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ABSTRACT 
Boolean matching (BM) is a widely used technique in FPGA 
resynthesis and architecture evaluation. In this paper we present 
several improvements to the recently proposed SAT-based Boo-
lean matching formulation (SAT-BM-M) [10]. The principle 
improvement was achieved by deriving the SAT formulation 
using the implicant instead of minterm representation of the 
function to be matched which enables our BM formulation cre-
ates a SAT problem of size O  as opposed to O(2n) in the 
original formulation, where n is the number of inputs to the 
function, k is the size of the LUT, and m  is the number of impli-
cants which is much smaller than 2n and experimentally found to 
be around . Using the new BM formulation, and consider-
ing 10-input functions, we can show a 14x run time improve-
ment and can solve 4.6x more problem than the SAT-based BM 
formulation in 

( 2 )⋅ km

3 ⋅ n

[10]. Moreover, a relative improvement of 4.1x in 
run time and 2.6x in the number of problems solved is observed 
when compared to the recently proposed BM formulation in 
[16]. Moreover, using this improved Boolean matching formula-
tion, we implemented (as a proof of concept) a FPGA resynthe-
sis tool, called RIMatch, which was able to reduce the number 
of LUTs produced by ZMap by 10% on the MCNC benchmarks.  

1. INTRODUCTION 
Field programmable gate arrays (FPGAs) have been gaining 
momentum as an alternative to application-specific integrated 
circuits (ASICs). FPGAs consist of programmable logic, I/O, 
and routing elements which can be programmed and repro-
grammed in the field to customize an FPGA, enabling it to im-
plement a given application in a matter of seconds or millisec-
onds. The most common type of programmable logic element 
used in an FPGA is called a K-LUT, which is a K-input 1-output 
lookup table (LUT), capable of implementing any K-input 1-
output Boolean function. K-LUTs are commonly implemented 
as a 2K truth table on the LUT’s inputs. The number of LUTs 
required to implement a design defines the cost of the FPGA 
implementation, thus making the technology mapping step of 
the FPGA CAD process a crucial step in cost reduction. In gen-
eral, the goal of technology mapping is to reduce delay, area or a 
combination of the two in the resulting design [2][5][14][18]. 
The goal of area-minimal technology mapping is to minimize 
the number of LUTs needed to cover all the logical elements in 
the circuit.  

One possible approach to the FPGA technology mapping prob-
lem is to use Boolean matching (e.g. [1], [4]). The Boolean 
matching problem consists of checking to see whether a Boolean 

function f can be implemented using a specific logic block (in 
our case this logic block consists of 4-LUTs). Boolean matching 
is not only used in technology mapping but also very useful for 
evaluating different programmable logic block (PLB) architec-
tures (e.g. with several hard-wired LUTs) to see what percentage 
of Boolean functions can be implemented by a given PLB archi-
tecture [11].  

Current Boolean matching techniques are effective when target-
ing functions with a few inputs (typically seven or less), they 
have a huge blow up in time or space when dealing with func-
tions that have ten or more inputs. The reason for this is that 
Boolean matching is primarily done by either functional decom-
position [4][9][12] or by using Boolean signatures [1][6][9], 
which are both limited in the size of the functions they can han-
dle. Most functional decomposition is carried out using BDDs, 
which may require exhaustive search of all or many possible 
BDD variable orders. Recently, a new approach for Boolean 
matching using SAT was presented in [10]. This approach 
traded space complexity for time complexity and was shown to 
work on 10-input functions, but it had a very slow run time.  

To understand how Boolean Satisfiability (SAT) can be used to 
solve the Boolean matching problem, let us first consider a con-
crete example of Boolean matching where we want to see if 
function f (with three inputs) can be implemented using two 2-
LUTs (Figure 1). By this transformation, we can show that func-
tion f can be implemented using two 2-LUTs if and only if  we 
can find a true assignment to the SAT formulation specified by 
(1.1) to (1.3)  with variables C1-C14 (Figure 1) (to explained 
further in Section 3).  SAT takes as input a Boolean expression 
in Conjunctive-Normal-Form (conjunction of clauses where 
each clause is a disjunction of literals) and seeks an assignment 
to the literals that sets at least one literal in each clause to true. 
The drawback of formulating the problem like this is that SAT is 
an NP-hard problem; however, in recent years there have been 
significant advances in SAT solvers (e.g. [7][15][19]) which 
allow SAT instances with thousands of variables to be solved in 
a matter of seconds.  

Nevertheless, the Boolean matching method proposed in [10] 
(named SAT-BM-M in this paper) can be very slow for large 
functions (say over ten inputs) as it needs to replicate the clauses 
exponential number of times in terms of the number of input 
variables.  For example, when SAT-BM-M was used to test the 
optimality of ZMap [5] by repeated resynthesis of 10-input 
cones, it ran for over two days on some of the MCNC bench-
marks. This reduction in run time also allows this technique to 
be used on FPGA architecture evaluation [4]. 



In this paper, we present several algorithmic enhancement to the 
SAT-based Boolean Matching (BM) formulation presented in 
[10] and achieved drastic improvement of the runtime perform-
ance. The primary contributions of this work include: 

1. We developed a novel approach to derive the SAT formula-
tion for the BM problem using implicant representation that is 
not exponential in terms of the size of the function (Section 
4.1). This new approach creates a SAT instance that is of size 

, compared to the original instance of size , 
where n is the number of inputs to the function, k is the size 
of the LUTs, m is the number of minterms used to describe 
the function (approximately 30 for a 10 input function). 

⋅( 2 )kO m (2 )nO

2. We developed two additional enhancements – one is the 
MUX choice reduction in the SAT-based BM formulation 
(Section 4.2) and other is the reduction of the number of test 
structures (Section 4.3) to be considered for BM.  As a result, 
our SAT formulation that enable us to use up to 6.4 times 
fewer variables, achieve 12X speedup,  and solve 77% more 
problems than the original approach [10]. These combined 
improvements allowed us to apply Boolean matching on func-
tions of up to 13 variables. 

3. We developed (to confirm the extraordinary performance 
gain) a resynthesis algorithm called RIMatch (Resynthesis us-
ing Implicant Matching), based on our enhanced BM formu-
lation, which is able to reduce the mapping solution produced 
by ZMap on the MCNC benchmarks by 10% with an average 
run time of a little over an hour. 

2. DEFINITIONS 
In this paper, we study the following Boolean matching prob-
lem: given a n-input Boolean function f(i0, i1, …, in), can it be 
implemented in l or fewer K-LUTs. Before any in-depth discus-
sion of Boolean matching, we first define the different ways of 
representing a Boolean function. The two most popular repre-
sentations of a Boolean are based on the use of minterms or 
implicants.  

A minterm is an assignment from {0,1} to the inputs of a Boo-
lean function to get an output value of 1 or 0, respectively. An 
example of the minterms of an AND gate can be seen in Figure 
3. A function can be defined using a truth table which is simply 
the set of all its 2n minterms. 

A product term P (a conjunction of variables) is an implicant of 
the Boolean function F if P implies F. For example, when we 
consider Figure 4, the first implicant (the first row) tells us that 
if the first input is a 0, then the function will output a 0 inde-
pendent of the other two inputs. In this paper we shall use the 
term implicant to refer to prime implicant. A prime implicant of 
F is defined to be an implicant that is minimal in terms of the 
number of literals - that is, if the removal of any literal from P 
results in a non-implicant for F. 

Even though a function can be defined using a set of minterms 
(a truth table) or a set of implicants, it should be fairly clear that 
using implicants is a much more compact representation. We 
will experimentally show that for 10-input functions the number 
of implicants is approximately 30, while their corresponding 
truth tables have 1024 minterms. 

3. REVIEW OF SAT-BM-M (SAT-BASED 
BM USING MINTERMS) 
In order to check whether a function f can be implemented in n 
K-LUT, the method in [10] construct an SAT formulation in the 
conjunctive normal form (CNF) and then asking a SAT solver 
whether this is possible. To do this, a CNF representation of a 
given LUT structure must first be made with universal qualifica-
tion, then duplicated for each minterm in the function’s truth 
table before it is passed on to the SAT solver. Therefore, the 
CNF formula had to be duplicated 2n (the number of minterms 
in a n-input function) times. This caused the original Boolean 
matching algorithm to generate a CNF that was exponential to 
the size of the input.  

To illustrate how to create the CNF used in the original Boolean 
matching algorithm (SAT-BM-M) [10] we shall consider con-
structing the CNF GBM which is needed for testing whether or 
not a 3-input Boolean function can be implemented by the two 
2-LUT structure seen in Figure 1.  

 
Figure 1. Test configuration using two 2-LUTs. 

  
To create the CNF GBM we first need to create a CNF equation 
for each of the individual elements in Figure 1; then we combine 
them to get a CNF for the whole structure.  

The CNF, ( , , ),LUTG x C f  for LUT2 has inputs 1 2 ,e e x= configu-
ration bits 1 2 3 4 ,C C C C C=  and output  3 .e f=

1 2 1 1 2 13 3
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                       (1.1)     

The CNF, ( , , ),MUXG x C f  for MUX1 has inputs 1 2 3 ,i i i x= con-
figuration bits 9 10 ,C C C= and output  1 .e f=



9 10 1 9 10 11 1

9 10 2 9 10 21

9 10 3 9 10 31 1

9 10
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Now combining equations (1.1) and (1.2) according to Figure 1, 
we get the following CNF with inputs  and output f. 1 2 3,i i i

1 2 3 1 2 3 9 10, 1

1 2 3 11 12, 2

1 2 3 4,1 2 3

1 2 3 13 14, 4

( , ) ( , )
                        ( , )
                        ( , )
                        ( , )
                       

BM MUX

MUX

LUT

MUX

G i i i f G i i i C C e
G i i i C C e
G e e C C C C e
G i i i C C e

= ⋅
⋅
⋅

⋅
3 4 5 6 7 8, ( , )LUTG e e C C C C f

                         (1.3) 

According to the SAT-BM-M algorithm, in order to test whether 
function f could be implemented by the LUT configuration, GBM 
would have to be duplicated for each of the possible 2n inputs. 
This creates a CNF Φ (shown below), with only the configura-
tion bits and the 2n copies of the wires as variables, which can 
then be fed into a SAT solver. 

( ) ( )( )
−

=

Φ = ∏
||2 1

0

1 4

,   

 //creating new variables for the wires ,...,  
// in each of the copies of 

i

BM k k
k

BM

f G i f i

e e
G

          (1.4) 

If the CNF problem is found to be not satisfiable, it means f 
cannot be implemented using the configuration of LUTs in 
Figure 1. If the problem is satisfiable, then the SAT solver pro-
vides a solution to the Boolean matching problem by returning 
satisfying assignments for all the configurations bits. 

Observation: The original minterm formulation of the Boolean 
matching problem creates a SAT problem of size O(2 )n S⋅ , 
where S is the number of clauses needed to represent the struc-
ture.  
Proof: Here, S is used for simplicity since we want to compare 
the two different formulations and both are somewhat dependent 
on S. Since there are 2n minterms in the truth table representa-
tion of a Boolean function, we need to copy the CNF for the 
structure 2n times as described in formula (1.4). The leads to an 
overall structure size on the order of . O(2 )n S⋅

4. IMPROVEMENTS 
In this section we will present an improved Boolean matching 
formulation using implicants. The actual speed-up of improve-
ment shown by using this formulation, called SAT-BM-I, shall 
be described in the results section. Every improvement pre-
sented here will deal with reducing the complexity of the prob-
lem given to our SAT solver in terms of the number of variables 
and the number of clauses. In our final implementation we were 
able to get an answer from the SAT solver for most of our prob-
lems within four seconds.   

4.1 Implicant vs. Minterm Formulation 
The largest improvement over the original algorithm can be 
achieved only when we begin to consider the implicant repre-
sentation of the functions versus their truth table representation. 
Here we are using don’t cares (implicants) to simply a SAT 

problem which shouldn’t be confused for [13] where they use 
SAT to calculate don’t cares. The original method consumed 
exponential space and time in proportion to its input size, i.e., 
for a n-input function there are 2n minterms, so the CNF for the 
test structure had to be copied 2n times.  

 
Figure 2. A 3-input function using two 2-LUTs. 

To simplify the explanation, we will once again consider the 
problem of Boolean matching as it applies to a 3-input Boolean 
function and a 2-input LUT architecture. In this situation the 
question will be, can we find an assignment to configuration bits 
C such that the output F of the structure (Figure 2) has the same 
functionality as a function f; i.e., does  

[ ] s.t.  ( ) ( , ) ?C x f x F x C∃ ∀ =  Before we present the actual 
method, let us compare the number of implicants versus the 
number of minterms. For example, consider the Boolean 3-input 
AND function over three variables x1, x2, and x3. The complete 
truth table representation of the function can be seen in Figure 3 
which is exponential in the size of its inputs. Now, when we 
consider its equivalent representation using implicants (seen in 
Figure 4 and calculated internally in MVSIS [8]), we see that the 
number of lines/implicants that it takes to represent the function 
is cut in half. In general, the reduction is much more for func-
tions with a larger number of inputs. From experimental data we 
were able to conclude that for n-input cones (where 7<n<11), it 
takes roughly 3 n⋅  number of implicants to fully represent most 
functions, while the original method required  2 .n

AND gate 
x1 x2 x3 f 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 

Figure 3. Truth table of an AND gate. 
 



AND gate 
x1 x2 x3 f 
0 * * 0 
* 0 * 0 
* * 0 0 
1 1 1 1 

Figure 4. AND gate representation using implicants. 

The only thing left to consider is how to create a new CNF to 
handle the * in the implicant representation. Recall that the * 
represents the ability of that variable to be both 1 and 0. To take 
care of this we have to consider two cases: first, the internal 
LUT (one whose output feeds into another LUT, seen in Figure 
5), and second, the output LUT (one whose output is the func-
tion output, seen in Figure 6). Consider Figure 7 for a graphical 
representation of how the two types of LUTs would connect 
together. When considering the internal LUT, the most difficult 
thing to model is the case where the output can become a * (its 
value can be either a 1 or a 0).  

To take care of this case, we duplicate the LUT structure 2k 
times where k is the number inputs to the LUT. This enables us 
to feed two versions of each variable into the LUTs (consider 
Figure 5 as an example). We follow the formula (1.5) for setting 
the variables. In Figure 5 if x1 is set to 0 or 1 then x1' and x1'' 
are both set to 0 or 1. But if x1 is a * then x1' is set to 0 while 
x1'' is set to 1. 

=⎧
= ⎨
⎩

=⎧
= ⎨
⎩

0            if *
'

          else
1          if *

''
         else

i
i

i

i
i

i

x
x

x
x

x
x

                                                   (1.5) 

Now the structure has the following property: if a certain input 
causes any of the LUTs to have different output values, f will be 
0 and f ' will be 1. But if all the LUTs have the same output 
value, f and f ' will also have that same value.  

While this modification enables the structure to take care of the 
* in the implicants, it also causes the structure to increase in size 
by 2k

. But if the number of implicants is greatly less than the 
number of minterms, this then reduces the complexity of the 
problem.  

Observation: The implicant formulation of Boolean matching 
will create a SAT problem most of the time of size 

 where S is the number of clauses needed to repre-
sent the structure, k is the size of the LUT, and m is the number 
of implicants in the function.  

⋅ ⋅O( 2 ),km S

Proof: The new formulation needs to duplicate each LUT 2k 
times; therefore, the total number of clauses needed to represent 
the structure is . Since we only have to duplicate the 
structure m times, the total size of the SAT instance becomes 

.                                                                               ■ 

⋅O(2 )k S

⋅ ⋅O( 2 )km S

Theorem 1: The new CNF Φ is equivalent to the original CNF 
Φorig.  That is 

( ) ( )( ) ( ) ( )( )
| | | |

0 0

, ,
imp min

orig orig
BM k k BM k k

k k

f G imp f imp f G min f min
= =

Φ = ≡ Φ =∏ ∏  

where imp is the set of implicants (product terms) of  a 

sum-of-product representation of f, and min is the set of 
all minterms of f. 
 
Proof: It is important to first remember that the CNF Φ is con-
structed using a set of GBM, one for each implicant. Now if we 
were able to show that each GBM, used to construct Φ, was 
equivalent to a set of orig

BMG  we could easily prove the equiva-
lence by simple substitution since implicant representation can 
be expanded into minterm representation. Let us first assume we 
have an arbitrary function f. Now we arbitrarily pick a implicant 
imp from the set of implicants used to define f, so we want to 
show the resulting CNF GBM(imp,f(imp)) implies the CNF 

( )( )| |

0 BM k kk =
 

k
. Since every 

implicant can be broken up into a set of minterms, we shall use 
this as an intermediate step. 

,  min origG min f min∏ imp min= ∨

 

s.t. k

( )( ) ( )( )
| |

0

, ,
min

BM BM k k
k

G imp f imp G min f min
=

=∏  

Now the question becomes does GBM equal orig
BMG when both are 

instantiated using a minterm. By examining the encoding (1.5) 
where all the LUTs that share common configuration will be 
equivalent we can see that GBM does become orig

BMG (consider 
Figure 7 as an example). 

The other direction is trivial since a minterm can also be an im-
plicant. Now by replacing every implicant generated GBM by an 
equivalent set of minterm generated orig

BMG we have transformed 
CNF Φ into CNF Φorig and showed their equivalence.                ■ 

It was previously shown the original formulation, SAT-BM-M, 
created a SAT instance on the order of 2n, while SAT-BM-I’s 
were on the order of 2 .km ⋅  Experimentally, we have calculated 
that the average number of implicants needed to represent a 
Boolean function, m, is around  or O(n). Therefore, on av-
erage our problem size is on the order of 

⋅3 n
⋅ ⋅O( 2 )kn S  which is 

significantly smaller than  for large functions. ⋅O(2 )n S

Let us examine the case where we are trying to test the feasible 
of implementing a 10-input cone using three 4-LUTs. In both 
formulations the variables in the SAT instance are the configura-
tion bits and the wires, but the wires are determined by the con-
figuration bits. Since the number of major decisions (i.e., the 
selection of the configuration bits) is the same in both formula-
tions, the next thing that defines the complexity of the problem 
is the number of clauses. In the original formation the resulting 
CNF passed to SAT would be of size  (size of structure) = 102 ⋅

102 ⋅ S  = ⋅1024 S , where S is the number of clauses needed to 
represent the structure’s functionality. In our formula the size of 
the CNF would be around  (size of structure) = 4(3 10) 2⋅ ⋅ ⋅
480 ,S⋅  and this number can go down to as little as ⋅176 S  (as 
in the case where you have an AND function on 10 variables, 
since that would only have 11 implicants). This shows that for 
larger cones, using implicants greatly simplifies the problem.  

 



 
Figure 5. New internal LUT structure (Figure 2 LUT 

a). 
 

 
Figure 6.  New output LUT structure (Figure 2 LUT 

b). 
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Figure 7. Detailed diagram a resynthesis structure for testing 3-input functions

4.2 MUX Choice Reduction 
In the original formulation the LUT could accept any permutation 
of the inputs because every LUT had virtual multiplexers feeding 
its inputs. This allowed the resynthesis structure to increase the 
number of functions it could represent by a factor of n!, where n is 
the fanin size of the resynthesis cone. These “virtual multiplexers” 
added a great deal of unnecessary complexity to the problem. The 
number of distinct combinations to a single LUT is n choose k 
( ) not the  combinations produced by 

the SAT-BM-M formulation. The way we reduce the number of 
combinations by k! is by adding restrictions to the select signals of 
the MUXes corresponding to a single LUT. If we consider the 
structure proposed in 

!/( ! ( )!)n k n k⋅ − !/( )!n n k−

Figure 1 and more specifically MUXes M1 
and M2, we realize that by adding the restriction that M1 must 
select a signal with a lower index than M2, we can reduce the 
number of different possible inputs to the first LUT. This can be 
easily done by adding the following set of clauses to our CNF 
description (1.6). The reduction in exploration space is due to a 
reduction of symmetric configuration. This CNF can be easily 



generated by a multitude of tools available online for converting 
Boolean formulas into CNFs [17]. 

9 11 9 11 10 12

9 11 9 11 9 11 10 12

9 11 9 12 9 10 10 11 11 12

(C C ) (C =C ) (C C )
converting the + and =

(C C ) ((C C )+(C C )) (C C ))
after converting it to a CNF 

(C +C ) (C +C ) (C C ) (C +C ) (C +C )

< + ⋅ <

= ⋅ + ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ + ⋅ ⋅

  (1.6) 

4.3 Reduction in Number of Test Structures 
used in Resynthesis 
In the original formulation of test structures for resynthesis every 
connection pattern of LUTs required a different test structure. 
This might be acceptable for a testing a 10-input function, but as 
the number of inputs to the structure increases linearly, the num-
ber of structures grows exponentially. For example, when SAT-
BM-M tested a 10-input function, we had to run two instances of 
SAT since there were two 10-input structures. These structures 
can be seen in Figure 8. When SAT-BM-M tries to test a 13-input 
function, it has to run SAT on four different CNFs. 

There are two problems with this design. First, each 10-input cone 
has to be tested on two structures. Second, this doesn’t extend to 
larger cones since a 13-input cone would have four separate re-
synthesis structures. The simplest and cleanest way to combine 
these two structures into one is by adding one MUX with one 
extra configuration bit. The resulting structure allows the SAT 
solver to pick which structure to use. An example of the new 10-
input structure can be seen in Figure 9. This new method for cre-
ating resynthesis structures is easily extended to larger cones since 
it allows only one structure for any function size.  

 
Figure 8. Original 10-input structures. 

 

 
Figure 9. New 10-input structure. 

 

 5. RESULTS 
The results will be presented in two sections. First we will com-
pare our proposed method SAT-BM-I with SAT-BM-M [10] in 
terms of their SAT instance size: specifically, the number of vari-
ables, number of clauses and the run time. Second, we will use 
our Boolean matching formulation and apply it to resynthesis 
where we are able to reduce the area of ZMap (area-only minimiz-
ing mapper) by 10%. 

5.1 Boolean Matching Improvement  
In this section we present a quantitative comparison between the 
original Boolean matching algorithm (SAT-BM-M) [10] and our 
new implicant-based version (SAT-BM-I).  

In our experiment, we selected first 220 eligible functions (i.e. 
those that either BM technique doesn’t time out on) from the 
MCNC benchmarks and then ran them against both algorithms 
using ZChaff as the SAT solver. We only reported the results 
from eligible functions because functions that caused both meth-
ods to time out do not provide meaningful data for comparison. 
This method of selecting the functions was fair because neither 
the user nor the author has any influence on which functions were 
chosen. The data was gathered after running experiments on a 
1.8GHz AMD Opteron processor. After evaluating functions with 
size varying from a 5- to 10-input, we saw that, on average, the 
new BM approach solved 77% more problem instances and ran 12 
times faster. The most noticeable difference was seen when exam-
ining 10-input functions, where the new method solved 4.6 times 
as many problems and ran more than 14 times faster.  

We can confirm the validity of our previous claim by examining 
the data in Table 1. First, when examining the details of SAT-
BM-M we can see that it takes twice as many variables to test a 
function with one more input. This is because the problem size (as 
expressed by the number of clauses and variables) grows by a 
factor of two with each additional input variable. Second, we see 
that the size of the problem generated by SAT-BM-I only in-
creases a very small amount between the functions of different 
size, as predicted by the theorem. 



Table 1. SAT instance comparison 

 function 
size 5 6 7 8 9 10 Total

 # functions 
examined 2 16 71 13 30 88 220 

# variables 309 608 1237 3393 6834 13411 4299
# clauses 3111 7218 15838 53009 106878 211863 66319
run time 

(s) 0.11 1.12 4.60 40.30 44.38 52.27 23.80

SA
T-

B
M

-M
 

% solved 100% 100% 94% 54% 43% 22% 56%

# variables 307 505 497 906 847 949 668 
# clauses 7062 12206 11938 21989 20423 23147 16128
run time 

(s) 0.02 0.29 0.55 5.28 1.92 3.70 1.96 

SA
T-

B
M

-I
 

% solved 100% 100% 100% 100% 100% 100% 100%

time  
reduction 5.50 3.86 8.41 7.63 23.17 14.12 12.15

Im
pr

ov
em

en
t 

ratio 
solved 1.00 1.00 1.06 1.86 2.31 4.63 1.77 

 

5.2 Resynthesis Algorithm using SAT-BM-I 
We present the following algorithm not a resynthesis algorithm 
(even though the results suggest that it works fairly well) but as a 
usable proof of concept to our BM matching improvements. In 
our algorithm (written in the MVSIS [8] environment) we em-
ployed several techniques to speed up cut enumeration [14], and 
we also selected the cones based on a greedy approach from PO to 
PI. In this section we will present the results (Table 2) of running 
our resynthesis algorithm, RIMatch, on the mapped solutions 
produced by ZMap [5] on the MCNC benchmarks.  Due to the 
speedup we were able to set a time limit of 4 seconds, twice the 
average run time (Table 1), for each SAT instance which enabled 
us to run our resynthesis algorithm two times on each one of the 
circuits. We used ZMap [5] because it is the best publicly avail-
able mapper that only minimizes area and it allowed us to give a 
direct comparison to the original resynthesis algorithm presented 
in [10] which also tested against ZMap. It should be noted that 
using this algorithm on ABC [18] and DAOmap [3] produced 
improvements of 6% and 8%, respectively, but in this paper we 
will not focus on these modern algorithms since their first goal is 
to optimize depth not area. Using the MCNC circuits that were 
initially mapped by ZMap, we were able to reduce the area by an 
average of 10%, which is 4% better than the results presented 
along with the original formulation [10].  RIMatch took about 20 
hours to resynthesize every one of the MCNC benchmarks, but by 
running the resynthesis algorithm once over each circuit or by 
setting a smaller timeout, the total run time could be reduced to a 
few hours. Please note that this is a great improvement over the 
SAT-BM-M method [10] which would have taken almost two 
days to finish.  

Table 2. Benchmark circuit resynthesis results. 
Circuit Zmap RIMatch Ratio 
clma 5053 4602 0.91 

b15_1 4272 3980 0.93 
b15_1_opt 3854 3570 0.93 
s38584.1 3822 3398 0.89 
s38417 3593 2934 0.82 

b14 3153 2622 0.83 
frisc 2658 2415 0.91 
pdc 1944 1808 0.93 

misex3 1199 1121 0.93 
seq 1191 1133 0.95 
alu4 1140 1061 0.93 
ex5p 1002 948 0.95 
i10 794 741 0.93 

Total 33675 30333 0.90 
 

Since the code of the enhanced BM methods recently proposed in 
[16] is not available, we did not make a direct comparison with it. 
We did not attempt to re-implement the method in [16], as a lot of 
implementation details were left out on how the re-used conflict 
clauses were selected. Any attempt of simple-minded re-
implementation would have not been fair to [16] since that is the 
main difference between that algorithm and the original one. Nev-
ertheless, since the experimental results in [16] claimed a 340% 
run time improvement and 27% more success in mapping than the 
SAT-BM-M approach in [10], comparing to our results reported 
in this section, we conclude that our approach SAT-BM-I is 4.1x 
faster and solves 2.6x more problems when compared to [16].  It 
is interesting to note that our implicant-based method is orthogo-
nal to the enhancement proposed in [16] by efficient the re-use of 
conflict clauses. So, we expect that our proposed techniques can 
be combined with that of [16] to get further improvement.  

6. CONCLUSION  
In this paper we presented several techniques that enable SAT-
based BM to decide the optimal number of 4-LUTs needed to 
implement a function within a matter of seconds. Using our new 
implicant formulation (SAT-BM-I), when matching 10-input 
functions, we were able to get a 14 times better run time, and we 
were able to solve 4.6 times as many problems. Finally, we used 
SAT-BM-I to create an algorithm, RIMatch, to resynthesize a 
mapped circuit to reduce its overall area. Using the RIMatch algo-
rithm, we were able to reduce the area of circuits produced by 
ZMap, on average, by 10%. 

The binary for RIMatch, the Perl script to create the CNFs, and 
the CNFs for all the test structures can be downloaded at 
http://cadlab.cs.ucla.edu/~kirill.  
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