implementable functions. [Note that most wide functions
are fully implementable on XC4K CLBs (see Table II). As a
result, there is little benefit to consider partially implementable
functions.]

Our mapping algorithm for XC5200 CLBs, called
BMD-Map, enhances BM-Map by incorporating func-
tional decomposition operations into label computation.
In initialization, BMD-Map computes the cutset of all
seven-feasible cuts for every node . (We can afford
testing more wide cuts since matching to XC5200 CLB is
much less time consuming.) In the labeling phase, BMD-Map
determines if using the following three
checks.

(C1) If there exists a five-feasible cut of height in
, then .

(C2) Otherwise, if there exists a wide cut of height in
of which the corresponding wide function is full

implementable, then .
(C3) Otherwise, if there exists a wide cut of height

in of which the corresponding wide function is
partially implementable and the infeasible cofactor can
be decomposed to obtain a new cut of height (ex-

TABLE V
MATCHING WIDE FUNCTIONS TOXC5200 CLBS

plained in the next paragraph), then .
We refer to the decomposition of the infeasible co-
factor as adecomposition operation.

Otherwise, .
We illustrate the decomposition operation (C3) in Fig. 7. Let

be a six cut of and all nodes in have
a label . Let denote the function of the subnetwork
rooted at with inputs from [see Fig. 7(a)]. Let

and assume that . Then,
is partially implementable on XC5200 CLB [see Fig. 7(b)]. The
dash line represents possible bridged inputs to LUTs. Decom-
position operations are performed iteratively in three steps.

1) Choose a two-variable bound set .
2) Perform a simple disjoint decomposition

under the bound set .
3) If the decomposition is successful, create a nodefor

[see Fig. 7(c)] and compute a min-cut of height
in the cone rooted at . If the min-cut is

feasible, then and, therefore, since
all the inputs of , , and have a label .

Steps 1 to 3 are iterated for all possible bound sets until a success
is found or bound sets are exhausted. In the latter case, we assign

.

VIII. T ECHNOLOGYMAPPINGEXPERIMENTAL RESULTS

We conducted experiments on a Sun ULTRA2 workstation
with 256 MB of memory. The tested circuits are MCNC bench-
marks which were optimized using the SISruggedscript [32]
and decomposed into two-input networks using thedmigalgo-
rithm [7], [35]. The mapping goal was to minimize the CLB
depth with consideration to area minimization.
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(a) (b) (c)

Fig. 7. Decomposition operation in step (S3) for XC5200 CLB. (a) Six-input supernode. (b) Partial implementation on XC5200 CLB. (c) Implementation after
decomposition operation.

TABLE VI
BM-MAP MAPPING RESULTS FORXC4K CLBS

In the first experiment, we applied FlowMap and BM-Map to
map MCNC benchmarks into XC4K CLBs. After technology
mapping,match4k [15] was employed to pack LUTs into
XC4K CLBs. We limited the maximal number of wide cuts
to ten and 50 in BM-Map(10) and BM-Map(50) and reported
corresponding results in Table VI. Compared to FlowMap,
BM-Map obtained 14% and 18% smaller depth when ten and
50 wide cuts were tested, respectively. However, BM-Map uses
substantially more CLBs compared to FlowMap. After careful
examination, we found that a large percentage of 5-LUTs
mapped by FlowMap were decomposed bymatch4k into
2-LUTs and 4-LUTs and subsequently packed into CLBs with
other 4-LUTs. This is very efficient for area minimization. This
benefit does not happen to BM-Map because it uses LUTs only
to cover noncritical portions of the input network and obtains
much less 5-LUTs. In general, the more cuts that are tested

for matching in BM-Map, the better the mapping results will
be, but the longer the runtime. The ratio, however, is biased
significantly by the circuitdes.

In the second experiment, we applied our mapping approach
to the technology mapping for XC5200 FPGAs. After mapping,
LUTs were packed into XC5200 CLBs. One CLB is allocated
for one 5-LUT as well as for one pair of 4-LUTs. We compared
BMD-Map with the CutMap algorithm [12]. CutMap also
inherits the FlowMap algorithm, but in addition performs
simultaneous area minimization. It obtains the same LUT
depth as obtained by FlowMap, but uses 18% less 5-LUTs on
average for industrial benchmarks [22]. The mapping results
are reported in Table VII. Compared to CutMap, BM-Map ob-
tains 7% smaller depth with 15% smaller area, and BMD-Map
obtains 12% smaller depth with 6% larger area. The runtime
of BM-Map and BMD-Map are both one order of magnitude
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TABLE VII
BMD-MAP MAPPING RESULTS FORXC5200 CLBS

longer than CutMap. Comparing BM-Map with BMD-Map,
we can see the impact of functional decomposition in XC5200
mapping.

IX. CONCLUSION

We have presented new Boolean matching methods for
LUT-based PLBs and their applications to architecture evalu-
ation and FPGA technology mapping. Our Boolean matching
methods employ functional decomposition operations to
represent functions in forms corresponding to the target
PLB architecture. Existence conditions for new functional
decomposition forms are given and proved. We applied the
methods to the evaluation of PLB architectures in terms of logic
implementation capability. Experimental results show that the
Xilinx XC4K CLB can implement 98% and 88% of six- and
seven-variable functions extracted from MCNC benchmarks,
respectively, while a simplified PLB architecture implements
the largest amount of functions per LUT bit. We developed
new technology mapping algorithms that employ the Boolean
matching techniques for depth minimization. Compared to
conventional LUT mapping approaches, experimental results
show 18% and 12% depth reduction on average for the Xilinx
XC4K series and XC5200 series FPGAs, respectively, with
up to 15% area reduction in XC5200 FPGAs. Our Boolean
matching techniques can be useful for designing future FPGA
architectures and better utilization of FPGA silicon resources.
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