
FPGA Technology Mapping: A Study of Optimality

Andrew Ling
Department of Electrical and

Computer Engineering
University of Toronto

Toronto, Canada
aling@eecg.toronto.edu

Deshanand P. Singh
Altera Corporation Toronto

Technology Centre
Toronto, Canada

dsingh@altera.com

Stephen D. Brown
Altera Corporation Toronto

Technology Centre
Toronto, Canada

sbrown@altera.com

ABSTRACT
This paper attempts to quantify the optimality of FPGA
technology mapping algorithms. We develop an algorithm,
based on Boolean satisfiability (SAT), that is able to map a
small subcircuit into the smallest possible number of lookup
tables (LUTs) needed to realize its functionality. We itera-
tively apply this technique to small portions of circuits that
have already been technology mapped by the best available
mapping algorithms for FPGAs. In many cases, the optimal
mapping of the subcircuit uses fewer LUTs than is obtained
by the technology mapping algorithm. We show that for
some circuits the total area improvement can be up to 67%.

Categories and Subject Descriptors
B.6.3 [Hardware]: Logic Design - Design Aids

General Terms
Algorithms, Experimentation, Performance

Keywords
Boolean Satisfiability, Resynthesis, Optimization, Cone,
FPGA, Lookup Table

1. INTRODUCTION
FPGAs (Field Programmable Gate Arrays) are reconfig-

urable integrated circuits that are characterized by a sea of
programmable logic blocks surrounded by a programmable
routing structure. Most modern FPGA devices contain pro-
grammable logic blocks that are based on the K-input lookup
table (K-LUT) where a K-LUT contains 2K truth table con-
figuration bits so it can implement any K-input function.
Figure 1 illustrates the general structure of a 2-LUT. The
number of LUTs needed to implement a given circuit de-
termines the size and cost of the FPGA-based realization.
Thus one of the most important phases of the FPGA CAD
flow is the technology mapping step that maps an optimized
circuit description into a LUT network present in the target
FPGA architecture. The goal of the technology mapping
step is to reduce area, delay, or a combination thereof in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

x2

L1

L3

L4

L2

00

01

10

11

x1

Figure 1: 2-input LUT

network of programmable logic blocks that is produced. In
this work, we assess state-of-the-art FPGA technology map-
ping algorithms in terms of area-optimality. Timing-driven
technology mapping is not covered in this study.

a b c d e

f g

a b c d e

f g

a b c d e

f g

LUT LUT

(a) (b) (c)

x x

Figure 2: Technology mapping as a covering prob-
lem. (a) Original Netlist (b) Possible Covering (c)
LUT Mapping from Covering

The process of technology mapping is often treated as a
covering problem. For example, consider the process of map-
ping a circuit into LUTs as illustrated in Figure 2. Figure 2a
illustrates the initial gate-level network, Figure 2b illustrates
a possible covering of the initial network using 4-LUTs, and
Figure 2c illustrates the LUT network produced by the cov-
ering. In the mapping given, the gate labeled x is covered
by both LUTs and is said to be duplicated. Somewhat sur-
prisingly, gate duplication is often necessary to minimize the
area of LUT networks [6].

The fundamental question that we ask in this paper is:
Given the LUT-level network created by a technology map-
ping algorithm, how much can its area be reduced? For small
subcircuits, it is possible to answer this question in an opti-
mal manner. Consider an arbitrary function f(i0, i1, . . . , in).
Suppose that we seek to determine if it can be implemented
in three or fewer 2-LUTs. This problem can be solved by

27.2

427

considering the Configurable Virtual Network (CVN) shown
in Figure 3. The CVN consists of input lines connected to
the variables i0 . . . in and three 2-LUTs. A crossbar allows
the LUT inputs to select any of the input lines or outputs
from other LUTs. Each “switch” on the crossbar is con-
figured by a virtual configuration bit. A 0 indicates that
the crosspoint intersection is unconnected, while a 1 indi-
cates a connection at the crosspoint. Clearly, it is possi-
ble to enumerate every possible circuit configuration involv-
ing three 2-LUTs by manipulating the virtual configuration
bits for the crossbar as well as the truth table configuration
bits for each of the 2-LUTs. In fact, as detailed in Sec-
tion 3, we can express the output of the network fnet as a
Boolean formula involving the variables i0 . . . in, the virtual
configuration bits V1 . . . Vm and the truth table configura-
tion bits L1 . . . Lo. Given this formula, we ask the question:
is there an assignment of V1 . . . Vm and L1 . . . Lo that will
cause fnet(i0, i1, . . . , in, V1 . . . Vm, L1 . . . Lo) to be identical
to f(i0, i1, . . . , in) for all values of i0 . . . in? This question
can be answered exactly with Boolean satisfiability (SAT):
Given a Boolean expression in Conjunctive-Normal-Form
(CNF), where the expression consists of a product of clauses
and each clause consists of a sum of literals, seek an assign-
ment of variables so that each clause has at least one literal
set to true. The solution space of this problem grows ex-

1i i

Virtual Configuration Bit

LUT

LUT

LUTLUT

i

fnet

0 n

Figure 3: Configurable Virtual Network

ponentially with respect to the input size, n, of the virtual
network. However, we show in this paper that modern SAT
solvers can be used to exactly resynthesize small circuits.

Given this optimal resynthesis method for small subcir-
cuits, we simply iteratively apply this technique to small
portions of a larger circuit in a sliding window fashion until
no additional improvement can be achieved. This approach
does not guarantee the mapping optimality of the large cir-
cuit, but it does give us some indication of the area “left on
the table” by the original technology mapping solution.

The remainder of this paper is organized as follows. First
we review some of the key literature on area-driven LUT
mapping. We then describe our optimal resynthesis ap-
proach based on SAT. Next, we describe the application
of our optimal resynthesis approach to the 4-LUT networks
produced by the best known FPGA technology mapper and
provide a set of results. Finally, we provide concluding re-
marks and directions for future work.

2. BACKGROUND
Due to the popularity of LUT-based FPGA architectures

[1, 18], a large body of existing work has studied area-driven
LUT mapping algorithms. We review some of the key liter-
ature here.

The area minimization problem was shown to be NP-hard
for LUTs of input size four and greater [15, 10]. Thus,
heuristics are necessary to solve the area minimization prob-
lem in a reasonable amount of computation time. Early
work considered the decomposition of circuits into a set of
trees which were then mapped for area [13, 11]. The area
minimization problem for trees is much simpler and can
be solved optimally using dynamic programming. However,
real circuits are rarely structured as trees and tree decompo-
sition prevents much of the optimization that can take place
across tree boundaries.

In a duplication-free mapping, each gate in the initial cir-
cuit is covered by a single LUT in the mapped circuit. The
area minimization problem in duplication-free mapping can
be solved optimally by decomposing the circuit into a set
of maximum fanout free cones (MFFCs) which are then
mapped for area [4]. Although the area minimal duplication-
free mapping is significantly smaller than the area minimal
tree mapping, the controlled use of duplication can lead to
further area savings. In [6], heuristics are used to mark a
set of gates as duplicable. Area optimization is then con-
sidered within an extended fanout free cone (EFFC) where
an EFFC is an MFFC that has been extended to include
duplicable gates.

There is also a new class of algorithms that attempt to re-
duce the area of a circuit that has already been technology
mapped using Sets of Pairs of Functions to be Differentiated
SPFDs ([12, 19]). SPFDs involve using “don’t care” infor-
mation to express alternative functional permissibilities for
the truth table of each LUT in a particular design. In many
cases, it allows us to explore alternate and equivalent func-
tional representations of the circuit which may reduce area.

2.1 Terminology
The remainder of this paper uses standard nomenclature

for describing technology mapping. This is as follows: The
combinational portion of a LUT network can be represented
as a directed acyclic graph (DAG). A node in the graph
represents a LUT, primary input (PI), or primary output
(PO). A directed edge in the graph with head u, and tail v,
represents a signal in the logic circuit that is an output of
node u and an input of node v.

A cone of v, Cv, is a subgraph consisting of v and some
of its non-PI predecessors such that any node u ∈ Cv has a
path to v that lies entirely in Cv. Node v is referred to as
the root of the cone. At a cone Cv, the set of input edges is
the set of edges with a tail in Cv and the set of output edges
is the set of edges with v as a head. The fanin size of a cone
is the number of input edges. A cone with n input edges
is known to be n-feasible and can be trivially implemented
with a n-LUT. A fanout free cone (FFC) is a cone with
output edges only originating from the root of the cone. A
maximum fanout free cone (MFFC) is a FFC maximizes the
number of nodes contained in the FFC.

3. RESYNTHESIZING FOR AREA
When resynthesizing for area, one must take an existing

LUT circuit and attempt to reduce the number of LUTs

428

in the circuits yet maintain the original functionality. The
more LUTs that can be removed, the farther the original
circuit is from the optimal mapping.

We mentioned previously that reducing the number of
LUTs can be achieved by resynthesizing smaller subcircuits
and applying this in a sliding window fashion over the larger
circuit. The subcircuits that we focus on form a cone. Thus
by resynthesizing several cones, this will reduce the LUT
count of the overall LUT network.

3.1 Converting Resynthesis Problem into
Boolean Satisfiability

Determining if an n-feasible cone implemented with X n-
LUTs can be resynthesized into an n-feasible cone imple-
mented with X-1 n-LUTs or less can be verified with SAT
This is achieved by generating a n-feasible FFC containing
less LUTs than the original cone, then expressing the FFC
as a Boolean expression in CNF. Next, the CNF expression
is assigned the truth table values of the function expressed
by the original cone. If this CNF expression is satisfiable,
resynthesis to the new FFC is possible.

2-LUT

2-LUT

2-LUT

2-LUT2-LUT

(a) Original Cone (b) Resynthesized Cone

Figure 4: Resynthesis of Three Input Cone of Logic

To illustrate this process, consider Figure 4. The original
cone 4a consists of three 2-LUTs which implements a three
input function. Since only three inputs enter the cone, it
may be possible to resynthesize 4a into 4b to save one LUT.

To determine if resynthesis from 4a to 4b is possible, 4b
must be converted into a CNF expression (a detailed de-
scription of converting digital circuits to CNF expressions
can be found in [14]). As stated previously, if the expression
is satisfiable, resynthesis can occur.

A
Z

B

F1(A, B, Z) = (A + Z) · (B + Z) · (A + B + Z) (1)

Y
C

B
Z

A

F2(A,B, C, Z, Y) =(A + Z) · (B + Z) · (A + B + Z)

· (Z + Y) · (C + Y) · (Z + C + Y)
(2)

Figure 5: AND gate CNF formulae

The CNF equation serves to express all valid vectors of
the circuit. For example, consider Figure 5. Equation 1 will
be satisfied if and only if the signals A,B, and Z correspond
to an AND gate functionality (e.g. (A = 0, B = X, Z =

0), (A = X, B = 0, Z = 0) or (A = 1, B = 1, Z = 1)).
Similarily, equation 2 will be satisfied only for valid vectors
such as (A = 1, B = 1, C = 0, Z = 1, Y = 0).

To apply this for resynthesis checking, we first form the
CNF equation. Next, we constrain the cone input and out-
put variables in the CNF equation according to the truth
table of the cone. Finally, we check for a satisfiable as-
signment using a SAT solver. For example, let us attempt
to map a two-input cone to the second circuit in Figure 5.
Consider input

�
to be a configuration bit. To check if the

two-input function f(1, 1) = 1 is feasible, we determine if
F2(A = 1, B = 1, C, Z, Y = 1) is satisfiable. Clearly, this
will return true with C = 1. However, this only shows that
f(1, 1) = 1 is possible (i.e. one truth table cube). To verify
if a resynthesis circuit can implement an entire cone (i.e. an
entire truth table), its CNF equation is replicated 2n times
to form a new CNF equation, where n represents the fanin
size of the cone being mapped. Each replicant of the basic
circuit CNF equation represents one cube in the cone’s truth
table. Again, SAT is performed on the new CNF formula to
check if the original cone can fit into the resynthesis circuit.

M f

L1

L3

L4

L5

L6

L7

L8

L2

00 00

01 01

10 10

11 11

x1 x2 x3

LUT1 LUT2

Figure 6: Detailed Diagram of Resynthesis Logic.

Going back to the original LUT example shown in Fig-
ure 4, the following steps illustrate how this conversion oc-
curs. Figure 6 is a detailed picture of Figure 4b with in-
ternal wires and configuration bits clearly labeled for CNF
construction. In steps to come, f represents the function of
the cone under consideration for resynthesis, ��� represents
input vector x1x2x3 = i, and fi = f(� �).
Step 1: Create a CNF equation for individual elements in
resynthesis circuit.

GLUT1 = (x1 + x2 + L1 + M) · (x1 + x2 + L1 + M)

· (x1 + x2 + L2 + M) · (x1 + x2 + L2 + M)

· (x1 + x2 + L3 + M) · (x1 + x2 + L3 + M)

· (x1 + x2 + L4 + M) · (x1 + x2 + L4 + M)

(3)

GLUT2 = (x3 + M + L5 + f) · (x3 + M + L5 + f)

· (x3 + M + L6 + f) · (x3 + M + L6 + f)

· (x3 + M + L7 + f) · (x3 + M + L7 + f)

· (x3 + M + L8 + f) · (x3 + M + L8 + f)

(4)

Step 2: Formulate the circuit CNF equation from equa-
tions 3 and 4. Note that equation 5 is an expression depen-
dent on the circuit’s inputs and output (x1−3,f), internal
wire (M), and configuration (L1−8) variables.

Gresynth(� � , fi) = GLUT1 · GLUT2 (5)

429

Step 3: Replication of equation 5 and constraining of inputs
and output variables according to function f .

GTotal = Gresynth(� 0, f0) · Gresynth(� 1, f1)

· Gresynth(� 2, f2) · Gresynth(� 3, f3)

· Gresynth(� 4, f4) · Gresynth(� 5, f5)

· Gresynth(� 6, f6) · Gresynth(� 7, f7)

(6)

In equation 6, the configuration bits are represented by
the same variables (L1−8) in each Gresynth(��� , fi) instance,
whereas all other signals are given unique variables in each
instance. This ensures that only one configuration will exist
for all cubes of the truth table. Finally, equation 6 is passed
into a SAT solver which will return true if the cone fits in
the resynthesis structure.

For simplicity, in the previous example we ignored the
flexibility of FPGA routing which allow LUT inputs to be
permuted. This is extremely important since it increases the
number of functions a given resynthesis structure can repre-
sent. For example, Figure 7 shows how a three input func-
tion can be converted to another by simply swapping inputs
x1 and x2. Extending Figure 7 to all input permutations

x1x2x3 f

000 1
001 1
010 1
011 0
100 0
101 1
110 0
111 1

x1x2x3 f

000 1
001 1
010 0
011 1
100 1
101 0
110 0
111 1

(a) f(x1, x2, x3) (b) f(x2, x1, x3),
x1 and x2 swapped

Figure 7: Conversion from f(x1, x2, x3) to f(x2, x1, x3)

increases the number of functions a resynthesis structure
represents by a factor of n!, where n is the fanin size of the
resynthesis cone. In order to represent permutable inputs in
our CNF expression, virtual multiplexers are added to the
inputs shown in Figure 8. These are virtual in the sense that
they do not exist in the resynthesis structure, but only serve
to allow us to permute the inputs in the CNF expression for
SAT. To add these virtual MUX’s, one would simply add

2-LUT 2-LUT

Figure 8: Resynthesis structure with Virtual Multi-
plexors

ed

cb

a

(a) Original Cone

g

f

e

c

(b) Resynthesized Cone

Figure 9: Multiple Output Cone for Resynthesis

the CNF equations for the virtual MUX’s in Step 1 of our
process and continue as shown previously.

3.2 Generation of Cones
A version of the algorithm described in [17, 7] is used to

generate and store all resynthesis cones in the graph. The
resynthesis cones are generated as the graph is traversed in
topological order from PIs to POs. At every internal LUT,
new cones are generated by combining the cones at the input
LUTs. In contrast with [7], which combined the cones in ev-
ery possible way, in our work, the cone generation algorithm
combines cones if they have no more (n + e) inputs in total,
where n is the fanin size of the largest resynthesis cone and
e is an expansion size. As long as e was set to a sufficiently
high number (8 in the experiments), this heuristic sped up
the cone generation process without significantly impacting
the quality of the resynthesis solution.

Special consideration must be taken for cones with more
than one fanout. For example, consider Figure 9. If LUTs a

through e are resynthesized to LUTs f and g, LUTs c and e

must be duplicated to keep the fanout at LUT c. Thus the
total savings by this resynthesis is only one, as opposed to
three if there was no fanout at LUT c.

4. RESULTS
We performed resynthesis on circuits produced by the

ZMap techmapper — one of the best publically available
FPGA area-driven techmappers developed by J. Cong et al.
at UCLA [5]. Given a set of circuits, we used ZMap to
technology map these circuits to 4-LUTs. After some post
processing done by RASP [5] to further improve area, we
ran our resynthesizer 1 on these LUT networks.

The number of resynthesis structures is countless; how-
ever, considering that the size of the CNF equation is ex-
ponential to the number of resynthesis structure inputs, for
practical purposes, our work dealt with cones of fanin size 10
or less. This limits the number of resynthesis structures to
the ones shown in Figure 10. Figure 10a is applied for cones
with a fanin size of seven or less and containing more than
two 4-LUTs; Figures 10b and 10c are applied for cones with
a fanin size of 10 or less and containing more than three 4-
LUTs. Resynthesis checking was done using the Chaff SAT
solver developed by M. W. Moskewicz et al. [16].

In order to reduce the number of candidate cones for

1Our resynthesizer was incorporated with the Berkeley MV-
SIS project [3]

430

4-LUT4-LUT

(a) 7-input Cone

4-LUT 4-LUT4-LUT

(b) 10-input Cone #1

4-LUT

4-LUT

4-LUT

(c) 10-input Cone #2

Figure 10: Resynthesis Structures

Circuit Resynth ZMap Ratio
clma 4792 5014 0.95
b15 1 4112 4291 0.95
b15 1 opt 3772 3879 0.97
s38584.1 3454 3771 0.91
s38417 3444 3586 0.96
b14 2902 3072 0.94
frisc 2571 2624 0.98
pdc 1875 1928 0.97
misex3 1156 1184 0.98
seq 1162 1182 0.98
alu4 1103 1129 0.98
ex5p 968 993 0.97
i10 764 789 0.97
Total 32075 33442 0.96

Table 1: Benchmark Circuit Resynthesis Results.

resynthesis, at most only two LUTs were allowed to be du-
plicated. Experiments showed that increasing the duplica-
tion count above two increased the set of cones to the point
that simulations would take an extraordinarily long time to
execute.

4.1 Benchmark Circuits
In our first set of experiments, we focused on a set of cir-

cuits taken from the MCNC and ITC’99 benchmark suites
([20],[8]). These circuits were optimized using SIS [9] and
RASP, technology mapped with ZMap, and resynthesized
with our work. The optimization in SIS is particularly im-
portant since the structure of the gate-level netlist can have
a significant impact on the mapped area. Table 1 shows the
results. The ZMap column indicates the number of 4-LUTs
the circuit was technology mapped to. The Resynth col-
umn indicates the number of 4-LUTs after our resynthesis.
The results clearly show that ZMap does not achieve op-
timal results; this implies that all FPGA techmappers that
perform worse then ZMap also have much room for improve-
ment. Notice that the largest decreases in area are seen in
circuits with 3000 LUTs or more, with the largest decrease
of more than 9% (s38584.1). This suggests that the devia-
tion from the optimal solution is proportional to the size of
the circuit. The fact that area driven technology mapping
is NP-hard [10] supports this claim.

Building Block Resynth ZMap Ratio
4:1 MUX 2 3 0.67
16:1 MUX 21 29 0.72
32-Bit Priority Encoder 59 74 0.80
4-Bit Barrel Shifter 8 12 0.67
16-Bit Barrel Shifter 32 48 0.67
6-Bit Set Reset Checker 2 3 0.67
2-Bit Sum Compare Constant 2 6 0.33
2-Bit Sum Compare 2 3 0.67
6-Bit Priority Checker 3 6 0.50
8-Bit Bus Multiplexor 16 24 0.67
Total 188 253 0.74

Table 2: Logic Block Resynthesis Results.

4.2 Building Block Circuits
In our second set of experiments, we focused on common

digital circuit logic blocks. We started from Verilog code,
synthesized it using VIS [2], then optimized and techmapped
the circuits as in Section 4.1. For illustration, Module 1
shows the original Verilog code that we synthesized then
resynthesized. More code is shown in the Appendix for fur-
ther reference. Table 2 shows our results, where we

Module 1 16-Bit Barrel Shifter Verilog Code

module BarrelShifter16Bit(SHIFT,D,Q)

input[1:0] SHIFT;input[15:0] D;

output[15:0] Q;reg[15:0] Q;

always @ (D or Q or SHIFT)

case (SHIFT)

2’b00 : Q=D;

2’b01 : Q={D[3:0],D[15:4]};
2’b10 : Q={D[7:0],D[15:8]};
2’b11 : Q={D[11:0],D[15:12]};

endcase
endmodule

achieve a reduction as large as 67% and an average reduc-
tion of 26%. Since these logic blocks are common in digital
circuits, heuristics can be used to identify them and tech-
nology map them to our optimized circuits.

It is interesting to note the dramatic differences in results
between the benchmark circuits and the results of the indi-
vidual building blocks. We speculate that common building
blocks are being collapsed with other random or glue logic
in the benchmarks. Since we limit the size of the subcircuit
resynthesis procedure, it is likely that we are missing some
key resynthesis opportunities.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a method that helps

us to understand the optimality of state-of-the-art FPGA
technology mapping algorithms. Our approach involves op-
timally resynthesizing small portion of the circuit until no
further improvement can be found. This approach is itself
non-optimal. However, if this localized optimal resynthe-
sis approach is able to improve the mapping result from an
existing technology mapping algorithm, then it gives us an
indication of the mapper’s “distance” from optimality.

431

Our future research will explore methods to improve this
localized optimal resynthesis approach. First, we are exam-
ining custom hardware acceleration approaches to improve
the cone resynthesis runtime. We are also exploring the use
of “don’t cares” to reduce the complexity of the CNF gen-
eration as well as adding flexibilty to the resynthesis search
space.

Also, we would like to incorporate our work into a post-
processing step for K-LUT technology mapping since our
results clearly show that conventional K-LUT technology
mappers perform poorly on some very common logic blocks.
This would first involve caching several optimal logic block
configurations found by our resynthesizer. Next, resynthe-
sizing technology mapped circuits by replacing entire logic
blocks with the optimized configuration found in our cache.
For circuits consisting of several logic blocks found in our
cache, this would lead to a significant area reduction.

6. REFERENCES
[1] Altera. Component selector guide ver 14.0, 2004.

[2] R. K. Brayton and G. D. H. et al. VIS: a system for
verification and synthesis. In Proceedings of the Eighth
International Conference on Computer Aided
Verification CAV, pages 428–432, 1996.

[3] D. Chai, J. Jiang, Y. Jiang, Y. Li, A. Mishchenko, and
R. Brayton. MVSIS 2.0 Programmer’s Manual, UC
Berkeley. Technical report, 2003.

[4] J. Cong and Y. Ding. On area/depth trade-off in
LUT-based FPGA technology mapping. In Design
Automation Conference, pages 213–218, 1993.

[5] J. Cong, J. Peck, and Y. Ding. RASP: A general logic
synthesis system for SRAM-based FPGAs. In FPGA,
pages 137–143, 1996.

[6] J. Cong, C. Wu, and Y. Ding. Cut ranking and
pruning: enabling a general and efficient fpga mapping
solution. In Proceedings of the 1999 ACM/SIGDA
seventh international symposium on Field
programmable gate arrays, pages 29–35. ACM Press,
1999.

[7] J. Cong, C. Wu, and Y. Ding. Cut ranking and
pruning: Enabling a general and efficient FPGA
mapping solution. In FPGA, pages 29–35, 1999.

[8] F. Corno, M. Reorda, and G. Squillero. RT-level ITC
99 benchmarks and first ATPG results, 2000.

[9] L. L. C. M. R. M. A. S. H. S. P. R. S. R. K. B.
E. M. Sentovich, K. J. Singh and
A. Sangiovanni-Vincentelli. SIS: A system for
sequential circuit synthesis. Technical report, 1992.

[10] A. Farrahi and M. Sarrafzadeh. Complexity of the
Lookup-Table Minimization Problem for FPGA
Technology Mapping. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 13(11):1319–1332, 1994.

[11] R. J. Francis, J. Rose, and K. Chung. Chortle: a
technology mapping program for lookup table-based
field programmable gate arrays. In Proceedings of the
27th ACM/IEEE conference on Design automation,
pages 613–619. ACM Press, 1990.

[12] W. L. Jason Cong, Joey Y. Lin. Spfd-based global
rewiring. In Proceeding of International Symposium on
FPGAs, pages 77–84, February 2002.

[13] K. Keutzer. Dagon: Technology binding and local
optimization by dag matching. In DAC, pages
341–347, 1987.

[14] T. Larrabee. Test Pattern Generation Using Boolean
Satisfiablity. IEEE Transactions on Computer-Aided
Design, 11(1):6–22, 1992.

[15] I. Levin and R. Y. Pinter. Realizing Expression
Graphs using Table-Lookup FPGAs. In Proceedings of
the European Design Automation Conference, pages
306–311, 1993.

[16] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: Engineering an Efficient SAT
Solver. In Proceedings of the 38th Design Automation
Conference (DAC’01), 2001.

[17] M. D. F. Schlag, J. Kong, and P. K. Chan.
Routability-driven techology mapping for
lookup-table-based fpgas. In Proceedings of the 1991
IEEE International Conference on Computer Design
on VLSI in Computer & Processors, pages 86–90.
IEEE Computer Society, 1992.

[18] Xilinx. Virtex-ii complete data sheet ver 3.3, 2004.

[19] S. Yamashita, H. Sawada, and A. Nagoya. A new
method to express functional permissibilities for LUT
based FPGAs and its applications. In ICCAD, pages
254–261, 1996.

[20] S. Yang. Logic synthesis and optimization benchmarks
user guide version, 1991.

7. APPENDIX

Module 2 Verilog Code for Building Blocks

module SetResetChecker6Bit(D,f)

input[5:0] D;

output f; reg f;

always @ (D)

f = (D == 6’h00 || D == 6’hff) ? 1:0;

endmodule

module SumCompare2Bit(A,B,C,f)

input[1:0] A,B,C;

output f;

reg f;

always @ (A or B or C)

f = (A+B == C) ? 1:0;

endmodule

module PriorityChecker6Bit(D,f)

input[5:0] D;

output f;

reg f; reg[2:0] i,sum;

always @ (D)

for (i=0;i<6;i=i+1)

sum = (i==0) ? [i]:D[i]+sum;

f = (sum>=3’b011) ? 1:0;

endmodule

432

