
Field-Programmable Gate Array Logic Synthesis
Using Boolean Satisfiability

by

Andrew C. Ling

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2005 by Andrew C. Ling

Abstract

Field-Programmable Gate Array Logic Synthesis

Using Boolean Satisfiability

Andrew C. Ling

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2005

Field-Programmable gate arrays (FPGAs) are reprogrammable logic chips that can be config-

ured to implement various digital circuits. FPGAs are fast replacing custom ASICs in many

areas due to their flexibility and fast turn around times for product development. However,

these benefits come at a heavy cost of area, speed, and power.

The FPGA architecture and technology mapping phase are fundamental in determining

the performance of the FPGA. This thesis presents novel tools using Boolean satisfiability

(SAT) to aid in both these areas. First, an architecture efficiency evaluation tool is developed.

The tool works by reading in a description of the FPGA architecture and rates how flexible

that architecture can be in implementing various circuits. Next, a novel technology mapping

approach is developed and compared to current methods. This work contrasts with current

approaches since it can be applied to almost any FPGA architecture. Finally, a resynthesis

algorithm is described which rates the utility of current FPGA technology mappers where it

can also be used to discover optimal configurations of common subcircuits to digital design.

ii

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor

Stephen D. Brown. His laissez-faire guidance gave me enough freedom to

explore my creative side yet he has always steered me in the right direc-

tion during my research. Secondly, I would like to thank Dr. Deshanand

P. Singh, whose ideas had a huge impact on my research. He has always

been generous with his time and has given me a great appreciation for

research and what it can accomplish. In addition, I would like to thank

Dr. Valavan Manohararajah, Professor Zvonko Vranesic, Franjo Plavec,

Blair Fort, and Tomasz Czajkowski. Their constructive criticisms have

been vital to my development and the quality of my work. I would

also like to thank Professor Andreas Veneris and his group. Particularly

Alexander Smith and Sean Safarpour. Both their friendship and techni-

cal advice were helpful in this entire process. As a final note, both the

folks in LP392 and SF2206 have made this entire journey much more

enjoyable than if I took it on my own. Of course, I am thankful for my

family’s support throughout this; I am not done yet, but hopefully soon.

Finally, I thank NSERC for their financial support which was pivotal in

allowing me to focus on my studies.

iii

”Research is what I’m doing when I don’t know what I’m doing.”

- Wernher von Braun (1912-77), German-born American rocket engineer

Contents

List of Tables vii

List of Figures viii

List of Algorithms x

List of Terminology xi

1 Introduction 1

1.1 Background and Motivation . 1

1.1.1 Technology Mapping . 5

1.2 Purpose and Scope . 8

2 Boolean Satisfiability Applied to FPGA Synthesis 9

2.1 Introduction to Boolean Satisfiability and Quantified Boolean Formulae 9

2.2 Solving the Boolean Satisfiability Problem . 10

2.3 Heuristics To Solve the Boolean Satisfiability Problem 12

2.3.1 Boolean Constant Propagation . 12

2.3.2 Conflict Analysis . 13

2.3.3 Non-Chronological Backtracking . 14

2.4 Quantified Boolean Satisfiability (QSAT) . 15

2.5 Converting Problem to Boolean Satisfiability . 20

2.6 Limitations . 27

2.7 Summary . 28

v

3 Evaluation of FPGA Programmable Logic Blocks 29

3.1 The Programmable Logic Blocks . 29

3.2 Evaluation Method . 30

3.3 Experiments . 33

3.4 Summary . 35

4 Technology Mapping to Programmable Logic Blocks 36

4.1 Extending Programmable Logic Block Mapper 36

4.2 Iterative Technology Mapper - IMap . 37

4.2.1 Generating K-Feasible Cones . 37

4.2.2 Forward Traversal . 38

4.2.3 Backward Traversal . 40

4.2.4 Extending to PLBs . 42

4.3 Results . 42

4.4 Summary . 43

5 Technology Mapping Evaluation using Resynthesis 46

5.1 Evaluation of Area Driven Technology Mapping 46

5.2 Resynthesizing for Area . 48

5.2.1 Converting Resynthesis Problem into Boolean Satisfiability 48

5.2.2 Generation of Cones . 49

5.3 Results . 50

5.3.1 Benchmark Circuits . 52

5.3.2 Building Block Circuits . 53

5.4 Summary . 54

6 Conclusions and Future Work 55

6.1 Contributions . 55

6.2 Future Work . 56

Bibliography 59

vi

List of Tables

2.1 Conversion rules for CNF Construction. 10

2.2 Characteristic functions for basic logic elements [45: ch.2]. 22

2.3 The runtimes of the Chaff SAT solver [34] and the associated CNF expression sizes. 28

3.1 The percentage of cones that fit into a given PLB. 34

3.2 The percentage of cones that fit into the simplified Spartan-IIE PLB. 35

4.1 SATMAP comparisons with depth-oriented mapping. 44

4.2 SATMAP comparisons with area-oriented mapping. 45

5.1 Benchmark circuit resynthesis results. 52

5.2 Logic block resynthesis results. 53

vii

List of Figures

1.1 A CAD flow to realize a circuit in an FPGA. 2

1.2 A generic island-style FPGA architecture. 3

1.3 A 2-input lookup table. 4

1.4 A PLB architecture: the Altera Stratix II ALM [6] 5

1.5 Technology mapping as a covering problem. 6

2.1 A Boolean formula in Conjunctive Normal Form. 10

2.2 An example of a unit clause, given that x1x2x3 = 110 and x4 is free. 12

2.3 A conflict-driven analysis implication graph. 14

2.4 Backtracking due to a conflict in Figure 2.3. 15

2.5 Adding quantifiers to a Boolean expression to form a QBF. 16

2.6 A quantified Boolean satisfiability example. 18

2.7 A characteristic equation derivation for 2-input AND gate. 21

2.8 A cascaded gate characteristic function. 23

2.9 An example programmable circuit. 24

2.10 An example programmable circuit with virtual multiplexers added. 26

3.1 An example of a PLB. 30

3.2 A limitation of a 3-input PLB. 30

3.3 A cone of logic and a maximum fanout free cone example. 32

3.4 A reconvergent cone example. 32

3.5 PLB architectures used in experiments. 33

viii

4.1 Depth bound for cones selected by BestCone during depth-orientated mapping. 39

4.2 Illustration of fanout dependency on the cone covering. 40

4.3 Equation for estimating a node’s fanout size. 40

4.4 The Altera Apex20k PLB. 42

4.5 Apex20k PLB routing constraints. 43

5.1 A configurable virtual network. 47

5.2 Resynthesis of a 3-input cone example. 49

5.3 A multiple output cone used for resynthesis. 50

5.4 Resynthesis structures used in experiments. 51

ix

List of Algorithms

2.1 A recursive algorithm to solve SAT. 11

2.2 A high-level algorithm to solve Quantified Boolean Satisfiability. 19

4.1 A high-level overview of the original IMap algorithm. 37

4.2 The algorithm used for forward traversal. 38

4.3 The algorithm used for backward traversal. 41

5.1 16-Bit Barrel Shifter Verilog Code . 53

x

List of Terminology

Term Description Reference

FPGA Field Programmable Gate Array Sec. 1.1

LUT Lookup Table: a programmable circuit used to implement
various logic functions.

Sec. 1.1

PLB Programmable Logic Block: a programmable circuit used to
implement various logic functions, more rigid that a LUT,
but has other benefits.

Sec. 1.1

Technology Mapping The process of converting generic netlists to specific logic
libraries.

Sec. 1.1

SAT Boolean satisfiability: determining if a Boolean formula can
evaluate to true.

Sec. 2.1

QSAT Quantified Boolean satisfiability: determining if a quantified
Boolean formula can evaluate to true.

Sec. 2.1

CNF Conjunctive Normal Form: a Boolean expression consisting
of a conjunction of clauses.

Sec. 2.1

clause A Boolean expression consisting of a disjunction of variables
or their complements.

Sec. 2.1

QBF Quantified Boolean formula: a quantified Boolean formula. Sec. 2.1

PI Primary input: node in a circuit graph that has no input
edges.

Sec. 3.2

PO Primary output: node in a circuit graph with no output
edges.

Sec. 3.2

K-Bounded Graph A directed acyclic graph where all nodes have no more than
K input edges.

Sec. 3.2

cone A subgraph with a root node and a subset of its
predecessors that have a path to the root node entirely
contained in the subgraph.

Sec. 3.2

FFC A fanout free cone that has output edges leaving the cone
only from the root node.

Sec. 3.2

MFFC A maximum fanout free cone that maximizes the number of
nodes contained in the cone.

Sec. 3.2

xi

Term Description Reference

depth The sum of the edge weights in a DAG along the longest
forward path starting from a primary input and ending at a
node. The depth of the DAG is the longest node depth
found in the graph.

Sec. 4.2.2

height The sum of the edge weights in a DAG along the longest
backward path starting from a primary output and ending
at a node. The height of the DAG is the longest node height
found in the graph.

Sec. 4.2.2

xii

Chapter 1

Introduction

1.1 Background and Motivation

Since their introduction in 1984, Field-Programmable Gate Arrays (FPGAs) have revolutionized

access to VLSI. FPGAs are programmable chips that can be used to quickly implement any

digital circuit, as opposed to custom ASICs which have a large start up cost in terms of money

and development time. However, even with this flexibility, dollar for dollar FPGAs still only

comprise 5% of the digital silicon market [38]. This is because the benefits of FPGAs come

at a high cost in terms of area, speed, and power. These characteristics are determined by

three areas: the CAD flow responsible for implementing digital circuits on FPGAs; the FPGA

architecture; and the FPGA transistor-level design. Research in all these areas is necessary if

FPGAs are to overtake more sectors in the digital market. This dissertation hopes to aid this

goal by introducing several tools that can be used to improve FPGA EDA tools and architecture.

Also, this work introduces a novel application of Boolean Satisfiability to EDA.

The basic CAD flow to implement a circuit in an FPGA is shown in Figure 1.1. The CAD

flow starts with a description of the circuit, usually in the form of a hardware description

language (HDL) such as VHDL. Once the description is verified through simulation, synthesis

occurs where the description is synthesized into a gate-level network consisting of primitive

gates. Next, technology mapping occurs where the gate-level network produced in synthesis

is converted into a network of programmable logic blocks (PLBs). Place and route is then

1

Chapter 1. Introduction 2

Start

High Level Circuit
Description

����������	

����
��

�����

��	
�������

Synthesize

Technology
Map

Place and
Route

���	�����		�	

�������

�����

������������

�����������	

��		��	�	� �����
��
���

End

��

��

��

��

��

��

!"#$%&'(()*+,-.
/&012

-.

Optional:
Physical Synthesis

Figure 1.1: A CAD flow to realize a circuit in an FPGA.

responsible to physically arrange the PLB network such that it fits into an FPGA. As an

optional step, most advanced FPGA CAD tools have a physical synthesis phase which takes

advantage of information only available after place and route, such as routing wire delays,

to further optimize the final circuit. Throughout the CAD flow, attempts to reach a set of

speed, area, and power goals are made and a final circuit analysis is done to see if the goals

were achieved. If not, designers can either try different options provided by the tools, relax

their goals, or modify the design. This simplistic CAD flow omits many details, but shows the

Chapter 1. Introduction 3

significant role of the CAD tools on FPGA circuit implementation. Furthermore, the CAD

tools must be tightly integrated with the FPGA architecture so that they can make judicious

use of the available resources. The work presented in this dissertation looks specifically at the

technology mapping phase.

� �� �� �� �� �
� � �� � �� �� �
� � �� �

�����
� �� �	 		 	

� �� �� �� � �� � �� � �

� �� �� �� �� �

� � �� � �� �� �
� � �� �

�����
� �� �� �� �

� �� �� �� �

� � � �� � � �� � � �� � � �
� � �� � �� � �� � �

� �� �� �� �� �� �� �� �� �� �� �� � ! ! !! ! !! ! !" " "" " "# # ## # #

$ $$ $% %% %
& & && & &' '' '
(((((())))

* ** *+ ++ +
, , ,- -

. . ./ /
0011

2 22 23 33 3 4 44 44 4
5 55 55 56 6 66 6 66 6 67 7 77 7 77 7 7

8 88 89 99 9
: : :: : :; ;; ;
< < << < <= == =

>>??
@ @@ @A AA A B BB BB BB B

C CC CC CD D DD D DD D DD D DE E EE E EE E E
FFGG

H HH HH H
I II II I

J J JJ J JK K KK K K
L L LL L LL L L

M M MM M MM M M
N NN NN NO OO O

P PP PQQ
R RS

TTTUU V VV VV V
W WW WW W

X X XX X XY Y YY Y Y
Z Z ZZ Z ZZ Z Z

[[[[[[[[[

Vertical Routing Wires

IO Pad

Programmable Logic Block
Switch Block

Connection Block

Horizontal Routing Wires\\\]]

^ ^^ ^_ __ _
` `` `a aa a

b b b bb b b bb b b bb b b b
c c cc c cc c cc c c

d dd dd dd de ee ee ef ff ff ff fg gg gg g h h hh h hh h hi i ii i ii i ij j jj j jk k kk k k

l ll ll lm mm m
n n nn n no oo o
p p pq q

rrrsst tt tt tu uu u
v v vv v vw ww w
x x xy y

zzz{{ | || || |
} }} }} }

~ ~ ~~ ~ ~� � �� � �
� � �� � �� � �

� � �� � �� � �
� �� �� �� �� �

� �� ���
� ��

� ��

� ��
����

� �� �� �� �
� �� �� �� �

� � �� � �� � �� � �
� � �� � �� � �� � �

� �� �� �� �� �� �� �� �� �� �� �� � � � �� � �� � �� � �� � �� � �� � �� � �� � �� � �
� �� �� �� �

� � �� �

 ¡ ¡
¢¢££

¤ ¤¤ ¤¥ ¥¥ ¥
¦ ¦¦ ¦§ §§ §

¨ ¨ ¨ ¨¨ ¨ ¨ ¨¨ ¨ ¨ ¨¨ ¨ ¨ ¨
© © ©© © ©© © ©© © ©

ª ªª ªª ª« «« «« «¬ ¬¬ ¬¬ ¬­ ­­ ­­ ­ ® ® ®® ® ®® ® ®¯ ¯ ¯¯ ¯ ¯¯ ¯ ¯° ° °° ° °± ± ±± ± ±
² ²² ²³ ³³ ³´ ´´ ´µ µµ µ

¶ ¶·

¸ ¸¹
ºº»»

¼ ¼¼ ¼½ ½½ ½
¾ ¾¾ ¾¿ ¿¿ ¿

À À À ÀÀ À À ÀÀ À À ÀÀ À À À
Á Á Á ÁÁ Á Á ÁÁ Á Á ÁÁ Á Á Á

Â ÂÂ ÂÂ ÂÃ ÃÃ ÃÃ ÃÄ ÄÄ ÄÄ ÄÅ ÅÅ ÅÅ Å Æ Æ ÆÆ Æ ÆÆ Æ ÆÇ Ç ÇÇ Ç ÇÇ Ç ÇÈ È ÈÈ È ÈÉ É ÉÉ É É

Ê ÊÊ ÊË ËË Ë

Ì ÌÍ
ÎÎÎÏÏ

Ð ÐÐ ÐÑ ÑÑ Ñ
Ò ÒÒ ÒÓ ÓÓ Ó

Ô Ô Ô ÔÔ Ô Ô ÔÔ Ô Ô ÔÔ Ô Ô Ô
Õ Õ Õ ÕÕ Õ Õ ÕÕ Õ Õ ÕÕ Õ Õ Õ

Ö ÖÖ ÖÖ Ö× ×× ×× ×Ø ØØ ØØ ØÙ ÙÙ ÙÙ Ù Ú Ú ÚÚ Ú ÚÚ Ú ÚÛ Û ÛÛ Û ÛÛ Û ÛÜ Ü ÜÜ Ü ÜÝ Ý ÝÝ Ý Ý
Þ ÞÞ ÞÞ Þß ßß ß

à àà àáá
â âã

äääåå
æ ææ æç çç ç

è èè èé éé é

ê ê êê ê êê ê êê ê ê
ë ë ëë ë ëë ë ëë ë ë

ì ìì ìì ìí íí íí íî îî îî îï ïï ïï ï ð ð ðð ð ðð ð ðñ ñ ññ ñ ññ ñ ñò ò òò ò òó ó óó ó ó
ô ôô ôõõ

ö öö ö÷÷
ø øø øùù

úúûû
ü üü üý ýý ý

þ þþ þÿ ÿÿ ÿ

� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �
� �� �� �� �
� �� �� �� �� �� �� �

� �� �� � � � �� � �� � �� � �� � �� � �
� � �� � �	 	 		 	 	

� �� �
� �� �

� �� ���

����

� �� �� �� �
� �� �� �� �

� � �� � �� � �� � �

� � �� � �� � �� � �
� �� �� �� �
� �� �� �� �� �� �� �

� �� �� � � � �� � �� � �� � �� � �� � �
� � �� � �� � �� � �

 ! !! !

Figure 1.2: A generic island-style FPGA architecture.

The flexibility of FPGAs can be attributed to their reprogrammable routing structures and

logic blocks. This is illustrated in Figure 1.2, where a generic island-style FPGA architecture

is shown. The programmable logic blocks (PLBs, also known as configurable logic blocks, logic

blocks, or logic elements) implement the circuit’s logic functions, and the connection and switch

blocks provide connections between routing wires. There exists a large body of work exploring

various PLB architectures [2, 7, 14, 15, 26, 27, 39, 40], all of which are based upon the K-input

lookup table (K-LUT).

Chapter 1. Introduction 4

x2

L1

L3

L4

L2

00

01

10

11

x1

Figure 1.3: A 2-input lookup table.

A K-LUT consists of K inputs, one output, and 2K configuration bits that serve as truth

table entries. For example, Figure 1.3 shows a simple 2-LUT. By programming the 2K config-

uration bits, the K-LUT can implement any K-input function. There exists a large body of

research investigating an ideal K value. It has been shown that setting K to five or greater

provides a significant speed advantage over smaller numbers [44]. However, when taking area

into consideration, previous work has shown the benefits of setting K to four [39, 40].

Although the K-LUT is very flexible, it is usually beneficial to add non-programmable logic

to the PLB [38]. For example, Figure 1.4 shows a commercial PLB architecture [6] where a large

portion of the PLB is not programmable. Dedicated circuitry allows PLBs to implement a wider

range of functions without the area, delay, and power costs associated with programmable logic.

Furthermore, dedicated circuitry often work in conjunction with special interconnect structures

to directly connect two or more PLBs in a cascade fashion [4, 49] to produce extremely fast

subcircuits.

Unlike a K-LUT, a K-input PLB cannot implement all logic functions of K inputs. This

property makes technology mapping to complex PLB architectures such as that in Figure 1.4

difficult. Heuristic approaches that perform this task are of two categories: a customized

mapping algorithm [26, 27], or special Boolean techniques that decompose logic functions into

Chapter 1. Introduction 5

LUT 4

DC0

DC1

E1

share_in

LUT 3

+

carry_out

LUT 3

0

1

0

1

0

1

carry_in

share_out

F1

LUT 4

F0
E0

LUT 3

LUT 3

0

1

0

1

0

1

+

0

1

CLR

LD

D QD

DATA

EN

aclr[1:0]

aload

sc
lr

sl
oa

d

ena[2:0]

clk[1:0]

0

1

CLR

LD

D QD

DATA

EN

reg_cascade_out

REG0_out

SUM0_out

LUT0_out

reg_cascade_in

A

B

A

B

A

B

A

B

A

B

A

B
aload

aclr[1:0]

ena[2:0]

clk[1:0]

sc
lr

sl
oa

d

DC0

DC0

DC0

DC1

DC1

DC1

reg_cascade

LUT0_out

LUT1_out

LUT0

LUT1

REG0

REG1

Rshare carry

REG1_out

SUM1_out

LUT1_out

F1

F0

10

11

00

01

10

11

00

01

Figure 1.4: A PLB architecture: the Altera Stratix II ALM [6]

a form that maps directly into the PLB [14, 15]. A shortcoming of both these approaches is they

lack generality: for every possible new PLB architecture that is developed, considerable time

and effort is needed to create technology mapping heuristics. This dissertation addresses this

problem in a general way using Boolean satisfiability through a tool called SATMAP. Boolean

satisfiability is the problem of finding an assignment to the Boolean function F (x1, x2, ..., xn),

such that F evaluates to 1. This is discussed in detail in Chapter 2.

1.1.1 Technology Mapping

When technology mapping a gate-level network to PLBs, the goal is to minimize area, delay, or

a combination of the two. Most of the existing literature [12] on technology mapping uses the

term depth to refer to delay. This work adopts this terminology when describing technology

Chapter 1. Introduction 6

mapping.

x

edcba

f g
(a) Gate-level network

x

edcba

f g
(b) Possible covering

edcba

f g

����� �����

(c) Final LUT network

Figure 1.5: Technology mapping as a covering problem.

The process of technology mapping is often treated as a covering problem. For example,

consider the process of mapping a circuit into 4-LUTs as illustrated in Figure 1.5. Part (a)

illustrates the initial gate-level network, part (b) gives a possible covering of the initial network

using 4-LUTs, and part (c) shows the LUT network produced by the covering. In the mapping

shown, the gate labeled x is covered by both LUTs and is said to be duplicated. Techniques

that map for depth use large amounts of duplication to obtain solutions of reduced depth while

techniques that map for area limit the use of duplication because it often increases the area

of the mapped solutions. A large body of work covers this problem when applied to K-LUTs.

Latter chapters demonstrate how to adapt this work to generic PLBs.

One of the earliest works to study the depth minimization problem in LUT mapping showed

that the depth-optimal mapping solution can be obtained in polynomial time using a dy-

namic programming procedure [11]. Although this initial work assumed that the delay between

Chapter 1. Introduction 7

two primitive gates was constant, the result was subsequently generalized for a variable delay

model [51].

In contrast to the depth minimization problem, the area minimization problem was shown

to be NP-hard for LUTs of size four and greater [22, 31]. Thus, heuristics are necessary to solve

the area minimization problem. Early work considered the decomposition of circuits into a set of

trees which were then mapped for area [23, 28, 37]. The area minimization problem for trees is

much simpler and can be solved optimally using dynamic programming. However, real circuits

are rarely structured as trees and tree decomposition prevents much of the optimization that

can take place across tree boundaries. In a duplication-free mapping, each gate in the initial

circuit is covered by a single LUT in the mapped circuit. The area minimization problem

in duplication-free mapping can be solved optimally by decomposing the circuit into a set of

maximum fanout free cones (MFFCs) which are then mapped for area [10]. Although the area

minimal duplication-free mapping is significantly smaller than the area minimal tree mapping,

the controlled use of duplication can lead to further area savings. In [17], heuristics are used

to mark a set of gates as duplicable. Then area optimization is considered within an extended

fanout free cone (EFFC) where an EFFC is an MFFC that has been extended to include

duplicable gates.

Area minimization heuristics are typically used in concert with techniques that produce

depth-optimal mapping solutions. In FlowMAP-r [10], following a depth-optimal mapping

procedure, noncritical parts of the circuit are remapped with a duplication-free mapper. In

CutMAP [13], two strategies are used for selecting the gates covered by a LUT. Critical parts

of the circuit are mapped using a depth-minimizing strategy and noncritical parts are mapped

using a cost-minimizing strategy that encourages LUT sharing.

Although the previously mentioned heuristics often produce satisfactory solutions, it is

unknown how close their final solutions are to the optimal. Knowing this would give a theoretical

bound that area minimization heuristics could compare against. This work tackles this issue

by introducing a new tool that measures how far a technology mapped circuit is from the

area-optimal solution.

Chapter 1. Introduction 8

1.2 Purpose and Scope

This thesis shows a new application for Boolean satisfiability and demonstrates how it can be

successfully used in the technology mapping phase of the FPGA CAD flow. The purpose of

this work is to find an automated and robust approach to evaluate the efficiency of new FPGA

architectures. Also, an assessment of state-of-the-art FPGA technology mapping algorithms in

terms of area-optimality is done and new technology mapping techniques that are more general

than the existing approaches are developed.

Chapter 2 formalizes the previously mentioned problems and demonstrates how Boolean

satisfiability is applied to them. Chapter 3 describes the PLB evaluation tool and illustrates

how it can be effectively used to evaluate various PLB architectures. Chapter 4 explains how to

extend this tool to create a robust technology mapper, and compares it to other current LUT

based technology mappers. Chapter 5 presents a study on area-optimality and describes the

resynthesis technique used to perform this study. It demonstrates the power of the technique by

resynthesizing various technology mapped circuits and showing the area gains achieved using

this technique. Finally, Chapter 6 summarizes the results and suggests some future work.

Chapter 2

Boolean Satisfiability Applied to

FPGA Synthesis

2.1 Introduction to Boolean Satisfiability and Quantified Bool-

ean Formulae

In 1971, Steve Cook introduced Boolean satisfiability as the first problem classified as NP-

Complete [18: ch.34]. Given that P class problems have a polynomial run time, it is generally

thought that NP-Complete class problems are harder than P class problems. This statement,

although not formally proven, is often described by NP − C 6= P [18: ch.34]. As a result,

efficient heuristics must be applied to reduce the problem space and time requirements for

solving NP-Complete problems. Research in the area of Boolean satisfiability is an example of

this where heuristics have demonstrated performance improvements on a range of NP-complete

problems in the order of 1000× in comparison to brute force methods.

Given a Boolean formula F (x1, x2, ..., xn), Boolean satisfiability (SAT) asks if there is an

assignment to the variables, x1, x2, ..., xn, such that F evaluates to 1. If such an assignment

exists, F is said to be satisfiable, otherwise, it is unsatisfiable. A SAT solver serves to answer

the Boolean satisfiability problem.

For practical purposes, modern day SAT solvers work on Boolean formulae in Conjunctive

Normal Form (CNF). Boolean formulae in CNF consist of a conjunction of clauses. A clause

9

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 10

(A + B + C)︸ ︷︷ ︸ ·(A + B + C︸︷︷︸)

clause literal
(2.1)

Figure 2.1: A Boolean formula in Conjunctive Normal Form.

Logic Operation Symbolic Representation CNF

De Morgan’s Law (A + B) (A ·B)

(A ·B) (A + B)

Implication (A −→ B) (A + B)

Equivalence (A ←→ B) (A + B) · (A + B)

Table 2.1: Conversion rules for CNF Construction.

is a disjunction (logical OR) of literals and a literal is any Boolean variable, x ∈ {0, 1}, or its

complement. An example Boolean expression in CNF is shown in Figure 2.1. Any Boolean

formula can be converted to CNF using basic Boolean algebraic techniques such as those shown

in Table 2.1.

In CNF, the problem of SAT can be rephrased to the following: Given a Boolean formula,

F (x1, x2, ..., xn), in Conjunctive Normal Form (CNF), seek an assignment to the variables,

x1, x2, .., xn, such that each clause has at least one literal evaluating to 1. Interestingly, when

dealing with CNF Boolean formulae whose clauses all have less than three literals, SAT is a

polynomial problem [18: ch.34]. The moment any clause has three or more literals, the problem

becomes NP-Complete [18: ch.34].

2.2 Solving the Boolean Satisfiability Problem

One of the earliest works on SAT was done in 1960 by Davis and Putnam in [21]. This

was refined a few years later by Davis, Logemann, and Loveland in [20] to create the DPLL

algorithm. The DPLL algorithm was originally applied to theorem provers which attempt to

verify a set of propositional statements. The DPLL algorithm is based upon the splitting rule

which can be understood in terms of Shannon’s Decomposition [43], as shown in Definitions 2.2.1

and 2.2.2.

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 11

1 sat solve(F, V, A)
2 begin
4 if (F (A) ≡ 1)
5 return satisfiable
6 if (F (A) ≡ 0)
7 return unsatisfiable
9 // select a variable and assign it to 0

10 // to check if F(0,...) is satisfiable
11 select a variable p ∈ V
12 assign V ← (V − p)
13 assign p ← 0
14 assign A ← (A

⋃
p)

15 if (sat solve(F, V,A) ≡ satisfiable)
16 return satisfiable
17 // 0 assignment failed, assign it to 1
18 // to check if F(1,...) is satisfiable
19 assign A ← (A− p)
20 assign p ← 1
21 assign A ← (A

⋃
p)

22 if (sat solve(F, V,A) ≡ satisfiable)
23 return satisfiable
24 // Formula is not satisfiable under the current assignment.
25 unassign p
26 assign A ← (A− p)
27 assign V ← (V

⋃
p)

28 return unsatisfiable
29 end

Algorithm 2.1: A recursive algorithm to solve SAT.

Definition 2.2.1 Shannon’s Decomposition:

F (x0, x1, ..., xn) = x0 · F (0, x1, ..., xn) + x0 · F (1, x1, ..., xn) (2.2)

Definition 2.2.2 Splitting Rule: F (x0, x1, ..., xn) is satisfiable if and only if
F (0, x1, ..., xn) is satisfiable or F (1, x1, ..., xn) is satisfiable.

The splitting rule naturally defines a simple recursive algorithm for SAT shown in Algo-

rithm 2.1. Algorithm sat solve accepts three parameters: the function F, a set of variables V

that define F, and a set of assignments A to the variables in V. First sat solve checks if the cur-

rent assignment leads to a satisfiable or unsatisfiable solution. If F is in an indeterminate state

with respect to the current set of assignments, sat solve selects an unassigned variable (line 11

referred to as a free variable) and assigns it the value 0 (line 13). sat solve then recursively

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 12

checks if the remainder of the formula is satisfiable; if so, it returns satisfiable. If not, it toggles

the last variable assignment to 1 (line 20) and repeats the recursive check. If both assignments

lead to an unsatisfiable solution, sat solve returns unsatisfiable.

Algorithm 2.1 is horribly inefficient; however, it is the core of all modern day SAT solvers,

which have come a long way since the first DPLL algorithm. Some popular ones include

Chaff, Grasp, and SATO [33, 34, 53]. The reason for their success stems from heuristics which

can drastically reduce the search space of the SAT solver. These heuristics include, but are

not limited to, Boolean Constant Propagation, conflict-driven learning, and non-chronological

backtracking.

2.3 Heuristics To Solve the Boolean Satisfiability Problem

2.3.1 Boolean Constant Propagation

Boolean Constant Propagation (BCP) reduces the search space by ignoring decisions that will

create an obvious unsatisfiable state. BCP works by taking advantage of unit clauses to force

variable assignments in an implication process. A unit clause is a clause with only one free

literal where all other literals in the clause evaluate to 0. Thus to satisfy a unit clause, the

implication process forces the free literal to evaluate to 1. For example, given the assignment

shown in Figure 2.2, x4 must be assigned to 0 to satisfy the expression.

(x1 + x2)· (x2 + x3 + x4)︸ ︷︷ ︸
unit clause

(2.3)

Figure 2.2: An example of a unit clause, given that x1x2x3 = 110 and x4 is free.

The BCP process can be illustrated through an implication graph, which is a directed acyclic

graph where nodes represent variable assignments and directed edges represent implications due

to BCP. At each node, the notation xi = b @ l implies xi is assigned at time l to value b. For

example, in Figure 2.3b variables x1, x4, and x8 are assigned at time 0, 2, and 4 respectively.

The variables assigned at time 1, 3, and 5 are not shown for simplicity. Each implication

edge in Figure 2.3b is labeled to reference the clause subscripts shown in Figure 2.3a. The

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 13

referenced clause indicates the cause of the implication. For example, the edges labeled 1 imply

an implication occurred due to clause 1 ((x1 +x4 +x2)1) and variable assignments x1 = 1 @ 0

and x4 = 0 @ 2, with the resulting assignment, x2 = 1 @ 6. An interesting feature of BCP is

that they may form a chain of implications. For example, referring back to Figure 2.3b, when

clause 1 becomes a unit clause, x2 is forced to 1, which in turn causes two more implications

due to clause 2 and 4. This chain of assignments are directly related through implication and it

is impossible to satisfy the expression without following the implications to completion where

no more unit clauses remain. Thus, variables involved in a chained implication process are

grouped and all share the same time label. This is shown in Figure 2.3b where several nodes

are given a time value of 6. It is possible for BCP to create inconsistent implications. The

node labeled x7 = X @ 6 is an example of this and shows the two inconsistent implications

leading to that node. Inconsistent implications are known as conflicts. When a conflict occurs,

previous assignments must be undone until the conflict is removed. This process, referred as

backtracking, is very costly and heuristics are used such as conflict-driven analysis to minimize

the time spent backtracking.

2.3.2 Conflict Analysis

Conflict-driven learning is a process where conflict clauses are added to the Boolean formula to

remove solution space regions that always lead to an unsatisfiable solution. A detailed algorithm

of this can be found in [33] and is not discussed here, but referring back to Figure 2.3, a quick

explanation can be presented through an example. As stated previously, node x7 = X @ 6 is in

conflict due to the conflicting implication edges 5 and 6, thus backtracking must occur to undo

this conflict. However, without learning it is possible that this conflict arrangement may occur

again; thus, it is beneficial to add information to the Boolean formula to prevent this. Closer

inspection of the implication graph in Figure 2.3 shows that the conflict originates at edges 1

and 4 due to assignments x1 = 1, x4 = 0, and x8 = 1. Further analysis of Equation 2.4 shows

that assignment x1 = 1, x4 = 0, and x8 = 1 will always cause a conflict. Thus, to prevent this

in the future, a learned clause is added which is shown in Equation 2.5. The learned clause is

a redundant clause and does not change the meaning of the original Boolean formulae, but it

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 14

F = ...·(x1 + x2)0 · (x1 + x4 + x2)1 · (x2 + x6)2 · (x4 + x2 + x1)3·
(x2 + x5 + x8)4 · (x4 + x6 + x7)5 · (x4 + x5 + x7)6 · ...

(2.4)

(a) Boolean formula to illustrate BCP and conflicts.

x�=1 @ 0

x�=0 @ 2

x�=1 @ 6

x�=1 @ 6

x�=1 @ 6

x�=X @ 6

x�=1 @ 4

1

1
4

2

4

6

5

(b) Resulting implication graph from (a).

F = ... · (x1 + x4 + x8)

(c) Conflict clause added due to conflict in (b).

(2.5)

Figure 2.3: A conflict-driven analysis implication graph.

makes it impossible for the assignment x1 = 1, x4 = 0, and x8 = 1 to occur again.

2.3.3 Non-Chronological Backtracking

The process of reversing the most recent assignments due to a conflict is called chronological

backtracking (i.e. in-order backtracking). However, often several assignments can be reversed

out of order if the source of the conflict can be identified. This is known as non-chronological

backtracking. Like conflict analysis, non-chronological backtracking uses conflict information

to determine the original source of the conflict and reverse all the decisions to that source.

Continuing with the example in Figure 2.3, the original source of the conflict was due to node

x8 = 1 @ 4. Thus, the backtracking process should jump to decision level 4 to fix the conflict.

This is depicted in the decision tree shown in Figure 2.4b which contrasts with chronological

backtracking shown in Figure 2.4a. A decision tree represents the variable assignment process

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 15

where each branch represents an assignment decision and each leaf represents a satisfiable or

unsatisfiable solution. In the case of unsatisfiable solutions, the decision tree backtracks up the

tree to remove the conflict.

x�=1 @ 0

x�=1 @ 1

x�=0 @ 2

x�=1 @ 3

x�=0 @ 4

x��=0 @ 5

x�=0 @ 6 x�=1 @ 6

x�=1 @ 4

(a) Chronological backtracking.

x�=1 @ 0

x�=1 @ 1

x�=0 @ 2

x�=1 @ 3

x�=0 @ 4

x��=0 @ 5

x�=0 @ 6 x�=1 @ 6

x�=1 @ 4

(b) Non-chronological backtracking.

Figure 2.4: Backtracking due to a conflict in Figure 2.3.

2.4 Quantified Boolean Satisfiability (QSAT)

Often, there is the need to explore multiple solutions to a SAT expression. For example, one

may be interested in the “best” solution of a set of satisfiable assignments to a single SAT

expression, where “best” is defined by the given problem. Finding multiple SAT solutions can

formally expressed as a quantified Boolean formula and solved using Quantified Boolean Satis-

fiability. Quantified Boolean Satisfiability is similar to SAT: seek an assignment to a Boolean

formula such that it evaluates to 1. However, unlike SAT, it works on quantified Boolean

formulae where there may exist existential or universal quantifiers. This work will refer to

both Quantified Boolean Satisfiability and quantified Boolean formula both as “QBF” when its

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 16

(x1 + x2) · (x2 + x3 + x4) · (x3 + x4 + x5) · (x3 + x4 + x5) (2.6)

x1 = 0, x2 = 1, x3 = 0, x4 = 0, x5 = 1

(a) Simple Boolean expression and satisfying assignment.

∃x1x2x3x4x5(x1 + x2) · (x2 + x3 + x4) · (x3 + x4 + x5) · (x3 + x4 + x5))

(b) Same Boolean expression as in (a), but with existential quantifier shown.

(2.7)

∃x1x2∀x3x4∃x5(x1 + x2) · (x2 + x3 + x4) · (x3 + x4 + x5) · (x3 + x4 + x5) (2.8)

x1x2 = 01, x3x4 = {00 x5 = 1}, x3x4 = {01 x5 = 1}, x3x4 = {10 x5 = 0}, x3x4 = {00 x5 = 0}
(c) Quantified Boolean expression with universal quantifiers added.

Figure 2.5: Adding quantifiers to a Boolean expression to form a QBF.

meaning is obvious within the context. QBF fall under the class of problems known as P-Space

Complete [46] which are thought to be harder than NP-Complete problems. To understand the

complexity of QBF, consider Figure 2.5. Equation 2.6 shows a simple Boolean expression and

a possible satisfying assignment. Equation 2.6 is actually equivalent to Equation 2.7, but in

Equation 2.7 the existential quantifiers are shown explicitly. SAT implicitly asks if there exists

a single assignment to all of its variables that satisfies every clause. This implies that SAT

is a subset of QBF where SAT expressions can only include existential quantifiers. Following

Equation 2.7 is Equation 2.8 which is the same expression, but with universal quantifiers added.

Universal quantifiers changes the meaning of the Boolean expressions since it asks if all possi-

ble assignments to the universally quantified variables can lead to a satisfiable solution. The

associated satisfying assignment for Equation 2.8 is much more elaborate due to the universally

quantified variables. Furthermore, the innermost existential variable, x5, final assignment has

a new instance for each universal variable assignment. Finding such an assignment is much

harder than finding a single assignment as in Equation 2.6.

Each quantifier forms a quantification set of variables and each variable has an associated

quantification level. The quantification levels are ordered such that variables in the outer-

most quantification set is given a level of 1 and so on. For example, Equation 2.8 has three

quantification levels.

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 17

Quantified Boolean Satisfiability is a fairly new area and there has been marginal success in

developing QBF solvers [24, 25, 29, 35, 36, 54]. The heuristics used in SAT solvers still apply

to QBF solvers; however, a variable cannot be assigned until all variables with a quantification

level lower than it are assigned. For example, in Equation 2.8, x5 cannot be assigned until x1,

x2, x3, and x4 have been assigned. Furthermore, unlike SAT, QBF must ensure that all possible

assignments of universally quantified variables are satisfiable. This is most easily understood

through an example. Figure 2.6a illustrates a satisfiable decision tree for Equation 2.9. Note

that all the decision levels for the variables obey their quantification level. Although Figure 2.6a

shows one possible satisfying assignment, the problem is not yet satisfied due to the universally

quantified variables. Thus, the process must backtrack to lowest universally quantified decision

and check if its complemented assignment may also lead to a satisfiable solution shown in 2.6b.

This process must occur for all universally quantified variables.

The previous example can be formalized into the following high level QBF algorithm shown

in Algorithm 2.2. This looks very similar to the recursive algorithm for SAT; however, when

selecting free variables for assignment, quantification levels must be obeyed (line 12). Also, the

algorithm does not return satisfiable until all assignments of universally quantified variables

have been tested (lines 23 to 33).

Although QBF solvers have shown initial promising results, it is often still faster to solve a

QBF by removing the universal quantifiers and converting it to a SAT problem [47]. Removing

the universal quantifiers eliminates the need to backtrack on universally quantified variables to

find multiple SAT instances as in Figure 2.6, thus saving time; however, in doing so, the number

of clauses and variables in the Boolean formula increases substantially. To describe this, some

notation is required. Given a QBF F = Q1x1Q2x2...Qnxnf(x1, x2, ..., xn) where Qi ∈ {∃, ∀},
f(x1, x2, ..., xn)[xi/fi], i ∈ [1..n], represents the Boolean formula f where all instances of the

variable xi has been replaced by fi ∈ {0, 1, variable, expression}. To remove the universal

quantifiers in a QBF F , its proposition, f , is replicated and each replicated proposition replaces

the universally quantified variables with one possible assignment assignment to the universal

variables. The replication ends when all possible assignments to the universal variables have

been assigned. These replicated formulae are then conjoined with the logical AND operator

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 18

∃x1x2x3∀x4x5∃x6x7 (x1 + x2 + x4)(x3 + x2 + x6)(x7 + x5)(x6 + x3)(x7 + x5)

(a) QBF used to illustrate backtracking on satisfying assignments.

(2.9)

x�=0 @ 0

x�=0 @ 1

x�=1 @ 2

x�=1 @ 3
(universal)

x�=1 @ 4
(universal)

x�=0 @ 5

x�=0 @ 6

(b) A possible assignment that satisfies all clauses.

x�=0 @ 0

x�=0 @ 1

x�=1 @ 2

x�=1 @ 3
(universal)

x�=1 @ 4
(universal)

x�=0 @ 5

x�=0 @ 6

x�=0 @ 4
(universal)

(c) Backtracking due to universal quantifiers.

Figure 2.6: A quantified Boolean satisfiability example.

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 19

1 qbf solve(F, V, A)
2 begin
3 if (no unassigned variables in V)
4 return satisfiable
6 if (F (A) ≡ 1)
7 return satisfiable
8 if (F (A) ≡ 0)
9 return unsatisfiable

11 Qset = Set of Variables in Current Quantification Level
12 select an unassigned variable p ∈ Qset

13 assign V ← (V − p)
14 assign p ← 0
15 assign A ← (A

⋃
p)

16 // keep track of the initial result
17 assign result ← UNSAT
18 if (qbf solve(F) ≡ satisfiable)
19 assign result ← SAT
22 // if p is a universally quantified variable
23 if ((Qset ∈ {∀}) AND (result ≡ UNSAT))
24 return unsatisfiable
27 // if p is an existentially quantified variable
28 if ((Qset ∈ {∃}) AND (result ≡ SAT))
29 return satisfiable
31 // Try the opposite value.
32 assign A ← (A− p)
33 assign p ← 1
34 assign A ← (A

⋃
p)

35 if (qbf solve(F) ≡ satisfiable)
36 return satisfiable
37 // Formula is not satisfiable under the current assignment.
38 unassign p
39 assign A ← (A− p)
40 assign V ← (V

⋃
p)

41 return unsatisfiable
42 end

Algorithm 2.2: A high-level algorithm to solve Quantified Boolean Satisfiability.

to form a Boolean function that can be solved with SAT. For example, consider the QBF in

Equation 2.10. With the technique described previously, it can be expressed as a SAT problem

with no explicit quantifiers as shown in Equation 2.11.

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 20

F = ∃x1∀x2x3∃x4x5 f

where
f = (x1 + x2) · (x2 + x3 + x4) · (x2 + x5 + x4)

(2.10)

F = f [x2/0, x3/0, x4/x6, x5/x7] · f [x2/0, x3/1, x4/x8, x5/x9]·
f [x2/1, x3/0, x4/x10, x5/x11] · f [x2/1, x3/1, x4/x12, x5/x13]

= (x1 + 0) · (0 + 0 + x6) · (0 + x7 + x6)·
(x1 + 0) · (0 + 1 + x8) · (0 + x9 + x8)·
(x1 + 1) · (1 + 0 + x10) · (1 + x11 + x10)·
(x1 + 1) · (1 + 1 + x12) · (1 + x13 + x12)

= (x1) · (x6)·
(x1)·
(x11 + x10)·
(x13 + x12)

= (x1) · (x6) · (x11 + x10) · (x13 + x12)

(2.11)

Note that in the previous example, the innermost existential variables x4, x5 are replaced

with unique variables in each replicated formula f to preserve the levels of the existential

quantifiers. Although the final expression is fairly small due to simplification, this example

illustrates how removing quantifiers can potentially increase the size of the Boolean formula;

thus it is generally only used for QBFs with three or less quantification levels.

2.5 Converting Problem to Boolean Satisfiability

There are three different FPGA areas discussed in this dissertation: architecture evaluation,

technology mapping, and resynthesis; however, they all share a common core related to Boolean

function legality checking phrased as the following problem:

Problem 2.5.1 Given an n-variable Boolean function, F (x1, x2, ..., xn), does

there exists a programmable configuration to a circuit such that the output of the

circuit will equal F (x1, x2, ..., xn) for all inputs?

Assuming that the programmable circuit can be represented as a Boolean function G =

G(x1..xn, L1..Lm, z1..zo) where xi, Lj , zk, G represent the input signals, configuration bits, in-

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 21

termediate circuit signals, and output function of the circuit respectively, Problem 2.5.1 can be

represented formally as a QBF as follows.

∃L1...Lm∀x1...xn∃z1...zo(G ≡ F) (2.12)

Given the process to remove universal quantifiers described in Section 2.1, Equation 2.12

can be solved with SAT where a satisfying assignment implies the function can be realized in

the configurable circuit.

A B Z FAND

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

A
Z

B

0

1

1

0

1

0

1

0

AB
Z 00 01 11 10

0

1

FAND = (A + Z) · (B + Z) · (A + B + Z)

Figure 2.7: A characteristic equation derivation for 2-input AND gate.

To translate Problem 2.5.1 into a SAT problem, first the proposition (G ≡ F) in Equa-

tion 2.12 must be represented as a Boolean formula. This can be done using a well known

derivation technique that converts logic circuits into a characteristic function in CNF [30].

This CNF representation contain variables representing the primary input, primary output,

and intermediate circuit signals and evaluates to 1 if these signals are consistent. For example,

consider the AND gate shown in Figure 2.7. The table to the left gives the truth table for the

AND gate characteristic function where the onset contains all valid input-output relations of an

AND gate. This can be converted to CNF using any standard minimization technique, such as

a Karnaugh map as shown. Table 2.5 lists several other common gates and digital functions

with their associated characteristic function [45: ch.2]. Notice FULL-ADD has two outputs to the

circuit (i.e. s, cout). The technique shown in Figure 2.7 is directly applicable to multiple output

circuits. One simply adds all output variables to the characteristic function truth table where

its onset still defines valid input-output vectors.

Deriving CNF functions directly from the circuit input-output relation is only practical for

primitive gates and logic blocks where the number of inputs and outputs is small. Fortunately,

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 22

Gate Function CNF formula

AND y = x1 · x2 · · ·xn

(
n∏

i=1

(xi + y)

)
·
(

n∑

i=1

xi + y

)

NAND y = x1 · x2 · · ·xn

(
n∏

i=1

(xi + y)

)
·
(

n∑

i=1

xi + y

)

OR y = x1 + x2 + · · ·+ xn

(
n∏

i=1

(xi + y)

)
·
(

n∑

i=1

xi + y

)

NOR y = x1 + x2 + · · ·+ xn

(
n∏

i=1

(xi + y)

)
·
(

n∑

i=1

xi + y

)

XOR y = x1 ⊕ x2
(x1 + x2 + y) · (x1 + x2 + y)·
(x1 + x2 + y) · (x1 + x2 + y)

NXOR y = x1 ⊕ x2
(x1 + x2 + y) · (x1 + x2 + y)·
(x1 + x2 + y) · (x1 + x2 + y)

BUFFER y = x (x + y) · (x + y)

NOT y = x (x + y) · (x + y)

MUX 2:1 y = (s0 ↔ 1) ? x1 : x0
(s0 + x0 + y) · (s0 + x0 + y)·
(s0 + x1 + y) · (s0 + x1 + y)

MUX 4:1

y = (s1 ↔ 1) ?

[(s0 ↔ 1) ? x3 : x2] :

[(s0 ↔ 1) ? x1 : x0]

(s0 + s1 + x0 + y) · (s0 + s1 + x0 + y)·
(s0 + s1 + x1 + y) · (s0 + s1 + x1 + y)·
(s0 + s1 + x2 + y) · (s0 + s1 + x2 + y)·
(s0 + s1 + x3 + y) · (s0 + s1 + x3 + y)

FULL-ADD
s = a⊕ b⊕ cin

cout = (a⊕ b) · cin + ab

(a + b + cout) · (a + b + cout)·
(a + cin + cout) · (a + cin + cout)·
(b + cin + cout) · (b + cin + cout)·
(s + a + cout) · (s + a + cout)·
(s + b + cout) · (s + b + cout)·

(s + cin + cout) · (s + cin + cout)·
(s + a + b + cin) · (s + a + b + cin)

Table 2.2: Characteristic functions for basic logic elements [45: ch.2].

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 23

Y
C

B
Z

A

(a) Two cascaded gates.

F = (A + Z) · (B + Z) · (A + B + Z)︸ ︷︷ ︸ · (Z + Y) · (C + Y) · (Z + C + Y)︸ ︷︷ ︸
AND OR

(b) Characteristic equation for (a).

Figure 2.8: A cascaded gate characteristic function.

characteristic equations for larger circuits can be derived iteratively from the conjunction of its

subcircuit characteristic functions. For example, Figure 2.8a shows two cascaded gates. Notice

the wire connecting the AND gate to the OR gate is labeled with variable Z for CNF construction.

The characteristic function of the cascaded circuit is simply the conjunction of the AND and OR

gate characteristic functions with variable Z as the logical link between the two functions. The

characteristic equation in Figure 2.8b evaluates to 1 if all wire signals are consistent. This

includes the primary inputs and outputs as in Figure 2.7, plus any intermediate wire signals

(i.e. Z). This concept can be extended to much larger circuits such as a programmable logic

circuit to create a CNF function, Ψ, dependent on variables x1, ..., xn, L1, ..., Lm, z1, ..., zo, and

G which represent the inputs, programmable bits, intermediate wires, and output of the circuit

respectively. Thus, the proposition (G ≡ F) can be presented as Equation 2.13, or equivalently

as Equation 2.14 when its quantifiers are removed.

Ψ = ∃L1...Lm∀x1...xn∃z1...zoψ(x1, ..., xn, L1, ..., Lm, z1, ..., zo, G) [G/F (x1, ..., xn)]
where

F (X) is the function being fit and X = x1, ..., xn.
(2.13)

Ψ = ψ0[x1/0, x2/0, ..., xn/0, z1/zo+1, ..., zo/z2o, G/F0]·
ψ1[x1/0, x2/0, ..., xn/1, z1/z2o+1, ..., zo/z3o, G/F1]·

...

ψ2n−1[x1/1, x2/1, ..., xn/1, z1/z(2n−1)o+1, ..., zo/z2no, G/F2n−1]

where
Fi = F (Xi), Xi = x1, ..., xn = i and ψj = ψ(x1, ..., xn, L1, ..., Lm, z1, ..., zo, G)

(2.14)

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 24

In order to give better understanding to the previously described procedure, an example is

given. Assume that the function listed in Figure 2.9 needs to be implemented in the adjacent

programmable circuit. The circuit in Figure 2.9 consists of a 2-LUT which feeds into a 2-input

AND gate. In order to test if Figure 2.9 can implement the given function, the following steps are

taken.

i Xi Fi

0 000 0
1 001 1
2 010 0
3 011 0
4 100 0
5 101 1
6 110 0
7 111 1

L1

L2

L3

L4

x1 x2 x3

G

2-LUT

AND-GATE

VccL5
0 1

00

01

10

11

z1

z2

Figure 2.9: An example programmable circuit.

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 25

Step 1: Find the characteristic functions for individual elements in programmable circuit.

GLUT = (x1 + x2 + L1 + z1) · (x1 + x2 + L1 + z1)·
(x1 + x2 + L2 + z1) · (x1 + x2 + L2 + z1)·
(x1 + x2 + L3 + z1) · (x1 + x2 + L3 + z1)·
(x1 + x2 + L4 + z1) · (x1 + x2 + L4 + z1)

(2.15)

GMUX = (L5 + x3 + z2) · (L5 + x3 + z2) · (L5 + z2) (2.16)

GAND = (z1 + G) · (z2 + G) · (z1 + z2 + G) (2.17)

Step 2: Derive the programmable circuit characteristic function from the basic characteristic
functions (Equations 2.15, 2.16, and 2.17).

G = GLUT ·GMUX ·GAND (2.18)

Step 3: Replicate Equation 2.18 to remove the universally quantifiers on the input variables in
X. This formulates GTotal where a satisfiable assignment to GTotal implies F can be realized
in the programmable circuit.

GTotal = G[X/X0, G/F0, z1/z3, z2/z4] ·G[X/X1, G/F1, z1/z5, z2/z6]·
G[X/X2, G/F2, z1/z7, z2/z8] ·G[X/X3, G/F3, z1/z9, z2/z10]·
G[X/X4, G/F4, z1/z11, z2/z12] ·G[X/X5, G/F5, z1/z13, z2/z14]·
G[X/X6, G/F6, z1/z15, z2/z16] ·G[X/X7, G/F7, z1/z17, z2/z18]

(2.19)

In the previous example, the pins on the programmable circuit in Figure 2.9 are not per-

mutable. Given the labeling convention in Figure 2.9, the function F = (x1 + x2) · x3 can be

implemented; however, the function F = (x1 + x3) · x2 cannot. There is no need for restricting

the labeling of the input pins in this manner because most programmable circuits are able

to route signals to any input pins, such as FPGAs. In order to model this flexibility, virtual

multiplexers controlled by virtual configuration bits, Vp, are added at each input pin of the pro-

grammable circuit. Going back to the circuit shown in the last example, Figure 2.10 illustrates

the previous circuit with virtual multiplexers added at the input pins. Thus, if F = (x1+x3)·x2

is to be mapped into this network then the virtual multiplexers would force x1 and x3 onto the

first two pins of the circuit and x2 to the third pin feeding the AND gate to generate a satisfiable

solution. Adding virtual multiplexers to the previous example is straightforward and is shown

in the following steps.

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 26

L1

L2

L3

L4

x1x2
x3

G

2-LUT

AND-GATE

VccL5
0 1

00

01

10

11

V1 V2, V5 V6,

V3 V4,

z1

z2

z5z4z3

Figure 2.10: An example programmable circuit with virtual multiplexers added.

Step 1’: Find the characteristic function for individual elements in programmable circuit with
virtual multiplexers added.

GLUT = (z3 + z4 + L1 + z1) · (z3 + z4 + L1 + z1)·
(z3 + z4 + L2 + z1) · (z3 + z4 + L2 + z1)·
(z3 + z4 + L3 + z1) · (z3 + z4 + L3 + z1)·
(z3 + z4 + L4 + z1) · (z3 + z4 + L4 + z1)

(2.20)

GMUX = (L5 + z5 + z2) · (L5 + z5 + z2) · (L5 + z2) (2.21)

GAND = (z1 + G) · (z2 + G) · (z1 + z2 + G) (2.22)

GV MUX1 = (V1 + V2 + x1 + z3) · (V1 + V2 + x1 + z3)·
(V1 + V2 + x2 + z3) · (V1 + V2 + x2 + z3)·
(V1 + V2 + x3 + z3) · (V1 + V2 + x3 + z3)·
(V1 + V2)

(2.23)

GV MUX2 = (V3 + V4 + x1 + z4) · (V3 + V4 + x1 + z4)·
(V3 + V4 + x2 + z4) · (V3 + V4 + x2 + z4)·
(V3 + V4 + x3 + z4) · (V3 + V4 + x3 + z4)·
(V3 + V4)

(2.24)

GV MUX3 = (V5 + V6 + x1 + z5) · (V5 + V6 + x1 + z5)·
(V5 + V6 + x2 + z5) · (V5 + V6 + x2 + z5)·
(V5 + V6 + x3 + z5) · (V5 + V6 + x3 + z5)·
(V5 + V6)

(2.25)

Step 2’: Derive the programmable circuit characteristic function from the basic characteristic
functions (Equations 2.20 to 2.25).

G = GLUT ·GMUX ·GAND ·GV MUX1 ·GV MUX2 ·GV MUX3 (2.26)

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 27

Step 3’: Replicate equation 2.26 to remove the universally quantifiers on the input variables in
X. This formulates GTotal where a satisfiable assignment to GTotal implies F can be realized in
the programmable circuit. Clauses that contain only programmable configuration bits variables
do not need to be replicated since this would create redundant clauses.1

GTotal = G[X/X0, G/F0, z1/z6, z2/z7, z3/z8, z4/z9, z5/z10]·
G[X/X1, G/F1, z1/z11, z2/z12, z3/z13, z4/z14, z5/z15]·
G[X/X2, G/F2, z1/z16, z2/z17, z3/z18, z4/z19, z5/z20]·
G[X/X3, G/F3, z1/z21, z2/z22, z3/z23, z4/z24, z5/z25]·
G[X/X4, G/F4, z1/z26, z2/z27, z3/z28, z4/z29, z5/z30]·
G[X/X5, G/F5, z1/z31, z2/z32, z3/z33, z4/z34, z5/z35]·
G[X/X6, G/F6, z1/z36, z2/z37, z3/z38, z4/z39, z5/z40]·
G[X/X7, G/F7, z1/z41, z2/z42, z3/z43, z4/z44, z5/z45]

(2.27)

2.6 Limitations

As the previous examples show, the number of replications of the CNF expression is exponen-

tial in relation to input size of the configurable circuit. Furthermore, the runtime is strongly

dependent on the number of configuration bits in the circuit. Table 2.3 illustrates this relation.

Input Size shows the number of inputs to the configurable circuit; Configuration Bits shows

the number of programmable bits (virtual and real) in the circuit; Variable Count and Clause

Count are the number of variables and clauses in the CNF expression respectively; and SAT

and UNSAT are the runtimes of a satisfying and unsatisfying expressions respectively. The

runtimes are the averages of 10 runs in seconds using the Chaff [34] SAT solver run on a Sun-

blade 150 with 1.5 GB of RAM. Table 2.3 shows that this technique becomes unmanageable as

the circuit input size grows larger than 10. In addition to this, depending on its application,

the input size restriction will vary. For example, if applied in a short compile process where

the SAT solver is run millions of times, the configurable circuit may have to be restricted to

as small as 5 inputs. Work in speeding up the SAT process and reducing the size of the CNF

expression is necessary if this technique is to be applied to fairly large configurable circuits or

if a fast runtime is required.

1In Step 1’, some clauses only had virtual configuration bits. This was to prevent invalid bit configurations
since there are only three inputs (x1, x2, x3) into the four input virtual multiplexer, thus configuration {Vi, Vi+1} =
11 is invalid.

Chapter 2. Boolean Satisfiability Applied to FPGA Synthesis 28

Input Size Configuration Bits Variable Count Clause Count SAT UNSAT
4 12 512 872 ≈0 ≈0
5 31 1376 2144 ≈0 ≈0
8 56 19200 33760 2 17
9 68 45568 76639 13 35
10 88 120832 217152 43 2 HOUR TIMEOUT

Table 2.3: The runtimes of the Chaff SAT solver [34] and the associated CNF expression sizes.

2.7 Summary

This chapter presents a function fitting technique using Boolean satisfiability. The power of

this technique stems from its generality and is the core problem solved in this dissertation. The

major limitation of this technique is the exponential relation of the solution runtime and memory

with respect to the input size of the configurable circuit. However, even with this limitation,

there are still a few practical areas that this technique can be applied as demonstrated in the

following chapters.

Chapter 3

Evaluation of FPGA Programmable

Logic Blocks

3.1 The Programmable Logic Blocks

Programmable Logic Blocks (PLB) form the basic building block of most commercial FPGAs [5,

49]. An example of a simplistic PLB is shown in Figure 3.1. It consists of a 4-input lookup

table (4-LUT) that is capable of implementing and arbitrary 4 variable Boolean function. The

LUT consists of a multiplexer fed by a set of static RAM bits whose select lines are controlled

by the input variables of the function. Thus, to implement a 4 variable function, the 16 (24)

SRAM bits are programmed to match the truth-table values of the function being implemented.

Furthermore, the LUT output can either be sent directly to the PLB output or be registered.

Although the k-LUT is extremely flexible, adding custom logic to the PLB is beneficial such

as adders or basic gates. This allows a PLB to implement a wider range of functions without

the speed, area, and power costs of their programmable counterparts. However, mapping logic

to PLBs is much more harder than mapping logic to k-LUTs since a k-input PLB can only

implement a subset of all k-input functions. For example, consider the PLB shown on the left

side of Figure 3.2. It consists of a 2-LUT feeding an OR gate. One obvious function that this

PLB cannot implement is a 3-input AND function as shown on the right side of Figure 3.2.

Fortunately, realistic circuits usually contain a small subset of all k-input functions. Thus,

29

Chapter 3. Evaluation of FPGA Programmable Logic Blocks 30

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

SRAM BIT

Configuration IN

Configuration OUT

16:1 D Q

R

LE Out

A

D

B
C

Reset

Clock

SRAM BIT

LUT

Figure 3.1: An example of a PLB.

�����

321 xxx 321 xxx

Figure 3.2: A limitation of a 3-input PLB.

so long as a PLB can capture most functions that occur in real circuits, it can efficiently

implement logic circuits. The difficulty is designing PLBs with this characteristic. As far as

we know, there has been no previously published work that helps address this design problem.

This chapter demonstrates how to use the QBF based technique described in Chapter 2 to help

in the PLB design process.

3.2 Evaluation Method

When designing new PLB architectures, the custom circuitry must add very little overhead in

terms of power consumption and area. Furthermore, the custom components must complement

the programmable portion of the PLB such that they will be utilized often. Utilization can be

measured by extracting a set of functions and attempting to fit them into the PLB. A high fit

percentage implies the custom components are useful. The set of functions should be extracted

from various unrelated benchmark circuits to give a realistic sampling set. Of course, if the

Chapter 3. Evaluation of FPGA Programmable Logic Blocks 31

PLB is only applied to a specific set of applications, the sampling set can be more restrictive

to represent the application in question.

Since a circuit implements functions through cones of logic, the problem of extracting func-

tions from a circuit is the same as extracting cones from it. In order to understand the extraction

process, some terminology is needed.

The combinational portion of a Boolean circuit can be represented as a directed acyclic

graph (DAG) G = (VG, EG). A node in the graph v ∈ VG represents a logic gate, primary input

or primary output, and a directed edge in the graph e ∈ EG with head, u = head(e), and tail,

v = tail(e), represents a signal in the logic circuit that is an output of gate u and an input of

gate v. The set of input edges for a node v, iedge(v), is defined to be the set of edges with v as a

tail. Similarly, the set of output edges for v, oedge(v), is defined to be the set of edges with v as

a head. A primary input (PI) node has no input edges and a primary output (PO) node has no

output edges. An internal node has both input edges and output edges. A node v is K-feasible

if |inode(v)| ≤ K. If every node in a graph is K-feasible then the graph is K-bounded.

A cone of node v, Cv, is a subgraph, g ∈ G consisting of node v and some of its predecessors

such that any node u ∈ Cv has a path to v that lies entirely in Cv. Node v is referred to as

the root of the cone. At a cone Cv, the set of input edges, iedge(Cv), is the set of edges with

a tail in Cv and the set of output edges, oedge(Cv), is the set of edges with v as a head. With

input edges and output edges so defined, a cone can be viewed as a node, and notions that

were previously defined for nodes can be extended to handle cones. If the cone only has output

edges leaving the cone from its root node, v, the cone is said to be a Fanout Free Cone (FFC).

If the FFC maximizes the number of nodes in the cone, it is said to be a Maximum Fanout

Free Cone (MFFC). Figure 3.3 shows an example of a cone and a MFFC.

In order to generate a set of K-feasible cones from a circuit, this work adapts the cone

generation method discussed in [17, 41]. The K-feasible cones are generated as the graph is

traversed in topological order from primary inputs to primary outputs. At every internal node

v, new cones are generated by combining the cones at the input nodes. In contrast to the

original algorithm in [17, 41] which combined the cones in every possible way, in this work, the

cone generation algorithm combines cones if they have no more than (K + e) inputs in total.

Chapter 3. Evaluation of FPGA Programmable Logic Blocks 32

����

��� ��	�
���	�
��� ����

Figure 3.3: A cone of logic and a maximum fanout free cone example.

As long as e was set to a sufficiently high number, this heuristic speeds up the cone generation

process without significantly impacting the quality of the mapping solution. The reason for the

value e is due to reconvergent cones. For example, Figure 3.4a shows a possible 3-input cone;

however, by being able to expand to 4-inputs, as shown in Figure 3.4b, a larger 3-input cone

can be found, as shown in Figure 3.4c. Since technology mapping to K-LUTs is thought as a

covering problem of cones, capturing reconvergent cones often leads to better quality solutions

in terms of both area and depth.

(a) Simple Cone (b) Expanded Cone (c) Reconvergent Cone

Figure 3.4: A reconvergent cone example.

Once a set of cones is generated, the functions they implement can be extracted and tested

for fit in the PLB using the QBF based method described in Chapter 2. A fit percentage can

be gathered from this where a high fit percentage is desired.

Chapter 3. Evaluation of FPGA Programmable Logic Blocks 33

3.3 Experiments

To show the power of this PLB evaluation method, several unrelated PLB architectures were

evaluated. Figure 3.5 shows the five different PLB architectures used for evaluation. Four are

simplified models of commerically available PLBs ([50], [48], [3], [4]), and one (MUX PLB) was

generated for research purposes only.

�����

(a) Simplified Apex20k variant #1

�����

(b) Simplified Virtex-II

�����

�����

(c) Simplified Apex20k variant #2

�����

�����

(d) Simplified Spartan-IIE

�����

�����

(e) MUX PLB

Figure 3.5: PLB architectures used in experiments.

The algorithm is built on top of Berkeley’s MVSIS project [9] and the SAT evaluation

was done using the Chaff SAT solver [34].1 To evaluate the application of each n-input PLB,

approximately 1000 n-input cones were extracted from a subset of circuits from the MCNC

benchmarks [52] and tested for PLB fit. The circuits varied in functionality to create a realistic

representation of cones found in digital designs. Table 3.1 shows the percentage of cones that

were able to fit into the given PLB per circuit where the last row shows the total cone fit

percentage.

1Experiments run on a Sunblade 150 with 1GB of RAM.

Chapter 3. Evaluation of FPGA Programmable Logic Blocks 34

Xilinx Xilinx Altera Altera MUX
Virtex Spartan Apex20k Apex20k PLB

Circuit II IIE #1 #2
C2670 1.59 0 27.9 41.8 0
ex5p 0 0 91.4 49.7 0
clma 0 1.29 61.5 40.5 1.29
dalu 0 0 78.2 38.5 0
des 0 0 12.2 72.6 0
i9 0 0 87.4 18.8 0
x3 0 20.1 21.5 38.9 20.2
f51m 0 0 21.7 18.0 0
misex3 0 12.9 70.2 45.4 11.8
mm30a 0 0 20.8 0.20 0
mult16b 0 0 2.91 02 0
Total % Fit 0.151 3.44 46.0 36.4 3.34

Table 3.1: The percentage of cones that fit into a given PLB.

Note that the cone fit percentage varies wildly for all PLBs depending on the circuit. This

shows that PLB usefulness is dependent on the application of the circuit. Interestingly, the

simplified Virtex-II PLB failed for all circuits except the ALU circuit (C2670). Since the

Virtex-II PLB has a cascaded XOR gate, it would fair poorly in most control circuits where

XOR gates are rare. Also, the simplified Spartan-IIE PLB was only able to fit cones for a few

circuits. This was expected since the Spartan-IIE PLB is primarily used to implement 5-input

functions or a 4:1 MUX, and is rarely used as a general 9-input function generator [48]. Thus,

the efficiency of a PLB cannot be evaluated by a simple n-input function fit percentage.

To understand this, in addition to generating 9-input functions for the Spartan-IIE PLB,

6, 7, and 8-input functions were evaluated as shown in Table 3.2. As the numbers show, this

PLB looks much more useful when adding a wider range of functions.

As a final note, this tool cannot evaluate PLB efficiency on its own. Performance issues

such as power, speed, and transistor area should be used in conjunction with this tool. The

tool presented here gives a quick picture of the expected are performance of a PLB, but deeper

analysis in other aspects is necessary to get a full evaluation of a given PLB architecture.

2No 8 or 9-input functions could be found in circuit mult16b

Chapter 3. Evaluation of FPGA Programmable Logic Blocks 35

Circuit 6-input 7-input 8-input
C2670 1.00 0.00 0.00
ex5p 7.07 1.02 2.10
clma 8.62 5.13 2.24
dalu 6.77 1.45 0.00
des 0.00 0.00 0.00
i9 2.20 0.34 0.00
x3 28.3 25.2 17.7
f51m 38.7 11.5 0.10
misex3 16.7 15.7 13.8
mm30a 13.1 3.35 2.84
mult16b 0.00 0.00 0.003

Total % Fit 14.7 6.41 3.50

Table 3.2: The percentage of cones that fit into the simplified Spartan-IIE PLB.

3.4 Summary

This chapter has presented a method for evaluating the efficiency of an arbitrary FPGA PLB.

It was applied to several existing FPGA logic structures where results were shown. The power

of this technique comes from its automation and generality. Thus, it may become useful in the

FPGA design cycle by evaluating new architectures.

3No 8-input functions could be found in circuit mult16b

Chapter 4

Technology Mapping to

Programmable Logic Blocks

4.1 Extending Programmable Logic Block Mapper

The previous chapter discussed a robust PLB mapping tool to evaluate various PLB architec-

tures. This tool can be extended for other applications, one of which is a robust PLB technology

mapper called SATMAP discussed in this chapter.

The problem of technology mapping to K-LUTs was discussed in Section 1.1.1 and for

convenience is briefly covered here. Technology mapping is thought of as a covering problem:

Given a Boolean circuit represented as a graph G = (VG, EG), attempt to find a set of K-

feasible cones to cover the graph. A cone, Cv, is a subgraph of G that consists of a root node v

and some of its predecessors, u ∈ Cv, such that all paths between v and u are contained in the

cone. A cone is referred as K-feasible if it has K-inputs or less. The covering of cones should

be optimized such that area, depth, or a combination of both is minimized. Once a cover is

found, each K-feasible cone can be directly translated into a K-LUT. The translation process

is direct since a K-LUT can implement any K-feasible cone.

K-LUT technology mapping can be extended to a general PLB; however, unlike a K-LUT,

a K-input PLB cannot implement any arbitrary K-feasible cone. Thus, a legality check must

be done during the translation process from cones to PLBs to verify if a cone can be realized in

36

Chapter 4. Technology Mapping to Programmable Logic Blocks 37

1 IMap(int MaxI)
2 begin
3 GenerateCones()
4 for (int i = 1 to MaxI)
5 TraverseFwd()
6 TraverseBwd()
7 ConesToLUTs()
8 end

Algorithm 4.1: A high-level overview of the original IMap algorithm.

the given PLB. Our SAT based approach presented in Chapter 2 can be used for this legality

check to build a general PLB technology mapper called SATMAP.

4.2 Iterative Technology Mapper - IMap

SATMAP was built on top of IMap [32]: one of the best publicly available K-LUT technology

mappers to date. The general IMap algorithm is described here, but a more detailed description

can be found in [32].

A high-level overview of the IMap algorithm is presented in Figure 4.1. First, a call to

GenerateCones generates the set of all K-feasible cones for every node in the graph. Then a

series of forward and backward graph traversals is started. The forward traversal, Traverse-

Fwd, selects a cone for each node, and the backward traversal, TraverseBwd, selects a set

of cones to cover the graph. Iteration is beneficial because every backward traversal influences

the behavior of the forward traversal that follows it. Finally, a call to ConesToLUTs converts

the cones selected by the final backward traversal into LUTs.

4.2.1 Generating K-Feasible Cones

A version of the algorithm described in [17, 41] is used to generate and store all K-feasible

cones in the graph. The K-feasible cones are generated as the graph is traversed in topological

order from primary inputs (PI) to primary outputs (PO). Topological order implies that a node

is visited after all of its fanins have been visited. A fanin to a node v, is any input node to v.

The set of fanin edges to v can be symbolized as iedges(v). Similar to this is a fanout, where

a fanout to a node v, is any output node to v. The fanout edges to v can be symbolized as

Chapter 4. Technology Mapping to Programmable Logic Blocks 38

1 TraverseFwd
2 begin
3 foreach (v ∈ PI) {
4 depth(v) ← 0
5 af (v) ← 0
6 foreach (e ∈ oedges(v)) {
7 depth(e) ← 1
8 af (e) ← 0
9 }

10 }
12 foreach (v ∈ TSort(VG − PI − PO) {
13 Cv ← BestCone(v)
14 depth(v) ← depth(Cv)
15 af (v) ← 1 +

∑
i∈iedge(Cv) af (i)

16 foreach (e ∈ oedges(v)) {
17 depth(e) ← depth(v) + 1
18 af (e) ← af (v)

‖oedges(v)‖est
19 }
20 }
21 end

Algorithm 4.2: The algorithm used for forward traversal.

oedges(v). A primary input is a node with no fanins, and a primary output is a node with no

fanouts. At every internal node v, new cones are generated by combining the cones at the input

nodes. In contrast to the original IMap algorithm which combined the cones in every possible

way, in this work, the cone generation algorithm combines cones if they have no more (K + e)

inputs in total. As long as e was set to a sufficiently high number (2 in the experiments), this

heuristic sped up the cone generation process without significantly impacting the quality of the

mapping solution.

4.2.2 Forward Traversal

The algorithm used for forward traversal is presented in Figure 4.2. During the traversal,

the algorithm updates the depth and the area flow for every node and edge encountered. Depth,

depth(v), is the length of the longest path from a primary input to v. The length of a path

is the sum of the delays of the edges along the path. The depth for a primary input is zero.

At an edge e, the depth, depth(e), is the length of the longest path from a primary input to

e. The depth of an edge includes the delay due to the edge itself. The depth of a graph is the

Chapter 4. Technology Mapping to Programmable Logic Blocks 39

depth(Cv) ≤ ODepth − height(v). (4.1)

Figure 4.1: Depth bound for cones selected by BestCone during depth-orientated mapping.

length of the longest path in the graph. Furthermore, considering that a cone can be viewed as

a node, all definitions that apply to a node can also apply to a cone. Area flow, denoted af (·),
is a heuristic for estimating the area of the mapping solution below a node or an edge. The

area flow at a node, v, is computed as the total area flow coming in on the input edges of the

cone, Cv, selected to cover v (line 15), and the area flow at an output edge of v is computed as

the total area flow at v divided by its estimated fanout size, ‖oedges(v)‖est (line 18). During

mapping, the minimization of the area flow was shown to lead to smaller mapping solutions [32].

At each internal node v, a call to BestCone(v) is used to select a cone rooted at v to be

used in covering v and some of its predecessors in a mapping solution. This cone determines

the depth and area flow for v and its output edges (line 15-18). The quality of the mapping

solution is determined by the cones selected by BestCone. The cone selection strategy changes

depending on the mapping objective that is being used.

During depth-oriented mapping, on the first mapping iteration, the cone with the lowest

depth is selected, and if cones are equivalent in depth, then the one with the lowest area

flow is selected. The first forward traversal establishes the optimal mapping depth, ODepth,

which can then be used in subsequent iterations to bound the depth of cones selected at every

node. Using the optimal depth, and the height of a node v (established during the preceding

backward traversal), a bound can be defined on the depth of a cone Cv at v as follows Height

is a property analogous to depth, but is measured as the length of a path starting at a primary

output. Hence, the height of a primary output is zero and the height of a node, height(v), is the

length of the longest path from a primary output to v. Cones that meet the bound requirement

in Equation 4.1 are preferred and among a set of cones that meet the bound requirement, cones

with lower area flows are preferred. This selection strategy ensures that the mapping solutions

will still achieve the optimal depth but the greater flexibility in cone selection when the depth

bound has been met leads to mapping solutions that are smaller in area.

During area-oriented mapping, the cone with the lowest area flow is selected and if cones

Chapter 4. Technology Mapping to Programmable Logic Blocks 40

�

(a) Two Fanouts

�

(b) One Fanout

Figure 4.2: Illustration of fanout dependency on the cone covering.

‖oedges(v)‖est =
‖oedges(v)′‖est + α‖oedges(v)‖

1 + α
(4.2)

Figure 4.3: Equation for estimating a node’s fanout size.

are equivalent in area flow, then the one with the lowest depth is selected.

When calculating the area flow of an edge (line 18), the number of output edges is necessary.

However, this number is not known until a cone covering is selected in the following backward

traversal. For example, consider Figure 4.2. If the covering chosen in the backward traversal is

Figure 4.2a, node v has a fanout of 2; however, if the covering chosen is Figure 4.2b, the node

v has a fanout of 1. This problem is avoided by using an estimate for the fanout. This is done

by taking a weighted average of previous fanout sizes per node as shown in Equation 4.2 where

‖oedges(v)′‖est is the estimate found in the previous iteration and ‖oedges(v)‖ is the actual

number of edges found in the last backward traversal. In cases where v was not a cone root

node in the last covering chosen, ‖oedges(v)‖ is set to 1. On the first traversal, ‖oedges(v)′‖est
and ‖oedges(v)‖ does not exist. Thus, ‖oedges(v)‖est is simply set to the number of output

edges of the node v in the original netlist. Experiments showed that setting α between 1.5 and

2.5 was best for iterations of 8 or less [32].

4.2.3 Backward Traversal

The algorithm used for backward traversal is presented in Figure 4.3. Backward traversal

is responsible for finding a final cover for all the nodes in the circuit using the cones found in

Chapter 4. Technology Mapping to Programmable Logic Blocks 41

1 TraverseBwd
2 begin
3 S ← ∅
4 foreach (v ∈ PO) {
5 foreach (e ∈ iedges(v)) {
6 height(e) ← 1
7 }
8 S ← S ∪ inode(v)
9 }

11 foreach (v ∈ RTSort(VG − PI − PO)) {
12 if (v ∈ S) {
14 h ← max{height(e) : e ∈ oedges(v)}
15 foreach (u ∈ V (Cv))
16 height(u) ← max{height(u), h}
18 foreach (e ∈ iedges(Cv))
19 height(e) ← max{height(e), h + 1}
21 S ← S ∪ inode(Cv)
22 }
23 }
25 end

Algorithm 4.3: The algorithm used for backward traversal.

the proceeding forward traversal. Furthermore, backward traversal updates all the heights of

each node to match the height of the cone selected to cover it. The heights are necessary in the

succeeding forward traversal. To find the covering, internal nodes of the graph are visited in

the reverse topological order generated by RTSort. Reverse topological ordering implies that

a node is processed after its fanout nodes have been processed. Although all internal nodes are

visited, only the nodes that are required to be visible in a mapping solution are processed. A

node is visible if it is the root of a cone used in the final covering solution. Initially, only the

primary outputs are added to the visible set S, as they are required to be (line 8). However, as

each node in the visible set, S, is covered by its cones, the fanin nodes of the cone are added to

the visible set (line 21). For each visible node, the cone Cv which was selected by BestCone in

the preceding forward traversal is used to cover the visible node and some of its predecessors.

Also, the heights of all nodes are updated during the covering process. It is assumed that

before the algorithm is run, the heights of all nodes and edges have been set to zero. First, the

algorithm updates the heights of edges attached to primary outputs. At a visible node v, the

maximum height of the node’s output edges, h, is used to determine the height of all nodes

Chapter 4. Technology Mapping to Programmable Logic Blocks 42

D

E

S

Q

LUT
Carry
chain

Cascade
chain

Clear/
preset
logic

Carry-in Cascade-in

Carry-out Cascade-out

To Local
Interconnect

To FastTrack
Interconnect

Data1

Data2

Data3

Data4

LABcntl1

LABcntl2

LABclock1

LABclock2

Clock
select

register bypass

Chip Reset

(a) Detailed Model

4-LUT

Cascade Input

(b) Simplified Model

Figure 4.4: The Altera Apex20k PLB.

covered by Cv. A node may be part of several cones; thus, the new height h is only assigned

to a node if it is higher than its previous height. Similarly, an edge may serve as an input to

several cones; thus, the height of the path through Cv is only assigned to an edge if it is higher

that its previous height. The order of traversal (reverse topological order) guarantees that the

edge heights have settled into their final values before they are actually used.

4.2.4 Extending to PLBs

In order to adapt IMap to PLBs to form SATMAP, GenerateCones is modified such that

every generated K-feasible cone is run through a legalization step to ensure that it can be

realized in the PLB. Cones that fail the fit are discarded leaving a subset of legal cones used in

the forward, TraverseFwd, and backward traversals, TraverseBwd. Thus, the last function

call of IMap, ConesToLUTs(), can be changed to, ConesToPLBs().

4.3 Results

The results of incorporating SAT into IMap for PLB technology mapping (the full SATMAP

algorithm) are shown here. The PLB of choice was the 5-input Altera Apex20k PLB shown

in Figure 4.4a where a simplified model shown adjacent to it is used in the experiments. This

consists of an AND gate fed by a 4-LUT and cascade input. Although a simplified PLB was

used, routing constraints were maintained. These constraints required the PLB cascade input

Chapter 4. Technology Mapping to Programmable Logic Blocks 43

to come from an adjacent PLB as illustrated in Figure 4.5. This constraint prevents primary

inputs and non-adjacent PLBs feeding the cascade input.

4-LUT

4-LUT

Figure 4.5: Apex20k PLB routing constraints.

Table 4.1 and Table 4.2 show the area and depth costs for the largest 20 MCNC benchmark

circuits [52]. For depth the unit delay model is used where each edge is given a delay of 1. For

area each 4-LUT is given a cost of 1. Area cost uses the assumption that the area of an AND

gate is insignificant compared to the area of a 4-LUT. Table 4.1 shows results when depth was

the primary optimizing goal and Table 4.2 shows results when area was the primary optimizing

goal.

The results clearly show that SATMAP is an effective tool for technology mapping directly

to PLBs as it outperforms any 4-LUT technology mapper. This is not surprising since it is

assumed that industrial PLBs would perform better than LUT only FPGA architectures.

4.4 Summary

This chapter illustrates a powerful PLB technology mapper. With this tool, custom heuristics

are unnecessary to map circuits to new PLB architectures. This speeds up the development time

for FPGAs. An added advantage of the work is that it can be adapted to any new technology

mapping algorithm. Thus, progression in technology mapping heuristics for area will directly

benefit this work.

Chapter 4. Technology Mapping to Programmable Logic Blocks 44

Depth Orientated k = 4
SATMAP IMap FlowMap-r0 ZMap

Circuit Area Depth Area Depth Area Depth Area Depth
alu4 1003 7 1045 7 1244 7 1204 7
apex2 1173 8 1236 8 1468 8 1400 8
apex4 997 7 1131 6 1131 6 1113 6
bigkey 1145 4 1586 3 1362 3 1698 3
C6288 814 24 1023 26 539 25 546 25
clma 4689 15 5032 14 5359 15 5297 15
des 1128 6 1239 6 1522 6 1359 6
diffeq 904 13 1025 12 1420 12 1013 12
dsip 1367 4 1144 4 1591 4 1144 4
elliptic 2094 16 2239 16 3560 16 2708 16
ex1010 2180 8 2639 8 2684 8 2657 8
ex5p 983 6 991 7 1055 7 1051 7
frisc 2275 21 2397 21 3396 21 2858 21
i10 811 14 914 15 953 14 867 14
misex3 1117 6 1115 7 1293 7 1244 7
pdc 1829 10 2180 10 2216 10 2147 10
s38417 4228 10 4296 10 3992 10 3720 10
s38584.1 3963 10 4124 11 4437 10 4176 10
seq 1102 6 1120 7 1385 7 1292 6
spla 1271 8 1380 8 1612 8 1549 8
Total 35073 203 37856 206 42219 204 39043 203
Ratio 1.000 1.000 1.079 1.015 1.204 1.005 1.113 1.000

Table 4.1: SATMAP comparisons with depth-oriented mapping.

Chapter 4. Technology Mapping to Programmable Logic Blocks 45

Area Orientated k = 4
SATMAP IMap FlowMap-r3 ZMap

Circuit Area Depth Area Depth Area Depth Area Depth
alu4 1002 9 1020 9 1144 9 1129 11
apex2 1222 13 1173 11 1290 10 1308 13
apex4 978 9 1011 10 1099 8 1115 9
bigkey 920 5 1034 4 1254 4 1145 4
C6288 765 34 972 44 549 25 562 27
clma 4261 22 4476 20 4950 17 5014 26
des 1103 10 1161 9 1237 8 1194 9
diffeq 921 18 1049 16 931 14 941 14
dsip 1146 5 1144 4 1145 4 1367 5
elliptic 2009 22 2204 23 2133 18 2342 22
ex1010 1995 13 2138 14 2397 11 2325 14
ex5p 906 11 923 10 956 9 993 11
frisc 2152 29 2353 33 2659 24 2624 29
i10 785 23 899 22 774 17 779 21
misex3 1062 10 1078 9 1185 9 1184 10
pdc 1773 15 1755 17 1907 12 1928 17
s38417 4039 15 4084 13 3803 12 3586 14
s38584.1 3929 14 4018 16 3921 12 3762 16
seq 1109 10 1083 11 1204 9 1182 11
spla 1287 11 1284 12 1412 11 1403 12
Total 33364 298 34859 307 35950 243 35883 295
Ratio 1.000 1.000 1.045 1.030 1.078 0.815 1.076 0.990

Table 4.2: SATMAP comparisons with area-oriented mapping.

Chapter 5

Technology Mapping Evaluation

using Resynthesis

5.1 Evaluation of Area Driven Technology Mapping

Technology mapping is a vital step in producing high quality solutions in FPGA synthesis.

There has been much research in this area which have been able to produce satisfactory so-

lutions(see Section 1.1.1). However, because area-driven technology mapping is an NP-hard

problem [22, 31], it is uncertain how close these solutions are to the optimal. The chapter seeks

to explore this by assessing state-of-the-art FPGA technology mapping algorithms in terms of

area-optimality. The distance to the area-optimal solution can be measured in terms of remov-

able LUTs in a technology mapped circuit. These LUTs are redundant since removing them

does not change the functionality of the original circuit. The more removable LUTs, the farther

the original circuit is from the optimal. The fundamental question addressed in this chapter

is: Given the LUT-level network created by a technology mapping algorithm, how much can

its LUT count be reduced? Reducing the LUT count involves reconfiguring the surrounding

network of a removed LUT. For small subcircuits, it is possible to do this in an optimal man-

ner. Consider an arbitrary function f(i0, i1, . . . , in) implemented with four or more 2-LUTs.

Suppose that we seek to determine if it can be implemented in three or fewer 2-LUTs. This

problem can be solved by considering the Configurable Virtual Network (CVN) shown in Fig-

46

Chapter 5. Technology Mapping Evaluation using Resynthesis 47

ure 5.1. The CVN consists of input lines connected to the variables i0 . . . in and three 2-LUTs.

A crossbar allows the LUT inputs to select any of the input lines or outputs from other LUTs.

Each “switch” on the crossbar is configured by a virtual configuration bit. A 0 indicates that

the crosspoint intersection is unconnected, while a 1 indicates a connection at the crosspoint.

Clearly, it is possible to enumerate every possible circuit configuration involving three 2-LUTs

by manipulating the virtual configuration bits for the crossbar as well as the truth table config-

uration bits for each of the 2-LUTs. In fact, as detailed in Section 2.5, we can express the CVN

as a Boolean formula involving the variables i0 . . . in, the virtual configuration bits V1 . . . Vm

and the truth table configuration bits L1 . . . Lo. Using this formula, we can verify if there exists

a configuration to V1 . . . Vm and L1 . . . Lo such that it implements f(i0, i1, . . . , in). The solu-

1i i

Virtual Configuration Bit

LUT

LUT

LUTLUT

i

fnet

0 n

Figure 5.1: A configurable virtual network.

tion space of this problem grows exponentially with respect to the input size, n, of the virtual

network. However, the SAT based technique described in Chapter 2 can be used to exactly

resynthesize small circuits.

Given this optimal resynthesis method for small subcircuits, it is applied iteratively to small

portions of a larger circuit in a sliding window fashion until no additional improvement can be

achieved. This approach does not guarantee the mapping optimality of the large circuit, but

Chapter 5. Technology Mapping Evaluation using Resynthesis 48

it does give some indication of the area “left on the table” by the original technology mapping

solution.

5.2 Resynthesizing for Area

When resynthesizing for area, one must take an existing LUT circuit and attempt to reduce

the number of LUTs in the circuit yet maintain the original functionality. The more LUTs that

can be removed, the farther the original circuit is from the optimal mapping.

As mentioned previously, reducing the number of LUTs can be achieved by resynthesizing

smaller subcircuits and applying this in a sliding window fashion over the larger circuit. These

subcircuits form a cone where a cone consists of a root node and some predecessors such that all

paths between the predecessors and root node are contained in the cone. Thus, resynthesizing

several cones will reduce the LUT count of the overall LUT network.

5.2.1 Converting Resynthesis Problem into Boolean Satisfiability

Determining if a K-feasible cone implemented with X K-LUTs can be resynthesized into an

K-feasible cone implemented with X-1 K-LUTs or less can be posed as a function mapping

problem. The goal is to determine if the function extracted from the original cone containing

X K-LUTs can map into a new cone of logic containing X-1 K-LUTs or less. This can be

verified using the SAT based technique described in Chapter 2.

To illustrate this process, consider Figure 5.2. The original cone 5.2a consists of three 2-

LUTs which implements a three input function. Since only three inputs enter the cone, it may

be possible to resynthesize 5.2a into 5.2b to save one LUT.

To determine if resynthesis from 5.2a to 5.2b is possible, the function that 5.2a implements

must be extracted and 5.2b must be converted into a CNF expression with the function from the

original circuit incorporated into it. As stated before, if the expression is satisfiable, resynthesis

can occur.

Chapter 5. Technology Mapping Evaluation using Resynthesis 49

2-LUT

2-LUT

2-LUT

2-LUT2-LUT

(a) Original Cone (b) Resynthesized Cone

Figure 5.2: Resynthesis of a 3-input cone example.

5.2.2 Generation of Cones

As in Chapters 3 and 4, a version of the algorithm described in [17, 41] is used to generate and

store all resynthesis cones in the graph. The resynthesis cones are generated as the graph is

traversed in topological order from primary inputs (PIs) to primary outputs (POs). Topological

ordering implies that a node is processed after all of its fanin nodes have been processed. At

every internal LUT, new cones are generated by combining the cones at the input LUTs. In

contrast with [17], which combined the cones in every possible way, in this work, the cone

generation algorithm combines cones if they have no more (K + e) inputs in total, where K is

the fanin size of the largest resynthesis cone and e is an expansion size. As long as e was set

to a sufficiently high number (8 in the experiments), this heuristic sped up the cone generation

process without significantly impacting the quality of the resynthesis solution.

Special consideration must be taken for non-fanout free cones. Non-fanout free cones are

cones with fanouts originating from nodes other than the root node as illustrated in Figure 5.3a.

If resynthesis is to occur on these cones, all fanouts must be preserved. This can be done either

by duplicating the nodes feeding the fanouts of nodes other than the root node or resynthesizing

the node such that all the fanouts are preserved in the new resynthesis cone. For example,

Chapter 5. Technology Mapping Evaluation using Resynthesis 50

d

a

ec

f

b

(a) Original Cone

i

g

e

f

h

(b) Duplication Resynthesis

l

j

m
k

(c) Multiple Output Resyn-

thesis

Figure 5.3: A multiple output cone used for resynthesis.

consider Figure 5.3. Figure 5.3a is the original cone, Figure 5.3b is resynthesis with duplication,

and Figure 5.3c is resynthesis with multiple fanouts. In the duplicated case, if LUTs a through

f are resynthesized to LUTs g, h, and i, LUTs e and f must be duplicated to keep the fanout

at LUT e. However, if the resynthesis cone is able to maintain all fanouts, duplication is

unnecessary and LUT m is used to feed the fanout originally stemming from LUT e.

5.3 Results

The resynthesis algorithm discussed in the previous section was applied to circuits produced by

the ZMap technology mapper — one of the best publicly available FPGA area-driven technology

mappers developed by J. Cong et al. at UCLA [16]. Given a set of circuits, ZMap was used

to technology map these circuits to 4-LUTs. After some post processing done by RASP [16] to

further improve area, the resynthesizer 1 was applied on these LUT networks.

The number of resynthesis structures is exponential in relation to the resynthesis structure

input size; however, considering that the size of the CNF equation is exponential to the number

of resynthesis structure inputs, for practical purposes, this work dealt with cones of fanin size

1The resynthesizer was incorporated with the Berkeley MVSIS project [9]

Chapter 5. Technology Mapping Evaluation using Resynthesis 51

10 or less. This limits the number of resynthesis structures to the ones shown in Figure 5.4.

Figure 5.4a is applied for cones with a fanin size of seven or less and containing more than

4-LUT4-LUT

(a) 7-input Cone

4-LUT

4-LUT

4-LUT

(b) 10-input Cone #1

4-LUT 4-LUT4-LUT

(c) 10-input Cone #2

4-LUT 4-LUT4-LUT

(d) 10-input Cone Multiple Output

Figure 5.4: Resynthesis structures used in experiments.

two 4-LUTs; Figures 5.4b and 5.4c are applied for cones with a fanin size of 10 or less and

containing more than three 4-LUTs; and Figure 5.4d is applied to cones with a fanin size of 10

or less and containing more than three 4-LUTs while having one other fanout not originating

from the root node. Resynthesis checking was done using the Chaff SAT solver developed by

M. W. Moskewicz et al. [34].

In order to reduce the number of candidate cones for resynthesis, at most only two LUTs

were allowed to be duplicated. Experiments showed that increasing the duplication count above

two increased the set of cones to the point that the resynthesis tool would take an extraordinarily

long time to execute.

Chapter 5. Technology Mapping Evaluation using Resynthesis 52

Circuit ZMap Resynth No (d) Ratio Resynth All Ratio
b20 5996 5530 0.92 5415 0.90
clma 5014 4792 0.96 4791 0.96
b15 1 4291 4112 0.96 4088 0.95
b15 1 opt 3879 3772 0.97 3748 0.97
s38584.1 3771 3454 0.92 3417 0.91
s38417 3586 3444 0.96 3355 0.94
b14 3072 2902 0.94 2859 0.93
frisc 2624 2571 0.98 2566 0.98
pdc 1928 1875 0.97 1873 0.97
misex3 1184 1156 0.98 1154 0.97
seq 1182 1162 0.98 1159 0.98
alu4 1129 1103 0.98 1101 0.98
ex5p 993 968 0.97 966 0.97
i10 789 764 0.97 763 0.97
Sub-total 3000- 9829 9599 0.98 9582 0.97
Sub-total 3000+ 29609 28006 0.95 27673 0.93
Total 32075 33442 0.96 31840 0.95

Table 5.1: Benchmark circuit resynthesis results.

5.3.1 Benchmark Circuits

In the first set of experiments, circuits taken from the MCNC and ITC’99 benchmark suites

([52],[19]) were resynthesized. These circuits were optimized using SIS [42] and RASP, tech-

nology mapped with ZMap, and resynthesized with this work. The optimization in SIS is

particularly important since the structure of the gate-level netlist can have a significant impact

on the mapped area. Table 5.1 shows the results. The ZMap column indicates the number of

4-LUTs the circuit was technology mapped to. The Resynth All column indicates the number

of 4-LUTs after resynthesis when all resynthesis structures shown in Figure 5.4 were used and

Resynth No (d) column lists the resynthesis results when Figure 5.4d was omitted. The re-

spective ratios when compared against ZMap are shown in the adjacent column. The Sub-total

3000- and 3000+ rows list the total LUT counts for circuits with less than 3000 LUTs and

more than 3000 LUTs respectively. The results clearly show that ZMap does not achieve

optimal results; this implies that all FPGA technology mappers that perform worse then ZMap

also have much room for improvement. Also, adding the multiple output resynthesis structure

marginally reduces the LUT count. It is interesting that the sub-totals suggest that the largest

Chapter 5. Technology Mapping Evaluation using Resynthesis 53

module BarrelShifter16Bit(SHIFT,D,Q)
input[1:0] SHIFT;input[15:0] D;
output[15:0] Q;reg[15:0] Q;
always @ (D or Q or SHIFT)
case (SHIFT)
2’b00 : Q=D;
2’b01 : Q={D[3:0],D[15:4]};
2’b10 : Q={D[7:0],D[15:8]};
2’b11 : Q={D[11:0],D[15:12]};

endcase
endmodule

Algorithm 5.1: 16-Bit Barrel Shifter Verilog Code

Building Block Resynth ZMap Ratio
4:1 MUX 2 3 0.67
16:1 MUX 21 29 0.72
32-Bit Priority Encoder 59 74 0.80
4-Bit Barrel Shifter 8 12 0.67
16-Bit Barrel Shifter 32 48 0.67
6-Bit Set Reset Checker 2 3 0.67
2-Bit Sum Compare Constant 2 6 0.33
2-Bit Sum Compare 2 3 0.67
6-Bit Priority Checker 3 6 0.50
8-Bit Bus Multiplexer 16 24 0.67
Total 188 253 0.74

Table 5.2: Logic block resynthesis results.

decreases in area are seen in circuits with 3000 LUTs or more, with the largest decrease of 10%

seen in circuit b20. This suggests that the deviation from the optimal solution is proportional

to the size of the circuit. The fact that area driven technology mapping is NP-hard [22, 31]

supports this claim.

5.3.2 Building Block Circuits

In the second set of experiments, common digital circuit logic blocks were resynthesized. Start-

ing from Verilog code, the circuit description was synthesized using VIS [8], then optimized and

techmapped as in Section 5.3.1. For illustration, Module 5.1 shows an example Verilog code

block that was synthesized then resynthesized. More code is shown in the Appendix for further

reference. Table 5.2 shows the results, where a reduction as large as 67% and an average

reduction of 26% was achieved. Since these logic blocks are common in digital circuits, their

Chapter 5. Technology Mapping Evaluation using Resynthesis 54

optimal configurations found by the resynthesis tool can be stored in a cache for future use.

Heuristics can be used to identify these blocks during technology mapping and replace them to

their optimal configuration found in the cache.

In general, most of the functions that implement the logic blocks shown in Table 5.2 are

highly non-disjoint. It appears that finding the optimal LUT covering for such functions is still

very difficult. This can be explained by the seperation of synthesis and technology mapping.

Synthesis of logic into 2-input gates occurs independently of technology mapping to LUTs.

Thus, there can be times where beneficial steps in synthesis may not be beneficial for technology

mapping. For example, in the case of non-disjoint functions, the optimal 2-input gate solution

often will not correspond to a good starting point for technology mapping to LUTs.

It is interesting to note the dramatic differences in results between the benchmark circuits

and the results of the individual building blocks. A speculative reason for this is that common

building blocks are being collapsed with other random or glue logic in the benchmarks. Since

the size of the subcircuit resynthesis procedure is limited, it is likely that some key resynthesis

opportunities are missed.

5.4 Summary

In this chapter, a method to help understand the optimality of state-of-the-art FPGA tech-

nology mapping algorithms was presented. The approach involves optimally resynthesizing

small portion of the circuit until no further improvement can be found. This approach is itself

non-optimal. However, if this localized optimal resynthesis approach is able to improve the

mapping result from an existing technology mapping algorithm, then it gives an indication of

the mapper’s “distance” from optimality.

Chapter 6

Conclusions and Future Work

6.1 Contributions

This dissertation presented a novel application of Boolean satisfiability (SAT) to FPGA logic

synthesis. Chapter 2 demonstrated a powerful SAT based function mapping technique where

it can determine if a logic function can be realized in configurable circuit. The power of this

technique comes from its generality where it can be applied to any logic function on any FPGA

architecture. No previous method has existed that accomplishes this.

Several applications of this function mapping technique were shown in Chapters 3 to 5.

Chapter 3 applied the technique to create a PLB evaluation tool. The tool worked by deter-

mining a fit percentage of Boolean functions extracted from various benchmark circuits which

gives a value assessment of new PLB architectures. The higher the fit percentage, the more

valuable the PLB. Chapter 4 extended the work in Chapter 3 to create a robust technology

mapper. Unlike previous work which depended on custom heuristics to map functions to PLBs,

this work used a general approach to map functions which produced a technology mapper ap-

plicable to any PLB architecture. Finally, Chapter 5 presented a study of area optimality. Using

the SAT based function mapper, a resynthesis technique was developed where small portion of

the circuit were resynthesized until no further improvement could be found. This approach was

itself non-optimal. However, if the localized optimal resynthesis approach was able to improve

the mapping result from an existing technology mapping algorithm, then it gives an indication

55

Chapter 6. Conclusions and Future Work 56

of the mapper’s “distance” from optimality.

6.2 Future Work

The function mapping technique described in Chapter 2 has potential to be applied in numerous

areas in logic synthesis. However, one major limitation of this technique is runtime. As Table 2.3

in Chapter 2 indicated, the runtime increases dramatically with respect to the number of

configurable circuit inputs. This is due to the exponential relationship between the Boolean

expression size and the configurable circuit input size. Techniques to speed up the SAT runtime

are necessary before the SAT based function mapper can be applied elsewhere.

There has be some initial success in accelerating SAT using hardware [1, 55]. These SAT

solvers are built in configurable hardware such as FPGAs so they can solve any CNF expression

as long as it fits in the hardware. Initial numbers suggest that these SAT solvers can speed

up the SAT process dramatically and have simulated speedups of up to 80 times. Note that

these hardware based SAT solvers [1, 55] are general SAT solvers, thus the hardware must be

configured and programmed at runtime. Work by Zhong et al. [55] shows that this overhead

has a significant effect on the overall runtime. Since the SAT based function mapper is aware

of the configurable circuit structure before it begins, the CNF expression is predefined. Thus,

it can cut out configuration and program time which further increases the speedup.

A problem with hardware based SAT solvers is that they require several FPGAs to im-

plement large CNF formulae containing thousands of clauses. Unfortunately, the technique

presented in Chapter 2 creates a CNF formula with tens of thousands of clauses. One way to

reduce the number of clauses in the expression is to solve the function mapping problem as a

QBF. As a QBF, there exists only a few hundred clauses in the expression thus a hardware

QBF solver implementation could potentially fit on one FPGA.

There also exists several software QBF solvers; though they are still in their infancy and

have not been too successful in terms of runtime [24, 25, 29, 35, 36, 54]. Continual research

in this area may open the door for QBFs such that it can be applied commercially and reach

running times similar to SAT [47].

Chapter 6. Conclusions and Future Work 57

Another variant of the QBF solver is an all-solution SAT solver. In contrast to a traditional

SAT solver which returns only one satisfiable assignment if one exists, all-solution SAT solvers

may return several assignments. The purpose of an all-solution SAT solver is to explore several

possible assignments in cases where one assignment may be preferred over another.

Cone generation should also be improved. In the technology mapping tool presented in

Chapter 4, generating cones takes approximately 90% of the running time for 5-input PLBs.

To reduce the runtime of generating cones, a non-exhaustive approach must be taken. One such

approach involves a top-down method where a cone is grown downwards starting from the root

node. This contrasts with the current bottom up approach we use, which is described in [17].

This could effectively make cone generation constant time with respect to the number of nodes

in the network. Heuristics such as area flow would be used to find cones that minimize area

costs. An added benefit of reducing the number of cones is that SAT would be applied to a

much smaller set of cones, further improving runtime.

The tools presented previously have several areas to build on. The PLB evaluator demon-

strated in Chapter 3 can be incorporated into a fully automated search engine for new PLB

architectures. Genetic algorithms could be used to create candidate PLBs from primitive el-

ements such as lookup tables, basic gates, multiplexers and adder structures. The structures

that the genetic algorithms come up with would be rated with the PLB evaluator. In addition

to this, the choice of PLB cannot be explored in complete isolation from routing architectures,

timing, and power. Issues such as PLB-pin permutability can have a significant impact on the

overall area of the FPGA even if the total number of PLBs required to map a circuit is reduced.

Furthermore, architects may often sacrifice area for a reduction in delay. All of these factors

must be taken into account when evaluating new PLB architectures.

The resynthesis work presented in Chapter 5 could be incorporated into a post-processing

step for K-LUT technology mapping. The results shown in Section 5.3.2 clearly indicate that

conventional K-LUT technology mappers perform poorly on some very common logic blocks. In

order to develop a post-processing step, the resynthesizer would be used to find several optimal

logic block configurations. These configurations would be cached for future reference. The

post-processing step would involve replacing entire logic blocks in technology mapped circuits

Chapter 6. Conclusions and Future Work 58

with an optimized configuration found in the cache. For circuits consisting of several logic

blocks found in the cache, this would lead to a significant area reduction.

Additionally, multiple output functions could be considered for resynthesis. Considering

only single output functions in Chapter 5 yielded a marginal reduction in area (about 5% for

benchmark circuits). In general, it appears that single output function decomposition is quite

good, and usually yields an optimal solution; however, single output decomposition ignores

sub-function sharing between multiple functions. Multiple output decomposition would solve

this problem, but it is generally not done in synthesis and is still in its infancy. Adding multiple

output resynthesis structures to our experiments could give further insight into area reduction

opportunities missed due to single output based synthesis.

The work presented in this dissertation further expands the application of Boolean satisfi-

ability to EDA. Also, improvements to SAT will directly benefit this work. The fundamental

function mapping problem solved in this work has numerous applications; of which, three of

them have been demonstrated in the previous chapters. There is hope that this work will not

end here and has created a path for others to build on.

Bibliography

[1] M. Abramovici and J. T. de Sousa, “A SAT solver using reconfigurable hardware and

virtual logic,” Journal of Automated Reasoning, vol. 24, no. 1/2, pp. 5–36, 2000. [Online].

Available: citeseer.ist.psu.edu/abramovici00sat.html

[2] E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-submicron FPGA

performance and density,” IEEE Transactions on VLSI, vol. 12, no. 3, pp. 288–298, Mar.

2004.

[3] Altera Corporation, “Flex 10k ii data sheet,” Jan. 2003.

[4] ——, APEX 20K Data Sheet, Mar. 2004.

[5] ——, “Component selector guide ver 14.0,” 2004.

[6] ——, Stratix II Device Handbook, Oct. 2004.

[7] V. Betz and J. Rose, “How much logic should go in a FPGA logic block,” IEEE Design

and Test Magazine, vol. 15, no. 1, pp. 10–15, Jan–Mar 1998.

[8] R. K. Brayton and G. D. H. et al., “VIS: a system for verification and synthesis,” in

Proceedings of the Eighth International Conference on Computer Aided Veri fication CAV,

1996, pp. 428–432. [Online]. Available: citeseer.ist.psu.edu/brayton96vis.html

[9] D. Chai, J. Jiang, Y. Jiang, Y. Li, A. Mishchenko, and R. B. on, “MVSIS 2.0 Program-

mer’s Manual, UC Berkeley,” Electrical Engineering and Computer Sciences, University of

California, Berkeley, Tech. Rep., 2003.

59

BIBLIOGRAPHY 60

[10] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA technology

mapping,” in Design Automation Conference, 1993, pp. 213–218. [Online]. Available:

citeseer.ist.psu.edu/cong94areadepth.html

[11] ——, “An optimal technology mapping algorithm for delay optimization in lookup-table

based FPGA designs,” IEEE Transactions on Computer-Aided Design, vol. 13, no. 1, pp.

1–13, Jan. 1994.

[12] ——, “Combinational logic synthesis for LUT based field programmable gate arrays,” ACM

Transactions on Design Automation of Electronic Systems, vol. 1, no. 2, pp. 145–204, Apr.

1996.

[13] J. Cong and Y.-Y. Hwang, “Simultaneous depth and area minimization in LUT-based

FGPA mapping,” in FPGA, Feb. 1995, pp. 68–74.

[14] ——, “Boolean matching for complex PLBs in LUT based FPGAs with application

to architecture evaluation,” in FPGA, Feb. 1998, pp. 27–34. [Online]. Available:

citeseer.ist.psu.edu/cong98boolean.html

[15] ——, “Boolean matching for LUT-based logic blocks with applications to architecture

evaluation and technology mapping,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 20, no. 9, pp. 1077–1090, Sept. 2001.

[16] J. Cong, J. Peck, and Y. Ding, “RASP: A general logic synthesis system

for SRAM-based FPGAs,” in FPGA, 1996, pp. 137–143. [Online]. Available:

citeseer.ist.psu.edu/cong96rasp.html

[17] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: enabling a general and efficient

fpga mapping solution,” in Proceedings of the 1999 ACM/SIGDA seventh international

symposium on Field p rogrammable gate arrays. ACM Press, 1999, pp. 29–35.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,

2nd ed. Cambridge, Massachusetts: The MIT Press, 2001.

BIBLIOGRAPHY 61

[19] F. Corno, M. Reorda, and G. Squillero, “RT-level ITC 99 benchmarks and first ATPG

results,” 2000. [Online]. Available: citeseer.ist.psu.edu/article/corno00rtlevel.html

[20] M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem-proving,”

Communications of the ACM, vol. 5, pp. 394–397, July 1962.

[21] M. Davis and H. Putnam, “A computing procedure for quantification theory,” Journal of

the ACM, vol. 7, pp. 201–215, 1960.

[22] A. Farrahi and M. Sarrafzadeh, “Complexity of the lookup-table minimization problem

for FPGA technology mapping,” IEEE Transactions on Computer-Aided Design, vol. 13,

no. 11, pp. 1319–1332, 1994.

[23] R. J. Francis, J. Rose, and K. Chung, “Chortle: a technology mapping program for lookup

table-based field programmable gate arrays,” in Proceedings of the 27th ACM/IEEE con-

ference on Design automation. ACM Press, 1990, pp. 613–619.

[24] E. Giunchiglia, M. Narizzano, and A. Tacchella, “Qube: A system for deciding quantified

boolean formulas satisfiability,” in IJCAR ’01: Proceedings of the First International Joint

Conference on Automated Reasoning. Springer-Verlag, 2001, pp. 364–369.

[25] ——, “Backjumping for quantified boolean logic satisfiability,” Artif. Intell., vol. 145, no.

1-2, pp. 99–120, 2003.

[26] A. Kaviani and S. D. Brown, “Efficient implementation of array multipliers in FPGAs,”

June 1998.

[27] ——, “The hybrid field programmable architecture,” IEEE Design and Test Magazine, pp.

74–83, Apr–Jun 1999.

[28] K. Keutzer, “Dagon: Technology binding and local optimization by dag matching,” in

DAC, 1987, pp. 341–347.

[29] H. Kleine-Bning, M. Karpinski, and A. Flgel, “Resolution for quantified boolean formulas,”

In Information and Computation, vol. 117, no. 1, pp. 12–18, 1995.

BIBLIOGRAPHY 62

[30] T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 11, no. 1, pp. 4–15, Jan.

1992.

[31] I. Levin and R. Y. Pinter, “Realizing Expression Graphs using Table-Lookup FPGAs,” in

Proceedings of the European Design Automation Conference, 1993, pp. 306–311.

[32] V. Manohararajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for area minimization in

lut-based fpga technology mapping,” in International Workshop on Logic and Synthesis

(IWLS’04), 2004.

[33] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A search algorithm for propositional

satisfiability,” IEEE Transactions on Computers, vol. 48, no. 5, pp. 506–521, May 1999.

[34] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: engineering

an efficient sat solver,” in Proceedings Design Automation Conference, June 2001, pp.

530–535.

[35] J. Rintanen, “Improvements to the evaluation of quantified boolean formulae,” in IJCAI

’99: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence.

Morgan Kaufmann Publishers Inc., 1999, pp. 1192–1197.

[36] ——, “Partial implicit unfolding in the davis-putnam procedure for quantified boolean for-

mulae,” in LPAR ’01: Proceedings of the Artificial Intelligence on Logic for Programming.

Springer-Verlag, 2001, pp. 362–376.

[37] J. R. Robert J. Francis and Z. G. Vranesic, “Chortle-crf: Fast technology mapping for

lookup table-based FPGAs,” in IEEE Design Automation Conference, June 1991, pp.

227–233.

[38] J. Rose, “Hard vs. soft: the central question of pre-fabricated silicon,” in Proceedings

International Symposium on Multiple-Valued Logic, May 2004, pp. 2–5.

[39] J. Rose, R. J. Francis, P. Chow, and D. Lewis, “The effect of logic block complexity

BIBLIOGRAPHY 63

on area of programmable gate arrays,” in Proceedings IEEE Custom Integrated Circuits

Conference, May 1989, pp. 5.3.1–5.3.3.

[40] J. Rose, R. J. Francis, D. Lewis, and P. Chow, “Architecture of field-programmable gate

arrays: The effect of logic block functionality on area efficiency,” IEEE Journal of Solid

State Circuits, vol. 25, no. 5, pp. 1217–1225, Oct. 1990.

[41] M. D. F. Schlag, J. Kong, and P. K. Chan, “Routability-driven techology mapping for

lookup-table-based fpgas,” in Proceedings of the 1991 IEEE International Conference on

Computer Design on VLSI in Computer & Processors. IEEE Computer Society, 1992,

pp. 86–90.

[42] E. M. Sentovich, K. J. Singh, L. Lavagno, C. M. R. Murgai, A. Saldanha, H. . Savoj, P. R.

Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli, “SIS: A system for sequential

circuit synthesis,” Electrical Engineering and Computer Sciences, University of California,

Berkeley, Tech. Rep., 1992. [Online]. Available: citeseer.ist.psu.edu/sentovich92sis.html

[43] C. E. Shannon, “A Symbolic Analysis of Relay and Switching Circuits,” Transactions of

the American Institute of Electrical Engineers AIEE, vol. 57, pp. 713–723, 1938.

[44] S. Singh, J. Rose, P. Chow, and D. Lewis, “The effect of logic block architecture on FPGA

performance,” IEEE Journal of Solic State Circuits, vol. 27, no. 3, pp. 281–287, Mar. 1992.

[45] A. D. Smith, “Diagnosis of combinational logic circuits using boolean satisfiability,” Mas-

ter’s thesis, University of Toronto, 2004.

[46] L. J. Stockmeyer and A. R. Meyer, “Word problems requiring exponential time(preliminary

report),” in STOC ’73: Proceedings of the fifth annual ACM symposium on Theory of

computing. ACM Press, 1973, pp. 1–9.

[47] D. Tang, Y. Yu, D. P. Ranjan, and S. Malik, “Analysis of search based algorithms for

satisfiability of quantified boolean formulas arising from circuit state space diameter prob-

lems,” in SAT ’04: The Seventh International Conference on Theory and Applications of

Satisfiability Testing, May 2004, pp. 10–13.

BIBLIOGRAPHY 64

[48] Xilinx Corporation, “Spartan-iie 1.8v fpga family: Function description,” July 2003.

[49] ——, “Virtex-ii complete data sheet ver 3.3,” 2004.

[50] ——, “Virtex-ii platform fpgas: Complete data sheet,” June 2004.

[51] H. Yang and D. F. Wong, “Edge-map: Optimal performance driven technology mapping

for iterative LUT based FPGA designs,” in IEEE International Conference on Computer-

Aided Design, Nov. 1994, pp. 150–155.

[52] S. Yang, “Logic synthesis and optimization benchmarks user guide version,” 1991.

[Online]. Available: citeseer.ist.psu.edu/yang91logic.html

[53] H. Zhang, “SATO: an efficient propositional prover,” in Proceedings of the International

Conference on Automated Deduction (CADE’97), volume 1249 of LNAI, 1997, pp.

272–275. [Online]. Available: citeseer.ist.psu.edu/zhang97sato.html

[54] L. Zhang and S. Malik, “Conflict driven learning in a quantified boolean satisfiability

solver,” in ICCAD ’02: Proceedings of the 2002 IEEE/ACM international conference on

Computer-aided design. ACM Press, 2002, pp. 442–449.

[55] P. Zhong, M. Martonosi, P. Ashar, and S. Malik, “Accelerating boolean satisfiability with

configurable hardware,” in IEEE Symposium on FPGAs for Custom Computing Machines,

K. L. Pocek and J. Arnold, Eds. Los Alamitos, CA: IEEE Computer Society Press,

1998, pp. 186–195. [Online]. Available: citeseer.ist.psu.edu/zhong98accelerating.html

