
Page 1 of 24

Segmented Routing for Speed-Performance and
Routability in Field-Programmable Gate Arrays

Stephen Brown, Muhammad Khellah, and Guy Lemieux

Department of Electrical and Computer Engineering

University of Toronto, Canada

E-mail: brown@eecg.toronto.edu

Abstract

This paper addresses several issues involved for routing in Field-Programmable Gate Arrays
(FPGAs) that have both horizontal and vertical routing channels, with wire segments of various
lengths. Routing is studied by using CAD routing tools to map a set of benchmark circuits into
FPGAs, and measuring the effects that various parameters of the CAD tools have on the imple-
mentation of the circuits. A two-stage routing strategy of global followed by detailed routing is
used, and the effects of both of these CAD stages are discussed, with emphasis on detailed rout-
ing. We present a new detailed routing algorithm designed specifically for the types of routing
structures found in the most recent generation of FPGAs, and show that the new algorithm
achieves significantly better results than previously published FPGA routers with respect to the
speed-performance of implemented circuits.

The experiments presented in this paper addressboth of the key metrics for FPGA routing
tools, namely the effective utilization of available interconnect resources in an FPGA, and the
speed-performance of implemented circuits. The major contributions of this research include the
following: 1) we illustrate the effect of a global router on both area-utilization and speed-perfor-
mance of implemented circuits, 2) experiments quantify the impact of the detailed router cost
functions on area-utilization and speed-performance, 3) we show the effect on circuit implemen-
tation of dividing multi-point nets in a circuit being routed into point-to-point connections, and 4)
the paper illustrates that CAD routing tools should account forboth routability and speed-perfor-
mance at the same time, not just focus on one goal.

1 Introduction

Over the past several years, Field-Programmable Gate Arrays (FPGAs) have become widely
accepted as an attractive means of implementing moderately large digital circuits in a customized
VLSI chip. A number of different styles of FPGAs are commercially available and one of the
most important types is thearray-based architecture, which consists of rows and columns of logic
blocks with horizontal routing channels between the rows and vertical channels separating the
columns. First introduced by Xilinx, in [1] and later in [2] and [3], variations of the array-based
architecture is also found in FPGAs produced by AT&T [4], and QuickLogic [5].

Array-based FPGAs are available with very high logic capacities, approaching the equivalent
of 15,000 logic gates (a logic gate is usually defined as the 4-transistor cell that is the basic build-
ing block in some Mask-Programmable Gate Arrays; in simpler terms, it can be thought of as a

Page 2 of 24

NAND-gate). With such large devices, the design of the interconnect in the routing channels has a
crucial impact on both the percentage of the chip’s logic capacity that can be effectively utilized
and the speed-performance of circuits implemented in the FPGA. In early array-based FPGAs [1]
[2], interconnect comprised mostly short wire segments that spanned the length or width of a sin-
gle logic block, and longer wire segments were available only by interconnecting the short seg-
ments via programmable routing switches. While such architectures allow for efficient utilization
of the wire segments in terms of area (since short connections never waste area by using long wire
segments), requiring that long connections pass through several routing switches in series
severely impairs speed-performance. This follows because routing switches are user-programma-
ble and hence have significant series resistance and parasitic capacitance. To address these issues,
recent architectures containsegmented routing channels that comprise a mixture of both short and
long wire segments. If CAD tools carefully utilize these variable-length segments when imple-
menting circuits, segmented routing channels can greatly enhance speed-performance [6].

It is clear that implementing any non-trivial circuit in a complex FPGA requires sophisticated
Computer-Aided Design (CAD) tools. A typical design system [7] [8] [9] would include support
for the following CAD steps: initial design entry, logic optimization, technology mapping, place-
ment, and routing. This paper focuses on the final stage of the CAD process, investigating most of
the important issues associated withrouting for array-based FPGAs. Routing is studied by using
CAD routing tools to implement a set of benchmark circuits in FPGAs, and measuring the effects
that various parameters of the CAD tools have on the implementation of the circuits. In the exper-
iments,both of the key metrics for routing tools are studied, namely 1) the effective utilization of
the available interconnect resources in the FPGA, and 2) the speed-performance of the final result.

The overall routing strategy used is the traditional two-stage approach in which global routing
is followed by detailed routing. Theglobal router assigns each of the required connections in a
circuit to specific routing channels, and then thedetailed router allocates the FPGA’s wire seg-
ments and routing switches within the channels to complete the connections. Since global routing
for FPGAs is similar to that for other technologies, it is considered only briefly in this paper, but
detailed routing, which for FPGAs requires a novel approach, is discussed at length. In fact, we
present a new detailed routing algorithm that has been developed specifically for the types of rout-
ing architectures found in the most recent generation of array-based FPGAs* .

The rest of this paper is organized as follows. Section 2 provides background information on
the category of FPGA used in this study. Section 3 gives an overview of the CAD tools used for
implementing circuits and describes in detail the global and detailed routing algorithms (most of
the focus is on detailed routing). Section 4 presents experimental results that explore the effects of
the routing tools on both the area-utilization of FPGA routing resources as well as the speed-per-
formance of implemented circuits, and Section 5 summarizes our research contributions.

* The detailed router is calledSEGA, for SEGment Allocator, and is available via anonymous ftp from the host
“ftp.eecg.toronto.edu”, in the file-system directory called pub/software/SEGA.SEGA is written in ANSI-C.

Page 3 of 24

2 Background Information

This section provides background information in two areas: it describes the model of array-based
FPGAs used for this study, and it defines the CAD routing problem for this type of FPGA. Also,
previous research on routing algorithms is discussed.

2.1 FPGA Model Used in This Study

The model for FPGAs assumed in this paper is similar to that in other studies on FPGA architec-
ture [6] [10] [11] [12] and CAD algorithms [13] [14]. As illustrated in Figure 1, the FPGA con-

sists of a rectangular array ofN x M logic blocks with both horizontal and vertical routing
channels. In terms of commercially available devices, the structure depicted in the figure is most
similar to that found in Xilinx FPGAs [1] [2] [3], but it is more general. For the small example in
Figure1, the FPGA has two pins on each side of a logic (L) block and three tracks per channel.
For this paper, no assumptions are necessary about the internal details of the logic blocks, except
that each block has some number of pins that are connected to the channels by routing switches.
The channels comprise two kinds of blocks, called Switch (S) and Connection (C) blocks,
described below. The S blocks hold routing switches that can connect one wire segment to
another, and the C blocks house the switches that connect the wire segments to the logic block
pins. Because of its widespread use, being offered in FPGAs manufactured by Xilinx, Altera [15],
and AT&T, this paper assumes that routing switches are pass-transistors controlled by Static-

RAM cells (see footnote on next page*). Note that the blocks in Figure 1 are numbered along the
left and bottom sides for later reference as a means of describing connections to be routed.

Pin
Block
Logic

10 2 N-2 N-1

C

C

C

L

L

L

L

L

LL

L

L

S

S S

S

C

C

C

C

CC

CC

C

2

1

0

Channel
Vertical

Channel
Horizontal

M-1

M-2

Figure 1 - An Nx M FPGA.

Page 4 of 24

The general nature of an S block is illustrated in Figure 2a. Since wire segments in the routing
channels may be of various lengths, some tracks pass straight through the S block, while other
tracks are broken by routing switches. There are two representations for switches in the figure,
either as a dotted line for connecting the ends of two wire segments, or as anX for a wire segment
that passes straight through the S block. For the example in the figure, the S block switches allow
the horizontal tracks numbered 1, 2, and 3 to connect to the vertical tracks with the same numbers.
Although Figure 2a provides a specific example, the FPGA model treats the S block as a general
four-sided switch block that can be configured in any way.

There are two parameters of the FPGA architecture that determine the layout of routing
switches in an S block. The first is the segmentation of the channels; by allowing customizing of
the S blocks, the model supports virtually any channel segmentation scheme (for the CAD routing
tools described later in this paper, the user can specify channel segmentation by any number of
“groups” of tracks that have specific segmentation lengths or a probability distribution of lengths).
The second architectural parameter affecting an S block is called itsflexibility and is set by a
parameter, , which defines the number of other wire segments that a wire segment that ends at
an S block can connect to. For the example shown in Figure 2a, the wire segment at the top left of

the S block can connect to three others and sois 3. Note that alone does not determine the
number of routing switches in an S block, since tracks that pass uninterrupted through the block
have fewer associated switches.

Figure 2b illustrates a C block. The tracks pass uninterrupted through the C block and can be
connected to the logic block pins via a set of switches. The flexibility of a C block,, is defined
as the number of wire segments in the C block that each logic block pin can connect to. For the
small example shown in the figure each pin can be connected to 2 vertical tracks, and so is 2
(in a C block, routing switches are drawn as anX). Our FPGA model allows complete customiz-
ing of the C block.

* Although this assumption does not significantly impact the CAD routing tools, it does affect the speed-perfor-
mance of implemented circuits, and it dictates the method used to measure speed-performance (Section 3.4 describes
our method for measuring speed-performance).

Fs

Figure 2 - Examples of S and C Blocks.

b) The C block.

321

321

2

1

23

1
1

3

1

321

321

22

a) The S block.

Block

L L

Block

Fs Fs

Fc

Fc

Page 5 of 24

The main advantage provided by the FPGA model described above is its generality, which
supports a wide range of routing architectures by changing the number of tracks per channel and
the contents of the C and S blocks. Since the CAD routing tools are based on this general model,
they provide a research vehicle for studying the architecture of FPGAs. Studies based on our ear-
lier CAD tools examined the effects of the and parameters, and can be found in [10] [11]
and [12]. A recent architectural study on channel segmentation has been carried out using the
tools described in Section 3 of this paper, and is reported in [6].

2.2 The Routing Problem in Array-based FPGAs

Since numerous routing algorithms for VLSI chips have been created over the years, it is prudent
to explain why array-based FPGAs with segmented channels represent a new type of routing
problem. To begin with, routing in FPGAs with any style of routing architecture can be more dif-
ficult than classical detailed routing [7] [8] because the segments available for routing are already
in place and connections between segments are possible only where routing switches exist. To
illustrate the issues involved, consider the example described below.

Figure 3 shows three views of a section of a routing channel in an array-based FPGA (note
that, for clarity, the vertical channels are not shown in the picture). In each view, the figure illus-
trates the routing options available in this channel for three different connections, called A, B, and
C. In the figure, awire segment in the channel is shown as a solid horizontal line, and a wire seg-
ment that is usable for a particular connection is highlighted as a bold line. A routing switch that
joins two horizontal wire segments is drawn as a dashed line, and a switch that joins a horizontal
segment to a logic (L) block pin is shown as anX. Finally, logic blockpins are drawn as vertical

Fc Fs

Figure 3 - An Example of an FPGA Routing Problem.

1
2

�
3

�

1
2

�
3

�

1
2

�
3

�

L L L L

LLLL

L L L L

L L L L

L L L L

L L L L

Routing
Options for

�

Connection A
�

Routing
Options for

�

Connection B

Routing
Options for

�

Connection C

Page 6 of 24

lines.As depicted in Figure 3, the routing architecture in this FPGA has three tracks and the rout-
ing switches are distributed such that only tracks 2 and 3 can connect the required logic block pins
for Connection A, and only tracks 1 and 2 can be used for Connections B and C. The discussion
below considers this routing problem, first from the perspective of just completing all three con-
nections, and then also considering the usage of the wire segments according to their lengths.

Assume that a router completes connection A first. If it chooses to route Connection A on
track 2, then one of B and C will fail because they both rely on a single remaining option, namely
track 1. On the other hand, if the router had chosen track 3 for A, then B could use track 1 and C
track 2, or vice-versa. This simple example illustrates that, even when there are only three connec-
tions involved, routing decisions made for one connection can unnecessarily block others. Such
conflicts for routing resources are the main reason why detailed routing for FPGAs can be more
difficult than classical detailed routing.

The above routing solution satisfies the goal of completing all three connections, but only one
of the two choices for B and C makes the best use of the available wire segments. Specifically, it
is clear from examining the routing channels that Connection B should be assigned to track 2,
since the wire segment there exactly matches the connection’s length. This also leads to the best
solution for Connection C since it requires only one wire segment in track 1 but would need two
segments in track 2. Matching the lengths of wire segments to connections is a new problem that
does not exist for classical mask-programmed technologies, where there is complete flexibility to
create metal wires of any length. While Figure 3 shows only connections within one small routing
channel, the problem is much more complex where many connections compete for wire segments
and when both horizontal and vertical channels are involved.

A key issue illustrated by the above example is that routing algorithms for FPGAs must con-
sider not only the successful completion of all required connections, but must also account for the
number of wire segments allocatedper connection. The former of these goals is concerned with
the routability, or area-performance of circuits implemented with the routing algorithms, and the
latter goal determines thespeed-performance of circuits.

In terms of previous research, common approaches for detailed routing in other types of
devices are not suitable for FPGAs. Classic Maze routing [16] is ineffective because it is inher-
ently sequential and so, when routing one connection, it cannot consider the side-effects on other
connections. The example in Figure 3 illustrates why this is important. Channel routers [17] are
not appropriate for array-based FPGAs because it is very difficult to subdivided the routing prob-
lem into independent channels. Channel routing algorithms are used in [18] and [19] for row-
based FPGAs [20] [21]. This is possible for these types of FPGAs because the logic blocks are
arranged in rows separated by routing channels and the routing switches are such that each logic
block pin can connect to all the wire segments in the channels above and below it and each hori-
zontal wire segment can connect to all the vertical wire segments that cross it. This routing flexi-
bility cannot be assumed for array-based FPGAs (like those from Xilinx), and so it is not clear
how channel routing algorithms could be adopted for such devices.

There is a limited number of previous publications concerning routing for array-based
FPGAs. The earliest [13] [14] is the predecessor of the detailed routing algorithm described in this

Page 7 of 24

paper. The earlier algorithm addressed the problem of considering the side-effects that routing one
connection has on others. However, it was intended for routing architectures consisting of short
wire segments only and so it did not have the ability to properly utilize wire segments of variable
lengths according to the lengths of connections to be routed. While this is not especially important
for achieving good routability, it can have significant effects on speed-performance. In Section 4,
we contrast the routing results, in terms of the speed-performance of resulting circuits, produced
by the router in [14] to the new algorithm described in this paper. Alternative approaches to rout-
ing in array-based FPGAs can be found in [22], [23] and [24]. No direct comparison is available
to [22] or [23], but [24] shows similar area-performance results to [14] and this is about the same
as the area-performance results from the new router described in this paper. [24] describes a
multi-point, as opposed to two-point, router and shows that it uses fewer wire segments than the
router in [14]; however, the effect of this optimization on speed-performance is not measured.

3 Implementation Procedure

This section describes the CAD tools that are used in this research to implement a set of bench-
mark circuits in array-based FPGAs. The next subsection provides an overview of the entire CAD
system, after which the global and detailed routers are described in greater depth. At the end of
this section, we describe the method that it used to measure the speed-performance of a circuit
after it has been implemented by the CAD tools.

3.1 Overview of CAD T ools

To implement the benchmark circuits described later in the paper, the following CAD steps,
which would be included in any typical FPGA development system [9], were involved: 1) the
benchmark circuits, which were originally targeted for standard cell implementation, weretech-
nology mappedinto FPGA logic cells using the Chortle algorithm [25], 2) the logic cells in the
multi-point netlist resulting from technology mapping wereplacedinto specific locations in the
FPGA using an implementation of the min-cut algorithm [26], 3) finally, the logic cells were
interconnected duringrouting. The approach used for routing is the traditional [8] two-stage
method ofglobal routing followed bydetailed routing, allowing the separation of two distinct
problems: balancing the densities of the routing channels, and assigning specific wire segments to
each connection.

The CAD stages preceding routing were performed only once for each benchmark circuit, but
routing was performed multiple times, for different parameters of the global and detailed routers.
The results after routing were evaluated in two ways: 1)were the routing tools able to success-
fully complete 100 percent of the required connections for the circuit?, and 2) if all of the connec-
tions were successfully routed, what is the speed-performance of the final result? The answer to
question 1) is easily obtained from the detailed router, and to answer question 2) we estimate rout-
ing delays of signals using the method that will be described in Section 3.4. The following subsec-
tions provide more details on the global and detailed routing algorithms.

Page 8 of 24

3.2 The Global Router

Since global routing does not necessarily require detailed knowledge of the contents of the rout-
ing channels, it is possible to adapt algorithms from previous technologies for use with FPGAs.
The global router employed in this study is an adaptation of the LocusRoute global routing algo-
rithm for standard cells [27]. This global router divides multi-point nets in the circuit being routed
into two-point connections(the implications of this step are discussed later in this section) and
finds minimum distance paths through the routing channels for each connection.The algorithm’s
main goal is to distribute the connections among the channels sothat the channel densities are bal-
anced. Intuitively, this is a sensible goal for FPGAs, because the capacity of each channel is
strictly limited.In addition to balancing the channel usage, the global router can also (optionally)
minimize the number of bends that each of the two-point connections incurs [12]. Abend occurs
at an S block where a connection has to turn to reach its destination. Reducing bends is important
because connections are better able to utilize longer wire segments if they travel further along a
single channel before turning. The results in Section 4 will show that bend reduction can have a
significant effect on the speed-performance of routed circuits.

An example of the output of the global router, which is called [8] acoarse graph, G, for a sin-
gle connection routed in a very small FPGA is illustrated on the left-most side of Figure 4. The
vertices and edges inG are identified bythe coordinates shown in the figure for the FPGA and
define the sequence of channels that the global router has chosen to connect the logic block at
location (0,4) to the one at(4,0).

Since the global router splits all multi-point nets into two-point connections,the coarse graphs
always have a fan-out of one. However, some connections that are part of the same net might
overlap within a routing channel, and this could lead to wasted wire segments after the entire cir-
cuit is routed. The results in Section 4 will show that by decomposing multi-point nets into two-
point connections the global router can adversely affect speed-performance. In Section 3.3, we
describe a method that can be usedduring detailed routing to “re-construct” the multi-point nets
that are broken by the global router.

3.3 The Detailed Router

A new detailed routing algorithm has been developed for this study and is calledSEGA, for SEG-
ment Allocator. Designed specifically for array-based FPGAs with segmented channels,SEGA
includes novel features that allow it to produce a routing result that is optimizedeither for the best
achievable area-utilization of the FPGA’s routing resources, or the best achievable speed-perfor-
mance of the implemented circuit.SEGA is parameterized to support any FPGA architecture that
fits the general array-based model that was illustrated in Figure 1. In terms of its overall organiza-
tion, SEGA is similar to a previously published detailed router described in [14]. However, the
new algorithm is fundamentally different from its predecessor in the treatment of wire segments
according to their lengths. By properly accounting for the lengths of wire segments during all
stages of routing,SEGA is able to achieve a significantly better result (as much as 25%) than the
earlier algorithm with respect to the speed-performance of implemented circuits.

Page 9 of 24

To route a circuit,SEGA first creates a representation of the FPGA, from a set of user-speci-
fied parameters, and then reads the output from the global router. A coarse graph is created in an
internal data-structure for each required connection. Detailed routing then proceeds in two main
phases: in phase 1, the router examines the wire segments and routing switches present in the
FPGA and enumerates all of the alternatives for the detailed route of each coarse graph. Then, in
phase 2, specific routing decisions are made for each connection. The decisions taken in phase 2
are driven by cost functions (to be described in Section 3.3.2) that reflect either the routing delay
associated with each choice, or the effect that each alternative would have on the routability of the
overall circuit.

3.3.1 Phase 1: Enumerating the Detailed Routes

During phase 1,SEGA enumerates all of the detailed routes that are available in the FPGA to
implement each global route. The alternative detailed routes for each coarse graph,, are
recorded in anexpanded graph, calledD. As illustrated in Figure 4, each edge inD represents spe-
cific wire segments (one or more) that can be used to implement the corresponding edge in. As

the figure shows,D has the same vertices as, but there is one instance of each vertex for each
path in the FPGA that leads from the root vertex to the leaf vertex. The edges ofD are drawn as
shaded lines to indicate that they are not simple edges. Each edge,e, in D may imply the use of
multiple wire segments, in which case multiple shaded lines are shown. It is important to realize
that the length of a wire segment referenced ine is not necessarily the same as the length of the
corresponding edge in , since a wire segment may be either longer or shorter than the edge
itself. Eache has associated with it one or more labels, one for each wire segment that it refer-

G

G

Figure 4 - Expanded Graph, D, Showing the Alternative Detailed Routes for.G

0,4

0,3
�

3,3

3,0

4,0

L

C
�

S
�

0,4

0,3
�

3,3

3,0

4,0

L

C
�

S
�

C
�

L

C
�

L

L

L
	

0

1

2

3
�

4
�

0 1 2 3 4
�

COORDINATES
�

COORDINATES
�

Expanded GraphCoarse Graph

G

G

Page 10 of 24

ences. The labels identify the corresponding wire segments in the FPGA, examples of which are

indicated by the two curved lines pointing from wire segments in the FPGA to edges inD.*

3.3.2 Phase 2: Path Selection

After phase 1, eachD may contain a number of alternative paths.SEGA places all of the
expanded graphs into a singleconnection-list. Based on cost functions (defined shortly), the
router then selects a path to define the detailed route for each connection in the list. Because
SEGA expands all the coarse graphs before making any routing decisions, when optimizing for
routability it can consider the side effects that a decision made for one connection has on others.
For reasons given in Section 2, this is important in FPGAs. Alternatively, if speed-performance is
the primary goal the router can base its decisions on the lengths of the wire segments represented
in D as they compare to the lengths of the edges inG. Phase 2 proceeds as follows (the basis for
sorting the connection-list and the method for evaluating the cost of a path will be defined
shortly):

put all connections (expanded graphs) into a single connection-list
while the connection-list is not empty do {

sort the connection-list ; select the connection at the head of the list
route the selected connection, using the path with lowest cost
mark the connection as routed, and remove all paths in this connection

from the connection-list
find all paths that would conflict with the selected path (i.e. all paths

that are part of different nets but reference the wire segments
just allocated to the selected path) and remove them as altern-
atives for the corresponding connections. If a connection loses
its last remaining path, that connection is deemed unroutable †

update the cost of all affected paths
}

Two key details are not explained in the above pseudo-code: the metric used tosort the con-
nection-list, and the definition of the cost function that assesses thecost of a path. In both cases,
this depends on whetherSEGA is being used to 1) optimize for area or 2) optimize for speed, as
follows. For area optimization,SEGA first sorts (note: in this paper, sort means to scan through
the list from head to tail and make a selection based on some metric) the connections according to
the number of possible alternatives (number of paths in each expanded graph), so that connections
that have fewer possible routes will be given priority. Once a connection has been selected by this
sorting procedure
 SEGA uses a cost function called , described below, to evaluate
the cost of each available path,p, and chooses the path with the minimum cost (if more than one

* The graph expansion procedure is similar to that described in [14], except that in [14] all wire segments are
assumed to be of length 1. Explicitly recording the lengths of wire segments allowsSEGA to later make routing deci-
sions that result in much greater speed-performance of the final result.

† It would be desirable for the router to have some means of trying other alternative solutions when a connection
fails to route. For example, the router could perform another iteration on the problem, trying different combinations
of the cost function terms (described shortly) for the channels that contain unrouted connections.

Demand p()

Page 11 of 24

connection ties for having the fewest alternatives after sorting, SEGA evaluates the costs of the
paths in all of these connections). In speed-performance mode,SEGA first sorts the connections

according to their lengths* (so as to prioritize long connections and enable them to take advantage
of long wire segments), and then makes the path selection based on a cost function called
Delay(p). The cost functionsDemand(p) andDelay(p) will now be described.

3.3.2.1 Routability (or Area)-based Cost Function

The area-based cost function was originally defined in an earlier router for array-
based FPGAs, called CGE [13] [14]. Its purpose is to allow the router to select a path for one con-
nection such that it has the least negative effect on other connections from a routability point of
view. ForSEGA, this cost function engenders successful routing of 100% of the connections in a
circuit using a minimal number of tracks per channel. is defined by a summation
that calculates the ‘demand’ among the connections in a circuit for each wire segment associated
with p. To calculate the demand for an individual wire segment,w, SEGA counts the number of
instances of w that are in expanded graphs for other nets. However, some instances are less likely
to be selected when the corresponding connection is routed because there are alternative wire seg-
ments in parallel withw. Thus, ifa pathp contains a wire segmentw that hasj other instances
(), then is given by:

(1)

where is the number of wire segments in parallel with. is then the
summation of for all wire segments inp.

3.3.2.2 Speed-Performance-based Cost Function

The purpose of the cost function is to allowSEGA to select whichever path represents
the best choice in terms of speed-performance. Different paths may incur larger or smaller delays
because they might have different numbers of wire segments or their wire segments may be of dif-
ferent lengths. For the purpose of comparison, two methods for evaluating can be used
in SEGA. The first method considers the number of wire segments assigned to each connection
and the lengths of those segments, while the second method employs an analytical model to esti-
mate real routing delays (the analytic model is described in Section 3.4). When measuring

 based on the number and lengths of wire segments in a path, is calculated as
follows:

(2)

* The length of a connection is defined as the number of logic (L) blocks it spans.

Demand p()

Demand p()

w1 w2 … wj, , , Demand w()

Demand w() 1
al t wj()

j
∑=

al t wj() wj Demand p()
Demand w()

Delay p()

Delay p()

Delay p() Delay p()

Delay p() c1 NumSeg p()× c2 SegLen p()×+=

Page 12 of 24

where is similar to the cost function defined in [18] and [19] and its purpose is to
minimize thenumber of wire segments assigned to a connection. The cost terms are normalized
so that they range from 0 to 1, and thus is defined as the quotient of “the actual

number of segmentsin p minus the minimum possible*” divided by “the actual number of seg-
mentsin p”. is similar to the function used in [19]. Its purpose is to minimize the
wastage due to assigning long wire segments to short connections. Thus, is defined

as the quotient of “the total wasted length of the wire segments inp †” divided by “the total length
of wire segments inp”. The c1 andc2 factors in Equation (2) are binary weights used to turn either
term on or off.

Equation (2) provides one way of measuring , using cost functions defined in previ-
ous publications [18] [19]. A different approach to assessing the speed-performance of paths is to
use an analytic model to estimate real propagation delays, rather than counting segments and seg-
ment lengths. When measuring based on real propagation delays, is defined
as:

(3)

where represents the total routing delay that would be seen by the corre-
sponding connection if routed using pathp. MinimumDelay is the theoretical minimum routing
delay for the connection, if it were routed using thefastest possible routing resources in the
FPGA. Both andMinimumDelay are calculated by using the mathematical
model described in Section 3.4.

3.3.2.3 Modifying SEGA to Route Multipoint Nets

SEGA produces good results for both area and speed-performance with the above algorithm and
cost functions. However, some improvements should be possible if the algorithm considered
which connections are part of multi-point nets, rather than just routing two-point connections. We
have performed extensive experiments to investigate this issue and have found that it is not partic-
ularly important when optimizing for routability, because theDemand(p) cost function tends to
merge two-point connections that are part of the same net if they overlap. However, for speed-per-
formance accounting for multi-point nets can have a significant effect, due to the extra RC-load
that is added to these nets when their constituent two-point connections overlap but do not share
wire segments. The key issue is that it is advantageous forSEGA to “share” wiring resources
among connections that are electrically part of the same multi-point net. To address this issue, the
following is a modified version ofSEGA that can be used instead of the above algorithm when
optimizing for speed-performance:

* The minimum possible is the number of edges (not including the two L block pins) inthe coarse graph.

† This corresponds to the total length of wire segments inp minus the total length of the edges in the coarse graph.

NumSeg p()

NumSeg p()

SegLen p()
SegLen p()

Delay p()

Delay p() Delay p()

Delay p()
ActualDelay p() MinimumDelay−

ActualDelay p()=

ActualDelay p()

ActualDelay p()

Page 13 of 24

Phase 2: Path Selection

put all connections (expanded graphs) into a single connection-list
group connections in the connection-list by nets
while the connection-list is not empty do {

sort the connection-list according to net length *; select the longest net
sort connections in the selected net according to their lengths; select

the longest connection
while there are unrouted connections for the current net do {

if this is the first connection routed for the net then
route the connection with the fastest available path

else {
route the connection using the path that has the maximum

number of shared segments with the already routed
part of the net

if such a path is not available then
route the connection with the fastest available path

}
mark the connection as routed, and remove all paths in this

connection from the connection-list
find all paths that would conflict with the selected path (i.e. all

paths that are part of different nets but reference the wire
segments just allocated to the selected path) and remove
them as alternatives for the corresponding connections. If
a connection loses its last remaining path, that connection
is deemed unroutable

update the cost of all affected paths
}
mark the net as being routed

}

The key idea behind the above pseudo-code is that it tries to maximize the sharing of wire seg-
ments among connections that are part of the same net. Referring to the code, for this scheme
SEGA routes all of the connections in a particular net before moving on to another net. The nets
are sorted by length, so that long nets can take advantage of long wire segments. Once a net has
been selected, its individual connections are further processed by length so that long connections
have the most opportunity to use long wire segments. Referring to the inner-most “while ” loop in
the code, the first connection routed for each net is mapped to its fastest available path according
to Equation (2) or (3). Any subsequent connections, however, will be routed using the path that
has the maximum number of shared segments with the already routed part of the net, if such a
path exists. Otherwise, the graph will be routed using its fastest possible path.In Section 4, we
will show that since the above algorithm tends to minimize resistive and capacitive loading on

* The length of a net is defined as the summation of the lengths of the two-point connections in the net.

Page 14 of 24

nets, it results in significant speed-performance improvement. Finally, experiments have shown
thatSEGA requires the same amount of time (about 40 msecs per connection on a SUN/4 model
ELC) whether routing by nets or two-point connections.

3.3.3 Summary of SEGA Cost Functions

The preceding sub-sections have described several cost functions that are available in theSEGA
detailed router. In Table 1, these functions are summarized and assigned a name for reference
later, in Section 4.

3.4 Delay Model for Estimating Speed-Performance of Routed Circuits

For this research, there are two purposes for which it is necessary to measure the propagation
delays of routed connections in FPGAs. Firstly, and most importantly, once a circuit has been
fully implemented we need to measure the speed-performance of the final result in order to assess
the quality of the solution produced by the CAD tools. Secondly, when using theAnalytic_Model
cost function, the detailed router calculates actual routing delays of alternative paths in order to
make routing decisions. For both of these situations, we use an efficient analytic modelling tech-
nique to quickly and accurately estimate signal propagation delays.

To estimate routing delays in FPGAs, an adaptation of the analytic modelling technique pre-
sented in [28] is used, in which MOS transistors are modelled as constant RC-elements. Although
the original publication [28] stated that the model is not applicable for pass-transistors, in [29] we
show that by carefully choosing values of resistance and capacitance it is possible to use it for that
purpose. The input to the analytic model is anRC-tree, in which resistors represent routing
switches that signals pass through in series, and capacitors correspond to parasitic capacitance due
to both routing switches and wire segments. As output, the model produces an estimate for the
delay from the source node of the network to each of the sink nodes, where the source-to-sink
delay is defined as the time it takes for an ideal step input at the source to reach half its value at the

sink * . In Figure 5, two examples of RC-trees for detailed routes, called “path #1” and “path #3”,
connecting from the L block at the lower left of the figure to the block at the upper right are

Cost Function Description

Area optimize for routability only

Seg_Len minimize lengths of wire segments used

Num_Seg minimize the number of wire segments used

Seg_Len + Num_Seg combination of the above two cost functions

Analytic_Model use an analytic model to find delays

Net_Routing optimize for speed, but also focus on re-use of
wire segments for connections on same net

Table 1 - SEGA’s Cost Functions.

Page 15 of 24

shown. Referring to the FPGA channels in the figure, note that each routing switch in series with
a detailed route (path) contributes both a resistor and capacitor to the RC-tree, and wire segments
in the path as well as routing switches that “hang off” the wire segments add capacitance. Figure 5
also shows that a source resistance and capacitance, as well as a load capacitance are included for
each net.

For the results presented later in this paper, R and C are calculated assuming a 0.8-micron
BiCMOS process. The particular values used can be found in [29], and are summarized as fol-
lows: R for an “ON” switch is 915 ohms, C for an “ON” switch is 25 ff, C for an “OFF” switch is

* Since we will assume an NMOS pass transistor switch, we measure the rising time of a signal rather than its falling
time because the former is the “worst case”.

Figure 5 - Examples of RC-trees for Connections Routed in FPGAs.

R R R sourceR

Cload
+
Coff2

+
Con

source C
+

Coff2
+
Con

2Con + Cws3 + 5Coff

R R RRR R R R source

Cload
+
Coff2

+
Con

source C
+

Coff2
+
Con

Con
+
2

Cws1
+
Coff

Con
+
2

Cws1
+
Coff

2Con Coff+ Cws1 + 2

a) RC tree for path #1

b) RC tree for path #3

 L L L L

 L L L L

 L L L L

 L L L L

logic
block

wire segment of
length three

switches

path #1
path #2
path #3

Page 16 of 24

13 ff, and C for a wire segment is 3 ff per unit length. Using these parameters, the speed-perfor-
mance of individual nets can be calculated directly by the analytic model. The delay of a net is
defined as the largest delay from the net’s source to any of its sinks. We then define the speed-per-
formance of an entire circuit implemented in an FPGA as theaverage of the net delays in the cir-
cuit.

4 Experimental Results

This section presents experimental results that illustrate the effects of various parameters of both
the global and detailed routers on the implementation of circuits. Following the procedure out-
lined in Section 3, the experiments are based on a set of benchmark circuits summarized in Table
2. The table shows the name of each circuit and its size in terms of the number of logic blocks,
number of nets, and number of two-point connections. All of the circuits (except the largest one)
are from the MCNC benchmark suite.

4.1 Effect of the Global Router on Implementation of Circuits

Recall from Section 3 that besides balancing channel densities, the global router can also mini-
mize the number of bends that connections pass through. In this section, we will show that this is
an important goal that can affect circuit implementation.

Circuit Name # of Logic Blocks
of Multi-point

Nets
of Two-Point
Connections

9symml 72 79 259

too_large 156 186 519

apex7 80 126 300

example2 120 205 444

vda 210 225 722

alu2 143 153 511

alu4 255 256 851

term1 56 88 202

C1355 110 145 360

C499 110 145 360

C880 120 174 427

k2 360 404 1256

z03D4 586 608 2135

Table 2 - Characteristics of Benchmark Circuits

Page 17 of 24

With a reduced number of bends, connections traverse longer distances in a routing channel
before turning at an S block. To quantify this effect, we routed each benchmark circuit twice: once
with the bend reduction feature of the global router turned off, and then with bend reduction
turned on. For each routed circuit, we measured the lengths of the straight sections of connections,
calledsection length. Table 3 gives the average section length for the connections in each bench-
mark circuit and shows that the average length is 22% greater when bend reduction is turned on.

To evaluate the effect of bend reduction on area utilization, we usedSEGA to perform

detailed routing of each global router solution using theArea (see Table 1) cost function* . The
purpose of the experiment was to determine the minimum number of tracks per channel needed to
successfully route the circuits with and without bend reduction for a range of different channel
segmentations in the FPGA. Thus, for each circuit, the methodology used was to set the number
of tracks per channel,W, in the FPGA to a small value (equal to the maximum channel density
after global routing) and attempt detailed routing withSEGA. As long as detailed routing failed,
W was incremented by one until eventually 100% of the connections in the circuit were routed.
This was performed for different segmentation lengths in the FPGA ranging from 1 to 8. In each

* Similar relative performance results were obtained forSEGA’s other cost functions.

Circuit Name
Section Length with
Bend Reduction Off

Section Length with
Bend Reduction On

9symml 1.5 1.9

too_large 1.8 2.3

apex7 1.7 2.1

example2 1.9 2.5

vda 2.0 2.6

alu2 1.7 2.2

alu4 1.9 2.5

term1 1.6 2.0

C1355 1.8 2.4

C499 1.7 2.3

C880 1.8 2.4

k2 2.2 3.0

z03D4 1.8 2.3

Average 1.8 2.3

Table 3 - The Average Section Length for all Circuits.

Page 18 of 24

case, all tracks had the same segment lengths. The results are shown in Figure 6, in which the hor-
izontal axis represents segment length and the vertical axis shows the number of tracks needed to
route the circuits, on average, above the channel densities.

Referring to Figure 6, for all segment lengths the bend reduced circuits result in fewer
required tracks per channel for the detailed router. Also, as segment length increases the two
curves diverge. This makes intuitive sense, since connections in the bend-reduced circuits have
longer straight sections and so they waste less area as the segment length increases. This experi-
ment shows that from an area perspective it is a clear advantage to reduce the number of bendsif
the FPGA’s channels are segmented.

Having observed the effect of bend reduction on area utilization, we now wish to study the
effect on routing delays. For this experiment, to ensure that 100% of the connections in each cir-
cuit can be completed by the detailed router, the number of tracks per channel is set to a high
value (30). Rather than using a single segment length for all tracks as was done for the previous
experiment, in this case each channel contains a mixture of tracks with segments of length 1, 2, or
3. Over many combinations of channel segmentation, the benefits of bend reduction were
assessed by detailed routing the global routing solutions both with and without bend reduction.
Also, the experiments were repeated using all of the different cost functions available in the
detailed router. Table 4 provides a summary of the average results for all segmentation schemes
for each detailed router cost function. Each number in the table represents the average net delay
for the circuits, in nsecs.

Bend Reduction Off

Bend Reduction On

Excess Number of Tracks

Segment Length
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

2.00 4.00 6.00 8.00

Figure 6 - Effect of Bend-reduction on Area Performance.

Page 19 of 24

 Referring to Table 4, enabling bend reduction clearly produces better speed-performance
results, since for all detailed router cost functions the bend-reduced circuits provided better speed-
performance. This result occurs because connections in the bend-reduced circuits have longer
straight sections, and this allows the detailed router to make use of longer wire segments. Lower
propagation delays result because connections routed with a smaller number of long wires need to
pass through fewer switches than if they were routed with a larger number of short wire segments.

From the experiments presented in this section, it is clear that bend reduction is a good strat-
egy that can be used to improve both the speed- and area-performance of implemented circuits.
Unless otherwise stated, for the rest of experiments presented in this paper all circuits are bend-
reduced.

4.2 Effect of the Detailed Router on Implementation of Circuits

In this section, our aim is to determine which detailed router cost function produces the “best”
speed-performance results and which function produces the “best” area-performance results.
From the data already presented in Table 4, it is clear that the detailed router cost function has a
significant effect on speed-performance. Referring to the table, the various cost functions in
SEGA yield different average routing delays. TheArea cost function shows that focusing only on
routability gives less than minimum routing delays, as would be expected. TheSeg_Len row
indicates that very poor speed-performance results if the router considers only the lengths of wire
segments. The intent of this function is to prevent the assignment of long wires to short connec-
tions to minimize capacitive loading, but comparison to theNum_Seg row shows this to be a
poor strategy. Minimizing the number of segments that connections pass through yields among
the lowest delays; this seems to be the most important goal since combining it withSeg_Len
worsens the results. Since for theAnalytic_Model SEGA calculates accurate estimates of real
delays, comparingNum_Seg to Analytic_Model shows that the simple cost function that counts
the number of switches traversed by a connection is a good approach.

Finally, comparing the bottom row in Table 4 with the other rows shows that considering
multi-point nets instead of just two-point connections has positive effects on speed-performance.

SEGA Cost Function
Global Router without

Bend Reduction
Global Router with

Bend Reduction

Area 16.7 12.8

Seg_Len 19.0 16.9

Num_Seg 14.9 11.9

Seg_Len + Num_Seg 16.4 13.3

Analytic_Model 14.8 11.9

Net_Routing 13.0 10.1

Table 4 - Effect of CAD Routing Tool Cost Functions on Routing Delays.

Page 20 of 24

This occurs because when multi-point nets are ignored, the router may use more wire segments
and switches than is actually needed where two-point connections on the same net overlap. This
results in an increase in parasitic capacitance seen by the net and adds to its propagation delays.
ForNet_Routing, SEGA tries to re-assemble multi-point nets by focusing on not only speed-per-
formance (usingAnalytic_Model), but also on re-using wire segments for multiple connections
that are part of the same net. The results in Table 4 show thatNet_Routing is important because
it achieves the “best” speed-performance results.

Recall that it was mentioned earlier thatSEGA is an enhanced version of an earlier FPGA
router described in [14]. Since the earlier algorithm used ostensibly the same cost function as
SEGA when optimizing for routability, theArea cost function inSEGA achieves approximately
the same results as that in the earlier algorithm. However, the router in [14] did not have the abil-
ity to optimize for speed, so a comparison betweenSEGA’s speed-performance optimization and
that of its predecessor can be made by contrasting theArea cost function result in Table 4 with the
Net_Routing result. The data shows thatSEGA achieves about a 25 percent improvement in
speed-performance over the earlier algorithm.

Table 4 gives only average results over a wide range of different channel segmentations. To
provide a more detailed view, Table 5 shows the performance of the detailed router cost functions
for specific channel segmentation schemes. In the table, the horizontal axis represents the percent-
age of tracks in the FPGA that are of length 3, the vertical axis is percentage of length 2, and the
remaining tracks are of length 1. Each entry in the table represents the average net delay produced
by a particular segmentation scheme, and two of the detailed router cost functions are represented:
the shaded columns show the speed-performance achieved by theNet_Routing cost function,

100 9.2 8.3

90 9.5 8.4 9.0 8.2

80 9.9 8.4 9.8 8.1 8.9 8.0

70 10.2 8.6 9.9 8.3 9.2 8.0 8.8 7.9

60 10.5 9.0 10.0 8.5 9.6 8.2 9.3 7.9 8.7 7.7

50 10.9 9.5 10.3 8.9 9.8 8.4 9.5 7.9 8.9 7.7 8.6 7.6

40 11.6 10.3 10.9 9.5 10.3 8.7 9.8 8.2 9.1 7.9 8.9 7.5 8.3 7.5

30 12.1 11.1 11.4 10.1 10.8 9.4 10.3 8.7 9.7 8.2 8.9 7.7 8.8 7.5 8.2 7.4

20 12.7 11.9 12.0 11.0 11.3 10.2 10.7 9.3 10.0 8.6 9.4 8.0 9.2 7.7 8.7 7.4 8.3 7.5

10 13.5 12.4 12.6 11.7 11.9 10.9 11.1 10.1 10.6 9.2 9.8 8.3 9.5 7.9 9.1 7.6 9.0 7.4 8.2 7.5

0 13.9 12.8 13.3 12.5 12.5 11.8 11.6 10.8 10.9 9.9 10.3 9.0 9.9 8.4 9.4 7.9 9.0 7.5 8.5 7.4 8.1 7.5

0 10 20 30 40 50 60 70 80 90 100

Table 5 - Routing Delays of Segmentation Schemes.

Page 21 of 24

and the unshaded columns represent theArea cost function. Comparing the shaded and unshaded
columns, it is apparent that speed-performance is significantly affected bySEGA’s cost functions
for all segmentation schemes.

Tables 4 and 5 show that the detailed router cost function can significantly affect speed-perfor-
mance, but they do not consider the effects on area-performance. To illustrate the effects of
SEGA’s cost functions on area, Figure 7 compares the area requirements of the routability-ori-

entedArea, and speed-orientedNet_Routing cost functions* . To obtain the results shown in the
figure, we used single length segments in the FPGA following the same method that was

described with respect to Figure 6. Figure 7 shows that although theNet_Routing cost function
has the “best” speed-performance results (Table 4), it produces the poorest area-performance. On
the other hand, though theArea function achieves less than optimal routing delays (Table 4), it
has the best area-performance results.

The above area-performance experiment was repeated with channels having combinations of
segments of length 1, 2, and 3 and the results appear in Table 6, which lists the number of excess
tracks above channel density for the same segmentation schemes in Table 5. Consider first only
the numbers in the columns shaded grey in Table 6, which provide the excess tracks for the same

* Other cost functions produced results that fall between these two extremes.

Net_Routing

Area

Excess Number of Tracks

Segment Length

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

2.00 4.00 6.00 8.00

Figure 7 - Effect ofSEGA � s Cost Functions on Area.

Page 22 of 24

SEGA cost function used in Table 5: the shaded columns correspond toNet_Routing, and the
unshaded columns are theArea cost function results. Referring to the table, as many as 6 extra
tracks are needed forNet_Routing; for the benchmark circuits, this corresponds to a significant
increase in tracks of about 30 percent. Now consider the unshaded columns in Table 6, which
show that for theArea cost function at most 2 extra tracks are required. An intuitive conclusion
from these results suggests that a “good” CAD routing tool should consider both speed-perfor-
mance and area utilization, not just focus on one goal. This could be accomplished in practice by
having the router use a speed-performance cost function for nets identified as being time-critical,
and use area optimization for other nets.

5 Concluding Remarks

This paper has investigated most of the important issues associated with routing for array-based
FPGAs with segmented routing channels. Experiments presented show that the global router can
significantly affect speed-performance, depending on whether it selects global routes that traverse
short distances through multiple channels, or travel longer distances straight along a single chan-
nel. We have presented a new detailed routing algorithm for array-based FPGAs and have shown
that it achieves much greater speed-performance of circuits than previously published routers.
Also, it has been shown that the detailed router cost function can greatly affect both speed- and
area-performance of implemented circuits. Finally, routing tools for FPGAs should consider both
routability and speed-performance, not just focus on one goal.

100 1 5

90 1 4 1 5

80 1 3 1 4 1 5

70 1 4 1 4 1 5 1 5

60 0 4 1 4 1 4 1 5 1 6

50 0 4 0 4 0 4 1 5 1 5 1 6

40 0 3 1 4 1 4 1 4 1 5 1 5 1 6

30 0 4 1 4 1 4 1 5 0 4 1 5 1 5 1 6

20 0 4 0 4 0 4 0 5 1 4 1 5 1 5 1 6 1 6

10 0 3 0 4 0 4 1 4 1 5 1 5 1 5 1 5 1 6 2 6

0 0 2 0 3 0 4 0 4 1 5 1 5 1 5 1 5 1 5 1 6 2 6

0 10 20 30 40 50 60 70 80 90 100

Table 6 - Area Penalty for Segmentation Schemes.

Page 23 of 24

 References

[1] W. Carter, K. Duong, R. H. Freeman, H. Hsieh, J. Y. Ja, J. E. Mahoney, L. T. Ngo and S. L. Sze, “A
User Programmable Reconfigurable Gate Array,” Proc. 1986 Custom Integrated Circuits Confer-
ence, May 1986, pp. 233-235.

[2] H. Hsieh, K. Duong, J. Ja, R. Kanazawa, L. Ngo, L. Tinkey, W. Carter and R. Freeman, “A Second
Generation User-Programmable Gate Array,” Proc. 1987 Custom Integrated Circuits Conference,
May 1987, pp. 515 - 521.

[3] H. Hsieh, W. Carter, J. Ja, E. Cheung, S. Schreifels, C. Erickson, P. Freidin, L. Tinkey and R.
Kanazawa, “Third-Generation Architecture Boosts Speed and Density of Field-Programmable Gate
Arrays,” Proc. 1990 Custom Integrated Circuits Conference, May 1990, pp. 31.2.1 - 31.2.7.

[4] AT&T Microelectronics, “Optimized Reconfigurable Cell Array (ORCA) Series Field-
Programmable Gate Arrays,”Advanced Data Sheet, February 1993.

[5] Quicklogic, “An Introduction to Quicklogic’s pASIC Devices and SpDE Development Environ-
ment,”Data Sheet from Quicklogic, April 1991.

[6] M. Khellah, S. Brown, and Z. Vranesic, “Minimizing Interconnection Delays in Array-based
FPGAs,” to appear inProc. 1994 Custom Integrated Circuits Conference, San Diego, CA, May
1994.

[7] J. Soukup, “Circuit Layout,”Proc. of the IEEE, Vol. 69, No. 10, pp. 1281-1304, October 1981.
[8] Chapter 5 of “Physical Design Automation of VLSI Systems,” B. Preas and M. Lorenzetti, Ed., Ben-

jamin/Cummings.
[9] Stephen D. Brown, Robert J. Francis, Jonathan Rose and Zvonko G. Vranesic, “Field-Programmable

Gate Arrays,” Kluwer Academic Publishers, 222 pages, 1992.
[10] J. Rose and S. Brown, “The Effect of Switch Box Flexibility on Routability of Field-Programmable

Gate Arrays,”Proc. 1990 Custom Integrated Circuits Conference, pp. 27.5.1-27.5.4, May 1990.
[11] J. Rose and S. Brown, “Flexibility of Interconnection Structures in Field-Programmable Gate

Arrays,” IEEE Journal of Solid State Circuits, Vol. 26 No. 3, pp. 277-282, March 1991.
[12] B. Tseng, J. Rose and S. Brown, “Using Architectural and CAD Interactions to Improve FPGA

Routing Architectures,”First International ACM/SIGDA Workshop on Field-Programmable Gate
Arrays, pp. 3-8, February 1992.

[13] S. Brown, J. Rose and Z. Vranesic, “A Detailed Router for Field-Programmable Gate Arrays,”Proc.
IEEE International Conference on Computer Aided Design, pp. 382-385, Nov. 1990.

[14] S. Brown, J. Rose and Z. Vranesic, “A Detailed Router for Field-Programmable Gate Arrays,”IEEE
Transactions on Computer Aided Design of Integrated Circuits and Systems, Vol. 11, No. 5, pp. 620-
628, May 1992.

[15] ALTERA Corporation, “FLEX Programmable Logic,”Product Information Bulletin, September
1992.

[16] C. Lee, “An algorithm for path connections and its applications,”IEEE Transactions on Electronic
Computers, VEC-10, pp. 346-365, Sept. 1961.

[17] A. Hashimoto and J. Stevens, “Wire routing by optimizing channel assignment within large aper-
tures,”Proc. 8th Design Automation Conference, pp. 155-163, 1971.

[18] J. Greene, V. Roychowdhury, S. Kaptanoglu, and A. El Gamal, “Segmented Channel Routing,”Proc.
27th Design Automation Conference, pp. 567-572, June 1990.

[19] K. Roy and M. Mehendale, “Optimization of Channel Segmentation for Channelled Architecture
FPGAs,”Proc. 1992 Custom Integrated Circuits Conference, pp. 4.4.1-4.4.4., May 1992.

Page 24 of 24

[20] A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. El-Ayat and A. Mohsen, “An Architecture for
Electrically Configurable Gate Arrays,”IEEE Journal of Solid State Circuits, Vol. 24, No. 2, April
1989, pp. 394-398.

[21] M. Ahrens, A. El Gamal, D. Galbraith, J. Greene, S. Kaptanoglu, K. Dharmarajan, L. Hutchings, S.
Ku, P. McGibney, J. McGowan, A. Samie, K. Shaw, N. Stiawalt, T. Whitney, T. Wong, W. Wong and
B. Wu, “An FPGA Family Optimized for High Densities and Reduced Routing Delay,” Proc. 1990
Custom Integrated Circuits Conference, May 1990, pp. 31.5.1 - 31.5.4.

[22] Mikael Palczewski, “Plane Parallel A* Maze Router,” 29th ACM/IEEE DAC, pp. 691-697, June
1992.

[23] Jon Frankle, “Iterative and Adaptive Slack Allocation for Performance-driven Layout and FPGA
Routing,” 29th ACM/IEEE DAC, pp. 536-542, June 1992.

[24] Amit Chowdhary and Dinesh Bhatia, “Detailed Routing of Multi-Terminal Nets in FPGAs,”Proc.
Intl. Conf. on VLSI DESIGN, Calcutta, India, Jan. 1994, IEEE Computer Society Press.

[25] R. Francis, J. Rose and Z.Vranesic, “Chortle-crf: Fast Technology Mapping for Lookup Table-Based
FPGAs,”Proc. 28th DAC, pp. 227-223, June 1991.

[26] M. Breuer, “Min-Cut Placement,”Journal of Design Automation and Fault Tolerant Computing, pp.
343-362, Oct. 1977.

[27] J. Rose, “Parallel Global Routing for Standard Cells,”IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems, Vol. 9, No. 10, pp. 1085-1095, Oct. 1990.

[28] J. Rubinstein, P. Penfield and M. Horowitz, “Signal Delay in RC Tree Networks,”IEEE Transac-
tions on Computer Aided Design of Integrated Circuits and Systems, Vol. CAD-2, No. 3, July. 1983.

[29] M. Khellah, S. Brown, and Z.Vranesic, “Modelling Routing Delays in SRAM-based FPGAs,”Proc.
1993 CCVLSI, Banff, Canada, pp. 6B.13- 6B.18, Nov. 1993.

