
Improved SAT-Based Boolean Matching Using
Implicants for LUT-Based FPGAs

Jason Cong and Kirill Minkovich
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095, USA

{cong, cory_m}@cs.ucla.edu

ABSTRACT
Boolean matching (BM) is a widely used technique in FPGA
resynthesis and architecture evaluation. In this paper we present
several improvements to the recently proposed SAT-based Boo-
lean matching formulation (SAT-BM-M) [10]. The principle
improvement was achieved by deriving the SAT formulation
using the implicant instead of minterm representation of the
function to be matched which enables our BM formulation cre-
ates a SAT problem of size O as opposed to O(2n) in the
original formulation, where n is the number of inputs to the
function, k is the size of the LUT, and m is the number of impli-
cants which is much smaller than 2n and experimentally found to
be around . Using the new BM formulation, and consider-
ing 10-input functions, we can show a 14x run time improve-
ment and can solve 4.6x more problem than the SAT-based BM
formulation in

(2)⋅ km

3 ⋅ n

[10]. Moreover, a relative improvement of 4.1x in
run time and 2.6x in the number of problems solved is observed
when compared to the recently proposed BM formulation in
[16]. Moreover, using this improved Boolean matching formula-
tion, we implemented (as a proof of concept) a FPGA resynthe-
sis tool, called RIMatch, which was able to reduce the number
of LUTs produced by ZMap by 10% on the MCNC benchmarks.

1. INTRODUCTION
Field programmable gate arrays (FPGAs) have been gaining
momentum as an alternative to application-specific integrated
circuits (ASICs). FPGAs consist of programmable logic, I/O,
and routing elements which can be programmed and repro-
grammed in the field to customize an FPGA, enabling it to im-
plement a given application in a matter of seconds or millisec-
onds. The most common type of programmable logic element
used in an FPGA is called a K-LUT, which is a K-input 1-output
lookup table (LUT), capable of implementing any K-input 1-
output Boolean function. K-LUTs are commonly implemented
as a 2K truth table on the LUT’s inputs. The number of LUTs
required to implement a design defines the cost of the FPGA
implementation, thus making the technology mapping step of
the FPGA CAD process a crucial step in cost reduction. In gen-
eral, the goal of technology mapping is to reduce delay, area or a
combination of the two in the resulting design [2][5][14][18].
The goal of area-minimal technology mapping is to minimize
the number of LUTs needed to cover all the logical elements in
the circuit.

One possible approach to the FPGA technology mapping prob-
lem is to use Boolean matching (e.g. [1], [4]). The Boolean
matching problem consists of checking to see whether a Boolean

function f can be implemented using a specific logic block (in
our case this logic block consists of 4-LUTs). Boolean matching
is not only used in technology mapping but also very useful for
evaluating different programmable logic block (PLB) architec-
tures (e.g. with several hard-wired LUTs) to see what percentage
of Boolean functions can be implemented by a given PLB archi-
tecture [11].

Current Boolean matching techniques are effective when target-
ing functions with a few inputs (typically seven or less), they
have a huge blow up in time or space when dealing with func-
tions that have ten or more inputs. The reason for this is that
Boolean matching is primarily done by either functional decom-
position [4][9][12] or by using Boolean signatures [1][6][9],
which are both limited in the size of the functions they can han-
dle. Most functional decomposition is carried out using BDDs,
which may require exhaustive search of all or many possible
BDD variable orders. Recently, a new approach for Boolean
matching using SAT was presented in [10]. This approach
traded space complexity for time complexity and was shown to
work on 10-input functions, but it had a very slow run time.

To understand how Boolean Satisfiability (SAT) can be used to
solve the Boolean matching problem, let us first consider a con-
crete example of Boolean matching where we want to see if
function f (with three inputs) can be implemented using two 2-
LUTs (Figure 1). By this transformation, we can show that func-
tion f can be implemented using two 2-LUTs if and only if we
can find a true assignment to the SAT formulation specified by
(1.1) to (1.3) with variables C1-C14 (Figure 1) (to explained
further in Section 3). SAT takes as input a Boolean expression
in Conjunctive-Normal-Form (conjunction of clauses where
each clause is a disjunction of literals) and seeks an assignment
to the literals that sets at least one literal in each clause to true.
The drawback of formulating the problem like this is that SAT is
an NP-hard problem; however, in recent years there have been
significant advances in SAT solvers (e.g. [7][15][19]) which
allow SAT instances with thousands of variables to be solved in
a matter of seconds.

Nevertheless, the Boolean matching method proposed in [10]
(named SAT-BM-M in this paper) can be very slow for large
functions (say over ten inputs) as it needs to replicate the clauses
exponential number of times in terms of the number of input
variables. For example, when SAT-BM-M was used to test the
optimality of ZMap [5] by repeated resynthesis of 10-input
cones, it ran for over two days on some of the MCNC bench-
marks. This reduction in run time also allows this technique to
be used on FPGA architecture evaluation [4].

In this paper, we present several algorithmic enhancement to the
SAT-based Boolean Matching (BM) formulation presented in
[10] and achieved drastic improvement of the runtime perform-
ance. The primary contributions of this work include:

1. We developed a novel approach to derive the SAT formula-
tion for the BM problem using implicant representation that is
not exponential in terms of the size of the function (Section
4.1). This new approach creates a SAT instance that is of size

, compared to the original instance of size ,
where n is the number of inputs to the function, k is the size
of the LUTs, m is the number of minterms used to describe
the function (approximately 30 for a 10 input function).

⋅(2)kO m (2)nO

2. We developed two additional enhancements – one is the
MUX choice reduction in the SAT-based BM formulation
(Section 4.2) and other is the reduction of the number of test
structures (Section 4.3) to be considered for BM. As a result,
our SAT formulation that enable us to use up to 6.4 times
fewer variables, achieve 12X speedup, and solve 77% more
problems than the original approach [10]. These combined
improvements allowed us to apply Boolean matching on func-
tions of up to 13 variables.

3. We developed (to confirm the extraordinary performance
gain) a resynthesis algorithm called RIMatch (Resynthesis us-
ing Implicant Matching), based on our enhanced BM formu-
lation, which is able to reduce the mapping solution produced
by ZMap on the MCNC benchmarks by 10% with an average
run time of a little over an hour.

2. DEFINITIONS
In this paper, we study the following Boolean matching prob-
lem: given a n-input Boolean function f(i0, i1, …, in), can it be
implemented in l or fewer K-LUTs. Before any in-depth discus-
sion of Boolean matching, we first define the different ways of
representing a Boolean function. The two most popular repre-
sentations of a Boolean are based on the use of minterms or
implicants.

A minterm is an assignment from {0,1} to the inputs of a Boo-
lean function to get an output value of 1 or 0, respectively. An
example of the minterms of an AND gate can be seen in Figure
3. A function can be defined using a truth table which is simply
the set of all its 2n minterms.

A product term P (a conjunction of variables) is an implicant of
the Boolean function F if P implies F. For example, when we
consider Figure 4, the first implicant (the first row) tells us that
if the first input is a 0, then the function will output a 0 inde-
pendent of the other two inputs. In this paper we shall use the
term implicant to refer to prime implicant. A prime implicant of
F is defined to be an implicant that is minimal in terms of the
number of literals - that is, if the removal of any literal from P
results in a non-implicant for F.

Even though a function can be defined using a set of minterms
(a truth table) or a set of implicants, it should be fairly clear that
using implicants is a much more compact representation. We
will experimentally show that for 10-input functions the number
of implicants is approximately 30, while their corresponding
truth tables have 1024 minterms.

3. REVIEW OF SAT-BM-M (SAT-BASED
BM USING MINTERMS)
In order to check whether a function f can be implemented in n
K-LUT, the method in [10] construct an SAT formulation in the
conjunctive normal form (CNF) and then asking a SAT solver
whether this is possible. To do this, a CNF representation of a
given LUT structure must first be made with universal qualifica-
tion, then duplicated for each minterm in the function’s truth
table before it is passed on to the SAT solver. Therefore, the
CNF formula had to be duplicated 2n (the number of minterms
in a n-input function) times. This caused the original Boolean
matching algorithm to generate a CNF that was exponential to
the size of the input.

To illustrate how to create the CNF used in the original Boolean
matching algorithm (SAT-BM-M) [10] we shall consider con-
structing the CNF GBM which is needed for testing whether or
not a 3-input Boolean function can be implemented by the two
2-LUT structure seen in Figure 1.

Figure 1. Test configuration using two 2-LUTs.

To create the CNF GBM we first need to create a CNF equation
for each of the individual elements in Figure 1; then we combine
them to get a CNF for the whole structure.

The CNF, (, ,),LUTG x C f for LUT2 has inputs 1 2 ,e e x= configu-
ration bits 1 2 3 4 ,C C C C C= and output 3 .e f=

1 2 1 1 2 13 3

1 2 2 1 2 23

1 2 3 1 2 33 3

1 2 4 1 2 43 3

() ()

 () ()

 () ()

 () ()

LUTG e e C e e e C e

e e C e e e C e

e e C e e e C e

e e C e e e C e

3

= + + + ⋅ + + + ⋅

+ + + ⋅ + + + ⋅

+ + + ⋅ + + + ⋅

+ + + ⋅ + + +

 (1.1)

The CNF, (, ,),MUXG x C f for MUX1 has inputs 1 2 3 ,i i i x= con-
figuration bits 9 10 ,C C C= and output 1 .e f=

9 10 1 9 10 11 1

9 10 2 9 10 21

9 10 3 9 10 31 1

9 10

() ()

 () ()

 () ()

 ()

MUXG C C i e C C i e

C C i e C C i e

C C i e C C i e

C C

= + + + ⋅ + + + ⋅

+ + + ⋅ + + +

+ + + ⋅ + + +

+

1 ⋅

⋅
 (1.2)

Now combining equations (1.1) and (1.2) according to Figure 1,
we get the following CNF with inputs and output f. 1 2 3,i i i

1 2 3 1 2 3 9 10, 1

1 2 3 11 12, 2

1 2 3 4,1 2 3

1 2 3 13 14, 4

(,) (,)
 (,)
 (,)
 (,)

BM MUX

MUX

LUT

MUX

G i i i f G i i i C C e
G i i i C C e
G e e C C C C e
G i i i C C e

= ⋅
⋅
⋅

⋅
3 4 5 6 7 8, (,)LUTG e e C C C C f

 (1.3)

According to the SAT-BM-M algorithm, in order to test whether
function f could be implemented by the LUT configuration, GBM
would have to be duplicated for each of the possible 2n inputs.
This creates a CNF Φ (shown below), with only the configura-
tion bits and the 2n copies of the wires as variables, which can
then be fed into a SAT solver.

() ()()
−

=

Φ = ∏
||2 1

0

1 4

,

 //creating new variables for the wires ,...,
// in each of the copies of

i

BM k k
k

BM

f G i f i

e e
G

 (1.4)

If the CNF problem is found to be not satisfiable, it means f
cannot be implemented using the configuration of LUTs in
Figure 1. If the problem is satisfiable, then the SAT solver pro-
vides a solution to the Boolean matching problem by returning
satisfying assignments for all the configurations bits.

Observation: The original minterm formulation of the Boolean
matching problem creates a SAT problem of size O(2)n S⋅ ,
where S is the number of clauses needed to represent the struc-
ture.
Proof: Here, S is used for simplicity since we want to compare
the two different formulations and both are somewhat dependent
on S. Since there are 2n minterms in the truth table representa-
tion of a Boolean function, we need to copy the CNF for the
structure 2n times as described in formula (1.4). The leads to an
overall structure size on the order of . O(2)n S⋅

4. IMPROVEMENTS
In this section we will present an improved Boolean matching
formulation using implicants. The actual speed-up of improve-
ment shown by using this formulation, called SAT-BM-I, shall
be described in the results section. Every improvement pre-
sented here will deal with reducing the complexity of the prob-
lem given to our SAT solver in terms of the number of variables
and the number of clauses. In our final implementation we were
able to get an answer from the SAT solver for most of our prob-
lems within four seconds.

4.1 Implicant vs. Minterm Formulation
The largest improvement over the original algorithm can be
achieved only when we begin to consider the implicant repre-
sentation of the functions versus their truth table representation.
Here we are using don’t cares (implicants) to simply a SAT

problem which shouldn’t be confused for [13] where they use
SAT to calculate don’t cares. The original method consumed
exponential space and time in proportion to its input size, i.e.,
for a n-input function there are 2n minterms, so the CNF for the
test structure had to be copied 2n times.

Figure 2. A 3-input function using two 2-LUTs.

To simplify the explanation, we will once again consider the
problem of Boolean matching as it applies to a 3-input Boolean
function and a 2-input LUT architecture. In this situation the
question will be, can we find an assignment to configuration bits
C such that the output F of the structure (Figure 2) has the same
functionality as a function f; i.e., does

[] s.t. () (,) ?C x f x F x C∃ ∀ = Before we present the actual
method, let us compare the number of implicants versus the
number of minterms. For example, consider the Boolean 3-input
AND function over three variables x1, x2, and x3. The complete
truth table representation of the function can be seen in Figure 3
which is exponential in the size of its inputs. Now, when we
consider its equivalent representation using implicants (seen in
Figure 4 and calculated internally in MVSIS [8]), we see that the
number of lines/implicants that it takes to represent the function
is cut in half. In general, the reduction is much more for func-
tions with a larger number of inputs. From experimental data we
were able to conclude that for n-input cones (where 7<n<11), it
takes roughly 3 n⋅ number of implicants to fully represent most
functions, while the original method required 2 .n

AND gate
x1 x2 x3 f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Figure 3. Truth table of an AND gate.

AND gate
x1 x2 x3 f
0 * * 0
* 0 * 0
* * 0 0
1 1 1 1

Figure 4. AND gate representation using implicants.

The only thing left to consider is how to create a new CNF to
handle the * in the implicant representation. Recall that the *
represents the ability of that variable to be both 1 and 0. To take
care of this we have to consider two cases: first, the internal
LUT (one whose output feeds into another LUT, seen in Figure
5), and second, the output LUT (one whose output is the func-
tion output, seen in Figure 6). Consider Figure 7 for a graphical
representation of how the two types of LUTs would connect
together. When considering the internal LUT, the most difficult
thing to model is the case where the output can become a * (its
value can be either a 1 or a 0).

To take care of this case, we duplicate the LUT structure 2k
times where k is the number inputs to the LUT. This enables us
to feed two versions of each variable into the LUTs (consider
Figure 5 as an example). We follow the formula (1.5) for setting
the variables. In Figure 5 if x1 is set to 0 or 1 then x1' and x1''
are both set to 0 or 1. But if x1 is a * then x1' is set to 0 while
x1'' is set to 1.

=⎧
= ⎨
⎩

=⎧
= ⎨
⎩

0 if *
'

 else
1 if *

''
 else

i
i

i

i
i

i

x
x

x
x

x
x

 (1.5)

Now the structure has the following property: if a certain input
causes any of the LUTs to have different output values, f will be
0 and f ' will be 1. But if all the LUTs have the same output
value, f and f ' will also have that same value.

While this modification enables the structure to take care of the
* in the implicants, it also causes the structure to increase in size
by 2k

. But if the number of implicants is greatly less than the
number of minterms, this then reduces the complexity of the
problem.

Observation: The implicant formulation of Boolean matching
will create a SAT problem most of the time of size

 where S is the number of clauses needed to repre-
sent the structure, k is the size of the LUT, and m is the number
of implicants in the function.

⋅ ⋅O(2),km S

Proof: The new formulation needs to duplicate each LUT 2k
times; therefore, the total number of clauses needed to represent
the structure is . Since we only have to duplicate the
structure m times, the total size of the SAT instance becomes

. ■

⋅O(2)k S

⋅ ⋅O(2)km S

Theorem 1: The new CNF Φ is equivalent to the original CNF
Φorig. That is

() ()() () ()()
| | | |

0 0

, ,
imp min

orig orig
BM k k BM k k

k k

f G imp f imp f G min f min
= =

Φ = ≡ Φ =∏ ∏

where imp is the set of implicants (product terms) of a

sum-of-product representation of f, and min is the set of
all minterms of f.

Proof: It is important to first remember that the CNF Φ is con-
structed using a set of GBM, one for each implicant. Now if we
were able to show that each GBM, used to construct Φ, was
equivalent to a set of orig

BMG we could easily prove the equiva-
lence by simple substitution since implicant representation can
be expanded into minterm representation. Let us first assume we
have an arbitrary function f. Now we arbitrarily pick a implicant
imp from the set of implicants used to define f, so we want to
show the resulting CNF GBM(imp,f(imp)) implies the CNF

()()| |

0 BM k kk =

k
. Since every

implicant can be broken up into a set of minterms, we shall use
this as an intermediate step.

, min origG min f min∏ imp min= ∨

s.t. k

()() ()()
| |

0

, ,
min

BM BM k k
k

G imp f imp G min f min
=

=∏

Now the question becomes does GBM equal orig
BMG when both are

instantiated using a minterm. By examining the encoding (1.5)
where all the LUTs that share common configuration will be
equivalent we can see that GBM does become orig

BMG (consider
Figure 7 as an example).

The other direction is trivial since a minterm can also be an im-
plicant. Now by replacing every implicant generated GBM by an
equivalent set of minterm generated orig

BMG we have transformed
CNF Φ into CNF Φorig and showed their equivalence. ■

It was previously shown the original formulation, SAT-BM-M,
created a SAT instance on the order of 2n, while SAT-BM-I’s
were on the order of 2 .km ⋅ Experimentally, we have calculated
that the average number of implicants needed to represent a
Boolean function, m, is around or O(n). Therefore, on av-
erage our problem size is on the order of

⋅3 n
⋅ ⋅O(2)kn S which is

significantly smaller than for large functions. ⋅O(2)n S

Let us examine the case where we are trying to test the feasible
of implementing a 10-input cone using three 4-LUTs. In both
formulations the variables in the SAT instance are the configura-
tion bits and the wires, but the wires are determined by the con-
figuration bits. Since the number of major decisions (i.e., the
selection of the configuration bits) is the same in both formula-
tions, the next thing that defines the complexity of the problem
is the number of clauses. In the original formation the resulting
CNF passed to SAT would be of size (size of structure) = 102 ⋅

102 ⋅ S = ⋅1024 S , where S is the number of clauses needed to
represent the structure’s functionality. In our formula the size of
the CNF would be around (size of structure) = 4(3 10) 2⋅ ⋅ ⋅
480 ,S⋅ and this number can go down to as little as ⋅176 S (as
in the case where you have an AND function on 10 variables,
since that would only have 11 implicants). This shows that for
larger cones, using implicants greatly simplifies the problem.

Figure 5. New internal LUT structure (Figure 2 LUT

a).

Figure 6. New output LUT structure (Figure 2 LUT

b).

L1

L2

L4

L3

00

01

10

11 L1

L2

L4

L3

00

01

10

11L1

L2

L4

L3

00

01

10

11
L1

L2

L4

L3

00

01

10

11

x2'

x1'' x2''

x1'

x2'

x1' x2''

x1''

L5

L6

L8

L7

00

01

10

11 00

01

10

1100

01

10

11
00

01

10

11

x3'

x3''

x3'

x3''

L5

L6

L8

L7

L5

L6

L8

L7

L5

L6

L8

L7

f

Figure 7. Detailed diagram a resynthesis structure for testing 3-input functions

4.2 MUX Choice Reduction
In the original formulation the LUT could accept any permutation
of the inputs because every LUT had virtual multiplexers feeding
its inputs. This allowed the resynthesis structure to increase the
number of functions it could represent by a factor of n!, where n is
the fanin size of the resynthesis cone. These “virtual multiplexers”
added a great deal of unnecessary complexity to the problem. The
number of distinct combinations to a single LUT is n choose k
() not the combinations produced by

the SAT-BM-M formulation. The way we reduce the number of
combinations by k! is by adding restrictions to the select signals of
the MUXes corresponding to a single LUT. If we consider the
structure proposed in

!/(! ()!)n k n k⋅ − !/()!n n k−

Figure 1 and more specifically MUXes M1
and M2, we realize that by adding the restriction that M1 must
select a signal with a lower index than M2, we can reduce the
number of different possible inputs to the first LUT. This can be
easily done by adding the following set of clauses to our CNF
description (1.6). The reduction in exploration space is due to a
reduction of symmetric configuration. This CNF can be easily

generated by a multitude of tools available online for converting
Boolean formulas into CNFs [17].

9 11 9 11 10 12

9 11 9 11 9 11 10 12

9 11 9 12 9 10 10 11 11 12

(C C) (C =C) (C C)
converting the + and =

(C C) ((C C)+(C C)) (C C))
after converting it to a CNF

(C +C) (C +C) (C C) (C +C) (C +C)

< + ⋅ <

= ⋅ + ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ + ⋅ ⋅

 (1.6)

4.3 Reduction in Number of Test Structures
used in Resynthesis
In the original formulation of test structures for resynthesis every
connection pattern of LUTs required a different test structure.
This might be acceptable for a testing a 10-input function, but as
the number of inputs to the structure increases linearly, the num-
ber of structures grows exponentially. For example, when SAT-
BM-M tested a 10-input function, we had to run two instances of
SAT since there were two 10-input structures. These structures
can be seen in Figure 8. When SAT-BM-M tries to test a 13-input
function, it has to run SAT on four different CNFs.

There are two problems with this design. First, each 10-input cone
has to be tested on two structures. Second, this doesn’t extend to
larger cones since a 13-input cone would have four separate re-
synthesis structures. The simplest and cleanest way to combine
these two structures into one is by adding one MUX with one
extra configuration bit. The resulting structure allows the SAT
solver to pick which structure to use. An example of the new 10-
input structure can be seen in Figure 9. This new method for cre-
ating resynthesis structures is easily extended to larger cones since
it allows only one structure for any function size.

Figure 8. Original 10-input structures.

Figure 9. New 10-input structure.

 5. RESULTS
The results will be presented in two sections. First we will com-
pare our proposed method SAT-BM-I with SAT-BM-M [10] in
terms of their SAT instance size: specifically, the number of vari-
ables, number of clauses and the run time. Second, we will use
our Boolean matching formulation and apply it to resynthesis
where we are able to reduce the area of ZMap (area-only minimiz-
ing mapper) by 10%.

5.1 Boolean Matching Improvement
In this section we present a quantitative comparison between the
original Boolean matching algorithm (SAT-BM-M) [10] and our
new implicant-based version (SAT-BM-I).

In our experiment, we selected first 220 eligible functions (i.e.
those that either BM technique doesn’t time out on) from the
MCNC benchmarks and then ran them against both algorithms
using ZChaff as the SAT solver. We only reported the results
from eligible functions because functions that caused both meth-
ods to time out do not provide meaningful data for comparison.
This method of selecting the functions was fair because neither
the user nor the author has any influence on which functions were
chosen. The data was gathered after running experiments on a
1.8GHz AMD Opteron processor. After evaluating functions with
size varying from a 5- to 10-input, we saw that, on average, the
new BM approach solved 77% more problem instances and ran 12
times faster. The most noticeable difference was seen when exam-
ining 10-input functions, where the new method solved 4.6 times
as many problems and ran more than 14 times faster.

We can confirm the validity of our previous claim by examining
the data in Table 1. First, when examining the details of SAT-
BM-M we can see that it takes twice as many variables to test a
function with one more input. This is because the problem size (as
expressed by the number of clauses and variables) grows by a
factor of two with each additional input variable. Second, we see
that the size of the problem generated by SAT-BM-I only in-
creases a very small amount between the functions of different
size, as predicted by the theorem.

Table 1. SAT instance comparison

 function
size 5 6 7 8 9 10 Total

 # functions
examined 2 16 71 13 30 88 220

variables 309 608 1237 3393 6834 13411 4299
clauses 3111 7218 15838 53009 106878 211863 66319
run time

(s) 0.11 1.12 4.60 40.30 44.38 52.27 23.80

SA
T-

B
M

-M

% solved 100% 100% 94% 54% 43% 22% 56%

variables 307 505 497 906 847 949 668
clauses 7062 12206 11938 21989 20423 23147 16128
run time

(s) 0.02 0.29 0.55 5.28 1.92 3.70 1.96

SA
T-

B
M

-I

% solved 100% 100% 100% 100% 100% 100% 100%

time
reduction 5.50 3.86 8.41 7.63 23.17 14.12 12.15

Im
pr

ov
em

en
t

ratio
solved 1.00 1.00 1.06 1.86 2.31 4.63 1.77

5.2 Resynthesis Algorithm using SAT-BM-I
We present the following algorithm not a resynthesis algorithm
(even though the results suggest that it works fairly well) but as a
usable proof of concept to our BM matching improvements. In
our algorithm (written in the MVSIS [8] environment) we em-
ployed several techniques to speed up cut enumeration [14], and
we also selected the cones based on a greedy approach from PO to
PI. In this section we will present the results (Table 2) of running
our resynthesis algorithm, RIMatch, on the mapped solutions
produced by ZMap [5] on the MCNC benchmarks. Due to the
speedup we were able to set a time limit of 4 seconds, twice the
average run time (Table 1), for each SAT instance which enabled
us to run our resynthesis algorithm two times on each one of the
circuits. We used ZMap [5] because it is the best publicly avail-
able mapper that only minimizes area and it allowed us to give a
direct comparison to the original resynthesis algorithm presented
in [10] which also tested against ZMap. It should be noted that
using this algorithm on ABC [18] and DAOmap [3] produced
improvements of 6% and 8%, respectively, but in this paper we
will not focus on these modern algorithms since their first goal is
to optimize depth not area. Using the MCNC circuits that were
initially mapped by ZMap, we were able to reduce the area by an
average of 10%, which is 4% better than the results presented
along with the original formulation [10]. RIMatch took about 20
hours to resynthesize every one of the MCNC benchmarks, but by
running the resynthesis algorithm once over each circuit or by
setting a smaller timeout, the total run time could be reduced to a
few hours. Please note that this is a great improvement over the
SAT-BM-M method [10] which would have taken almost two
days to finish.

Table 2. Benchmark circuit resynthesis results.
Circuit Zmap RIMatch Ratio
clma 5053 4602 0.91

b15_1 4272 3980 0.93
b15_1_opt 3854 3570 0.93
s38584.1 3822 3398 0.89
s38417 3593 2934 0.82

b14 3153 2622 0.83
frisc 2658 2415 0.91
pdc 1944 1808 0.93

misex3 1199 1121 0.93
seq 1191 1133 0.95
alu4 1140 1061 0.93
ex5p 1002 948 0.95
i10 794 741 0.93

Total 33675 30333 0.90

Since the code of the enhanced BM methods recently proposed in
[16] is not available, we did not make a direct comparison with it.
We did not attempt to re-implement the method in [16], as a lot of
implementation details were left out on how the re-used conflict
clauses were selected. Any attempt of simple-minded re-
implementation would have not been fair to [16] since that is the
main difference between that algorithm and the original one. Nev-
ertheless, since the experimental results in [16] claimed a 340%
run time improvement and 27% more success in mapping than the
SAT-BM-M approach in [10], comparing to our results reported
in this section, we conclude that our approach SAT-BM-I is 4.1x
faster and solves 2.6x more problems when compared to [16]. It
is interesting to note that our implicant-based method is orthogo-
nal to the enhancement proposed in [16] by efficient the re-use of
conflict clauses. So, we expect that our proposed techniques can
be combined with that of [16] to get further improvement.

6. CONCLUSION
In this paper we presented several techniques that enable SAT-
based BM to decide the optimal number of 4-LUTs needed to
implement a function within a matter of seconds. Using our new
implicant formulation (SAT-BM-I), when matching 10-input
functions, we were able to get a 14 times better run time, and we
were able to solve 4.6 times as many problems. Finally, we used
SAT-BM-I to create an algorithm, RIMatch, to resynthesize a
mapped circuit to reduce its overall area. Using the RIMatch algo-
rithm, we were able to reduce the area of circuits produced by
ZMap, on average, by 10%.

The binary for RIMatch, the Perl script to create the CNFs, and
the CNFs for all the test structures can be downloaded at
http://cadlab.cs.ucla.edu/~kirill.

7. ACKNOWLEDGEMENTS
This work is partially supported by the National Science Founda-
tion under grants CCF-0306682 and CCF-0530261.

8. REFERENCES
[1] L. Benni and G. Micheli, “A Survey of Boolean Matching

Techniques for Library Binding,” ACM Trans. Design
Automation of Electronic Systems, Vol. 2, No. 3, pp. 193-
226, July 1997.

[2] R. Brayton, S. Chatterjee, M. Ciesielski, and A. Mishchenko,
“An Integrated Technology Mapping Environment,” Proc.
International Workshop on Logic and Synthesis, pp. 383-
390, 2005.

[3] D. Chen and J. Cong, “DAOmap: A Depth-Optimal Area
Optimization Mapping Algorithm for FPGA Designs,” IEEE
Transactions on Computer-Aided Design, pp. 752-759, 2004.

[4] J. Cong and Y. Hwang, “Boolean Matching for LUT-Based
Logic Blocks With Applications to Architecture Evaluation
and Technology Mapping,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
Vol. 20, No. 9, pp. 1077-1090, Sept. 2001.

[5] J. Cong, J. Peck, and Y. Ding, “RASP: A General Logic
Synthesis System for SRAM-Based FPGAs,” International
Symposium on Field-Programmable Gate Arrays, pp. 137-
143, 1996.

[6] D. Debnath and T. Sasao, “Fast Boolean Matching Under
Permutation Using Representative,” Proc. Asia and South
Pacific Design Automation Conference, pp. 359-362, Jan
1999.

[7] N. Een and N. Sorensson, "Translating Pseudo-Boolean
Constraints into SAT," JSAT 2006.

[8] M. Gao, J-H. Jiang, Y. Jiang, Y. Li, A. Mishchenko, S.
Sinha, T. Villa, and R. Brayton, “Optimization of Multi-
Valued Multi-Level Networks,” International Symposium on
Multiple-Valued Logic, May 2002.

[9] Y. Lai, S. Sastry, and M. Pedram, “Boolean matching using
Binary Decision Diagrams with Applications to Logic Syn-
thesis and Verification,” Proc. International Conference on
Computer Design, pp. 452–458, Oct. 1992.

[10] A. Ling, D. Singh, and S. Brown, “FPGA Technology Map-
ping: A Study Of Optimality,” Design Automation Confer-
ence, pp. 427–432, 2005.

[11] A. Ling, D. Singh, and S. Brown. “FPGA PLB Evaluation
using Quantified Boolean Satisfiability,” International Con-
ference on Field Programmable Logic and Applications,
2005.

[12] F. Mailhot and G. De Micheli, “Algorithms for Technology
Mapping Based on Binary Decision Diagrams and on Boo-
lean Operations,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, Vol. CAD-12, No. 5, pp.
599–620, May 1993.

[13] A. Mishchenko and R. K. Brayton, “SAT-Based Complete
Don't-Care Computation for Network Optimization,” Design,
Automation and Test in Europe Conference and Exposition,
pp. 412-417, 2005.

[14] A. Mishchenko, S. Chatterjee, and R. Brayton,
“Improvements to Technology Mapping for LUT-Based
FPGAs,” International Symposium on Field-Programmable
Gate Arrays, Feb. 2006.

[15] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S.
Malik, “Chaff: Engineering an Efficient SAT Solver,”
Design Automation Conference, June 2001.

[16] S. Safarpour, A. Veneris, G. Baeckler and R. Yuan,
“Efficient SAT-based Boolean Matching for FPGA
Technology Mapping,” Design Automation Conference, July
2006.

[17] Artificial Intelligence: A Modern Approach Python Toolkit,
http://aima.cs.berkeley.edu/python/logic.html

[18] Berkeley Logic Synthesis and Verification Group, “ABC: A
System for Sequential Synthesis and Verification,"
http://www.eecs.berkeley.edu/~alanmi/abc/

[19] Boolean Satisfiability Research Group, “ZChaff,”
http://www.princeton.edu/~chaff/zchaff.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

