Virtex-4 Libraries Guide for
HDL Designs

S XILINX®

SUXILINX®

2 XILINX®

Xilinx is disclosing this Document and Intellectual Property (hereinafter “the Design”) to you for use in the development of designs to operate
on, or interface with Xilinx FPGAs. Except as stated herein, none of the Design may be copied, reproduced, distributed, republished,
downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written consent of Xilinx. Any unauthorized use of the Design may violate copyright
laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Design; nor does Xilinx convey any license under its patents,
copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of the Design.
Xilinx reserves the right to make changes, at any time, to the Design as deemed desirable in the sole discretion of Xilinx. Xilinx assumes no
obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not assume any liability for the
accuracy or correctness of any engineering or technical support or assistance provided to you in connection with the Design.

THE DESIGN IS PROVIDED “AS IS” WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND IMPLEMENTATION IS
WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN INFORMATION OR
ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER WARRANTIES, WHETHER
EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DESIGN, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES,
INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE DESIGN, EVEN IF YOU
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN CONNECTION
WITH YOUR USE OF THE DESIGN, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT EXCEED THE
AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE DESIGN. YOU ACKNOWLEDGE THAT THE FEES, IF
ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT MAKE AVAILABLE
THE DESIGN TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Design is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring fail-
safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support, or
weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk
Applications. You represent that use of the Design in such High-Risk Applications is fully at your risk.

Copyright © 1995-2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks
of Xilinx, Inc. PowerPC is a trademark of IBM, Inc. All other trademarks are the property of their respective owners.

2 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

SUXILINX®

About this Guide

The Virtex-4™ Libraries Guide for HDL Designs is part of the ISE documentation
collection. A separate version of this guide is also available for users who prefer to
work with schematics in their circuit design activities. (See Virtex-4™ Libraries Guide
for Schematic Designs.)

Guide Contents

This guide contains the following:
¢ Information about additional resources and conventions used in this guide.
¢ A general introduction to the Virtex-4 primitives.

e Alisting of the primitives and macros that are supported under the Virtex-4
architecture, organized by functional categories.

e Individual sections for each of the primitive design elements, including VHDL
and Verilog instantiation and inference code examples.

Additional Resources

To find additional documentation, see the Xilinx website at:

http://www.xilinx.com/literature.

To search the Answer Database of silicon, software, and IP questions and answers, or
to create a technical support WebCase, see the Xilinx website at:

http:/ /www.xilinx.com/support.

Conventions
This document uses the following conventions. An example illustrates each
convention.
Typographical
The following typographical conventions are used in this document:
Convention Meaning or Use Example
Courier font Messages, prompts, and program |speed grade: - 100
files that the system displays
Courier bold Literal commands that you enter in [ngdbuild design_name
a syntactical statement
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 3

ISE 8.1i

http://www.xilinx.com
http://www.xilinx.com/literature/index.htm
http://www.xilinx.com/support

SUXILINX®

Convention

Meaning or Use

Example

Helvetica bold

menu

Commands that you select from a

File -Open

Keyboard shortcuts

Ctrl+C

Italic font

which you must supply values

Variables in a syntax statement for [ngdbuild design_name

References to other manuals

See the Development System
Reference Guide for more
information.

Emphasis in text

If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets []

An optional entry or parameter.
However, in bus specifications,
such as bus [7: 0], they are
required.

ngdbuild [option_name]
design_name

Braces { }

A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar |

Separates items in a list of choices

lowpwr ={on|off}

Vertical ellipsis

Repetitive material that has been
omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’

Horizontal ellipsis ...

Repetitive material that has been
omitted

allow block block_name locl
loc2 ... locn;

Online Document

Introduction

The following conventions are used in this document:

Convention Meaning or Use Example
Blue text Cross-reference link to a location |See the section “Additional
in the current document Resources” for details.
Red text Cross-reference link to a location |See Figure 2-5 in the Virtex-4

in another document

Handbook.

Blue, underlined text

Hyperlink to a website (URL)

Go to http: //www.xilinx.com for
the latest speed files.

This version of the Libraries Guide describes the primitive design elements that
comprise the Xilinx Unified Libraries for the Virtex-4 architecture, and includes
examples of instantiation and inference code for each primitive.

Xilinx maintains software libraries with hundreds of functional design elements
(primitives and macros) for different device architectures. New functional elements
are assembled with each release of development system software. In addition to a
comprehensive Unified Library containing all design elements, beginning in 2003,
Xilinx developed a separate library for each architecture. This Virtex-4 guide is one in
a series of architecture-specific libraries.

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

SUXILINX®

This guide describes the primitive elements available for Xilinx Virtex-4 FPGA
devices. Common logic functions can be implemented with these elements and more
complex functions can be built by combining macros and primitives.

Functional Categories

The functional categories list the available design elements in each category along
with a brief description of each element that is supported under each Xilinx
architecture.

Attributes and Constraints

The terms attribute and constraint have been used interchangeably by some in the
engineering community, while others ascribe different meanings to these terms. In
addition, language constructs use the terms attribute and directive in similar yet
different senses. For the purpose of clarification, the following distinction can be
drawn between these terms.

An attribute is a property associated with a device architecture primitive that affects
an instantiated primitive’s functionality or implementation. Attributes are typically
conveyed as follows:

e In VHDL, by means of generic maps.

¢ In Verilog, by means of defparams or inline parameter passing during the
instantiation process.

Constraints impose user-defined parameters on the operation of ISE tools. There are
two types of constraints:

e Synthesis Constraints direct the synthesis tool optimization technique for a
particular design or piece of HDL code. They are either embedded within the
VHDL or Verilog code, or within a separate synthesis constraints file.

o Implementation Constraints are instructions given to the FPGA implementation
tools to direct the mapping, placement, timing, or other guidelines for the
implementation tools to follow while processing an FPGA design.
Implementation constraints are generally placed in the UCF file, but may exist in
the HDL code, or in a synthesis constraints file.

Attributes are identified with the components to which they apply in the libraries
guide for those components. Constraints are documented in the Xilinx Constraints
Guide. Both resources are available from the Xilinx Software Manuals collection.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 5

ISE 8.1i

http://www.xilinx.com

SUXILINX®

6 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

SUXILINX®

Table of Contents

About this Guide

Guide Contents i 3
Additional ReSOUICES 3
Conventions 3
Introduction 4
Functional Categories 5
Attributes and Constraints 5

Functional Categories

Arithmetic Functions 11
Clock Components 11
Config/BSCAN Components, 11
Gigabit Transceivers 12
/O Components 12
Processor Components 12
RAM/ROM .. 13
Registers & Latches 13
Shift Registers 13
Slice/CLB Primitives 13

About the Virtex-4 Design Elements

BSCAN_VIRTEXA e e 17
BUEFCE ... e 19
BUE G .. 21
BUFGCE ... e 23
BUFGOCE 1 ... e e 25
BUFGOC T RL ... e 27
BUEGMUX .. 31
BUFGMUX L ... e 33
BUFGMUX _VIRTEXZ e 35
BUFIO 37
BUE R .. 39
CAPTURE_VIRTEXZ ... e 43
DCIRESET .. 45
DO A DV 47
DOCM B ASE . 61
DO PSS 73
DS P .. 87
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 7

ISE 8.1i

http://www.xilinx.com

SUXILINX®

FIFO16 i
FRAME_ECC_VIRTEX4
GTI11_CUSTOMo
GTI1_DUAL
GTIICLK ...
GTIICLK_MGT,
IBUF ...
IBUFDS_DIFF_ OUTo....
IBUFDS ...

IBUEGDS ...
ICAP_VIRTEX4,
IDDR ...

IOBUFDS ...
ISERDES ...
KEEPER

LUTL, 2,3,4 ... e
LUT1_D, LUT2_D, LUT3_D,LUT4.D
LUT1 L, LUT2 L, LUT3_L,LUT4.L
MULT_AND ...

MUXF5. D ...
MUXF5_L ...

MUXF7 D ...
MUXF7_L ...

MUXF8_ D ...
MUXFS8_L ...

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

SUXILINX®

OBUF ... 215
OBUE DS ... 217
OBUE T ... e e e e e 219
OBUEF T DS ... 221
O D DR . . 223
O SERDES . .. 227
PIMIC D . . 233
PP A0S AV . 237
PULLD OWN .. e e 243
PULLUD ... 245
RAMIOX D ... 247
RAMIGXIS .. 251
RA M B 2X S .. 253
RAMOGAX S .. 255
RAMBIO ... 257
RAMB32_S64_ECC ... 265
ROMIIOX L .. e e e 269
ROM B2 X .. 271
ROMOAX L .. e e e e e e e 273
ROMII28XT ... 275
ROMBO256XT ... e 277
SR ... 279
SRLI6G_ T ... 283
SRLIGE . ..o 285
SRLIGE 1 ... 289
SRLCIO . . .ot 291
SRLCIO 1 ... 293
SRLCIBE . .. 295
SRLCIBE 1 297
STARTUP_VIRTEXY 299
USR_ACCESS_VIRTEX4 ... 301
XORCY . 303
XORCY D . 305
XORCY L 307
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 9

ISE 8.1i

http://www.xilinx.com

SUXILINX®

10 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

Arithmetic Functions S XILINX®

Functional Categories

This section categorizes, by function, the design elements that are described in detail
later in this guide. The design elements are listed in alphanumeric order under each
functional category.

Arithmetic Functions I/0O Components Registers & Latches
Clock Components Processor Components Shift Registers
Config/BSCAN Components RAM/ROM Slice/CLB Primitives

Gigabit Transceivers

Arithmetic Functions

Design Element Description

DSP48 Primitive: 18x18 Signed Multiplier Followed by a Three-Input Adder with Optional Pipeline Registers

Clock Components

Design Element Description
BUFG Primitive: Global Clock Buffer
BUFGCE Primitive: Global Clock MUX with Clock Enable and Output State 0
BUFGCE_1 Primitive: Global Clock MUX Buffer with Clock Enable and Output State 1
BUFGCTRL Primitive: Global Clock MUX Buffer
BUFGMUX Primitive: Global Clock MUX Buffer with Output State 0
BUFGMUX_1 Primitive: Global Clock MUX with Output State 1
BUFGMUX_VIRTEX4 | Primitive: Global Clock MUX Buffer
BUFIO Primitive: Local Clock Buffer for I/O
BUFR Primitive: Local Clock Buffer for I/O and CLB
DCM_ADV Primitive: Digital Clock Manager with Advanced Features
DCM_BASE Primitive: Digital Clock Manager with Basic Features
DCM_PS Primitive: Digital Clock Manager with Basic and Phase-Shift Features
PMCD Primitive: Phase-Matched Clock Divider

Config/BSCAN Components
Design Element Description

BSCAN_VIRTEX4 Primitive: Provides Access to the BSCAN Sites on Virtex-4 Devices

CAPTURE_VIRTEX4 Primitive: Virtex-4 Boundary Scan Logic Control Circuit

FRAME_ECC_VIRTEX4 | Primitive: Reads a Single, Virtex-4 Configuration Frame and Computes a Hamming, Single-Error Correction, Double-Error
Detection "Syndrome"

ICAP_VIRTEX4 Primitive: Virtex-4 Internal Configuration Access Port

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 11
ISE 8.1i

http://www.xilinx.com

SXILINX® Gigabit Transceivers

STARTUP_VIRTEX4 Primitive: Virtex-4 User Interface to Configuration Clock, Global Reset, Global 3-State Controls, and Other Configuration
Signals

USR_ACCESS_VIRTEX4 | Primitive: 32-Bit Register with a 32-Bit DATA Bus and a DATAVALID Port

Gigabit Transceivers

Design Element Description

GT11_CUSTOM Primitive: RocketIO MGTs with 622 Mb/s to 11.1 Gb/s data rates, 8 to 24 transceivers per FPGA, and 2.5 GHz - 5.55 GHz VCO, less
than 1ns RMS jitter

GT11_DUAL Primitive: RocketIO MGT Tile (contains 2 GT11_CUSTOM) with 622 Mb/s to 11.1 Gb/s data rates, 8 to 24 transceivers per FPGA,
and 2.5 GHz - 5.55 GHz VCO, less than 1ns RMS jitter

GT11CLK Primitive: A MUX That Can Select Fom Differential Package Input Clock, refclk From the Fabric, or rxbclk to Drive the Two Vertical
Reference Clock Buses for the Column of MGTs

GT11CLK_MGT Primitive: Allows Differential Package Input to Drive the Two Vertical Reference Clock Buses for the Column of MGTs

/0 Components

Design Element Description
BUFIO Primitive: Local Clock Buffer for I/O
DCIRESET Primitive: DCI State Machine Reset (After Configuration Has Been Completed)
IBUF Primitive: Single-Ended Input Buffer with Selectable I/O Standard and Capacitance
IBUFDS Primitive: Differential Signaling Input Buffer with Selectable I/O Interface
IBUFG Primitive: Dedicated Input Buffer with Selectable I/O Interface
IBUFGDS Primitive: Dedicated Differential Signaling Input Buffer with Selectable I/O Interface
IDDR Primitive: A Dedicated Input Register to Receive External Dual Data Rate (DDR) Signals into Virtex-4 FPGAs
IDELAY Primitive: Dedicated input variable-tap delay chain
IDELAYCTRL Primitive: IDELAY tap delay value control
IOBUF Primitive: Bi-Directional Buffer with Selectable I/0 Interface (multiple primitives)
IOBUFDS Primitive: 3-State Differential Signaling I/O Buffer with Active Low Output Enable
ISERDES Primitive: Dedicated I/O Buffer Input Deserializer
KEEPER Primitive: KEEPER Symbol
OBUF Primitive: Single-ended Output Buffer
OBUFT Primitive : 3-State Output Buffer with Active Low Output Enable and with Selectable I/O Interface
OBUFDS Primitive: Differential Signaling Output Buffer with Selectable I/O Interface
OBUFTDS Primitive: 3-State Output Buffer with Differential Signaling, Active-Low Output Enable, and Selectable I/O Interface
ODDR Primitive: A dedicated output registers to transmit dual data rate (DDR) signals from Virtex-4 FPGAs
OSERDES Primitive: Provides a way for the user to easily implement source synchronous interface by using the OSERDES module
PULLDOWN Primitive: Resistor to GND for Input Pads
PULLUP Primitive: Resistor to VCC for Input PADs, Open-Drain, and 3-State Outputs

Processor Components

Design Element Description
EMAC Primitive: Fully integrated 10/100/1000 Mb/s Ethernet Media Access Controller (Ethernet MAC)
PPC405_ADV Primitive: Primitive for the Power PC Core
12 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

RAM/ROM

SUXILINX®

RAM/ROM

Design Element

Description

Configured to 1,2, 4,9, 18, or 36 Bits

FIFO16 Primitive: Virtex-4 Block RAM based built-in FIFO

RAM16X1D Primitive: 16-Deep by 1-Wide Static Dual Port Synchronous RAM

RAM16X1S Primitive: 16-Deep by 1-Wide Static Synchronous RAM

RAM32X1S Primitive: 32-Deep by 1-Wide Static Synchronous RAM

RAM64X1S Primitive: 64-Deep by 1-Wide Static Synchronous RAM

RAMB16 Primitive: 16384-Bit Data Memory and 2048-Bit Parity Memory, Single-Port Synchronous Block RAM with Port Width (n)

RAMB32_S64_ECC

Primitive

: 512 Deep by 64-Bit Wide Synchronous, Two-Port, Block RAM with Built-In Error Correction

ROM16X1 Primitive: 16-Deep by 1-Wide ROM
ROM32X1 Primitive: 32-Deep by 1-Wide ROM
ROM64X1 Primitive: 64-Deep by 1-Wide ROM
ROM128X1 Primitive: 128-Deep by 1-Wide ROM
ROM256X1 Primitive: 256-Deep by 1-Wide ROM

Registers & Latches

Design Element

Description

FDCPE Primitive: D Flip-Flop with Clock Enable and Asynchronous Preset and Clear
FDRSE Primitive: D Flip-Flop with Synchronous Reset and Set and Clock Enable
LDCPE Primitive: Transparent Data Latch with Asynchronous Clear and Preset and Gate Enable

Shift Registers

Design Element Description
SRL16 Primitive: 16-Bit Shift Register Look-Up Table (LUT)
SRL16_1 Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Negative-Edge Clock
SRL16E Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Clock Enable
SRL16E_1 Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Negative-Edge Clock and Clock Enable
SRLC16 Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry
SRLC16_1 Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry and Negative-Edge Clock
SRLC16E Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry and Clock Enable
SRLC16E_1 Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Negative-Edge Clock and Clock Enable

Slice/CLB Primitives

Design Element Description

BUFCF Primitive: Fast Connect Buffer

LUT1 Primitive: 1-Bit Look-Up Table with General Output
LUT2 Primitive: 2-Bit Look-Up Table with General Output
LUT3 Primitive: 3-Bit Look-Up Table with General Output
LUT4 Primitive: 4-Bit Look-Up Table with General Output
LUTI_D Primitive: 1-Bit Look-Up Table with Dual Output
LUT2_D Primitive: 2-Bit Look-Up Table with Dual Output
LUT3_D Primitive: 3-Bit Look-Up Table with Dual Output
LUT4_D Primitive: 4-Bit Look-Up Table with Dual Output
LUTI_L Primitive: 1-Bit Look-Up Table with Local Output

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com

13

http://www.xilinx.com

SUXILINX®

Slice/CLB Primitives

Design Element

Description

LUT2_L Primitive: 2-Bit Look-Up Table with Local Output

LUT3_L Primitive: 3-Bit Look-Up Table with Local Output

LUT4_L Primitive: 4-Bit Look-Up Table with Local Output

MULT_AND Primitive: Fast Multiplier AND

MUXCY Primitive: 2-to-1 Multiplexer for Carry Logic with General Output
MUXCY_D Primitive: 2-to-1 Multiplexer for Carry Logic with Dual Output
MUXCY_L Primitive: 2-to-1 Multiplexer for Carry Logic with Local Output
MUXF5 Primitive: 2-to-1 Lookup Table Multiplexer with General Output
MUXF5_D Primitive: 2-to-1 Lookup Table Multiplexer with Dual Output
MUXF5_L Primitive: 2-to-1 Lookup Table Multiplexer with Local Output
MUXF6 Primitive: 2-to-1 Lookup Table Multiplexer with General Output
MUXF6_D Primitive: 2-to-1 Lookup Table Multiplexer with Dual Output
MUXF6_L Primitive: 2-to-1 Lookup Table Multiplexer with Local Output
MUXE7 Primitive: 2-to-1 Lookup Table Multiplexer with General Output
MUXF7_D Primitive: 2-to-1 Lookup Table Multiplexer with Dual Output
MUXF7_L Primitive: 2-to-1 Lookup Table Multiplexer with Local Output
MUXF8 Primitive: 2-to-1 Lookup Table Multiplexer with General Output
MUXEF8_D Primitive: 2-to-1 Lookup Table Multiplexer with Dual Output
MUXF8_L Primitive: 2-to-1 Lookup Table Multiplexer with Local Output
XORCY Primitive: XOR for Carry Logic with General Output

XORCY_D Primitive: XOR for Carry Logic with Dual Output

XORCY_L Primitive: XOR for Carry Logic with Local Output

14

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

SUXILINX®

About the Virtex-4 Design Elements

The remaining sections in this book describe each primitive design element that can
be used under the Virtex-4 architecture.

The design elements are organized in alphanumeric order, with all numeric suffixes in
ascending order. For example, FDR precedes FDRS, and ADD4 precedes ADDS,
which precedes ADD16.

The following information is provided for each library element, where applicable:

Name of each element.
Description of each element, including truth tables, where applicable.

A description of the attributes associated with each design element, where
appropriate.

Examples of VHDL and Verilog instantiation and inference code, where
applicable.

Referrals to additional sources of information.

Designers who prefer to work with schematics are encouraged to consult the Virtex-4
Libraries Guide for Designers Using Schematics.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 15

ISE 8.1i

http://www.xilinx.com

SUXILINX®

16 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

BSCAN_VIRTEX4 S XILINX®

BSCAN_VIRTEX4

Primitive: Provides Access to the BSCAN Sites on Virtex-4 Devices

When the JTAG USER1/2/3/4 instruction is loaded, BSCAN_VIRTEX4 allows users
to monitor dedicated JTAG pins TCK, TMS, and TDI. Users are also granted the ability

BSCMNVRTEXE |awnre to drive the TDO pin with user-specified data.
DRCK
00 |RESET Name Type Width Function
SEL
SHIFT CAPTURE Output 1 Active upon the loading of the USER instruction.
™ Asserts High when the JTAG TAP controller is in the
UPDATE CAPTURE-DR state.
DRCK Output 1 A mirror of the TCK pin when the JTAG USER
instruction is loaded and the JTAG TAP controller is in
the SHIFT-DR state.
RESET Output 1 Active upon the loading of the USER instruction. It

asserts High when the JTAG TAP controller is in the
TEST-LOGIC-RESET state.

SEL Output 1 Indicates when the USER1 instruction has been loaded
into the JTAG Instruction Register. Becomes active in the
UPDATE-IR state, and stays active until a new
instruction is loaded.

SHIFT Output 1 Active upon the loading of the USER instruction. It
asserts High when the JTAG TAP controller is in the
SHIFT-DR state.

TDI Output 1 A mirror of the TDI pin.

UPDATE Output 1 Active upon the loading of the USER1 or USER2

instruction. It asserts High when the JTAG TAP
controller is in the UPDATE-DR state.

TDO Input 1 Active upon the loading of the USER1 or USER2
instruction. External JTAG TDO pin will reflect data
input to the macro’s TDO1 pin.

Usage

Virtex-4 has four available BSCAN_VIRTEX4 primitives. Use the appropriate
attributes to target the desired primitive. To access these primitives, the JTAG USER
instruction must be loaded.

Available Attributes

Attribute Type Allowed Values |Default Description

JTAG_CHAIN INTEGER |1,2,3,0r4 1 Used to set the BSCAN
site in the device.

VHDL Instantiation Template

-- BSCAN_VIRETX4 : In order to incorporate this function into the design,

- VHDL : the following instance declaration needs to be placed

-- instance : in the architecture body of the design code. The instance name

- declaration : (BSCAN_VIRTEX4_inst) and/or the port declarations after the

-— code : "=>" assignment maybe changed to properly reference and connect this

-- : function to the design. Delete or comment out inputs/outs
-= : that are not necessary.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 17
ISE 8.1i

http://www.xilinx.com

SUXILINX®

BSCAN_VIRTEX4

Library
declaration
for
Xilinx
primitives

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

Copy the following two statements and paste them before the

Entity declaration,

Library UNISIM;
use UNISIM.vcomponents.all;

- BSCAN_VIRETX4:

unless they already exists.

Cut code below this line and paste into the architecture body---->

Boundary Scan primitve for connecting internal logic to
JTAG interface. Virtex-4

-- Xilinx HDL Libraries Guide Version 8.11i

BSCAN_VIRTEX4_inst BSCAN_VIRTEX4
generic map (

JTAG_CHAIN => 1) -- Value to set BSCAN site of device. Possible values: (1,2,3 or 4)
port map (

CAPTURE => CAPTURE, -- CAPTURE output from TAP controller

DRCK => DRCK, -- Data register output for USER functions

RESET => RESET, -- Reset output from TAP controller

SEL => SEL, -- USER active output

) .

/
/

SHIFT => SHIFT,

SHIFT output from TAP controller

TDI => TDI, -- TDI output from TAP controller
UPDATE => UPDATE, -— UPDATE output from TAP controller
TDO => TDO -- Data input for USER function

- End of BSCAN_VIRETX4_inst instantiation

BSCAN_VIRETX4

Verilog Instantiation Template

In order to incorporate this function into the design,

Verilog the following instance declaration needs to be placed
instance in the body of the design code. The instance name
declaration (BSCAN_VIRTEX4_inst) and/or the port declarations within the
code parenthesis maybe changed to properly reference and
connect this function to the design. Delete or comment
out inputs/outs that are not necessary.
<--—-- Cut code below this line---->

/ BSCAN_VIRETX4:
/

Boundary Scan primitive for connecting internal logic to
JTAG interface. Virtex-4

// Xilinx HDL Libraries Guide Version 8.11

BSCAN_VIRETX4 #(

)

) .

.JTAG_CHAIN(1)

// Possible values: 1, 2, 3, or 4

BSCAN_VIRETX4_inst (

.CAPTURE (CAPTURE) ,

.DRCK (DRCK) ,
.RESET (RESET) ,
.SEL (SEL) ,
.SHIFT (SHIFT),
.TDI(TDI),

.UPDATE (UPDATE) ,

.TDO (TDO)

7

// CAPTURE output from TAP controller
Data register output for USER function
Reset output from TAP controller

USER active output

SHIFT output from TAP controller

TDI output from TAP controller

UPDATE output from TAP controller

Data input for USER function

// End of BSCAN_VIRETX4_inst instantiation

For More Information

Consult the Virtex-4 Configuration Guide.

18

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

www.Xxilinx.com

http://www.xilinx.com

BUFCF

SUXILINX®

BUFCF

Primitive:

X9444

BUFCF
VHDL
instance
declaration
code

Library
declaration
for
Xilinx
primitives

Library UNISIM;

Fast Connect Buffer

BUFCF is a fast connect buffer used to communicate to the software tools the Slice
packing of logic. This buffer does not indicate any functionality for the design, but it
can be used to tell the software to place both the sourcing logic to the buffer and the
destination logic in the same Slice in order to minimize the routing delays for that
path.

Usage

The BUFCF must be instantiated. To connect this element to the design, connect the
input of the buffer to the output of Slice logic (such as a LUT4) and connect the output
to another piece of Slice logic (such as another LUT4). This will indicate to the tools
that both components connected to the logic should be placed into the same Slice. Itis
generally suggested to use this component with instantiated logic since connecting it
to inferred logic may disrupt the optimization opportunities for the tools.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code. The
instance name (BUFCF_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
connect this function to the design. All inputs

and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exists.

use UNISIM.vcomponents.all;

-— <—=—== Cut code below this line and paste into the architecture body---->

Fast connect buffer used to connect the outputs of the LUTs
and some dedicated logic directly to the input of another LUT.
- For use with all FPGAs.

-- Xilinx

-- BUFCF':

HDL Langauge Template version 8.11i
BUFCF_inst: BUFCF (
port map (
O => 0, -- Connect to the output of a LUT
I => I -- Connect to the input of a LUT

)

-- End of BUFCF_inst instantiation

Verilog Instantiation Template

// BUFCF In order to incorporate this function into the design,
// Verilog the following instance declaration needs to be placed
// instance in the body of the design code. The instance name

// declaration (BUFCF_inst) and/or the port declarations within the
// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs

// and outputs must be connected.

/] <=-==== Cut code below this line---->

Virtex-4 Libraries Guide for HDL Designs 19

ISE 8.1i

www.Xxilinx.com

http://www.xilinx.com

ST XILINX® BUFCF

// BUFCF: Fast connect buffer used to connect the outputs of the LUTs

// and some dedicated logic directly to the input of another LUT.
// For use with all FPGAs.

// Xilinx HDL Libraries Guide Version 8.11

BUFCF BUFCF_inst (
.0(0), // Connect to the output of a LUT
.I(I) // Connect to the input of a LUT
)

// End of BUFCF_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

20 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

BUFG

SUXILINX®

BUFG

Primitive: Global Clock Buffer

X9428

-= BUFG

-= VHDL

-- 1instance
-- declaration
-= code

-— Library
-- declaration
-= for

-- Xilinx

-- primitives

BUFG, an architecture-independent global buffer, distributes high fan-out clock
(o) signals throughout a PLD device. The Xilinx implementation software converts each
BUFG to an appropriate type of global buffer for the target PLD device.

Usage

This design element is supported for both schematics and instantiation. Synthesis
tools usually infer a BUFGP on any clock net. If there are more clock nets than
BUFGPs, the synthesis tool usually instantiates BUFGPs for the clocks that are most
utilized. The BUFGP contains both a BUFG and an IBUFG.

To use a BUFG in a schematic, connect the input of the BUFG symbol to the clock
source. The clock source can be an external PAD symbol, an IBUF symbol, or internal
logic. For a negative-edge clock input, insert an INV (inverter) symbol between the
BUFG output and the clock input. The inversion is implemented at the Configurable
Logic Block (CLB) or Input/Output Block (I0B) clock pin.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code. The
instance name (BUFG_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <====- Cut code below this line and paste into the architecture body---->

-- BUFG: Global Clock Buffer (source by an internal signal)
-- Xilinx HDL Libraries Guide Version 8.11i

BUFG_inst
port map (
O => 0O,
I =>1
)

BUFG

-- Clock buffer output
-- Clock buffer input

-- End of BUFG_inst instantiation

// BUFG

// Verilog
// instance
// declaration
// code

//

//

Verilog Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code. The instance name
(BUFG_inst) and/or the port declarations within the
parenthesis maybe changed to properly reference and
connect this function to the design. All inputs

and outputs must be connect.

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com 21

http://www.xilinx.com

ST XILINX® BUFG

/] <===== Cut code below this line---->

// BUFG: Global Clock Buffer (source by an internal signal)
// Xilinx HDL Libraries Guide Version 8.1i

BUFG BUFG_inst (
.0(0), // Clock buffer output
LI(I) // Clock buffer input
)

// End of BUFG_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

22 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

BUFGCE S XILINX®

BUFGCE

Primitive: Global Clock Buffer with Clock Enable and Output
State 0

BUFGCE is a clock buffer with one clock input, one clock output, and a clock enable
CE line. Its O output is "0" when clock enable (CE) is Low (inactive). When clock enable
(CE) is High, the I input is transferred to the O output.

1 o]
Inputs Outputs
BUFGCE P P
| CE (0]
X9384
X 0 0
1 1 1
Usage
This design element is supported for schematics and instantiations but not for
inference.
VHDL Instantiation Template
-— BUFGCE : In order to incorporate this function into the design,
- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (BUFGCE_inst) and/or the port declarations
-— code : after the "=>" assignment maybe changed to properly

-- : reference and connect this function to the design.
- : All inputs and outputs must be connected.

-- Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
- for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that will be used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <—=—== Cut code below this line and paste into the architecture body---->
-- BUFGCE: Global Clock Buffer with Clock Enable (active high)
-— Virtex-II/II-Pro, Spartan-3/3E
-- Xilinx HDL Libraries Guide Version 8.11

BUFGCE_inst : BUFGCE

port map (
o => 0, -- Clock buffer ouptput
CE => CE, -- Clock enable input
I=>1 -- Clock buffer input

)

-- End of BUFGCE_inst instantiation

Verilog Instantiation Template

// BUFGCE : In order to incorporate this function into the design,

// Verilog : the following instance declaration needs to be placed

// instance : in the body of the design code. The instance name

// declaration : (BUFGCE_inst) and/or the port declarations within the

// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connect.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 23

ISE 8.1i

http://www.xilinx.com

SUXILINX®

BUFGCE

/] <===== Cut code below this line---->

// BUFGCE: Global Clock Buffer with Clock Enable (active high)
// Virtex-II/II-Pro/4, Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.11

BUFGCE BUFGCE_inst (

.0(0), // Clock buffer output
.CE(CE), // Clock enable input
LI(I) // Clock buffer input

) ;
// End of BUFGCE_inst instantiation
For More Information

Consult the Virtex-4 User Guide.

24 www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

BUFGCE_1

SUXILINX®

BUFGCE_1
Primitive: Global Clock Buffer with Clock Enable and Output

State 1
CE BUFGCE is a clock buffer with one clock input, one clock output, and a clock enable
| line. Its O output is High (1) when clock enable (CE) is Low (inactive). When clock
! | = o enable (CE) is High, the I input is transferred to the O output.
BUFGCE_1 Inputs Outputs
X9385
| CE (0]
X 0 1
1 1 1
Usage
This design element is supported for schematics and instantiations but not for
inference.
VHDL Instantiation Template
BUFGCE_1 In order to incorporate this function into the design,
VHDL the following instance declaration needs to be placed
instance in the architecture body of the design code. The
declaration instance name (BUFGCE_1_inst) and/or the port declarations
code after the "=>" assignment maybe changed to properly
reference and connect this function to the design.
All inputs and outputs must be connected.
Library In addition to adding the instance declaration, a use
declaration statement for the UNISIM.vcomponents library needs to be
for added before the entity declaration. This library
Xilinx contains the component declarations for all Xilinx
primitives primitives and points to the models that will be used

for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

<-—==-- Cut code below this line and paste into the architecture body---->

-- BUFGCE_1:

Global Clock Buffer with Clock Enable (active low)

- Virtex-II/II-Pro, Spartan-3/3E

-- Xilinx HDL

BUFGCE_1_inst

port map (
o => 0O,
CE => CE,
I =>1

)

Libraries Guide Version 8.11i
BUFGCE_1

- Clock buffer ouptput

-- Clock enable input

- Clock buffer input

-- End of BUFGCE_1_inst instantiation

Verilog Instantiation Template

// BUFGCE_1 In order to incorporate this function into the design,

// Verilog the following instance declaration needs to be placed

// instance in the body of the design code. The instance name

// declaration (BUFGCE_1_inst) and/or the port declarations within the

// code parenthesis maybe changed to properly reference and

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 25

ISE 8.1i

http://www.xilinx.com

SUXILINX®

BUFGCE_1

connect this function to the design. All inputs
and outputs must be connect.

<--—-- Cut code below this line---->

// BUFGCE_1: Global Clock Buffer with Clock Enable (active low)
// Virtex-II/II-Pro, Spartan-3/3E

// Xilinx HDL Libraries Guide Version 8.1i

BUFGCE_1 BUFGCE_1_inst (

.0(0), // Clock buffer output
.CE(CE), // Clock enable input
LI(T) // Clock buffer input

)

// End of BUFGCE_1_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

26

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

BUFGCTRL

SUXILINX®

BUFGCTRL

Primitive: Global Clock Mux Buffer

BUFGCTRL

BUFGCTRL primitive is a Virtex-4 global clock buffer that is designed as a
synchronous/asynchronous "glitch free" 2:1 multiplexer with two clock inputs.
Unlike global clock buffers that are found in previous generations of FPGAs, the
BUFGCTRL is designed with additional control pins to provide a wider range of
functionality and more robust input switching. BUFGCTRL is not limited to clocking
applications.

BUFGCTRL Ports (Detailed Description)
O - Clock Output Pin

The O pin represents the clock output pin.
10 — Clock Input Pin

I1 - Clock Input Pin

The I pin represents the clock input pin.
CEO - CE1 - Clock Enable Pins

The CE pins represent the clock enable pin for each clock input. It is also used to select
the clock inputs. When using the CE pin as input select, there is a setup /hold time
requirement. Failure to meet this requirement may result in a clock glitch.

S0 - S1 - Clock Select Pin

The S pins represent the clock select pin for each clock input. When using the S pin
select, there is a setup/hold time requirement. Unlike CE pins, failure to meet this
requirement will not result in a clock glitch. However, it may cause the output clock to
appear one clock cycle later.

IGNOREQO - IGNORE1 - Ignore Pin

The IGNORE pin is used whenever you want to bypass the switching algorithm
executed by the BUFGCTRL.

Name Type | Width Function
(@) Output |1 Clock Output
10-11 Input |1 (each) | Clock Input
CE0 - CE1 Input |1 (each) | Clock Enable Input
S0-S1 Input |1 (each) | Clock Select Input
IGNOREOQ - IGNOREL1 |Input |1 (each) | Clock Ignore Input

Usage

In order to properly select a BUFGCTRL input, you must assert both the S and CE
pins of the desired input. Failure to do so may cause the output to not switch with the
desired input or output signal toggling.

This design element is supported for schematics and instantiations, but not for
inference.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 27

ISE 8.1i

http://www.xilinx.com

SUXILINX®

BUFGCTRL

BUFGCTRL
VHDL
instance
declaration
code

Library
declaration
for
Xilinx
primitives

Available Attributes

Attribute Type Allowed Values | Default Description

INIT_OUT INTEGER |Oorl 0 Initializes the BUFGCTRL
output to the specified value
after configuration.

PRESELECT_I0 |BOOLEAN |FALSE, TRUE FALSE |If TRUE, BUFGCTRL output
will use I0 input after
configuration.

PRESELECT_I1 |BOOLEAN |FALSE, TRUE FALSE |If TRUE, BUFGCTRL output
will use I1 input after
configuration.

Note: Both PRESELECT attributes might not be TRUE at the same time.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code. The instance name
(BUFGCTRL_inst) and/or the port declarations after the
"=>" assignemnt maybe changed to properly reference and
connect this function to the design. All inputs

and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <=———- Cut code below this line and paste into the architecture body---->

-- BUFGCTRL: Advanced Clock Primtive
- Virtex-4
-- Xilinx HDL Libraries Guide Version 8.11i

BUFGCTRL_inst : BUFGCTRL
generic map (

INIT_OUT => 0, -- Inital value of 0 or 1 after configuration

PRESELECT_IO => FALSE, -- TRUE/FALSE set the IO input after configuration

PRESELECT_I1 => FALSE) -- TRUE/FALSE set the Il input after configuration
port map (

0O => 0, -- Clock MUX output

CEO => CEO, -- Clock enable0 input

CE1 => CE1, -- Clock enablel input

I0 => IO, -- Clock0 input

I1 => I1, -- Clockl input

IGNOREO => IGNOREO, -- Ignore clock select0 input

IGNORE1l => IGNOREl, -- Ignore clock selectl input

S0 => SO0, -- Clock select0 input

Sl => si1 -- Clock selectl input

)

-—- End of BUFGCTRL_inst instantiation

Verilog Instantiation Template

// BUFGCTRL : In order to incorporate this function into the design,

// Verilog : the following instance declaration needs to be placed

// instance : in the body of the design code. The instance name

// declaration : (BUFGCTRL_inst) and/or the port declarations within the

28 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

BUFGCTRL S XILINX®

// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs

// : and outputs must be connect.

/] <===== Cut code below this line---->

// BUFGCTRL: Advanced Clock MUX Primtive
// Virtex-4
// Xilinx HDL Libraries Guide Version 8.11

BUFGCTRL # (
JINIT_OUT(0), // Inital value of 0 or 1 after configuration
.PRESELECT_IO("FALSE"), // "TRUE" or "FALSE" set the IO input after configuration
.PRESELECT_I1 ("FALSE") // "TRUE" or "FALSE" set the Il input after configuration
) BUFGCTRL_inst (
.0(0), // 1-bit output

.CEO(CEO), // 1-bit clock enable 0
.CE1(CEl), // 1-bit clock enable 1
.I0(I0), // 1-bit clock 0 input
LI1(11), // 1-bit clock 1 input
.IGNOREO (IGNOREO), // 1l-bit ignore 0 input
.IGNORE1 (IGNORE1l), // 1-bit ignore 1 input
.S0(s0), // 1-bit select 0 input
.S1(s1) // 1l-bit select 1 input
)

// End of BUFGCTRL_inst instantiation
For More Information

Consult the Virtex-4 User Guide.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 29
ISE 8.1i

http://www.xilinx.com

SXILINX® BUFGCTRL

30 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

BUFGMUX

SUXILINX®

BUFGMUX

Primitive: Global Clock MUX Buffer with Output State 0
BUEGMUX BUFGMUX is a multiplexed global clock buffer that can select between two input
clocks 10 and I1. When the select input (S) is Low, the signal on 10 is selected for
o | o output (O). When the select input (S) is High, the signal on I1 is selected for output.
1
S | BUFGMUX and BUFGMUX_1 are distinguished by which state the output assumes
when it switches between clocks in response to a change in its select input.
X9251 BUGFMUX assumes output state 0 and BUFGMUX_1 assumes output state 1.
Note: BUFGMUX guarantees that when S is toggled, the state of the output will remain in the
inactive state until the next active clock edge (either 10 or 1) occurs.
Inputs Outputs
10 h| S o
10 X 0 10
X I 1 Il
X X T 0
X X \
Usage
This design element is supported for schematics and instantiations but not for
inference.
VHDL Instantiation Template
- BUFGMUX : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The

-- declaration : instance name (BUFGMUX_inst) and/or the port declarations

-= code : after the

"=>" assignment maybe changed to properly

-— : reference and connect this function to the design.
-— : All inputs and outputs must be connected.

-— Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library

-— Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that will be used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- BUFGMUX: Global Clock Buffer 2-to-1 MUX
- Virtex-II/II-Pro, Spartan-3/3E
-- Xilinx HDL Libraries Guide Version 8.11i

BUFGMUX_inst : BUFGMUX

port map (
0 => 0, -- Clock MUX output
I0 => I0, -- ClockO input
I1 => I1, -- Clockl input
S => S -- Clock select input
)
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 31

ISE 8.1i

http://www.xilinx.com

SUXILINX®

BUFGMUX

-- End of BUFGMUX_inst instantiation

Verilog Instantiation Template

// BUFGMUX : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (BUFGMUX_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design.
// and outputs must be connect.
/] <=-==== Cut code below this line---->
// BUFGMUX: Global Clock Buffer 2-to-1 MUX
// Virtex-II/II-Pro/4, Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.11
BUFGMUX BUFGMUX_inst (
.0(0), // Clock MUX output
.I0(I0), // ClockO input
.I1(I1), // Clockl input
.S(9) // Clock select input
)
// End of BUFGMUX_inst instantiation
For More Information
Consult the Virtex-4 User Guide.
32 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

BUFGMUX_1

SUXILINX®

BUFGMUX_1

Primitive: Global Clock MUX Buffer with Output State 1

BUFGMUX_1 is a multiplexed global clock buffer that can select between two input

BUFGMUX 1 clocks 10 and I1. When the select input (S) is Low, the signal on 10 is selected for
10 output (O). When the select input (S) is High, the signal on I1 is selected for output.
— (0] . L. . .
H BUFGMUX and BUFGMUX_1 are distinguished by which state the output assumes
P when it switches between clocks in response to a change in its select input.
BUFGMUX assumes output state 0 and BUFGMUX_1 assumes output state 1.
X9252
Inputs Outputs
10 1 S o
10 X 0 10
X 11 1 11
X X T 1
X X \2 1
Usage
This design element is supported for schematics and instantiations but not for
inference.
VHDL Instantiation Template
-- BUFGMUX_1 In order to incorporate this function into the design,
-— VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (BUFGMUX_1_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
-- reference and connect this function to the design.
- All inputs and outputs must be connected.
- Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-— for added before the entity declaration. This library
- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used

-- Copy the foll
-- Entity declar

Library UNISIM;
use UNISIM.vcompo:

for simulation.

owing two statements and paste them before the
ation, unless they already exists.

nents.all;

-— <—=—== Cut code below this line and paste into the architecture body---->

-- BUFGMUX_1:

-- Xilinx HDL

BUFGMUX_1_inst
port map (
o => 0,
I0 => IO,
I1 => I1,
S => S
)

Global Clock Buffer 2-to-1 MUX (inverted select)
Virtex-II/II-Pro, Spartan-3/3E
Libraries Guide Version 8.11

BUFGMUX_1

-- Clock MUX output
-- Clock0 input

-- Clockl input

-- Clock select input

-- End of BUFGMUX_1_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com

ISE 8.1i

33

http://www.xilinx.com

SXILINX® BUFGMUX_1

Verilog Instantiation Template

// BUFGMUX_1 : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed

// instance : in the body of the design code. The instance name

// declaration : (BUFGMUX_1_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connect.

/] <===== Cut code below this line---->

// BUFGMUX_1: Global Clock Buffer 2-to-1 MUX (inverted select)
// Virtex-II/II-Pro, Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.11

BUFGMUX_1 BUFGMUX_1_inst (

.0(0), // Clock MUX output
.I0(I0), // ClockO input
.I1(I1), // Clockl input

.S(S) // Clock select input

) ;

// End of BUFGMUX_1_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

34 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

BUFGMUX_VIRTEX4

SUXILINX®

BUFGMUX VIRTEX4
Primitive: Global Clock MUX Buffer

BUFGMUX_VIRTEX4 is a global clock buffer with two clock inputs, one clock output,
and a select line. This primitive is based on BUFGCTRL, with some pins connected to

BUFGMUX_VIRTEX4

o logic High or Low.

This element uses the S pins as select pins. S can switch anytime without causing a

—-—- BUFGMUX_VIRTEX4
-= VHDL

- instance

-- declaration
-= code

-- Library
-- declaration
- for

-- Xilinx

-— primitives

L onoso
: connect this function to the design.
: and outputs must be connect.

: In addition to adding the instance declaration,
: statement for the UNISIM.vcomponents library needs to be
: added before the entity declaration.
: contains the component declarations for all Xilinx

: primitives and points to the models that will be used
: for simulation.

glitch. The Setup /Hold time on S is for determining whether the output wil pass an
extra pulse of the previously selected clock before switching to the new clock. If S
changes prior to the setup time Tpccck s, and before I/0O transitions from High to
Low, then the output will not pass an extra pulse of I/O. If S changes following the
hold time for S, then the output will pass an extra pulse, but it will not glitch. In any
case the output will change to the new clock within three clock cycles of the slower
clock.

xxxxxx

The Setup/Hold requirements for SO and S1 are with respect to the falling clock edge
(assuming INIT_OUT = 0), not the rising edge, as for CE0 and CEL1.

Switching conditions for BUFGMUX_VIRTEX4 are the same as the S pin of
BUFGCTRL.

BUFGMUX_VIRTEX4 Ports

O - Clock Output Pin

The O pin represents the clock output pin.
10 — Clock Input Pin

I1 - Clock Input Pin

The I pin represents the clock input pin.
Clock Select Pin

The S pin represents the clock select pin.

The port list and definitions for this element are as follows:

Name | Type | Width Function

@) Output 1 Clock Output
I1-10 |Input 1 Clock Input

S0 -S1 | Input 1 Clock Select Input

VHDL Instantiation Template

: In order to incorporate this function into the design,
: the following instance declaration needs to be placed
: in the body of the design code.

The instance name
(BUFGMUX_VIRTEX4_inst) and/or the port declarations after the
assignment maybe changed to properly reference and

All inputs

a use

This library

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com 35

http://www.xilinx.com

SUXILINX®

BUFGMUX_VIRTEX4

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <=———- Cut code below this line and paste into the architecture body---->
-- BUFGMUX_VIRTEX4: Global Clock Buffer 2-to-1 MUX
-- Virtex-4

-- Xilinx HDL Libraries Guide Version 8.11i

BUFGMUX_VIRTEX4_inst : BUFGMUX_VIRTEX4
generic map (

INIT_OUT => 0, -- Inital value of 0 or 1 after configuration

PRESELECT_IO => FALSE, -- TRUE/FALSE set the IO input after configuration

PRESELECT_I1 => FALSE) -- TRUE/FALSE set the Il input after configuration
port map (

0 => 0, -- Clock MUX output

I0 => I0, -- ClockO input

I1 => I1, -- Clockl input

S => S -- Clock select input

)

-- End of BUFGMUX_VIRTEX4_inst instantiation

Verilog Instantiation Template

// BUFGMUX_VIRTEX4 : In order to incorporate this function into the design,

// Verilog : the following instance declaration needs to be placed

// instance : in the body of the design code. The instance name

// declaration : (BUFGMUX_VIRTEX4_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connect.

/] <===== Cut code below this line---->

// BUFGMUX_VIRTEX4: Global Clock Buffer 2-to-1 MUX
// Virtex-4
// Xilinx HDL Libraries Guide Version 8.11

BUFGMUX_VIRTEX4 BUFGMUX_VIRTEX4_inst (

.0(0), // Clock MUX output
.I0(10), // ClockO input
.I1(I1), // Clockl input

.S(8) // Clock select input

)

// End of BUFGMUX_VIRTEX4_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

36 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

BUFIO

SUXILINX®

BUFIO

Primitive: Local Clock Buffer for 1/0

The BUFIO is a clock buffer available in Virtex-4 devices. It is simply a clock-in, clock-
out buffer. The BUFIO drives a dedicated clock net within the I/O column,
independent of the global clock resources. Thus, BUFIOs are ideally suited for source-

: ° synchronous data capture (forwarded/receiver clock distribution). BUFIOs can only

-= BUFIO

-= VHDL

-- instance
-- declaration
-= code

-— Library
-- declaration
- for

-- Xilinx

-— primitives

be driven by clock capable 1/Os located in the same clock region. They drive the two
adjacent I/O clock nets (for a total of up to three clock regions), as well as the regional
clock buffers (BUFR). BUFIOs cannot drive logic resources (CLB, block RAM, etc.)
because the I/O clock network only reaches the I/O column.

BUFIO Ports (Detailed Description)

Name | Type |Width Function

O Output | 1 Clock output port

I Input |1 Clock input port

Usage

BUFIOs work in conjunction with I/O capable clocks, and represent an ideal solution
for source synchronous applications that require clock recovery.

This design element is supported for schematics and instantiations, but not for
inference.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code. The instance name
(BUFIO_inst) and/or the port declarations after the
"=>" assignment maybe changed to properly reference and
connect this function to the design. All inputs

and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <=———- Cut code below this line and paste into the architecture body---->

-- BUFIO: Clock in, clock out buffer
-- Virtex-4
-- Xilinx HDL Libraries Guide Version 8.11i

BUFIO_inst
port map (
O => 0O,
I =>1

)

BUFIO

-- Clock buffer output
-- Clock buffer input

-- End of BUFIO_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 37

ISE 8.1i

http://www.xilinx.com

SUXILINX®

BUFIO

Verilog Instantiation Template

BUFIO : In order to incorporate this function into the design,
Verilog : the following instance declaration needs to be placed
instance : in the body of the design code. The instance name

declaration : (BUFIO_inst) and/or the port declarations within the
code : parenthesis maybe changed to properly reference and
: connect this function to the design.
and outputs must be connect.

<----- Cut code below this line---->

// BUFIO: Local Clock Buffer
// Virtex-4
// Xilinx HDL Libraries Guide Version 8.11

BUFIO BUFIO_inst (
.0(0), // Clock buffer output

LI(T) // Clock buffer input
) ;

// End of BUFIO_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

38

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

BUFR

SUXILINX®

BUFR

Primitive: Regional Clock Buffer for I/O and Logic Resources

CLR
CE

BUFR

The BUFR is a clock buffer available in Virtex-4 devices. BUFRs drive clock signals to
a dedicated clock net within a clock region, independent from the global clock tree.
Each BUEFR can drive the two regional clock nets in the region in which it is located,
and the two clock nets in the adjacent clock regions (up to three clock regions). Unlike
BUFIOs, BUFRs can drive the I/O logic and logic resources (CLB, block RAM, etc.) in

" the existing and adjacent clock regions. BUFRs can be driven by either the output

from BUFIOs or local interconnect. In addition, BUFRs are capable of generating
divided clock outputs with respect to the clock input. The divide values are an integer
between one and eight. BUFRs are ideal for source-synchronous applications
requiring clock domain crossing or serial-to-parallel conversion. There are two BUFRs
in a typical clock region (two regional clock networks). The center column does not
have BUFRs.

BUEFR Ports (Detailed Description)
O - Clock Output Port

This port drives the clock tracks in the clock region of the BUFR and the two adjacent
clock regions. This port drives FPGA fabric and 1OBs.

CE - Clock Enable Port
CLR - Counter Reset for Divided Clock Output

When asserted HIGH, this port resets the counter used to produce the divided clock
output.

I - Clock Input Port

This port is the clock source port for BUFR. It may be driven by BUFIO output or local
interconnect.

The port list and definitions for this element are as follows:

Name | Type |Width Function

o Output| 1 |Clock output port

CE Input 1 Clock enable port. Cannot be used in
BYPASS mode.

CLR |Input 1 | Asynchronous clear for the divide
logic, and sets the output Low. Cannot
be used in BYPASS mode.

I Input 1 | Clock input port

Available Attributes

Attribute Type Allowed Values | Default Description
BUFR_DIVIDE |STRING |"BYPASS", "1","2", |"BYPASS” | Defines whether the
"3" "4","5","6","7", output clock is a divided
"8 version of input clock.
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 39

ISE 8.1i

http://www.xilinx.com

SUXILINX®

BUFR

-= BUFR

-= VHDL

-- instance
-- declaration
-- code

-— Library
-- declaration
- for

-- Xilinx

-— primitives

Usage

This design element is supported for schematics and instantiations, but not for

inference.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code. The instance name
(BUFR_inst) and/or the port declarations after the

"=>" assignment maybe changed to properly reference and
connect this function to the design. All inputs

and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <==——- Cut code below this line and paste into the architecture body---->

-- BUFR: Regional (Local) Clock Buffer /w Enable, Clear and Division Capabilities
- Virtex-4
-- Xilinx HDL Libraries Guide Version 8.1i

BUFR_inst : BUFR

generic map (
BUFR_DIVIDE
port map (
o => 0O,
CE => CE,
CLR => CLR,
I =>1I
)

=> "BYPASS") -- "BYPASS", "1m", "2", mw3m, wgw owgw wgw owgw omgn

- Clock buffer output
- Clock enable input

-- Clock buffer reset input

- Clock buffer input

-- End of BUFR_inst instantiation

// BUFR

// Verilog
// instance
// declaration

Verilog Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the body of the design code.

The instance name

(BUFR_inst) and/or the port declarations within the

// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs

// and outputs must be connect.

/] <-===- Cut code below this line---->

// BUFR: Regioanl Clock Buffer /w Enable,

// Virte

x-4

// Xilinx HDL Libraries Guide Version 8.11

BUFR # (
.BUFR_DIVID

) BUFR_inst (
.0(0),
.CE(CE),
.CLR(CLR),
LI(I)

)

// End of BUFR_inst instantiation

E("BYPASS") // "BYPASS",

// Clock buffer output
// Clock enable input

mgw, wgm o w3w owg

// Clock buffer reset input

// Clock buffer input

Clear and Division Capabilities

woowgm o owgn w7y owgw

40

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

BUFR S XILINX®

For More Information

Consult the Virtex-4 User Guide.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 4
ISE 8.1i

http://www.xilinx.com

ST XILINX® BUFR

42 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

CAPTURE_VIRTEX4

SUXILINX®

CAPTURE_VIRTEX4

Primitive: Virtex-4 Boundary Scan Logic Control Circuit

CAPTURE_VIRTEX4 provides user control over when to capture register (flip-flop

CAP
CLK

CAPTURE_VIRTEX4

and latch) information for readback. Virtex-4 devices provide the readback function
through dedicated configuration port instructions.

aaaaaa CAPTURE_VIRTEX4 Ports (Detailed Description)
CAP - Input

An asserted high CAP signal indicates that the registers in the device are to be
captured at the next Low-to-High clock transition. By default, data is captured after
every trigger (transition on CLK while CAP is asserted).

CLK - Input
Clock input pin

The port list and definitions for this element are as follows:

Name | Type | Width Function
CAP |Input |1

CLK |Input |1

Capture trigger pin

Clock input pin

Usage

Using the CAPTURE_VIRTEX4 primitive is optional. Without this primitive, readback
of the DFFs will be the initial set/preset value instead of the current value that DFFs
hold.

Virtex-4 devices allow for capturing register (flip-flop and latch) states only.
LUTRAM, SRL, and block RAM always have their current states readback once the
GLUTMASK bit is disabled. Refer to the Virtex-4 Configuration User Guide for more
information about readback.

This design element is supported for schematics and instantiations, but not for
inference.

Available Attributes

-- CAPT

Name

Description Possible Values

ONESHOT

Limits the readback operation to a single data capture | TRUE (default), FALSE

URE_VIRTEX4 :

VHDL Instantiation Template

In order to incorporate this function into the design,

-= VHDL

-- instance
-= declaration
-- code

-— Library
-= declaration
-— for

-- Xilinx

- primitives

: the following instance declaration needs to be placed
: in the body of the design code.

The instance name
(CAPTURE_VIRTEX4_inst) and/or the port declarations after the

: "=>" assignment maybe changed to properly reference and
: connect this function to the design.
: out inputs/outputs that are not necessary.

Delete or comment

: In addition to adding the instance declaration, a use
: statement for the UNISIM.vcomponents library needs to be
: added before the entity declaration.
: contains the component declarations for all Xilinx
: primitives and points to the models that will be used

This library

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com 43

http://www.xilinx.com

SUXILINX®

CAPTURE_VIRTEX4

-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <===—- Cut code below this line and paste into the architecture body---->
-- CAPTURE_VIRTEX4: Register State Capture for Bitstream Readback
-- Virtex-4

-- Xilinx HDL Libraries Guide Version 8.11

CAPTURE_VIRTEX4_inst : CAPTURE_VIRTEX4
generic map (

ONESHOT => TRUE) -- TRUE or FALSE
port map (

CAP => CAP, -- Capture input

CLK => CLK -- Clock input

)
-- End of CAPTURE_VIRTEX4_inst instantiation

Verilog Template

// CAPTURE_VIRTEX4 : In order to incorporate this function into the design,

// Verilog : the following instance declaration needs to be placed

// instance : in the body of the design code. The instance name

// declaration : (CAPTURE_VIRTEX4_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment

// : out inputs/outs that are not necessary.

/] <-===- Cut code below this line---->

// CAPTURE_VIRTEX4: Register State Capture for Bitstream Readback
// Virtex-4
// Xilinx HDL Libraries Guide Version 8.1i

CAPTURE_VIRTEX4 # (
.ONESHOT ("TRUE") // "TRUE" or "FALSE"
) CAPTURE_VIRTEX4_inst (
.CAP (CAP), // Capture input
.CLK (CLK) // Clock input
)

// End of CAPTURE_VIRTEX4_inst instantiation

For More Information

Consult the Virtex-4 Configuration Guide.

44 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

DCIRESET S XILINX®

DCIRESET

Primitive: DCI State Machine Reset (After Configuration Has Been
Completed)

RST DCIRESET LOCKED
T e RT wea

The port list and definitions for this primitive are as follows:

Name Type |Width Function

Invokes the DCI state machine to start from initial state

Indicates that DCI state machine has achieved a stable state after
reset

™ | LOCKED | Output | 1

Usage

The DCIRESET primitive is used to reset the DCI state machine after configuration
has been completed. This design element is supported for schematics and
instantiations, but not for inference.

VHDL Template
-- DCIRESET In order to incorporate this function into the design,
-— VHDL the following instance declaration needs to be placed
- instance in the architecture body of the design code. The
-- declaration instance name (DCIRESET inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
- connect this function to the design. All inputs
-— and outputs must be connected.
- Library In addition to adding the instance declaration, a use
-— declaration statement for the UNISIM.vcomponents library needs to be
-— for added before the entity declaration. This library
- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- DCIRESET: DCI reset component
-- Virtex-4
-- Xilinx HDL Libraries Guide Version 8.11i

DCIRESET_inst
port map (

LOCKED => LOCKED,

RST => RST
)

DCIRESET

-- DCIRESET LOCK status output
-- DCIRESET asynchronous reset input

-- End of DCIRESET_inst instantiation

Verilog Template

// DCIRESET In order to incorporate this function into the design,
// Verilog the following instance declaration needs to be placed
// instance in the body of the design code. The instance name

// declaration (DCIRESET_inst) and/or the port declarations within the
// code parenthesis maybe changed to properly reference and

// connect this function to the design.

/] <-===- Cut code below this line---->

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com 45

http://www.xilinx.com

SXILINX® DCIRESET

// DCIRESET: Digital Controlled Impedance (DCI) Reset Component
// Virtex-4
// Xilinx HDL Libraries Guide Version 8.11

DCIRESET DCIRESET_inst (
. LOCKED (LOCKED) ,
.RST (RST)

)

// End of DCIRESET_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

46 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DCM_ADV S XILINX®

DCM_ADV

Digital Clock Manager with Advanced Features
The Digital Clock Managers (DCM) provide a wide range of powerful clock

LKIN DCM_ADV LKO
CCLKFB ELK% management features. In the case of DCM_ADYV, these include:
Pswc,s:: zti;zz o Phase Shlftll’lg
oiporico o The three outputs driving the same frequency as CLKO are delayed by a fourth, a
— o half, and then three-fourths of a clock period. An additional control signal
oen LookeD optionally shifts all of the nine clock outputs by a fixed fraction of the input clock
pok Feoone period (defined during configuration and described in multiples of the clock
=== period divided by 256).

The user can also dynamically and repetitively move the phase forwards or
backwards by one unit of the clock period divided by 256. Any phase shift is
always invoked as a specific fraction of the clock period, and is always
implemented by moving delay taps with a resolution of DCM_TAP.

e Dynamic Reconfiguration
The DADDR[6:0], DI[15:0], DWE, DEN, CCLK inputs and DO[15:0] and DRDY
outputs are available to dynamically reconfigure select DCM functions. With
dynamic reconfiguration, DCM attributes are changeable to select a different

phase shift, frequency, or frequency-mode setting from the currently configured
settings.

Port Descriptions

There are four types of DCM ports available in the Virtex-4 architecture:
1. Clock Input Ports

2. Control and Data Input Ports

3. Clock Output Ports

4. Status and Data Output Ports

Available Ports

Available Ports Port Names
Clock Input CLKIN, CLKFB, PSCLK, DCLK
Control and Data Input RST, PSINCDEC, PSEN, DADDR]6:0], DI[15:0], DWE, DEN
Clock Output CLKO0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, CLKDV,
CLKFX, CLKFX180
Status and Data Output LOCKED, PSDONE, DO[15:0], DRDY

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 47
ISE 8.1i

http://www.xilinx.com

SUXILINX®

DCM_ADV

Clock Input Ports
Source Clock Input - CLKIN

The source clock (CLKIN) input pin provides the source clock to the DCM. The
CLKIN frequency must fall in the ranges specified in the Virtex-4 Data Sheet. The
clock input signal comes from one of the following buffers:

1. IBUFG - Global Clock Input Buffer

The DCM compensates for the clock input path with an IBUFG on the same edge
(top or bottom) of the device as the DCM is used.

2. BUFGCTRL - Internal Global Clock Buffer

Any BUFGCTRL can drive any DCM in the Virtex-4 device using the dedicated
global routing. A BUFGCTRL can drive the DCM CLKIN pin when used to
connect two DCM in series.

3. IBUF - Input Buffer

When IBUF drives CLKIN input, the PAD to DCM input skew is not
compensated.

Feedback Clock Input - CLKFB

The feedback clock (CLKFB) input pin provides a reference or feedback signal to the
DCM to delay-compensate the clock outputs, and align it with the clock input. To
provide the necessary feedback to the DCM, connect only the CLKO DCM outputs to
the CLKFB pin and set the CLK_FEEDBACK attribute to 1X. When the CLKFB pin is
connected, CLK0, CLK2X, CLKDV, and CLKFX will be deskewed to CLKIN. When
the CLKFB pin is not connected, DCM clock outputs are not deskewed to CLKIN.
However, the phase relationship between all output clocks is preserved.

During internal feedback configuration, the CLKO output of a DCM connects to a
global buffer on the same top or bottom half of the device. The output of the global
buffer connects to the CLKFB input of the same DCM.

During the external feedback configuration, the following rules apply:

1. To forward the clock, the CLKO of the DCM must directly drive an OBUF or a
BUFG-to-DDR configuration.

2. External to the FPGA, the forwarded clock signal must be connected to the IBUFG
(GCLK pin) or the IBUF driving the CLKFB of the DCM.

The feedback clock input signal can be driven by one of the following buffers:
1. BUFG - Global Clock Input Buffer
This is the preferred source for an external feedback configuration. When an

IBUFG drives a CLKFB pin of a DCM in the same (top or bottom) half of the
device, the pad to DCM skew is compensated for deskew.

2. BUFGCTRL - Internal Global Clock Buffer

This is an internal feedback configuration.

3. IBUF - Input Buffer

48

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DCM_ADV

SUXILINX®

This is an external feedback configuration. When IBUF is used, the PAD to DCM
input skew is not compensated.

Phase-Shift Clock Input - PSCLK

The phase-shift clock (PSCLK) input pin provides the source clock for the DCM phase
shift. The frequency of PSCLK is the same as, lower than, or higher than the frequency
of CLKIN. The phase-shift clock signal can be driven by any clock source (external or
internal), including;:

1. IBUF - Input Buffer.
2. IBUFG - Global Clock Input Buffer.

To access the dedicated routing, the IBUFGs is on the same edge of the device (top
or bottom) as the DCM can be used to drive a PSCLK input of the DCM.

3. BUFGCTRL - An Internal Global Buffer.
4. Internal Clock - Any internal clock using general purpose routing.

The frequency range of PSCLK is defined by PSCLK_FREQ_LF/HF. This input must
be tied to ground when the CLKOUT_PHASE_SHIFT attribute is set to NONE or
FIXED.

Dynamic Reconfiguration Clock Input - DCLK

The DCLK input pin provides the source clock for the DCM’s dynamic
reconfiguration circuit. The frequency of DCLK can be asynchronous (in phase and
frequency) to CLKIN. The dynamic reconfiguration clock signal is driven by any clock
source (external or internal), including:

1. IBUF - Input Buffer.
2. IBUFG - Global Clock Input Buffer.

Only the IBUFGs on the same edge of the device (top or bottom) as the DCM can
be used to drive a CLKIN input of the DCM.

3. BUFGCTRL - An Internal Global Buffer.
4. Internal Clock - Any internal clock using general purpose routing.

The frequency range of DCLK is described in the Virtex-4 Data Sheet. When dynamic
reconfiguration is not used, this input must be tied to ground. For more information
on Dynamic Configuration, please see the Configuration User Guide.

Control and Data Input Ports
Reset Input - RST

The reset (RST) input pin resets the DCM circuitry. The RST signal is an active High
asynchronous reset. Asserting the RST signal asynchronously forces all DCM outputs
Low (the LOCKED signal, all status signals, and all output clocks within four source
clock cycles). Because the reset is asynchronous, the last cycle of the clocks can exhibit
an unintended short pulse, severely distorting duty-cycle, and no longer deskew with
respect to one another while deasserting Low. Only use the RST pin when
reconfiguring the device or changing the input frequency. Deasserting the RST signal
synchronously starts the locking process at the next CLKIN cycle.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 49

ISE 8.1i

http://www.xilinx.com

SUXILINX®

DCM_ADV

To ensure a proper DCM reset and locking process, the RST signal must be deasserted
after the CLKIN signal has been present and stable for at least three clock cycles.

The time it takes for the DCM to lock after a reset is specified as LOCK_DLL (for a
DLL output) and LOCK_FX (for a DFS output). See the LOCK_DLL timing parameter
in the Virtex-4 Data Sheet. The DCM locks faster at higher frequencies.

In all designs, the DCM must be held in reset until the clock is stable. During
configuration, the DCM will be held in reset until GWE is released. If the clock is
stable when GWE is released, DCM reset after configuration is not necessary.

Phase-Shift Increment/Decrement Input - PSINCDEC

The PSINCDEC input signal is synchronous with PSCLK. The PSINCDEC input
signal is used to increment or decrement the phase-shift factor. As a result, the output
clock will be phase shifted. The PSINCDEC signal is asserted High for increment, or
deasserted Low for decrement. This input must be tied to ground when the
CLKOUT_PHASE_SHIFT attribute is set to NONE or FIXED.

Phase-Shift Enable Input - PSEN

The PSEN input signal is synchronous with PSCLK. A variable phase-shift operation
is initiated by the PSEN input signal. It must be activated for one period of PSCLK.
After PSEN is initiated, the phase change is effective for up to 100 CLKIN pulse cycles,
plus three PSCLK cycles, and is indicated by a High pulse on PSDONE. There are no
sporadic changes or glitches on any output during the phase transition. From the time
PSEN is enabled until PSDONE is flagged, the DCM output clock moves bit-by-bit
from its original phase shift to the target phase shift. The phase-shift is complete when
PSDONE is flagged. PSEN must be tied to ground when the
CLKOUT_PHASE_SHIFT attribute is set to NONE or FIXED.

Dynamic Reconfiguration Data Input - DI[15:0]

The DI input bus provides reconfiguration data for dynamic reconfiguration. When
not used, all bits must be assigned zeros. Please see the dynamic reconfiguration
section of the Configuration User Guide for more information.

Dynamic Reconfiguration Address Input - DADDR[6:0]

The DADDR input bus provides a reconfiguration address for the dynamic
reconfiguration. When not used, all bits must be assigned zeros. The DO output bus
will reflect the DCM’s status. Please see the dynamic reconfiguration section of the
Configuration User Guide for more information.

Dynamic Reconfiguration Write Enable Input - DWE

The DWE input pin provides the write enable control signal to write the DI data into
the DADDR address. When not used, it must be tied Low. Please see the dynamic
reconfiguration section of the Configuration User Guide for more information.

Dynamic Reconfiguration Enable Input - DEN

The DEN input pin provides the enable control signal to access the dynamic
reconfiguration feature. To reflect the DCM status signals on the DO output bus, when
not used, it should be tied to High because if DEN is tied Low, DO will always output
a Low signal. Please see the dynamic reconfiguration section of the Configuration User
Guide for more information.

50

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DCM_ADV

SUXILINX®

Clock Output Ports

A DCM provides nine clock outputs with specific frequency and phase relationships.
When CLKEB is connected, all DCM clock outputs are deskewed to CLKIN. When
CLKEFB is not connected, the DCM outputs are not deskewed. However, the phase
relationship between all output clocks is preserved.

Ix Output Clock - CLKO

The CLKO output clock provides a clock with the same frequency as the DCM’s
effective CLKIN frequency. By default, the effective CLKIN frequency is equal to the
CLKIN frequency, except when the CLKIN_DIVIDE_BY_2 attribute is set to True.
When CLKFB is connected, CLKO is deskewed to CLKIN.

Ix Output Clock, 90° Phase Shift - CLK90

The CLK90 output clock provides a clock with the same frequency as the DCM’s
CLKO only phase-shifted by 90°.

Ix Output Clock, 180° Phase Shift - CLK180

The CLK180 output clock provides a clock with the same frequency as the DCM’s
CLKO only phase-shifted by 180°.

Ix Output Clock, 270° Phase Shift - CLK270

The CLK270 output clock provides a clock with the same frequency as the DCM’s
CLKO only phase-shifted by 270°.

2x Output Clock - CLK2X

The CLK2X output clock provides a clock that is phase aligned to CLKO, with twice
the CLKO frequency, and with an automatic 50/50 duty-cycle correction. Until the
DCM is locked, the CLK2X output appears as a 1x version of the input clock with a
25/75 duty cycle. This behavior allows the DCM to lock on the correct edge with
respect to the source clock.

2x Output Clock, 180° Phase Shift - CLK2X180

The CLK2X180 output clock provides a clock with the same frequency as the DCM’s
CLK2X only phase-shifted by 180°.

Frequency Divide Output Clock - CLKDV

The frequency divide (CLKDV) output clock provides a clock that is phase aligned to
CLKO with a frequency that is a fraction of the effective CLKIN frequency. The
fraction is determined by the CLKDV_DIVIDE attribute.

By default, the effective CLKIN frequency is equal to the CLKIN frequency, except
when the CLKIN_DIVIDE_BY_2 attribute is set to True.

Frequency Output Clock - CLKFX

The frequency (CLKFX) output clock provides a clock with the following frequency
definition:

CLKFX Frequency = (M/D)x (Effective CLKIN Frequency)

In this equation, M is the multiplier (numerator) with a value defined by the
CLKFX_MULTIPLY attribute. D is the divisor (denominator) with a value defined by
the CLKFX_DIVIDE attribute. Specifications for M and D, as well as input and output
frequency ranges for the frequency synthesizer, are provided in the Virtex-4 Data
Sheet.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 51

ISE 8.1i

http://www.xilinx.com

SUXILINX®

DCM_ADV

The rising edge of CLKEX output is phase aligned to the rising edges of CLKO,
CLK2X, and CLKDV. When M and D to have no common factor, the alignment occurs
only once every D cycles of CLKO.

By default, the effective CLKIN frequency is equal to the CLKIN frequency, except
when the CLKIN_DIVIDE_BY_2 attribute is set to True.

Frequency Synthesis Output Clock, 180° - CLKFX180

The CLKFX180 output clock provides a clock with the same frequency as the DCM’s
CLKEFX only phase-shifted by 180°.

Status and Data Output Ports
Locked Output - LOCKED

The LOCKED output signals the status of the DCM circuitry by locking it to the
desired frequency or phase shift. To achieve lock, the DCM samples several thousand
clock cycles. After the DCM achieves lock, the LOCKED signal is asserted High. The
DCM timing parameters section of the Virtex-4 Data Sheet provides estimates for
locking times.

To guarantee an established system clock at the end of the start-up cycle, the DCM can
delay the completion of the device configuration process until after the DCM is
locked. The STARTUP_WAIT attribute activates this feature.

Until the LOCKED signal is activated, the DCM output clocks are not valid and can
exhibit glitches, spikes, or other spurious movement. In particular, the CLK2X output
can appear as a 1x clock with a 25/75 duty cycle.

Phase Shift Done Output - PSDONE

The PSDONE output signal is synchronous to PSCLK. It indicates, by pulsing High
for one period of PSCLK, the completion of a requested phase shift. This signal also
indicates that a change to the phase shift is available. The PSDONE output signal is
not valid if the phase shift feature is not being used or is in fixed mode.

Status of Dynamic Reconfiguration Data Output - DO[15:0]

The DO output bus provides DCM status when not using the dynamic
reconfiguration feature and a data output when using dynamic reconfiguration.
Further information on using DO as the data output is available in the dynamic
reconfiguration section of the Configuration User Guide.

If DEN, DWE, DADDR, D], and DO are not used, using DCM_BASE or DCM_PS
instead of DCM_ADYV is strongly recommended. Otherwise, all unused inputs and
output pins should be left unconnected or assigned to the previously recommended
values.

52

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DCM_ADV S XILINX®

DCM Status Mapping to DO Bus

DO Bit Status Description

DOI[0] Phase-shift overflow | Asserted when the DCM is phase shifted beyond the
allowed phase shift value or when the absolute delay range
of the phase-shift delay line is exceeded.

DO[1] |CLKIN stopped Asserted when the input clock is stopped (CLKIN remains
High or Low for one or more clock cycles). When CLKIN is
stopped, the DO[1] CLKIN stopped status will assert within
nine CLKIN cycles. When CLKIN is restarted, CLKO will
start toggling and DOJ[1] will deassert within nine clock
cycles.

DO[2] |CLKFX stopped Asserted when CLKFX stops. The DO[2] CLKFX stopped
status will assert within 257 to 260 CLKIN cycles after
CLKFX stopped. CLKFX will not resume, and DO[2] will
not deassert until the DCM is reset.

DOJ[3] CLKFB stopped Asserted the feedback clock is stopped (CLKFB remains
High or Low for one or more clock cycles). The DO[3]
CLKFB stopped status will assert within six CLKIN cycles
after CLKFB is stopped. CLKFB stopped will deassert
within six CLKIN cycles when CLKFB resumes after being
stopped momentarily. An occasionally skipped CLKFB will
not affect the DCM operation. However, stopping CLKFB
for a long time can result in the DCM losing LOCKED.
When LOCKED is lost, the DCM needs to be reset to resume
operation.

DO[15:4] | Not assigned

Dynamic Reconfiguration Ready Output - DRDY

The DRDY output pin provides ready status for the DCM’s dynamic reconfiguration
feature. The dynamic reconfiguration section of the Configuration User Guide provides
more details on using DO as a data output.

DCM Attributes

A handful of DCM attributes govern the DCM functionality. This section provides a
detailed description of each attribute. For more information on applying these
attributes in UCF, VHDL, or Verilog code, refer to the Xilinx Constraints Guide.

CLKDV_DIVIDE Attribute

The CLKDV_DIVIDE attribute controls the CLKDV frequency. Since the source clock
frequency is divided by the value of this attribute, the possible values for
CLKDV_DIVIDE are: 1.5,2,25,3,35,4,45,5,55,6,65,7,75,8,9,10,11, 12,13, 14,
15, or 16. The default value is 2. In the low frequency mode, any CLKDV_DIVIDE
value produces a CLKDV output with a 50/50 duty-cycle. In the high frequency
mode, the CLKDV_DIVIDE value must be set to an integer value to produce a
CLKDV output with a 50/50 duty-cycle.

Non-Integer CLKDV_DIVIDE

CLKDV_DIVIDE Value CLKDV Duty Cycle(High Frequency Mode)
1.5 1/3
2.5 2/5
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 53

ISE 8.1i

http://www.xilinx.com

SXILINX® DCM_ADV
CLKDV_DIVIDE Value CLKDV Duty Cycle(High Frequency Mode)
35 3/7
4.5 4/9
5.5 5/11
6.5 6/13
7.5 7/15

CLKFX_MULTIPLY and CLKFX_DIVIDE Attribute

The CLKEX_MULTIPLY attribute sets the multiply value (M) of the CLKFX output.
The CLKEX_DIVIDE attribute sets the divisor (D) value of the CLKFX output. Both
control the CLKFX output making the CLKEX frequency equal the effective CLKIN
(source clock) frequency multiplied by M/D. The possible values for M are any
integer from two to 32. The possible values for D are any integer from one to 32. The
default settings are M =4and D = 1.

CLKIN_PERIOD Attribute

The CLKIN_PERIOD attribute specifies the source clock period (in nanoseconds). The
default value is 0.0 ns.

CLKIN_DIVIDE_BY_2 Attribute

The CLKIN_DIVIDE_BY_2 attribute determines the effective CLKIN frequency
applied to the DCM circuitry. When set to False, the effective CLKIN frequency of the
DCM equals the source clock frequency driving the CLKIN input. When set to True,
the CLKIN frequency is divided by two before it reaches the rest of the DCM circuitry.
Thus, the DCM circuitry sees half the frequency applied to the CLKIN input and
operates based on this frequency. For example, if a 100 MHz clock drives CLKIN, and
CLKIN_DIVIDE_BY_2 is set to True; then the effective CLKIN frequency is 50 MHz.
Thus, CLKO output is 50 MHz and CLK2X output is 100 MHz. The effective CLKIN
frequency must be used to evaluate any operation or specification derived from
CLKIN frequency. The possible values for CLKIN_DIVIDE_BY_2 are True and False.
The default value is False.

CLKOUT_PHASE_SHIFT Attribute

The CLKOUT_PHASE_SHIFT attribute indicates the mode of the phase shift applied
to the DCM outputs. The possible values are NONE, FIXED, VARIABLE_POSITIVE,
VARIABLE_CENTER, or DIRECT. The default value is NONE.

When set to NONE, a phase shift cannot be performed and a phase-shift value has no
effect on the DCM outputs. When set to FIXED, the DCM outputs are phase shifted by
a fixed phase from the CLKIN. The phase-shift value is determined by PHASE_SHIFT
attribute. If the CLKOUT_PHASE_SHIFT attribute is set to FIXED or NONE, then the
PSEN, PSINCDEC, and the PSCLK inputs must be tied to ground.

When set to VARIABLE_POSITIVE, the DCM outputs can be phase shifted in variable
mode in the positive range with respect to CLKIN. When set to VARIABLE_CENTER,
the DCM outputs can be phase shifted in variable mode, in the positive and negative
range with respect to CLKIN. If set to VARIABLE_POSITIVE or VARIABLE_CENTER,
each phase shift increment (or decrement) will increase (or decrease) the phase shift
by a period of 1/256 x CLKIN.

54

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DCM_ADV S XILINX®

When set to DIRECT, the DCM output can be phase shifted in variable mode in the
positive range with respect to CLKIN. Each phase shift increment/decrement will
increase/decrease the phase shift by one DCM_TAP.

The starting phase in the VARIABLE_POSITIVE and VARIABLE_CENTER modes is
determined by the phase-shift value. The starting phase in the DIRECT mode is
always zero, regardless of the value specified by the PHASE_SHIFT attribute. Thus,
the PHASE_SHIFT attribute should be set to zero when DIRECT mode is used. A non-
zero phase-shift value for DIRECT mode can be loaded to the DCM using Dynamic
Reconfiguration Ports.

CLK_FEEDBACK Attribute

The CLK_FEEDBACK attribute determines the type of feedback applied to the
CLKEFB. The possible values are 1X or NONE. The default value is 1X. When set to 1X,
CLKFB pin must be driven by CLKO0. When set to NONE leave the CLKFB pin
unconnected.

DESKEW_ADJUST Attribute

The DESKEW_ADJUST attribute affects the amount of delay in the feedback path.
The possible values are SYSTEM_SYNCHRONOUS, SOURCE_SYNCHRONOUS, 0,
1,2,3, ... or 31. The default value is SYSTEM_SYNCHRONOUS.

For most designs, the default value is appropriate. In a source-synchronous design,
set this attribute to SOURCE_SYNCHRONOUS. The remaining values should only be
used when consulting with Xilinx.

DFS_FREQUENCY_MODE Attribute

The DFS_FREQUENCY_MODE attribute specifies the frequency mode of the
frequency synthesizer (DFS). The possible values are Low and High. The default
value is Low. The frequency ranges for both frequency modes are specified in the
Virtex-4 Data Sheet. DFS_FREQUENCY_MODE determines the frequency range of
CLKIN, CLKFX, and CLKFX180.

DLL_FREQUENCY_MODE Attribute

The DLL_FREQUENCY_MODE attribute specifies either the High or Low frequency
mode of the delay-locked loop (DLL). The default value is Low. The frequency ranges
for both frequency modes are specified in the Virtex-4 Data Sheet.

DUTY_CYCLE_CORRECTION Attribute

The DUTY_CYCLE_CORRECTION attribute controls the duty cycle correction of the
1x clock outputs: CLKO, CLK90, CLK180, and CLK270. The possible values are True
and False. The default value is True. When set to True, the 1x clock outputs are duty
cycle corrected to a 50/50 duty cycle. It is strongly recommended to always set the
DUTY_CYCLE_CORRECTION attribute to True. Setting this attribute to False does
not necessarily produce output clocks with the same duty cycle as the source clock.

DCM_PERFORMANCE_MODE Attribute

The DCM_PERFORMANCE_MODE attribute allows the choice of optimizing the
DCM either for high frequency and low jitter or for low frequency and a wide phase-
shift range. The attribute values are MAX_SPEED and MAX_RANGE. The default

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 55
ISE 8.1i

http://www.xilinx.com

SUXILINX®

DCM_ADV

value is MAX_SPEED. When set to MAX_SPEED, the DCM is optimized to produce
high frequency clocks with low jitter. However, the phase-shift range is smaller than
when MAX_RANGE is selected. When set to MAX_RANGE, the DCM is optimized to
produce low frequency clocks with a wider phase-shift range. The
DCM_PERFORMANCE_MODE affects the following specifications: DCM input and
output frequency range, phase-shift range, output jitter, DCM_TAP,
CLKIN_CLKFB_PHASE, CLKOUT_PHASE, and duty-cycle precision. The Virtex-4
Data Sheet specifies these values.

For most cases, the DCM_PERFORMANCE_MOPDE attribute should be set to
MAX_SPEED (default). Only consider changing to MAX_RANGE in the following
situations:

e The frequency needs to be below the low frequency limit of the MAX_SPEED
setting.

e A greater absolute phase-shift range is required.

FACTORY _JF Attribute

The FACTORY_JF attribute affects the DCM's jitter filter characteristic. This attribute
is set the default value of FOFQ and should not be modified unless otherwise
instructed by Xilinx.

PHASE_SHIFT Attribute

The PHASE_SHIFT attribute determines the amount of phase shift applied to the
DCM outputs. This attribute can be used in both fixed or variable phase-shift mode. If
used with variable mode, the attribute sets the starting phase shift. When
CLKOUT_PHASE_SHIFT = VARIABLE_POSITIVE, the PHASE_SHIFT value range is
0 to 255. When CLKOUT_PHASE_SHIFT = VARIABLE_CENTER or FIXED, the
PHASE_SHIFT value range is -255 to 255. When CLKOUT_PHASE_SHIFT = DIRECT,
the PHASE_SHIFT value range is 0 to 1023. The default value is 0.

STARTUP_WAIT Attribute

The STARTUP_WAIT attribute determines whether the startup cycle waits for DCM
to lock. The possible values for this attribute are True and False. The default value is
False. When STARTUP_WAIT is set to True, and the LCK_cycle BitGen option is used,
then the configuration startup sequence waits in the startup cycle specified by
LCK_cycle until the DCM is locked.

Available Attributes

Attribute Type Allowed Values Default Description
CLK_FEEDBACK STRING "1X" or "NONE “1X” Specifies the clock feedback of the
allowed value
CLKDV_DIVIDE FLOAT 1.5,2.0,25,3.0,35, |20 Specifies the extent to which the
4.0,4.5,5.0,5.5,6.0, CLKDLL, CLKDLLE, CLKDLLHE, or
6.5,7.0,7.5,8.0,9.0, DCM clock divider (CLKDV output) is
10.0, 11.0, 12.0, 13.0, to be frequency divided.
14.0,15.0 or 16.0
CLKFX_DIVIDE INTEGER 1to 32 1 Specifies the frequency divider value for
the CLKEX output.
CLKFX_MULTIPLY INTEGER 2t032 4 Specifies the frequency multiplier value
for the CLKEX output.
56 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

®
DCM_ADV S XILINX
Attribute Type Allowed Values Default Description
CLKIN_DIVIDE_BY_2 | BOOLEAN FALSE, TRUE FALSE Allows for the input clock frequency to
be divided in half when such a
reduction is necessary to meet the DCM
input clock frequency requirements.
CLKIN_PERIOD FLOAT 1.25 to 1000.00 0.0 Specifies period of input clock in ns
from 1.25 to 1000.00.
CLKOUT_PHASE_ STRING "NONE" or "NONE” | Specifies the phase shift mode of
SHIFT "FIXED" or allowed value.
"VARIABLE_POSIT
IVE" or
"VARIABLE_CENT
ER" or "DIRECT
DCM_AUTOCALI- BOOLEAN TRUE, FALSE TRUE Specifies the additional circuitry
BRATION necessary to ensure proper DCM
operation. Itis suggested that users
consult with Xilinx before changing this
attribute.
DCM_PERFORMANCE | STRING "MAX_SPEED" or | "MAX_S | Allows selection between maximum
_MODE "MAX_RANGE PEED” frequency and minimum jitter for low
frequency and maximum phase shift
range
DESKEW_ADJUST STRING "SOURCE_SYNCH | "SYSTE Affects the amount of delay in the
RONOUS", M_SYNC | feedback path, and should be used for
"SYSTEM_SYNCH | HRONO | source-synchronous interfaces.
RONOUS" or "0" to | US"
"15
DFS_FREQUENCY_ STRING "LOW" or "HIGH” | "LOW” | Specifies the frequency mode of the
MODE frequency synthesizer.
DLL_FREQUENCY_ STRING "LOW" or "HIGH” | "LOW” | Specifies the DLL's frequency mode.
MODE
DUTY_CYCLE_ BOOLEAN TRUE, FALSE TRUE Corrects the duty cycle of the CLKO,
CORRECTION CLK90, CLK180, and CLK270 outputs.
FACTORY_JF 16-Bit Any 16-Bit FOFO The FACTORY_]JF attribute affects the
Hexadecimal Hexadecimal value DCMs jitter filter characteristic. This
attribute is set the default value of FOFO
and should not be modified unless
otherwise instructed by Xilinx.
PHASE_SHIFT INTEGER -255 to 1023 0 Specifies the phase shift numerator. The
range depends on
CLKOUT_PHASE_SHIFT.
STARTUP_WAIT BOOLEAN FALSE, TRUE FALSE When TRUE, the configuration startup
sequence waits in the specified cycle
until the DCM locks.
Usage
This design element is supported for schematics and instantiations, but not for
inference.
VHDL Instantiation Template
-- DCM_ADV In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-— instance in the body of the design code. The instance name
-- declaration (DCM_ADV_inst) and/or the port declarations after the
- code : "=>" declaration maybe changed to properly reference and
-— : connect this function to the design. Unused inputs
-- : and outputs may be removed or commented out.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx
-— primitives : primitives and points to the models that will be used

for simulation.

-- Copy the following two statements and paste them before the

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com

57

http://www.xilinx.com

ST XILINX® DCM_ADV
-- Entity declaration, unless they already exists.
Library UNISIM;
use UNISIM.vcomponents.all;
-— <———— Cut code below this line and paste into the architecture body---->
-- DCM_ADV: Digital Clock Manager Circuit for Virtex-4
-- Xilinx HDL Libraries Guide Version 8.1i1
DCM_ADV_inst : DCM_ADV
generic map (
CLKDV_DIVIDE => 2.0, -- Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
-- 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0
CLKFX_DIVIDE => 1, -- Can be any interger from 1 to 32
CLKFX_MULTIPLY => 4, -- Can be any integer from 2 to 32
CLKIN_DIVIDE_BY_ 2 => FALSE, -- TRUE/FALSE to enable CLKIN divide by two feature
CLKIN_PERIOD => 10.0, -- Specify period of input clock in ns from 1.25 to 1000.00
CLKOUT_PHASE_SHIFT => "NONE", -- Specify phase shift mode of NONE, FIXED,
—-- VARIABLE_POSITIVE, VARIABLE_CENTER or DIRECT
CLK_FEEDBACK => "1X", -- Specify clock feedback of NONE or 1X
DCM_PERFORMANCE_MODE => "MAX_SPEED", -- Can be MAX_SPEED or MAX_RANGE
DESKEW_ADJUST => "SYSTEM_SYNCHRONOUS", -- SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or
-— an integer from 0 to 15
DFS_FREQUENCY_MODE => "LOW", -- HIGH or LOW frequency mode for frequency synthesis
DLL_FREQUENCY_MODE => "LOW", -- LOW, HIGH, or HIGH_SER frequency mode for DLL
DUTY_CYCLE_CORRECTION => TRUE, -- Duty cycle correction, TRUE or FALSE
FACTORY_JF => X"FOFO", -- FACTORY JF Values Suggested to be set to X"FOF0O"
PHASE_SHIFT => 0, -- Amount of fixed phase shift from -255 to 1023
STARTUP_WAIT => FALSE) -- Delay configuration DONE until DCM LOCK, TRUE/FALSE
port map (
CLKO => CLKO, -- 0 degree DCM CLK output
CLK180 => CLK180, -- 180 degree DCM CLK output
CLK270 => CLK270, -- 270 degree DCM CLK output
CLK2X => CLK2X, -- 2X DCM CLK output
CLK2X180 => CLK2X180, -- 2X, 180 degree DCM CLK out
CLK90 => CLK90, -- 90 degree DCM CLK output
CLKDV => CLKDV, -- Divided DCM CLK out (CLKDV_DIVIDE)
CLKFX => CLKFX, -- DCM CLK synthesis out (M/D)
CLKFX180 => CLKFX180, -- 180 degree CLK synthesis out
DO => DO, -- 16-bit data output for Dynamic Reconfiguration Port (DRP)
DRDY => DRDY, -- Ready output signal from the DRP
LOCKED => LOCKED, -- DCM LOCK status output
PSDONE => PSDONE, -- Dynamic phase adjust done output
CLKFB => CLKFB, -- DCM clock feedback
CLKIN => CLKIN, -- Clock input (from IBUFG, BUFG or DCM)
DADDR => DADDR, -- 7-bit address for the DRP
DCLK => DCLK, -- Clock for the DRP
DEN => DEN, -- Enable input for the DRP
DI => DI, -- 16-bit data input for the DRP
DWE => DWE, -- Active high allows for writing configuration memory
PSCLK => PSCLK, -- Dynamic phase adjust clock input
PSEN => PSEN, -- Dynamic phase adjust enable input
PSINCDEC => PSINCDEC, -- Dynamic phase adjust increment/decrement
RST => RST -- DCM asynchronous reset input
)
-- End of DCM_ADV_inst instantiation
Verilog Instantiation Template
// DCM_ADV : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (DCM_ADV_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
/7 : connect this function to the design. Unused inputs
// : and outputs may be removed or commented out.
/] <===== Cut code below this line---->
// DCM_ADV: Digital Clock Manager Circuit for Virtex-4
// Xilinx HDL Libraries Guide Version 8.11i
DCM_ADV # (
.CLKDV_DIVIDE(2.0), // Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
// 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0
58 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

DCM_ADV

SUXILINX®

)

)

.CLKFX_DIVIDE (1),

.CLKFX_MULTIPLY (4),
.CLKIN_DIVIDE_BY_ 2 ("FALSE"),
.CLKIN_PERIOD(10.0),
.CLKOUT_PHASE_SHIFT ("NONE") ,

.CLK_FEEDBACK ("1X")
.DCM_PERFORMANCE_MODE ("MAX_SPEED")
.DESKEW_ADJUST (" SYSTEM_SYNCHRONOUS") ,

.DFS_FREQUENCY_MODE ("LOW") ,

.DLL_FREQUENCY_MODE ("LOW") ,

.DUTY_CYCLE_CORRECTION ("TRUE") ,

.FACTORY_JF (16 'hf0f0),

. PHASE_SHIFT (0),

. STARTUP_WAIT ("FALSE")
DCM_ADV_inst (

.CLKO (CLKO) ,

.CLK180 (CLK180)

.CLK270 (CLK270)

.CLK2X (CLK2X) ,

.CLK2X180 (CLK2X180)

.CLK90 (CLK90)

.CLKDV (CLKDV) ,

.CLKFX (CLKFX) ,

.CLKFX180 (CLKFX180)

.DO (DO) ,

.DRDY (DRDY) ,

.LOCKED (LOCKED) ,

. PSDONE (PSDONE) ,

.CLKFB (CLKFB) ,

.CLKIN(CLKIN) ,

. DADDR (DADDR) ,

.DCLK (DCLK) ,

.DEN (DEN) ,

.DI(DI),

.DWE (DWE) ,

.PSCLK (PSCLK) ,

. PSEN (PSEN) ,

. PSINCDEC (PSINCDEC) ,

.RST (RST)

// Can be any integer from 1 to 32
// Can be any integer from 2 to 32

// TRUE/FALSE to enable CLKIN divide by two feature
// Specify period of input clock in ns from 1.25 to 1000.00
// Specify phase shift mode of NONE, FIXED,

// VARIABLE_POSITIVE, VARIABLE_CENTER or DIRECT

// Specify clock feedback of NONE, 1X or 2X

// Can be MAX_SPEED or MAX_RANGE

// SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or
/7 an integer from 0 to 15

// HIGH or LOW frequency mode for frequency synthesis
// LOW, HIGH, or HIGH_SER frequency mode for DLL

// Duty cycle correction, TRUE or FALSE

// FACTORY JF value suggested to be set to 16'hf0f0

// Amount of fixed phase shift from -255 to 1023

// Delay configuration DONE until DCM LOCK, TRUE/FALSE

// 0 degree DCM CLK output

// 180 degree DCM CLK output

// 270 degree DCM CLK output

// 2X DCM CLK output

// 2X, 180 degree DCM CLK out

// 90 degree DCM CLK output

// Divided DCM CLK out (CLKDV_DIVIDE)

// DCM CLK synthesis out (M/D)

// 180 degree CLK synthesis out

// 1l6-bit data output for Dynamic Reconfiguration Port
// Ready output signal from the DRP

// DCM LOCK status output

// Dynamic phase adjust done output

// DCM clock feedback

// Clock input (from IBUFG, BUFG or DCM)

// 7-bit address for the DRP

// Clock for the DRP

// Enable input for the DRP

// 1l6-bit data input for the DRP

// Active high allows for writing configuration memory
// Dynamic phase adjust clock input

// Dynamic phase adjust enable input

// Dynamic phase adjust increment/decrement
// DCM asynchronous reset input

(DRP)

// End of DCM_ADV_inst instantiation

For More Information

Consult the Virtex-4 User Guide. For more information on applying these attributes in
UCE, VHDL, or Verilog code, refer to the Xilinx Constraints Guide.

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com 59

http://www.xilinx.com

SXILINX® DCM_ADV

60 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DCM_BASE

SUXILINX®

DCM_BASE

CLKIN

CLKFB

Primitive: Digital Clock Manager with Basic Features

DCM_BASE

The DCM_BASE primitive accesses the basic, frequently used, DCM features and
simplifies the user-interface ports.

The clock deskew, frequency synthesis, and fixed-phase shifting features are available
to use with DCM_BASE.

Clock Deskew

The DCM contains a delay-locked loop (DLL) to completely eliminate clock
distribution delays, by deskewing the DCM's output clocks with respect to the input
clock. The DLL contains delay elements (individual small buffers) and control logic.
The incoming clock drives a chain of delay elements, thus the output of every delay
element represents a version of the incoming clock delayed at a different point.

The control logic contains a phase detector and a delay-line selector. The phase
detector compares the incoming clock signal (CLKIN) against a feedback input
(CLKFB) and steers the delay line selector, essentially adding delay to the output of
DCM until the CLKIN and CLKFB coincide.

Frequency Synthesis

Separate outputs provide a doubled frequency (CLK2X and CLK2X180). Another
output, CLKDV, provides a frequency that is a specified fraction of the input
frequency.

Two other outputs, CLKFX and CLKFX180, provide an output frequency derived
from the input clock by simultaneous frequency division and multiplication. The user
can specify any integer multiplier (M) and divisor (D) within the range specified in
the DCM Timing Parameters section of the Virtex-4 Data Sheet. An internal calculator
determines the appropriate tap selection, to make the output edge coincide with the
input clock whenever mathematically possible. For example, M =9 and D =5,
multiply the frequency by 1.8, and the output rising edge is coincident with the input
rising edge every five input periods equaling every nine output periods.

The DCM_BASE model will allow only NONE and FIXED CLKOUT_PHASE_SHIFT
MODES. If any other mode is used (e.g., VARIABLE), the model will give an error
message. If users must use the VARIABLE mode, they should use the DCM_PS model.

Port Descriptions
There are four types of DCM ports available in the Virtex-4 architecture:
1. Clock Input Ports

Control and Data Input Ports

2
3. Clock Output Ports
4. Status and Data Output Ports

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 61

ISE 8.1i

http://www.xilinx.com

SUXILINX®

DCM_BASE

Following are the available ports and port names for this primitive

Available Ports

Port Names

Clock Input

CLKIN, CLKFB

Control and Data Input

RST

Clock Output CLKO, CLK90, CLK180, CLK270, CLK2X,
CLK2X180, CLKDYV, CLKFX, CLKFX180
Status and Data Output | LOCKED

Clock Input Ports
Source Clock Input - CLKIN

The source clock (CLKIN) input pin provides the source clock to the DCM. The
CLKIN frequency must fall in the ranges specified in the Virtex-4 Data Sheet. The
clock input signal comes from one of the following buffers:

1. IBUFG - Global Clock Input Buffer

The DCM compensates for the clock input path when an IBUFG on the same edge
(top or bottom) of the device as the DCM is used.

2. BUFGCTRL - Internal Global Clock Buffer

Any BUFGCTRL can drive any DCM in the Virtex-4 device using the dedicated
global routing. A BUFGCTRL can drive the DCM CLKIN pin when used to
connect two DCM in series. This path can or cannot be compensated for deskew
depending on the component driving the BUFGCTRL and CLKFB pin.

3. BUF - Input Buffer
When IBUF drives CLKIN input, the PAD to DCM input skew is not compensated.
Feedback Clock Input - CLKFB

The feedback clock (CLKFB) input pin provides a reference or feedback signal to the
DCM to delay-compensate the clock outputs, and align it with the clock input. To
provide the necessary feedback to the DCM, connect only the CLKO or CLK2X DCM
outputs to the CLKFB pin and set the CLK_FEEDBACK attribute to 1X. When the
CLKEFB pin is connected, CLKO0, CLK2X, CLKDYV, and CLKFX will be deskewed to
CLKIN. When the CLKFB pin is not connected, DCM clock outputs are not deskewed
to CLKIN. However, the phase relationship between all output clocks is preserved.

During internal feedback configuration, the CLK0/CLK2X output of a DCM connects
to a global buffer on the same top or bottom half of the device. The output of the
global buffer connects to the CLKFB input of the same DCM.

During the external feedback configuration, the following rules apply:

1. To forward the clock, the CLKO or CLK2X of the DCM must directly drive an
OBUF or a BUFG-to-DDR configuration.

2. External to the FPGA, the forwarded clock signal must be connected to the IBUFG
(GCLK pin) or the IBUF driving the CLKFB of the DCM.

The feedback clock input signal can be driven by one of the following buffers:
1. IBUFG - Global Clock Input Buffer

62

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DCM_BASE S XILINX®

This is the preferred source for an external feedback configuration. When an
IBUFG drives a CLKFB pin of a DCM in the same (top or bottom) half of the
device, the pad to DCM skew is compensated for deskew.

2. BUFGCTRL - Internal Global Clock Buffer

This is an internal feedback configuration.
3. IBUF - Input Buffer

This is an external feedback configuration. When IBUF is used, the PAD to DCM input
skew is not compensated.

Control and Data Input Ports
Reset Input - RST

The reset (RST) input pin resets the DCM circuitry. The RST signal is an active High
asynchronous reset. Asserting the RST signal asynchronously forces all DCM outputs
Low (the LOCKED signal, all status signals, and all output clocks within four source
clock cycles). Because the reset is asynchronous, the last cycle of the clocks can exhibit
an unintended short pulse, severely distorting duty-cycle, and no longer deskew with
respect to one another while deasserting Low. Only use the RST pin when
reconfiguring the device or changing the input frequency. Deasserting the RST signal
synchronously starts the locking process at the next CLKIN cycle.

To ensure a proper DCM reset and locking process, the RST signal must be deasserted
after the CLKIN signal has been present and stable for at least three clock cycles.

The time it takes for the DCM to lock after a reset is specified as LOCK_DLL (for a
DLL output) and LOCK_FEX (for a DFS output). See the LOCK_DLL timing parameter
in the Virtex-4 Data Sheet. The DCM locks faster at higher frequencies.

In all designs, the DCM must be held in reset until the clock is stable. During
configuration, the DCM will be held in reset until GWE is released. If the clock is
stable when GWE is released, DCM reset after configuration is not necessary.

Clock OQutput Ports

A DCM provides nine clock outputs with specific frequency and phase relationships.
When CLKEFB is connected, all DCM clock outputs are deskewed to CLKIN. When
CLKEFB is not connected, the DCM outputs are not deskewed. However, the phase
relationship between all output clocks is preserved.

1x Output Clock - CLKO

The CLKO output clock provides a clock with the same frequency as the DCM’s
effective CLKIN frequency. By default, the effective CLKIN frequency is equal to the
CLKIN frequency, except when the CLKIN_DIVIDE_BY_2 attribute is set to True.
When CLKFB is connected, CLKO is deskewed to CLKIN.

Ix Output Clock, 90° Phase Shift - CLK90

The CLK90 output clock provides a clock with the same frequency as the DCM’s
CLKO only phase-shifted by 90°.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 63
ISE 8.1i

http://www.xilinx.com

SUXILINX®

DCM_BASE

Ix Output Clock, 180° Phase Shift - CLK180

The CLK180 output clock provides a clock with the same frequency as the DCM’s
CLKO only phase-shifted by 180°.

Ix Output Clock, 270° Phase Shift - CLK270

The CLK270 output clock provides a clock with the same frequency as the DCM’s
CLKO only phase-shifted by 270°.

2x Output Clock - CLK2X

The CLK2X output clock provides a clock that is phase aligned to CLKO, with twice
the DCM'’s effective CLKIN frequency, and with an automatic 50/50 duty-cycle
correction. By default, the effective CLKIN frequency is equal to the CLKIN
frequency, except when the CLKIN_DIVIDE_BY_2 attribute is set to True. The
CLKIN_DIVIDE_BY_2 attribute description provides further information. Until the
DCM is locked, the CLK2X output appears as a 1x version of the input clock with a
25/75 duty cycle. This behavior allows the DCM to lock on the correct edge with
respect to the source clock.

2x Output Clock, 180° Phase Shift - CLK2X180

The CLK2X180 output clock provides a clock with the same frequency as the DCM’s
CLK2X only phase-shifted by 180°.

Frequency Divide Output Clock - CLKDV

The frequency divide (CLKDV) output clock provides a clock that is phase aligned to
CLKO with a frequency that is a fraction of the effective CLKIN frequency. The
fraction is determined by the CLKDV_DIVIDE attribute.

By default, the effective CLKIN frequency is equal to the CLKIN frequency, except
when the CLKIN_DIVIDE_BY_2 attribute is set to True.

Frequency Multiply Output Clock - CLKFX

The frequency multiply (CLKFX) output clock provides a clock with the following
frequency definition:

CLKFX frequency = (M/D) x (Effective CLKIN frequency)

In this equation, M is the multiplier (numerator) with a value defined by the
CLKFX_MULTIPLY attribute. D is the divisor (denominator) with a value defined by
the CLKEX_DIVIDE attribute. Specifications for M and D, as well as input and output
frequency ranges for the frequency synthesizer, are provided in the Virtex-4 Data
Sheet.

The rising edge of CLKEX output is phase aligned to the rising edges of CLKO,
CLK2X, and CLKDV. When M and D to have no common factor, the alignment occurs
only once every D cycles of CLKO.

By default, the effective CLKIN frequency is equal to the CLKIN frequency, except
when the CLKIN_DIVIDE_BY_2 attribute is set to True.

Frequency Multiply Output Clock, 180° - CLKFX180

The CLKFX180 output clock provides a clock with the same frequency as the DCM’s
CLKEFX only phase-shifted by 180°.

64

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DCM_BASE S XILINX®
Status and Data Output Ports
Locked Output - LOCKED
The LOCKED output signals the status of the DCM circuitry by locking it to the
desired frequency or phase shift. To achieve lock, the DCM samples several thousand
clock cycles. After the DCM achieves lock, the LOCKED signal is asserted High. The
DCM timing parameters section of the Virtex-4 Data Sheet provides estimates for
locking times.
To guarantee an established system clock at the end of the start-up cycle, the DCM can
delay the completion of the device configuration process until after the DCM is
locked. The STARTUP_WAIT attribute activates this feature.
Until the LOCKED signal is activated, the DCM output clocks are not valid and can
exhibit glitches, spikes, or other spurious movement. In particular, the CLK2X output
can appear as a 1x clock with a 25/75 duty cycle.
DCM Status Mapping to DO Bus

DO Bit Status Description

DOI0] Phase-shift overflow | Asserted when the DCM is phase shifted beyond the
allowed phase shift value or when the absolute delay range
of the phase-shift delay line is exceeded.

DO[1] |CLKIN stopped Asserted when the input clock is stopped (CLKIN remains
High or Low for one or more clock cycles). When CLKIN is
stopped, the DO[1] CLKIN stopped status will assert within
nine CLKIN cycles. When CLKIN is restarted, CLKO will
start toggling and DOJ[1] will deassert within nine clock
cycles.

DOI2] CLKFX stopped Asserted when CLKFX stops. The DO[2] CLKFX stopped
status will assert within 257 to 260 CLKIN cycles after
CLKEX stopped. CLKFX will not resume, and DOJ[2] will
not deassert until the DCM is reset.

DO[3] |CLKFB stopped Asserted the feedback clock is stopped (CLKFB remains
High or Low for one or more clock cycles). The DO[3]
CLKEFB stopped status will assert within six CLKIN cycles
after CLKFB is stopped. CLKFB stopped will deassert
within six CLKIN cycles when CLKFB resumes after being
stopped momentarily. An occasionally skipped CLKFB will
not affect the DCM operation. However, stopping CLKFB
for a long time can result in the DCM losing LOCKED.
When LOCKED is lost, the DCM needs to be reset to resume
operation.

DO[15:4] | Not assigned

DCM Attributes

A handful of DCM attributes govern the DCM functionality. This section provides a
detailed description of each attribute. For more information on applying these
attributes in UCF, VHDL, or Verilog code, refer to the Xilinx Constraints Guide.

CLKDV_DIVIDE Attribute

The CLKDV_DIVIDE attribute controls the CLKDV frequency. The source clock
frequency is divided by the value of this attribute. The possible values for
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 65

ISE 8.1i

http://www.xilinx.com

SUXILINX®

DCM_BASE

CLKDV_DIVIDE are: 1.5,2,2.5,3,3.5,4,4.5,5,55,6,6.5,7,7.5,8,9,10,11, 12, 13, 14,
15, or 16. The default value is 2. In the low frequency mode, any CLKDV_DIVIDE
value produces a CLKDV output with a 50/50 duty-cycle. In the high frequency
mode, the CLKDV_DIVIDE value must be set to an integer value to produce a
CLKDYV output with a 50/50 duty-cycle.

Non-Integer CLKDV_DIVIDE

CLKDV_DIVIDE Value CLKDV Duty Cycle(High Frequency Mode)
1.5 1/3
2.5 2/5
35 3/7
4.5 4/9
5.5 5/11
6.5 6/13
75 7/15

CLKFX_MULTIPLY and CLKFX_DIVIDE Attribute

The CLKEX_MULTIPLY attribute sets the multiply value (M) of the CLKFX output.
The CLKEX_DIVIDE attribute sets the divisor (D) value of the CLKFX output. Both
control the CLKFX output making the CLKEX frequency equal the effective CLKIN
(source clock) frequency multiplied by M/D. The possible values for M are any
integer from two to 32. The possible values for D are any integer from one to 32. The
default settings are M =4and D = 1.

CLKIN_PERIOD Attribute

The CLKIN_PERIOD attribute specifies the source clock period (in nanoseconds). The
default value is 0.0 ns.

CLKIN_DIVIDE_BY_2 Attribute

The CLKIN_DIVIDE_BY_2 attribute determines the effective CLKIN frequency
applied to the DCM circuitry. When set to False, the effective CLKIN frequency of the
DCM equals the source clock frequency driving the CLKIN input. When set to True,
the CLKIN frequency is divided by two before it reaches the rest of the DCM circuitry.
Thus, the DCM circuitry sees half the frequency applied to the CLKIN input and
operates based on this frequency. For example, if a 100 MHz clock drives CLKIN, and
CLKIN_DIVIDE_BY_2 is set to True; then the effective CLKIN frequency is 50 MHz.
Thus, CLKO output is 50 MHz and CLK2X output is 100 MHz. The effective CLKIN
frequency must be used to evaluate any operation or specification derived from
CLKIN frequency. The possible values for CLKIN_DIVIDE_BY_2 are True and False.
The default value is False.

CLKOUT_PHASE_SHIFT Attribute

The CLKOUT_PHASE_SHIFT attribute indicates the mode of the phase shift applied
to the DCM outputs. The possible values are NONE, FIXED, VARIABLE_POSITIVE,
VARIABLE_CENTER, or DIRECT. The default value is NONE.

When set to NONE, a phase shift cannot be performed and a phase-shift value has no
affect on the DCM outputs. When set to FIXED, the DCM outputs are phase shifted by

66

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DCM_BASE

SUXILINX®

a fixed phase from the CLKIN. The phase-shift value is determined by PHASE_SHIFT
attribute. If the CLKOUT_PHASE_SHIFT attribute is set to FIXED or NONE, then the
PSEN, PSINCDEC, and the PSCLK inputs must be tied to ground.

When set to VARIABLE_POSITIVE, the DCM outputs can be phase shifted in variable
mode in the positive range with respect to CLKIN. When set to VARIABLE_CENTER,
the DCM outputs can be phase shifted in variable mode, in the positive and negative
range with respect to CLKIN. If set to VARIABLE_POSITIVE or VARIABLE_CENTER,
each phase shift increment (or decrement) will increase (or decrease) the phase shift
by a period of 1/256 x CLKIN.

When set to DIRECT, the DCM output can be phase shifted in variable mode in the
positive range with respect to CLKIN. Each phase shift increment/decrement will
increase/decrease the phase shift by one DCM_TAP.

The starting phase in the VARIABLE_POSITIVE and VARIABLE_CENTER modes is
determined by the phase-shift value. The starting phase in the DIRECT mode is
always zero, regardless of the value specified by the PHASE_SHIFT attribute. Thus,
the PHASE_SHIFT attribute should be set to zero when DIRECT mode is used. A non-
zero phase-shift value for DIRECT mode can be loaded to the DCM using Dynamic
Reconfiguration Ports.

CLK_FEEDBACK Attribute

The CLK_FEEDBACK attribute determines the type of feedback applied to the
CLKEFB. The possible values are 1X or NONE. The default value is 1X. When set to 1X,
CLKFB pin must be driven by CLKO0. When set to NONE leave the CLKFB pin
unconnected.

DESKEW_ADJUST Attribute

The DESKEW_ADJUST attribute affects the amount of delay in the feedback path.
The possible values are SYSTEM_SYNCHRONOUS, SOURCE_SYNCHRONOUS,

0,1,2,3, ... or 31. The default value is SYSTEM_SYNCHRONOUS.

For most designs, the default value is appropriate. In a source-synchronous design,
set this attribute to SOURCE_SYNCHRONOUS. The remaining values should only be
used when consulting with Xilinx.

DFS_FREQUENCY_MODE Attribute

The DFS_FREQUENCY_MODE attribute specifies the frequency mode of the
frequency synthesizer (DFS). The possible values are Low and High. The default
value is Low. The frequency ranges for both frequency modes are specified in the
Virtex-4 Data Sheet. DFS_FREQUENCY_MODE determines the frequency range of
CLKIN, CLKFX, and CLKFX180.

DLL_FREQUENCY_MODE Attribute

The DLL_FREQUENCY_MODE attribute specifies either the High or Low frequency
mode of the delay-locked loop (DLL). The default value is Low. The frequency ranges
for both frequency modes are specified in the Virtex-4 Data Sheet.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 67

ISE 8.1i

http://www.xilinx.com

SUXILINX®

DCM_BASE

DUTY_CYCLE_CORRECTION Attribute

The DUTY_CYCLE_CORRECTION attribute controls the duty cycle correction of the
1x clock outputs: CLKO, CLK90, CLK180, and CLK270. The possible values are True
and False. The default value is True. When set to True, the 1x clock outputs are duty
cycle corrected to a 50/50 duty cycle. It is strongly recommended to always set the
DUTY_CYCLE_CORRECTION attribute to True. Setting this attribute to False does
not necessarily produce output clocks with the same duty cycle as the source clock.

DCM_PERFORMANCE_MODE Attribute

The DCM_PERFORMANCE_MODE attribute allows the choice of optimizing the
DCM either for high frequency and low jitter or for low frequency and a wide phase-
shift range. The attribute values are MAX_SPEED and MAX_RANGE. The default
value is MAX_SPEED. When set to MAX_SPEED, the DCM is optimized to produce
high frequency clocks with low jitter. However, the phase-shift range is smaller than
when MAX_RANGE is selected. When set to MAX_RANGE, the DCM is optimized to
produce low frequency clocks with a wider phase-shift range. The
DCM_PERFORMANCE_MODE affects the following specifications: DCM input and
output frequency range, phase-shift range, output jitter, DCM_TAP,
CLKIN_CLKFB_PHASE, CLKOUT_PHASE, and duty-cycle precision. The Virtex-4
Data Sheet specifies these values.

For most cases, the DCM_PERFORMANCE_MODE attribute should be set to
MAX_SPEED (default). Consider changing to MAX_RANGE in the following
situations:

e The frequency needs to be below the low frequency limit of the MAX_SPEED
setting.

e A greater absolute phase-shift range is required.

FACTORY_JF Attribute

The FACTORY_]JF attribute affects the DCM's jitter filter characteristic. This attribute
is set the default value of FOFQ and should not be modified unless otherwise
instructed by Xilinx.

PHASE_SHIFT Attribute

The PHASE_SHIFT attribute determines the amount of phase shift applied to the
DCM outputs. This attribute can be used in either NONE or FIXED phase-shift mode.
When the CLKOUT_PHASE_SHIFT = FIXED, the PHASE_SHIFT value range is 0 to
255. When CLKOUT_PHASE_SHIFT = FIXED_CENTER, the PHASE_SHIFT value
range is -255 to 255. When CLKOUT_PHASE_SHIFT = DIRECT, the PHASE_SHIFT
value range is 0 to 1023. The default value is 0.

If you need to use the VARIABLE PHASE_SHIFT mode, you must use DCM_PS.

STARTUP_WAIT Attribute

The STARTUP_WAIT attribute determines whether the startup cycle waits for DCM
to lock. The possible values for this attribute are True and False. The default value is
False. When STARTUP_WAIT is set to True, and the LCK_cycle BitGen option is used,
then the configuration startup sequence waits in the startup cycle specified by
LCK_cycle until the DCM is locked.

68

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DCM_BASE

SUXILINX®

Available Attributes

Attribute

Type

Allowed Values

Default

Description

CLK_FEEDBACK

STRING

"1X"or "NONE

“x”

Specifies the feedback input
to the DCM (CLKO, or
CLK2X).

CLKDV_DIVIDE

FLOAT

15,2.0,2.5,3.0,35,
40,45,50,55,6.0,
6.5,7.0,7.5,8.0,9.0,
10.0, 11.0, 12.0, 13.0,
14.0,15.0 or 16.0

2.0

Specifies the extent to which
the CLKDLL, CLKDLLE,
CLKDLLHE, or DCM clock
divider (CLKDV output) is
to be frequency divided.

CLKFX_DIVIDE

INTEGER

1to32

Specifies the frequency
divider value for the CLKFX
output.

CLKFX_MULTIPLY

INTEGER

2to32

Specifies the frequency
multiplier value for the
CLKFX output.

CLKIN_DIVIDE_BY_2

BOOLEAN

FALSE, TRUE

FALSE

Allows for the input clock
frequency to be divided in
half when such a reduction is
necessary to meet the DCM
input clock frequency
requirements.

CLKIN_PERIOD

FLOAT

1.25 to 1000.00

0.0

Specifies the period of input
clock in ns from 1.25 to
1000.00.

CLKOUT_PHASE_
SHIFT

STRING

"NONE" or "FIXED

"NONE”

Specifies the phase shift
mode of allowed value.

DCM_AUTOCALI-
BRATION

BOOLEAN

TRUE, FALSE

TRUE

Specifies the additional
circuitry necessary to ensure
proper DCM operation. It is
suggested that users consult
with Xilinx before changing
this attribute.

MODE

DCM_PERFORMANCE_

STRING

"MAX_SPEED" or
"MAX_RANGE”

"MAX_SPEED”

Allows selection between
maximum frequency and
minimum jitter for low
frequency and maximum
phase shift range

DESKEW_ADJUST

STRING

"SOURCE_SYNCHR
ONOUS",
"SYSTEM_SYNCHR
ONOUS" or "0" to "15

"SYSTEM_SYN
CHRONOUS"

Affects the amount of delay
in the feedback path, and
should be used for source-
synchronous interfaces.

DFS_FREQUENCY_
MODE

STRING

"LOW" or "HIGH

“LOW”

Specifies the frequency
mode of the frequency
synthesizer.

DLL_FREQUENCY_
MODE

STRING

"LOW" or "HIGH

“LOW”

This specifies the DLL's
frequency mode.

DUTY_CYCLE_
CORRECTION

BOOLEAN

TRUE, FALSE

TRUE

Corrects the duty cycle of the
CLKO, CLK90, CLK180, and
CLK270 outputs.

FACTORY_JF

16-Bit Hexadecimal

Any 16-Bit
Hexadecimal value

FOFO

The FACTORY_]JF attribute
affects the DCMs jitter filter
characteristic. This attribute
is set the default value of
FOFO0 and should not be
modified unless otherwise
instructed by Xilinx.

PHASE_SHIFT

INTEGER

-255 to 1023

Specifies the phase shift
numerator. The range
depends on
CLKOUT_PHASE_SHIFT.

STARTUP_WAIT

BOOLEAN

FALSE, TRUE

FALSE

When set to TRUE, the
configuration startup
sequence waits in the
specified cycle until the
DCM locks.

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com

69

http://www.xilinx.com

SUXILINX®

DCM_BASE

DCM_BASE
VHDL
instance
declaration
code

Usage

This design element is supported for schematics and instantiations, but not for
inference.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the body of the design code. The instance name
(DCM_BASE_inst) and/or the port declarations after the
"=>" declaration maybe changed to properly reference and

Library
declaration
for
Xilinx
primitives

Entity declaration,

Library UNISIM;
use UNISIM.vcomponents.all;

connect this function to the design.
and outputs may be removed or commented out.

In addition to adding the instance declaration,
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration.
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

Unused inputs

a use

This library

Copy the following two statements and paste them before the
unless they already exists.

<-—---- Cut code below this line and paste into the architecture body---->

-- DCM_BASE: Digital Clock Manager Circuit for Virtex-4
-- Xilinx HDL Libraries Guide Version 8.11i

DCM_BASE_inst DCM_BASE
generic map (
CLKDV_DIVIDE => 2.0, -- Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5

CLKFX_DIVIDE => 1,

CLKFX_MULTIPLY => 4,
CLKIN_DIVIDE_BY_ 2
CLKIN_PERIOD => 10.0,
CLKOUT_PHASE_SHIFT =>
CLK_FEEDBACK => "1X",

7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0

-- Can be any interger from 1 to 32
-- Can be any integer from 2 to 32
=> FALSE,

-- TRUE/FALSE to enable CLKIN divide by two feature

-- Specify period of input clock in ns from 1.25 to 1000.00

"NONE" ,

DCM_PERFORMANCE_MODE =>

DESKEW_ADJUST =>
DFS_FREQUENCY_MODE =>
DLL_FREQUENCY_MODE =>
DUTY_CYCLE_CORRECTION

FACTORY_JF => X"FOFO",

PHASE_SHIFT => 0,

STARTUP_WAIT => FALSE)

port map (
CLKO => CLKO,
CLK180 => CLK180,
CLK270 => CLK270,

"SYSTEM_SYNCHRONOUS",

-- Specify phase shift mode of NONE or FIXED

-- Specify clock feedback of NONE or 1X

"MAX_SPEED", -- Can be MAX_SPEED or MAX_RANGE

SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or
an integer from 0 to 15

"LOW", -- LOW or HIGH frequency mode for frequency synthesis
"LOW", -- LOW, HIGH, or HIGH_SER frequency mode for DLL
=> TRUE, -- Duty cycle correction, TRUE or FALSE
-- FACTORY JF Values Suggested to be set to X"FOFO"
-- Amount of fixed phase shift from -255 to 1023

- Delay configuration DONE until DCM LOCK, TRUE/FALSE

-- 0 degree DCM CLK ouptput

180 degree DCM CLK output
270 degree DCM CLK output

CLK2X => CLK2X, -- 2X DCM CLK output

CLK2X180 => CLK2X180, -- 2X, 180 degree DCM CLK out

CLK90 => CLK90, -- 90 degree DCM CLK output

CLKDV => CLKDV, -- Divided DCM CLK out (CLKDV_DIVIDE)
CLKFX => CLKFX, -- DCM CLK synthesis out (M/D)

CLKFX180 => CLKFX180, -- 180 degree CLK synthesis out

LOCKED => LOCKED, -- DCM LOCK status output

CLKFB => CLKFB, -- DCM clock feedback

CLKIN => CLKIN, -- Clock input (from IBUFG, BUFG or DCM)
RST => RST -- DCM asynchronous reset input

)i

-- End of DCM_BASE_inst instantiation

Verilog Template

// DCM_BASE In order to incorporate this function into the design,
// Verilog the following instance declaration needs to be placed
70 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

DCM_BASE S XILINX®

// instance : in the body of the design code. The instance name

// declaration : (DCM_BASE_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

/7 : connect this function to the design. Unused inputs

// : and outputs may be removed or commented out.

/] <===== Cut code below this line---->

// DCM_BASE: Digital Clock Manager Circuit for Virtex-4
// Xilinx HDL Libraries Guide Version 8.11i

DCM_BASE # (
.CLKDV_DIVIDE(2.0), // Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
// 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0
.CLKFX_DIVIDE (1), // Can be any integer from 1 to 32
.CLKFX_MULTIPLY(4), // Can be any integer from 2 to 32

.CLKIN_DIVIDE_BY_2("FALSE"), // TRUE/FALSE to enable CLKIN divide by two feature
.CLKIN_PERIOD(10.0), // Specify period of input clock in ns from 1.25 to 1000.00
.CLKOUT_PHASE_SHIFT("NONE"), // Specify phase shift mode of NONE or FIXED
.CLK_FEEDBACK ("1X"), // Specify clock feedback of NONE, 1X or 2X
.DCM_PERFORMANCE_MODE ("MAX_SPEED"), // Can be MAX_SPEED or MAX_RANGE
.DESKEW_ADJUST ("SYSTEM_SYNCHRONOUS"), // SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or
// an integer from 0 to 15
.DFS_FREQUENCY_MODE ("LOW"), // LOW or HIGH frequency mode for frequency synthesis
.DLL_FREQUENCY_MODE ("LOW"), // LOW, HIGH, or HIGH_SER frequency mode for DLL
.DUTY_CYCLE_CORRECTION("TRUE"), // Duty cycle correction, TRUE or FALSE

.FACTORY_JF (16'hf0£f0), // FACTORY JF value suggested to be set to 16'hf0f0

.PHASE_SHIFT(0), // Amount of fixed phase shift from -255 to 1023

.STARTUP_WAIT ("FALSE") // Delay configuration DONE until DCM LOCK, TRUE/FALSE
) DCM_BASE_inst (

.CLKO (CLKO) , // 0 degree DCM CLK output
.CLK180(CLK180), // 180 degree DCM CLK output

.CLK270 (CLK270), // 270 degree DCM CLK output

.CLK2X (CLK2X) , // 2X DCM CLK output

.CLK2X180 (CLK2X180), // 2X, 180 degree DCM CLK out

.CLK90 (CLK90) , // 90 degree DCM CLK output

.CLKDV (CLKDV) , // Divided DCM CLK out (CLKDV_DIVIDE)
.CLKFX (CLKFX) , // DCM CLK synthesis out (M/D)
.CLKFX180 (CLKFX180), // 180 degree CLK synthesis out

. LOCKED (LOCKED) , // DCM LOCK status output

.CLKFB (CLKFB) , // DCM clock feedback

.CLKIN(CLKIN), // Clock input (from IBUFG, BUFG or DCM)
.RST (RST) // DCM asynchronous reset input

)

// End of DCM_BASE_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 71
ISE 8.1i

http://www.xilinx.com

SXILINX® DCM_BASE

72 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DCM_PS

SUXILINX®

DCM_PS

Primitive:

CLKIN

CLKFB

RST

PSINCDEC

PSEN

PSCLK

DCM_PS

CLKO

CLK90

CLK180

CLK270
CLK2X
CLK2X180
CLKDV

CLKFX

CLKFX180
LOCKED

PSDONE
DO(15:0)

Digital Clock Manager with Basic and Phase-Shift Features

The DCM_PS primitive access all DCM features and ports available in DCM_BASE
with additional ports used by the variable phase shifting feature. DCM_PS also has
these available DCM features: clock deskew, frequency synthesis, and fixed or
variable phase shifting.

DCM_PS also supports the following, powerful, clock management features:

Clock Deskew

The DCM contains a delay-locked loop (DLL) to completely eliminate clock
distribution delays, by deskewing the DCM's output clocks with respect to the input
clock. The DLL contains delay elements (individual small buffers) and control logic.
The incoming clock drives a chain of delay elements, thus the output of every delay
element represents a version of the incoming clock delayed at a different point.

The control logic contains a phase detector and a delay-line selector. The phase
detector compares the incoming clock signal (CLKIN) against a feedback input
(CLKFB) and steers the delay line selector, essentially adding delay to the output of
DCM until the CLKIN and CLKFB coincide.

Frequency Synthesis

Separate outputs provide a doubled frequency (CLK2X and CLK2X180). Another
output, CLKDV, provides a frequency that is a specified fraction of the input
frequency.

Two other outputs, CLKFX and CLKFX180, provide an output frequency derived
from the input clock by simultaneous frequency division and multiplication. The user
can specify any integer multiplier (M) and divisor (D) within the range specified in
the DCM Timing Parameters section of the Virtex-4 Data Sheet. An internal calculator
determines the appropriate tap selection, to make the output edge coincide with the
input clock whenever mathematically possible. For example, M =9 and D =5,
multiply the frequency by 1.8, and the output rising edge is coincident with the input
rising edge every five input periods equaling every nine output periods.

Phase Shifting

The three outputs driving the same frequency as CLKO are delayed by a fourth, a half,
and then three-fourths of a clock period. An additional control signal optionally shifts
all of the nine clock outputs by a fixed fraction of the input clock period (defined
during configuration and described in multiples of the clock period divided by 256).

The user can also dynamically and repetitively move the phase forwards or
backwards by one unit of the clock period divided by 256. Any phase shift is always
invoked as a specific fraction of the clock period, and is always implemented by
moving delay taps with a resolution of DCM_TAP.

Port Descriptions

There are four types of DCM ports available in the Virtex-4 architecture:
1. Clock Input Ports

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 73

ISE 8.1i

http://www.xilinx.com

SUXILINX®

DCM_PS

2. Control and Data Input Ports

3. Clock Output Ports

4. Status and Data Output Ports

The following ports are available in the DCM_PS primitive:

Available Ports

Port Names

Clock Input

CLKIN, CLKFB, PSCLK

Control and Data Input

RST, PSINCDEC, PSEN

Clock Output CLKO, CLK90, CLK180, CLK270, CLK2X,
CLK2X180, CLKDYV, CLKFX, CLKFX180
Status and Data Output | LOCKED, PSDONE, DO[15:0]

Clock Input Ports
Source Clock Input - CLKIN

The source clock (CLKIN) input pin provides the source clock to the DCM. The
CLKIN frequency must fall in the ranges specified in the Virtex-4 Data Sheet. The
clock input signal comes from one of the following buffers:

1. IBUFG - Global Clock Input Buffer

When an IBUFG drives a CLKFB pin of a DCM in the same (top or bottom) half of
the device, the pad to DCM skew is compensated for deskew.

2. BUFGCTRL - Internal Global Clock Buffer

Any BUFGCTRL can drive any DCM in the Virtex-4 device using the dedicated
global routing. A BUFGCTRL can drive the DCM CLKIN pin when used to
connect two DCM in series. This path can or cannot be compensated for deskew
depending on the component driving the BUFGCTRL and CLKFB pin.

3. BUF - Input Buffer
When IBUF drives CLKIN input, the PAD to DCM input skew is not compensated.
Feedback Clock Input - CLKFB

The feedback clock (CLKFB) input pin provides a reference or feedback signal to the
DCM to delay-compensate the clock outputs, and align it with the clock input. To
provide the necessary feedback to the DCM, connect only the CLKO or CLK2X DCM
outputs to the CLKFB pin and set the CLK_FEEDBACK attribute to 1X. When the
CLKEFB pin is connected, CLKO0, CLK2X, CLKDYV, and CLKFX will be deskewed to
CLKIN. When the CLKFB pin is not connected, DCM clock outputs are not deskewed
to CLKIN. However, the phase relationship between all output clocks is preserved.

During internal feedback configuration, the CLK0/CLK2X output of a DCM connects
to a global buffer on the same top or bottom half of the device. The output of the
global buffer connects to the CLKFB input of the same DCM.

During the external feedback configuration, the following rules apply:

1. To forward the clock, the CLKO or CLK2X of the DCM must directly drive an
OBUF or a BUFG-to-DDR configuration.

74

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DCM_PS S XILINX®

2. External to the FPGA, the forwarded clock signal must be connected to the IBUFG
(GCLK pin) or the IBUF driving the CLKFB of the DCM.

The feedback clock input signal can be driven by one of the following buffers:
1. IBUFG - Global Clock Input Buffer

This is the preferred source for an external feedback configuration. When an
IBUFG drives a CLKFB pin of a DCM in the same (top or bottom) half of the
device, the pad to DCM skew is compensated for deskew.

2. BUFGCTRL - Internal Global Clock Buffer

This is an internal feedback configuration.
3. IBUF - Input Buffer

This is an external feedback configuration. When IBUF is used, the PAD to DCM input
skew is not compensated.

Phase-Shift Clock Input - PSCLK

The phase-shift clock (PSCLK) input pin provides the source clock for the DCM phase
shift. The frequency of PSCLK is the same as, lower than, or higher than the frequency
of CLKIN. The phase-shift clock signal can be driven by any clock source (external or
internal), including;:

1. IBUF - Input Buffer.
2. IBUFG - Global Clock Input Buffer

To access the dedicated routing, only the IBUFGs on the same edge (top or
bottom) as the DCM can be used to drive a PSCLK input of the DCM.

3. BUFGCTRL - An Internal Global Buffer.
4. Internal Clock - Any internal clock using internal routing.

The frequency range of PSCLK is defined by PSCLK_FREQ_LF/HF. This input must
be tied to ground when the CLKOUT_PHASE_SHIFT attribute is set to NONE or
FIXED.

Control and Data Input Ports
Reset Input - RST

The reset (RST) input pin resets the DCM circuitry. The RST signal is an active High
asynchronous reset. Asserting the RST signal asynchronously forces all DCM outputs
Low (the LOCKED signal, all status signals, and all output clocks within four source
clock cycles). Because the reset is asynchronous, the last cycle of the clocks can exhibit
an unintended short pulse, severely distorted duty-cycle, and no longer deskew with
respect to one another while deasserting Low. Only use the RST pin when
reconfiguring the device or changing the input frequency. Deasserting the RST signal
synchronously starts the locking process at the next CLKIN cycle.

To ensure a proper DCM reset and locking process, the RST signal must be deasserted
after the CLKIN signal has been present and stable for at least three clock cycles.

The time it takes for the DCM to lock after a reset is specified as LOCK_DLL (for a
DLL output) and LOCK_EX (for a DFS output). See the LOCK_DLL timing parameter
in the Virtex-4 Data Sheet. The DCM locks faster at higher frequencies.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 75
ISE 8.1i

http://www.xilinx.com

SUXILINX®

DCM_PS

In all designs, the DCM must be held in reset until the clock is stable. During
configuration, the DCM will be held in reset until GWE is released. If the clock is
stable when GWE is released, DCM reset after configuration is not necessary.

Phase-Shift Increment/Decrement Input - PSINCDEC

The PSINCDEC input signal is synchronous with PSCLK. The PSINCDEC input
signal is used to increment or decrement the phase-shift factor. As a result, the output
clock will be phase shifted. The PSINCDEC signal is asserted High for increment, or
deasserted Low for decrement. This input must be tied to ground when the
CLKOUT_PHASE_SHIFT attribute is set to NONE or FIXED.

Phase-Shift Enable Input - PSEN

The PSEN input signal is synchronous with PSCLK. A variable phase-shift operation
is initiated by the PSEN input signal. It must be activated for one period of PSCLK.
After PSEN is initiated, the phase change is effective for up to 100 CLKIN pulse cycles,
plus three PSCLK cycles, and is indicated by a High pulse on PSDONE. There are no
sporadic changes or glitches on any output during the phase transition. From the time
PSEN is enabled until PSDONE is flagged, the DCM output clock moves bit-by-bit
from its original phase shift to the target phase shift. The phase-shift is complete when
PSDONE is flagged. PSEN must be tied to ground when the
CLKOUT_PHASE_SHIFT attribute is set to NONE or FIXED.

Clock Output Ports

A DCM provides nine clock outputs with specific frequency and phase relationships.
When CLKEB is connected, all DCM clock outputs are deskewed to CLKIN. When
CLKEFB is not connected, the DCM outputs are not deskewed. However, the phase
relationship between all output clocks is preserved.

Ix Output Clock - CLKO

The CLKO output clock provides a clock with the same frequency as the DCM’s
effective CLKIN frequency. By default, the effective CLKIN frequency is equal to the
CLKIN frequency, except when the CLKIN_DIVIDE_BY_2 attribute is set to True.
When CLKFB is connected, CLKO is deskewed to CLKIN.

1x Output Clock, 90° Phase Shift - CLK90

The CLK90 output clock provides a clock with the same frequency as the DCM's
CLKO only phase-shifted by 90°.

1x Output Clock, 180° Phase Shift - CLK180

The CLK180 output clock provides a clock with the same frequency as the DCM's
CLKO only phase-shifted by 180°.

1x Output Clock, 270° Phase Shift - CLK270

The CLK270 output clock provides a clock with the same frequency as the DCM's
CLKO only phase-shifted by 270°.

76

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DCM_PS S XILINX®

2x Output Clock - CLK2X

The CLK2X output clock provides a clock that is phase aligned to CLKO, with twice
the DCM'’s effective CLKIN frequency, and with an automatic 50/50 duty-cycle
correction. By default, the effective CLKIN frequency is equal to the CLKIN
frequency, except when the CLKIN_DIVIDE_BY_2 attribute is set to True. The
CLKIN_DIVIDE_BY_2 attribute description provides further information. Until the
DCM is locked, the CLK2X output appears as a 1x version of the input clock with a
25/75 duty cycle. This behavior allows the DCM to lock on the correct edge with
respect to the source clock.

2x Output Clock, 180° Phase Shift - CLK2X180

The CLK2X180 output clock provides a clock with the same frequency as the DCM’s
CLK2X only phase-shifted by 180°.

Frequency Divide Output Clock - CLKDV

The frequency divide (CLKDV) output clock provides a clock that is phase aligned to
CLKO with a frequency that is a fraction of the effective CLKIN frequency. The
fraction is determined by the CLKDV_DIVIDE attribute.

By default, the effective CLKIN frequency is equal to the CLKIN frequency, except
when the CLKIN_DIVIDE_BY_2 attribute is set to True.

Frequency Multiply Output Clock - CLKFX

The frequency multiply (CLKFX) output clock provides a clock with the following
frequency definition:

CLKFX Frequency = (M/D) x (Effective CLKIN frequency)

In this equation, M is the multiplier (numerator) with a value defined by the
CLKFX_MULTIPLY attribute. D is the divisor (denominator) with a value defined by
the CLKEX_DIVIDE attribute. Specifications for M and D, as well as input and output
frequency ranges for the frequency synthesizer, are provided in the Virtex-4 Data
Sheet.

The rising edge of CLKEX output is phase aligned to the rising edges of CLKO,
CLK2X, and CLKDV. When M and D to have no common factor, the alignment occurs
only once every D cycles of CLKO.

By default, the effective CLKIN frequency is equal to the CLKIN frequency, except
when the CLKIN_DIVIDE_BY_2 attribute is set to True.

Frequency Multiply Output Clock, 180° - CLKFX180

The CLKFX180 output clock provides a clock with the same frequency as the DCM’s
CLKEFX only phase-shifted by 180°.

Status and Data Output Ports
Locked Output - LOCKED

The LOCKED output signals the status of the DCM circuitry by locking it to the
desired frequency or phase shift. To achieve lock, the DCM samples several thousand
clock cycles. After the DCM achieves lock, the LOCKED signal is asserted High. The
DCM timing parameters section of the Virtex-4 Data Sheet provides estimates for
locking times.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 77
ISE 8.1i

http://www.xilinx.com

SUXILINX®

DCM_PS

To guarantee an established system clock at the end of the start-up cycle, the DCM can
delay the completion of the device configuration process until after the DCM is
locked. The STARTUP_WAIT attribute activates this feature.

Until the LOCKED signal is activated, the DCM output clocks are not valid and can
exhibit glitches, spikes, or other spurious movement. In particular, the CLK2X output
can appear as a 1x clock with a 25/75 duty cycle.

DCM Status Mapping to DO Bus

DO Bit Status Description

DOI[0] Phase-shift overflow | Asserted when the DCM is phase shifted beyond the
allowed phase shift value or when the absolute delay range
of the phase-shift delay line is exceeded.

DO[1] CLKIN stopped Asserted when the input clock is stopped (CLKIN remains
High or Low for one or more clock cycles). When CLKIN is
stopped, the DO[1] CLKIN stopped status will assert within
nine CLKIN cycles. When CLKIN is restarted, CLKO will
start toggling and DOJ[1] will deassert within nine clock
cycles.

DO[2] |CLKFX stopped Asserted when CLKFX stops. The DO[2] CLKFX stopped
status will assert within 257 to 260 CLKIN cycles after
CLKFX stopped. CLKFX will not resume, and DO[2] will
not deassert until the DCM is reset.

DOJ[3] CLKFB stopped Asserted the feedback clock is stopped (CLKFB remains
High or Low for one or more clock cycles). The DO[3]
CLKFB stopped status will assert within six CLKIN cycles
after CLKFB is stopped. CLKFB stopped will deassert
within six CLKIN cycles when CLKFB resumes after being
stopped momentarily. An occasionally skipped CLKFB will
not affect the DCM operation. However, stopping CLKFB
for a long time can result in the DCM losing LOCKED.
When LOCKED is lost, the DCM needs to be reset to resume
operation.

DO[15:4] | Not assigned

Phase Shift Done Output - PSDONE

The PSDONE output signal is synchronous to PSCLK. It indicates, by pulsing High
for one period of PSCLK, the completion of a requested phase shift. This signal also
indicates that a change to the phase shift is available. The PSDONE output signal is
not valid if the phase shift feature is not being used or is in fixed mode.

Status of Dynamic Reconfiguration Data Output - DO[15:0]

The DO output bus provides DCM status when not using the dynamic
reconfiguration feature and a data output when using dynamic reconfiguration.
Further information on using DO as the data output is available in the dynamic
reconfiguration section of the Configuration User Guide.

If DEN, DWE, DADDR, DI, and DO are not used, using DCM_BASE or DCM_PS
instead of DCM_ADYV is strongly recommended. Otherwise, all unused inputs and
output pins should be left unconnected or assigned to the previously recommended
values.

78

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DCM_PS S XILINX®

DCM Attributes

A handful of DCM attributes govern the DCM functionality. This section provides a
detailed description of each attribute. For more information on applying these
attributes in UCE, VHDL, or Verilog code, refer to the Xilinx Constraints Guide.

CLKDV_DIVIDE Attribute

The CLKDV_DIVIDE attribute controls the CLKDV frequency. Since the source clock
frequency is divided by the value of this attribute, the possible values for
CLKDV_DIVIDE are: 1.5,2,2.5,3,3.5,4,4.5,5,55,6,6.5,7,7.5,8,9,10,11, 12, 13, 14,
15, or 16. The default value is 2. In the low frequency mode, any CLKDV_DIVIDE
value produces a CLKDV output with a 50/50 duty-cycle. In the high frequency
mode, the CLKDV_DIVIDE value must be set to an integer value to produce a
CLKDYV output with a 50/50 duty-cycle.

Non-Integer CLKDV_DIVIDE

CLKDV_DIVIDE Value CLKDV Duty Cycle(High Frequency Mode)
1.5 1/3
2.5 2/5
35 3/7
4.5 4/9
5.5 5/11
6.5 6/13
7.5 7/15

CLKFX_MULTIPLY and CLKFX_DIVIDE Attribute

The CLKEX_MULTIPLY attribute sets the multiply value (M) of the CLKFX output.
The CLKEX_DIVIDE attribute sets the divisor (D) value of the CLKFX output. Both
control the CLKFX output making the CLKEX frequency equal the effective CLKIN
(source clock) frequency multiplied by M/D. The possible values for M are any
integer from two to 32. The possible values for D are any integer from one to 32. The
default settingsare M =4and D = 1.

CLKIN_PERIOD Attribute

The CLKIN_PERIOD attribute specifies the source clock period (in nanoseconds). The
default value is 0.0 ns.

CLKIN_DIVIDE_BY_2 Attribute

The CLKIN_DIVIDE_BY_2 attribute determines the effective CLKIN frequency
applied to the DCM circuitry. When set to False, the effective CLKIN frequency of the
DCM equals the source clock frequency driving the CLKIN input. When set to True,
the CLKIN frequency is divided by two before it reaches the rest of the DCM circuitry.
Thus, the DCM circuitry sees half the frequency applied to the CLKIN input and
operates based on this frequency. For example, if a 100 MHz clock drives CLKIN, and
CLKIN_DIVIDE_BY_2 is set to True; then the effective CLKIN frequency is 50 MHz.
Thus, CLKO output is 50 MHz and CLK2X output is 100 MHz. The effective CLKIN
frequency must be used to evaluate any operation or specification derived from

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 79
ISE 8.1i

http://www.xilinx.com

SUXILINX®

DCM_PS

CLKIN frequency. The possible values for CLKIN_DIVIDE_BY_2 are True and False.
The default value is False.

CLKOUT_PHASE_SHIFT Attribute

The CLKOUT_PHASE_SHIFT attribute indicates the mode of the phase shift applied
to the DCM outputs. The possible values are NONE, FIXED, VARIABLE_POSITIVE,
VARIABLE_CENTER, or DIRECT. The default value is NONE.

When set to NONE, a phase shift cannot be performed and a phase-shift value has no
affect on the DCM outputs. When set to FIXED, the DCM outputs are phase shifted by
a fixed phase from the CLKIN. The phase-shift value is determined by PHASE_SHIFT
attribute. If the CLKOUT_PHASE_SHIFT attribute is set to FIXED or NONE, then the
PSEN, PSINCDEC, and the PSCLK inputs must be tied to ground.

When set to VARIABLE_POSITIVE, the DCM outputs can be phase shifted in variable
mode in the positive range with respect to CLKIN. When set to VARIABLE_CENTER,
the DCM outputs can be phase shifted in variable mode, in the positive and negative
range with respect to CLKIN. If set to VARIABLE_POSITIVE or VARIABLE_CENTER,
each phase shift increment (or decrement) will increase (or decrease) the phase shift
by a period of 1/256 x CLKIN.

When set to DIRECT, the DCM output can be phase shifted in variable mode in the
positive range with respect to CLKIN. Each phase shift increment/decrement will
increase/decrease the phase shift by one DCM_TAP.

The starting phase in the VARIABLE_POSITIVE and VARIABLE_CENTER modes is
determined by the phase-shift value. The starting phase in the DIRECT mode is
always zero, regardless of the value specified by the PHASE_SHIFT attribute. Thus,
the PHASE_SHIFT attribute should be set to zero when DIRECT mode is used. A non-
zero phase-shift value for DIRECT mode can be loaded to the DCM using Dynamic
Reconfiguration Ports.

CLK_FEEDBACK Attribute

The CLK_FEEDBACK attribute determines the type of feedback applied to the
CLKEFB. The possible values are 1X or NONE. The default value is 1X. When set to 1X,
CLKEFB pin must be driven by CLK0. When set to NONE leave the CLKFB pin
unconnected.

DESKEW_ADJUST Attribute

The DESKEW_ADJUST attribute affects the amount of delay in the feedback path.
The possible values are SYSTEM_SYNCHRONOUS, SOURCE_SYNCHRONOUS,

0,1,2,3,... or 31. The default value is SYSTEM_SYNCHRONOUS.

For most designs, the default value is appropriate. In a source-synchronous design,
set this attribute to SOURCE_SYNCHRONOUS. The remaining values should only be
used when consulting with Xilinx. For more information on the source synchronous
interface, reference XAPP259.

DFS_FREQUENCY_MODE Attribute

The DFS_FREQUENCY_MODE attribute specifies the frequency mode of the
frequency synthesizer (DFES). The possible values are Low and High. The default
value is Low. The frequency ranges for both frequency modes are specified in the

80

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DCM_PS S XILINX®

Virtex-4 Data Sheet. DFS_FREQUENCY_MODE determines the frequency range of
CLKIN, CLKFX, and CLKFX180.

DLL_FREQUENCY_MODE Attribute

The DLL_FREQUENCY_MODE attribute specifies either the High or Low frequency
mode of the delay-locked loop (DLL). The default value is Low. The frequency ranges
for both frequency modes are specified in the Virtex-4 Data Sheet.

DUTY_CYCLE_CORRECTION Attribute

The DUTY_CYCLE_CORRECTION attribute controls the duty cycle correction of the
1x clock outputs: CLKO, CLK90, CLK180, and CLK270. The possible values are True
and False. The default value is True. When set to True, the 1x clock outputs are duty
cycle corrected to a 50/50 duty cycle. It is strongly recommended to always set the
DUTY_CYCLE_CORRECTION attribute to True. Setting this attribute to False does
not necessarily produce output clocks with the same duty cycle as the source clock.

DCM_PERFORMANCE_MODE Attribute

The DCM_PERFORMANCE_MODE attribute allows the choice of optimizing the
DCM either for high frequency and low jitter or for low frequency and a wide phase-
shift range. The attribute values are MAX_SPEED and MAX_RANGE. The default
value is MAX_SPEED. When set to MAX_SPEED, the DCM is optimized to produce
high frequency clocks with low jitter. However, the phase-shift range is smaller than
when MAX_RANGE is selected. When set to MAX_RANGE, the DCM is optimized to
produce low frequency clocks with a wider phase-shift range. The
DCM_PERFORMANCE_MODE affects the following specifications: DCM input and
output frequency range, phase-shift range, output jitter, DCM_TAP,
CLKIN_CLKFB_PHASE, CLKOUT_PHASE, and duty-cycle precision. The Virtex-4
Data Sheet specifies these values.

For most cases, the DCM_PERFORMANCE_MODE attribute should be set to
MAX_SPEED (default). Only consider changing to MAX_RANGE in the following
situations:

e The frequency needs to be below the low frequency limit of the MAX_SPEED
setting.

e A greater absolute phase-shift range is required.

FACTORY _JF Attribute

The FACTORY_]JF attribute affects the DCM's jitter filter characteristic. This attribute
is set the default value of FOF0 and should not be modified unless otherwise
instructed by Xilinx.

PHASE_SHIFT Attribute

The PHASE_SHIFT attribute determines the amount of phase shift applied to the
DCM outputs. This attribute can be used in both fixed or variable phase-shift mode. If
used with variable mode, the attribute sets the starting phase shift. When
CLKOUT_PHASE_SHIFT = VARIABLE_POSITIVE, the PHASE_SHIFT value range is
0 to 255. When CLKOUT_PHASE_SHIFT = VARIABLE_CENTER or FIXED, the
PHASE_SHIFT value range is 255 to 255. When CLKOUT_PHASE_SHIFT =
DIRECT, the PHASE_SHIFT value range is 0 to 1023. The default value is 0.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 81
ISE 8.1i

http://www.xilinx.com

SUXILINX®

DCM_PS

STARTUP_WAIT Attribute

The STARTUP_WAIT attribute determines whether the startup cycle waits for DCM
to lock. The possible values for this attribute are True and False. The default value is
False. When STARTUP_WAIT is set to True, and the LCK_cycle BitGen option is used,
then the configuration startup sequence waits in the startup cycle specified by

LCK_cycle until the DCM is locked.

Available Attributes

Attribute Type Allowed Values Default Description

CLK_FEEDBACK STRING "1X" or "NONE "1X” Specifies the clock

feedback of allowed
value.

CLKDV_DIVIDE FLOAT 15,2.0,25,3.0,35, |20 Specifies the extent to
4.0,4.5,5.0,5.5,6.0, which the CLKDLL,
6.5,7.0,7.5,8.0,9.0, CLKDLLE, CLKDLLHF,
10.0,11.0,12.0, 13.0, or DCM clock divider
14.0,15.0 or 16.0 (CLKDV output) is to be

frequency divided.

CLKFX_DIVIDE INTEGER 1to 32 1 Specifies the frequency

divider value for the
CLKEX output.
CLKFX_MULTIPLY INTEGER 2to 32 4 Specifies the frequency
multiplier value for the
CLKEX output.
CLKIN_DIVIDE_BY_2 BOOLEAN FALSE, TRUE FALSE Allows for the input clock
frequency to be divided in
half when such a
reduction is necessary to
meet the DCM input clock
frequency requirements.
CLKIN_PERIOD FLOAT 1.25 to 1000.00 0.0 Specifies the period of
input clock in ns from
1.25 to 1000.00.

CLKOUT_PHASE_SHIFT | STRING "NONE" or "NONE” Specifies the phase shift
"FIXED" or mode of allowed value.
"VARIABLE_POSIT
IVE" or
"VARIABLE_CENT
ER" or "DIRECT

DCM_AUTOCALI- BOOLEAN TRUE, FALSE TRUE Specifies the additional

BRATION circuitry necessary to

ensure proper DCM
operation. Itis suggested
that users consult with
Xilinx before changing
this attribute.

DCM_PERFORMANCE_ | STRING "MAX_SPEED" or "MAX_SPEED” Allows selection between

MODE "MAX_RANGE maximum frequency and

minimum jitter for low
frequency and maximum
phase shift range

DESKEW_ADJUST STRING "SOURCE_SYNCH | "SYSTEM_SYNCH | Affects the amount of
RONOUS", RONOUS" delay in the feedback
"SYSTEM_SYNCH path, and should be used
RONOUS" or "0" to for source-synchronous
"15 interfaces.

DFS_FREQUENCY_ STRING "LOW" or "HIGH "LOW” Specifies the frequency

MODE mode of the frequency

synthesizer.

DLL_FREQUENCY_ STRING "LOW" or "HIGH "LOW” This specifies the DLL's

MODE frequency mode.

DUTY_CYCLE_ BOOLEAN TRUE, FALSE TRUE Corrects the duty cycle of

CORRECTION the CLKO, CLK90,

CLK180, and CLK270
outputs.

82

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

®
DCM_PS SUXILINX
Attribute Type Allowed Values Default Description
FACTORY_JF 16-Bit Hexadecimal | Any 16-Bit FOFO The FACTORY_JF
Hexadecimal value attribute affects the DCMs
jitter filter characteristic.
This attribute is set the
default value of FOF0 and
should not be modified
unless otherwise
instructed by Xilinx.
PHASE_SHIFT INTEGER -255 to 1023 0 Specifies the phase shift
numerator. The range
depends on
CLKOUT_PHASE_
SHIFT.
STARTUP_WAIT BOOLEAN FALSE, TRUE FALSE When set to TRUE, the
configuration startup
sequence waits in the
specified cycle until the
DCM locks.
Usage
This design element is supported for schematics and instantiations, but not for
inference.
VHDL Instantiation Template
-— DCM_PS In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
-— instance in the body of the design code. The instance name
-- declaration (DCM_PS_inst) and/or the port declarations after the
- code "=>" declaration maybe changed to properly reference and
-— connect this function to the design. Unused inputs
-— and outputs may be removed or commented out.
-— Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-— for added before the entity declaration. This library
-— Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

- <————= Cut code below this line and paste into the architecture body---->

-- DCM_PS: Digital Clock Manager Circuit for Virtex-4
-- Xilinx HDL Libraries Guide Version 8.1i1

DCM_PS_inst DCM_PS
generic map (
CLKDV_DIVIDE => 2.0, -- Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5

- 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0

CLKFX_DIVIDE => 1,
CLKFX_MULTIPLY => 4,

-- Can be any interger from 1 to 32
-- Can be any integer from 2 to 32

CLKIN_DIVIDE_BY 2 => FALSE, -- TRUE/FALSE to enable CLKIN divide by two feature
CLKIN_PERIOD => 10.0, -- Specify period of input clock in ns from 1.25 to 1000.00
CLKOUT_PHASE_SHIFT => "NONE", -- Specify phase shift mode of NONE, FIXED,

-- VARIABLE_POSITIVE, VARIABLE_CENTER or DIRECT
-- Specify clock feedback of NONE or 1X
-- Can be MAX SPEED or MAX RANGE

CLK_FEEDBACK => "1X",
DCM_PERFORMANCE_MODE => "MAX_SPEED",

DESKEW_ADJUST => "SYSTEM_SYNCHRONOUS", -- SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or

- an integer from 0 to 15
DFS_FREQUENCY_MODE => "LOW",
DLL_FREQUENCY_MODE => "LOW",
DUTY_CYCLE_CORRECTION => TRUE, -- Duty cycle correction, TRUE or FALSE
FACTORY_JF => X"FOFO",
PHASE_SHIFT => 0, -- Amount of fixed phase shift from -255 to 1023
STARTUP_WAIT => FALSE) -- Delay configuration DONE until DCM LOCK, TRUE/FALSE

-- HIGH or LOW frequency mode for frequency synthesis
-- LOW, HIGH, or HIGH_SER frequency mode for DLL

-- FACTORY JF Values Suggested to be set to X"FOFO"

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

www.Xxilinx.com

83

http://www.xilinx.com

SUXILINX®

DCM_PS

port map (

)

CLKO => CLKO,
CLK180 => CLK180,
CLK270 => CLK270,

CLK2X => CLK2X,
CLK2X180 => CLK2X180,
CLK90 => CLK90,

CLKDV => CLKDV,

CLKFX => CLKFX,
CLKFX180 => CLKFX180,
DO => DO,

LOCKED => LOCKED,
PSDONE => PSDONE,
CLKFB => CLKFB,

CLKIN => CLKIN,

PSCLK => PSCLK,

PSEN => PSEN,
PSINCDEC => PSINCDEC,
RST => RST

-- 0 degree DCM CLK ouptput

180 degree DCM CLK output

270 degree DCM CLK output

2X DCM CLK output

2X, 180 degree DCM CLK out

90 degree DCM CLK output

Divided DCM CLK out (CLKDV_DIVIDE)

DCM CLK synthesis out (M/D)

180 degree CLK synthesis out

16-bit data output for Dynamic Reconfiguration Port
DCM LOCK status output

Dynamic phase adjust done output

DCM clock feedback

Clock input (from IBUFG, BUFG or DCM)
Dynamic phase adjust clock input

Dynamic phase adjust enable input
Dynamic phase adjust increment/decrement
DCM asynchronous reset input

(DRP)

-- End of DCM_PS_inst instantiation

Verilog Instantiation Template

DCM_PS In order to incorporate this function into the design,
Verilog the following instance declaration needs to be placed
instance in the body of the design code. The instance name
declaration (DCM_PS_inst) and/or the port declarations within the
code parenthesis maybe changed to properly reference and
connect this function to the design. Unused inputs
and outputs may be removed or commented out.
<----- Cut code below this line---->

// DCM_PS: Digital Clock Manager Circuit for Virtex-4
// Xilinx HDL Libraries Guide Version 8.11i

DCM_PS #(

)

.CLKDV_DIVIDE (2.0)

.CLKFX_DIVIDE (1),
.CLKFX_MULTIPLY (4),

.CLKIN_PERIOD(10.0),

.CLKOUT_PHASE_SHIFT ("NONE") ,

.CLK_FEEDBACK ("1X"),

.DCM_PERFORMANCE_MODE ("MAX_SPEED") ,
.DESKEW_ADJUST ("SYSTEM_SYNCHRONOUS") ,

.DFS_FREQUENCY_MODE ("LOW") ,
.DLL_FREQUENCY_MODE ("LOW") ,
.DUTY_CYCLE_CORRECTION ("TRUE") ,

.FACTORY_JF (16 'hf0£0)

.PHASE_SHIFT(0),

.STARTUP_WAIT ("FALSE"
DCM_PS_inst (

.CLKO (CLKO) ,

.CLK180 (CLK180),

.CLK270 (CLK270)

.CLK2X (CLK2X) ,

.CLK2X180 (CLK2X180) ,

.CLK90 (CLK90) ,

.CLKDV (CLKDV) ,

.CLKFX (CLKFX) ,

.CLKFX180 (CLKFX180)

.DO(DO) ,

.LOCKED (LOCKED) ,

. PSDONE (PSDONE) ,

.CLKFB (CLKFB) ,

.CLKIN(CLKIN),

.PSCLK (PSCLK) ,

.PSEN (PSEN) ,

. PSINCDEC (PSINCDEC) ,

.RST (RST)

// Divide by:
//
// Can be any integer from 1 to 32

// Can be any integer from 2 to 32
.CLKIN_DIVIDE_BY_2 ("FALSE"),

1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0

// TRUE/FALSE to enable CLKIN divide by two feature
// Specify period of input clock in ns from 1.25 to 1000.00
// Specify phase shift mode of NONE, FIXED,

// VARIABLE_POSITIVE, VARIABLE_CENTER or DIRECT

// Specify clock feedback of NONE, 1X or 2X

// Can be MAX_SPEED or MAX_ RANGE

// SOURCE_SYNCHRONOUS, SYSTEM SYNCHRONOUS or
// an integer from 0 to 15

// HIGH or LOW frequency mode for frequency synthesis
// LOW, HIGH, or HIGH_SER frequency mode for DLL

// Duty cycle correction, TRUE or FALSE

, // FACTORY JF value suggested to be set to 16'hf0f0

// Bmount of fixed phase shift from -255 to 1023

) // Delay configuration DONE until DCM LOCK, TRUE/FALSE

// 0 degree DCM CLK output

// 180 degree DCM CLK output

// 270 degree DCM CLK output

// 2X DCM CLK output

// 2X, 180 degree DCM CLK out

90 degree DCM CLK output

Divided DCM CLK out (CLKDV_DIVIDE)

DCM CLK synthesis out (M/D)

180 degree CLK synthesis out

16-bit data output for Dynamic Reconfiguration Port
DCM LOCK status output

Dynamic phase adjust done output

DCM clock feedback

Clock input (from IBUFG, BUFG or DCM)
Dynamic phase adjust clock input

Dynamic phase adjust enable input
Dynamic phase adjust increment/decrement
DCM asynchronous reset input

(DRP)

84

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

DCM_PS

SUXILINX®

// End of DCM_PS_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

www.Xxilinx.com

85

http://www.xilinx.com

SUXILINX® DCM_PS

86 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DSP48

SUXILINX®

DSP48

Primitive: 18x18 Signed Multiplier Followed by a Three-Input Adder with
Optional Pipeline Registers

A(17:0)
I

B(17.0)

C(é70)

OPMODE[6:0]
—
SUBTRACT
CARRYIN
CARRYINSEL(1:0)

CEA
CEB

CEC
CEM

CEP

CECTRL
CECARRYIN
CECINSUB

RSTCTRL
RSTCARRYIN
CLK

BCIN(17:0)
PCIN(7:0)

DSP48

BCOUT({7:0)
|—

PCOUTI4T.0)
PUT0)

The DSP48 slice has a 48-bit output and is primarily intended for use in digital-signal
processing applications. However, the flexibility of this component means that it can
be applied to many more applications than a typical MACC unit.

A basic DSP48 slice consists of a multiplier followed by an adder. The multiplier

accepts two, 18-bit, signed, two’s complement operands producing a 36-bit, signed,

twos complement result. The result is sign extended to 48 bits. The adder accepts

three, 48-bit, signed, twos’ complement operands producing a 48-bit, singed, twos’

complement result.

Possible operands for the adder include the multiplier output and external source or
the registered output of the adder providing an accumulate function. The 48-bit
output allows for 4096 accumulations of 36-bit operands before overflow occurs.

DSP48 Input and Output Signals

Signal Name | Direction | Size Function

CLK I 1 | The DSP48 clock

A I 18 | The multiplier's A input, can also be used as adder's
MSW input

B I 18 | The multiplier's B input, can also be used as adder's
LSW input

BCIN I 18 | The multiplier's cascaded B input, can also be used as
adder's LSW input

C I 48 |The adder's C input

PCIN I 48 | Cascaded adder's C Input from previous DSP slice

CARRYIN I 1 | The adders carry input

SUBTRACT I 1 |0=add, 1= (C, PCIN)-(mult,A:B)

OPMODE I 7 | Controls input to adder in DSP48 slices- see OPMODE
table

CARRYINSEL I 2 | Selects carry source - see CARRINSEL table

CEA I 1 |Clock enable - 0O=hold 1=enable AREG

CEB I 1 | Clock enable - 0=hold 1=enable BREG

CEC I 1 |Clock enable - 0=hold 1=enable CREG

CEP I 1 | Clock enable - 0=hold 1=enable PREG

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com

87

http://www.xilinx.com

SUXILINX®

DSP48

B —~4—
18
18
BCIN —~£—
18
18 18
D Q D
18
EN EN
RST RST
CEB 0
RSTB
B Input Logic
P
18
DSP48 Slice Output
18
D Q
18
CEP —EN
RST
RSTP

P Output Logic

X10168

B input to
Multiplier

X10176

Synthesis Attributes Used to Define Pipeline Registers

The following table describes the synthesis attributes used to define the pipeline

registers.

Attribute Function
AREG O=bypass, 1=single, 2=dual
BREG O=bypass, 1=single, 2=dual
CREG O=bypass, 1=single
PREG O=bypass, 1=single
MREG 0=bypass, 1=single
SUBTRACTREG O=bypass, 1=single
OPMODEREG 0=bypass, 1=single
CARRYINSELREG | O=bypass, 1=single

88

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

DSP48 S XILINX®

Twos’ Complement Signed Multiplier

The multiplier inside the DSP48 slice is an 18-bit x 18-bit twos’ complement multiplier
with a 36-bit signed twos’ complement result. Cascading of multipliers to achieve
larger products is supported. Applications such as signed-signed, signed-unsigned,
and unsigned-unsigned multiplication, logical, arithmetic, barrel-shifter, twos’
complement and magnitude return are easily implemented. There are two
independent dynamic data input ports. The input ports can represent 18-bit signed or
17-bit unsigned data.

X, Y, and Z Multiplexers

The Operational Mode (OpMode) inputs provide a way for the design to change its
functionality on the fly. For example, the loading of an accumulator to restart an
accumulation process. The OpMode bits can be optionally registered under the
control of the configuration RAM.

The following tables list the possible values of OpMode and resulting function at the
outputs of the three multiplexers supplying data to the adder/subtracter. The 7-bit
OpMode control can be further broken down into multiplexer select bits. Not all
possible combinations for the multiplexer select bits are allowed. If the multiplier
output is selected then both the X and Y multiplexer are consumed with the multiplier
output.

OpMode Control Bit Select X, Y, and Z Multiplexer Outputs

OPMODE Binary
X Multiplexer Output Fed to Add/Subtract

Z Y X
XXX XX 00 ZERO (Default)
XXX 01 01 Multiplier Output
XXX XX 10 P
XXX XX 11 A concatenated B

OpMode Control Bit Select X, Y, and Z Multiplexer Outputs

OPMODE Binary
Y Multiplexer Output Fed to Add/Subtract

V4 Y X
XXX 00 XX | ZERO (Default)
XXX 01 01 Multiplier Output
XXX 10 XX | Illegal selection
XXX 11 XX |C
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 89

ISE 8.1i

http://www.xilinx.com

ST XILINX® DSP48

OpMode Controls X, Y, and Z Multiplexer Outputs

OPMODE Binary
Z Multiplexer Output Fed to Add/Subtract

zZ Y X
00 XX XX | ZERO (Default)
001 XX XX | PCIN
010 XX XX P
011 XX XX |C
100 XX XX | Illegal selection
101 XX XX | Shift (PCIN)
110 XX XX | Shift (P)
111 XX XX | Illegal selection

Three Input Adder/Subtracter Control Logic

The adder/subtracter output is a function of control and data inputs. The OpMode, as
shown in the previous section, selects the inputs to the X, Y, Z multiplexer that are
directed to the three adder/subtracter inputs. It also described that when the
multiplier output is selected, both X and Y multiplexers are occupied. With the inputs
to the adder/subtracter specified the function of the adder/subtracter itself must be
examined. As with the input multiplexers, the OpMode bits specify a portion of this
function. The table below shows this function. The symbol + in the table means either
add or subtract and is specified by the state of the subtract control.

Hex OpMode | Binary OpMode Output of . o
Adder/Subtracter Operation Description
[6:0] ZYX
0x00 000 00 00 +CIN Zero
0x02 00000 10 +=(P + CIN) Hold P
0x03 000 00 11 +(A:B + CIN) A:B select
0x05 000 01 01 + (A xB+CIN) Multiply
0x0c 000 11 00 + (C + CIN) C select
0x0e 00011 10 +(C+P+CIN) Feedback add
0xO0f 000 11 11 + (A:B +C +CIN) 36-bit adder
0x10 001 00 00 PCIN + CIN P cascade select
0x12 001 0010 PCIN = (P + CIN) P cascade feedback add
0x13 001 00 11 PCIN +(A:B+CIN) P cascade add
0x15 001 01 01 PCIN *(A xB+CIN) P cascade multiply add
Ox1c 001 11 00 PCIN +(C+CIN) P cascade add
Oxle 00111 10 PCIN £(C+P+ CIN) P cascade feedback add add
Ox1c 0011111 PCIN +(A:B+C + CIN) | P cascade add add
0x20 01000 00 P+CIN Hold P
0x22 01000 10 P+(P +CIN) Double feedback add
0x23 01000 11 P+(A:B +CIN) Feedback add
0x25 01001 01 P+(A xB+ CIN) Multiply-accumulate

90

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DSP48

SUXILINX®

Hex OpMode | Binary OpMode Output of
Adder/Subtract Operation Description
[6:0] ZYX er/subtracter
0x2c 010 11 00 P+(C +CIN) Feedback add
0x2e 01011 10 P+(C +P+CIN) Double feedback add
0x2f 01011 11 P+(A:B +C+CIN) Feedback add add
0x30 011 00 00 C+CIN C Select
0x32 011 00 10 C=(P +CIN) Feedback add
0x33 011 00 11 C+(A:B + CIN) 36-bit adder
0x35 0110101 C=(A xB+CIN) Multiply add
0x3c 011 11 00 C+(C + CIN) Double
0x3e 0111110 C + (C +P +CIN) Double add feedback add
0x3f 0111111 C+(A:B + C+ CIN) Double add
0x50 101 00 00 Shift(PCIN)=+ CIN 17-bit shift P cascade select
0x52 101 00 10 Shift(PCIN)+(P +CIN) | 17-bit shift P cascade feedback
add
0x53 101 00 11 Shift(PCIN)+(A:B+CIN) | 17-bit shift P cascade add
0x55 1010101 Shift(PCIN)+ (A xB+ 17-bit shift P cascade multiply
CIN) add
0x5¢ 101 11 00 Shift(PCIN)+(C +CIN) | 17-bit shift P cascade add
0x5e 10111 10 Shift(PCIN)+(C 17-bit shift P cascade feedback
+P+CIN) add add
0x5c 10111 11 Shift(PCIN) +(A:B+C 17-bit shift P cascade add add
+CIN)
0x60 110 00 00 Shift(P) = CIN 17-bit shift feedback
0x62 11000 10 Shift(P) = (P + CIN) 17-bit shift feedback feedback
add
0x63 11000 11 Shift(P) + (A:B + CIN) | 17-bit shift feedback add
0x65 11001 01 Shift(P) = (A xB+CIN) | 17-bit shift feedback multiply
add
Ox6¢ 110 11 00 Shift(P) = (C + CIN) 17-bit shift feedback add
Ox6e 11011 10 Shift(P) + (C + P + CIN) | 17-bit shift feedback feedback
add add
Ox6f 101111 Shift(P) = (A:B+C + 17-bit shift feedback add add
CIN)

Rounding Modes Supported by Carry Logic

In addition to the OpMode inputs, the data inputs to the three input adder/subtracter,
and the subtract control bit, the adder/subtracter output is a result of the carry-input

logic.

CarryInSel signals, the Subtract control signal, and the OpMode control signals can be
optionally registered under the control of the configuration RAM (denoted by the
grey colored multiplexer symbol). This allows the control signals pipeline delay to
match the pipeline delay for data in the design. The CarryInSel signals, the Subtract
control signal, and the OpMode control signals share a common reset signal
(RSTCTRL) and the Subtract control signal, and the OpMode control signals share a

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

www.Xxilinx.com

91

http://www.xilinx.com

ST XILINX® DSP48

common clock enable signal. The clock enable allows control signals to stall along
with data when needed.

Available Attributes

Attribute Type Allowed Values Default Description
AREG INTEGER 0,1,0r2 1 Number of pipeline registers on
the A input, 0, 1 or 2
B_INPUT STRING "DIRECT" or "DIRECT” "DIRECT”=multiplicand is B;
"CASCADE” “CASCADE"”=multiplicant is
BCIN.
BREG INTEGER 0,1,0r2 1 Number of pipeline registers on
the B input, 0, 1 or 2.
CARRYINREG INTEGER 0OR1 1 Number of pipeline registers
for the CARRYIN input.
CARRYINSELREG | INTEGER Oor1l 1 Number of pipeline registers
for the CARRYINSEL.
CREG INTEGER 0,1,0r2 1 Number of pipeline registers on
the Cinput, O or 1.
LEGACY_MODE STRING "NONE", "MULT18X18" | "MULT18X18S” | An internal attribute setting for
or "MULT18X185” the DCM. It should not be

modified from the default
value unless instructed by

Xilinx

MREG INTEGER Oorl 1 Number of multiplier pipeline
registers, 0 or 1

OPMODEREG INTEGER Oorl 1 Number of pipeline regsiters on
OPMODE input, 0 or 1.

PREG INTEGER Oorl 1 Number of pipeline registers on

the P output, 0 or 1.

SUBTRACTREG INTEGER Oorl 1 Number of pipeline registers on
the SUBTRACT input, 0 or 1.

Usage

This design element is supported for schematics, instantiations, and inference. It is
suggested that you use the Architecture Wizard in order to properly create
instantiation code for the DSP48 block.

VHDL Instantiation Template

-— DSP48 : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed

-- instance : in the body of the design code. The instance name

-- declaration : (DSP48_inst) and/or the port declarations after the

- code : "=>" declaration maybe changed to properly reference and

-- : connect this function to the design. Unused inputs
- : and outputs can be commented out.

-- Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that will be used

-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <==—== Cut code below this line and paste into the architecture body---->

-- DSP48: DSP Function Block
-- Virtex-4

92 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

DSP48

SUXILINX®

-- Xilinx HDL

DSP48_inst
generic map (
AREG => 1,
BREG => 1,
B_INPUT =>
CARRYINREG
CARRYINSEL
CREG => 1,
LEGACY_MOD.
MREG => 1,
OPMODEREG
PREG => 1,
SUBTRACTRE
port map (
BCOUT => B
P => P,
PCOUT => P
A => A,
B => B,
BCIN => BC
Cc => C,
CARRYIN =>
CARRYINSEL
CEA => CEA
CEB => CEB
CEC => CEC
CECARRYIN
CECINSUB =
CECTRL =>
CEM => CEM
CEP => CEP
CLK => CLK
OPMODE =>
PCIN => PC
RSTA => RS
RSTB => RS
RSTC => RS
RSTCARRYIN
RSTCTRL =>
RSTM => RS
RSTP => RS
SUBTRACT =
)

-- End of DSP

// DSP48

// Verilog
// instance
// declaration
// code

// <-=-=-= Cut co

// DSP48: DSP
// Vir
// Xilinx HDL

Libraries Guide Version 8.11

DSP48
-- Number of pipeline registers on the A input, 0, 1 or 2
-- Number of pipeline registers on the B input, 0, 1 or 2
"DIRECT", -- B input DIRECT from fabric or CASCADE from another DSP48
= 1, -- Number of pipeline registers for the CARRYIN input, 0 or 1
REG => 1, -- Number of pipeline registers for the CARRYINSEL, 0 or 1
-- Number of pipeline registers on the C input, 0 or 1
E => "MULT18X18S", -- Backward compatibility, NONE, MULT18X18 or MULT18X18S
-- Number of multiplier pipeline registers, 0 or 1
=> 1, -- Number of pipeline regsiters on OPMODE input, 0 or 1
-- Number of pipeline registers on the P output, 0 or 1
G => 1) -- Number of pipeline registers on the SUBTRACT input, 0 or 1
COUT, -- 18-bit B cascade output
-- 48-bit product output
COUT, -- 48-bit cascade output
-- 18-bit A data input
-- 18-bit B data input
IN, -- 18-bit B cascade input
-- 48-bit cascade input
CARRYIN, -- Carry input signal
=> CARRYINSEL, -- 2-bit carry input select
, -- A data clock enable input
, -- B data clock enable input
, -- C data clock enable input
=> CECARRYIN, -- CARRYIN clock enable input
> CECINSUB, -- CINSUB clock enable input
CECTRL, -- Clock Enable input for CTRL regsitersL
, -- Clock Enable input for multiplier regsiters
, -- Clock Enable input for P regsiters
, -- Clock input
OPMODE, -- 7-bit operation mode input
IN, -- 48-bit PCIN input
TA, -- Reset input for A pipeline registers
TB, -- Reset input for B pipeline registers
TC, -- Reset input for C pipeline registers
=> RSTCARRYIN, -- Reset input for CARRYIN registers
RSTCTRL, -- Reset input for CTRL registers
™, -- Reset input for multiplier registers
TP, -- Reset input for P pipeline registers
> SUBTRACT -- SUBTRACT input
48_inst instantiation

Verilog Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code. The instance name
(DSP48_inst) and/or the port declarations within the
parenthesis maybe changed to properly reference and
connect this function to the design. All inputs

and outputs must be connected.

de below this line---->
Function Block

tex-4
Libraries Guide Version 8.11

DSP48 # (
.AREG (1), // Number of pipeline registers on the A input, 0, 1 or 2
.BREG (1), // Number of pipeline registers on the B input, 0, 1 or 2
.B_INPUT ("DIRECT"), // B input DIRECT from fabric or CASCADE from another DSP48
.CARRYINREG (1), // Number of pipeline registers for the CARRYIN input, 0 or 1
.CARRYINSELREG(1l), // Number of pipeline registers for the CARRYINSEL, 0 or 1
.CREG (1), // Number of pipeline registers on the C input, 0 or 1
.LEGACY_MODE ("MULT18X18S"), // Backward compatibility, NONE, MULT18X18 or MULT18X18S
.MREG (1), // Number of multiplier pipeline registers, 0 or 1
.OPMODEREG (1) , // Number of pipeline regsiters on OPMODE input, 0 or 1
.PREG (1), // Number of pipeline registers on the P output, 0 or 1
.SUBTRACTREG (1) // Number of pipeline registers on the SUBTRACT input, 0 or 1

) DSP48_inst (

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 93

ISE 8.1i

http://www.xilinx.com

SUXILINX®

DSP48

.BCOUT (BCOUT), // 18-bit B cascade output
.P(P), // 48-bit product output
.PCOUT (PCOUT), // 48-bit cascade output
.A(A), // 18-bit A data input
.B(B), // 18-bit B data input
.BCIN(BCIN), // 18-bit B cascade input
.Cc(C), // 48-bit cascade input

.CARRYIN (CARRYIN), // Carry input signal
.CARRYINSEL (CARRYINSEL), // 2-bit carry input select

.CEA (CEA) , // A data clock enable input
.CEB (CEB) , // B data clock enable input
.CEC (CEC), // C data clock enable input

.CECARRYIN (CECARRYIN), // CARRYIN clock enable input
.CECINSUB (CECINSUB), // CINSUB clock enable input
.CECTRL (CECTRL), // Clock Enable input for CTRL regsitersL

.CEM(CEM) , // Clock Enable input for multiplier regsiters
.CEP (CEP) , // Clock Enable input for P regsiters

.CLK (CLK) , // Clock input

.OPMODE (OPMODE) , // 7-bit operation mode input

.PCIN(PCIN), // 48-bit PCIN input

.RSTA (RSTA) , // Reset input for A pipeline registers
.RSTB(RSTB) , // Reset input for B pipeline registers

.RSTC (RSTC) , // Reset input for C pipeline registers

.RSTCARRYIN (RSTCARRYIN), // Reset input for CARRYIN registers
.RSTCTRL (RSTCTRL), // Reset input for CTRL registers
.RSTM(RSTM), // Reset input for multiplier registers
.RSTP(RSTP), // Reset input for P pipeline registers
. SUBTRACT (SUBTRACT) // SUBTRACT input

) ;

// End of DSP48_inst instantiation

For More Information

Consult the XtremeDSP Design Considerations User Guide.

94

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

EMAC S XILINX®

EMAC

Primitive: Fully integrated 10/100/1000 Mb/s Ethernet Media Access
Controller (Ethernet MAC)

The Virtex-4 Tri-mode Ethernet Media Access Controller (Ethernet MAC) provides
Ethernet connectivity to the Virtex-4 PowerPC™ Processor. The Ethernet MAC
(EMAC) supports the following feature:

e Fully integrated 10/100/1000 Mb/s Ethernet MAC
e Complies with the IEEE 802.3-2002 specification
e Configurable full- or half-duplex operation

e Media Independent Interface (MII) Management (MDIO) interface to manage
objects in the Physical (PHY) layer

e User accessable raw statistics vector outputs
e Supports VLAN frames
e Configurable inter-frame gap adjustment

e Configurable in-band Frame Check Sequence (FCS) field passing on both transmit
and receive paths

e Provides auto pad on transmit and FCS field stripping on receive
e Configured and monitored through a host interface

e Hardware selectable Device Control Register (DCR) bus or 1G Ethernet MAC bus
host interface

e Configurable flow control through Ethernet MAC Control PAUSE frames;
symmetrically or asymmetrically enabled

e Configurable support for jumbo frames of any length
e Configurable receive address filter for unicast, multicast, and broadcast addresses

¢ Media Independent Interface (MII), Gigabit Media Independent Interface (GMII),
and Reduced Gigabit Media Independent Interface (RGMII)

e Includes a 1000BASE-X Physical Coding Sublayer (PCS) and a Physical Medium
Attachment (PMA) sublayer for use with the Multi-gigabit Transceiver (MGT) to
provide a complete on-chip 1000BASE-X implementation

e Serial Gigabit Media Independent Interface (SGMII) supported through MGT
interface to external copper PHY layer

For complete information about the Ethernet MAC in Virtex-4 devices, see the
following documents:

e Virtex-4 Datasheet
o Virtex-4 Tri-mode Ethernet Media Access Controller (Ethernet MAC) User Guide

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 95
ISE 8.1i

http://www.xilinx.com

SUXILINX®

EMAC

Port List and Definitions

Inputs

Outputs

RESET

TIEEMACOCONFIGVEC [79:0]

TIEEMACICONFIGVEC [79:0]

TIEEMACOUNICASTADDR [47:0]

TIEEMACIUNICASTADDR [47:0]

PHYEMACOGTXCLK
PHYEMAC1GTXCLK
CLIENTEMACODCMLOCKED EMACOCLIENTANINTERRUPT
CLIENTEMAC1IDCMLOCKED EMACICLIENTANINTERRUPT

CLIENTEMACORXCLIENTCLKIN

EMACOCLIENTRXCLIENTCLKOUT

EMACOCLIENTRXD [15:0]

EMACOCLIENTRXDVLD

EMACOCLIENTRXDVLDMSW

EMACOCLIENTRXGOODFRAME

EMACOCLIENTRXBADFRAME

EMACOCLIENTRXFRAMEDROP

EMACOCLIENTRXDVREG6

EMACOCLIENTRXSTATS [6:0]

EMACOCLIENTRXSTATSBYTEVLD

EMACOCLIENTRXSTATSVLD

CLIENTEMACIRXCLIENTCLKIN

EMACI1CLIENTRXCLIENTCLKOUT

EMACICLIENTRXD [15:0]

EMAC1CLIENTRXDVLD

EMACI1CLIENTRXDVLDMSW

EMAC1CLIENTRXGOODFRAME

EMACICLIENTRXBADFRAME

EMAC1CLIENTRXFRAMEDROP

EMACI1CLIENTRXDVREG6

EMACICLIENTRXSTATS [6:0]

EMACI1CLIENTRXSTATSBYTEVLD

EMAC1CLIENTRXSTATSVLD

CLIENTEMACOTXGMIIMIICLKIN

EMACOCLIENTTXGMIIMIICLKOUT

CLIENTEMACOTXCLIENTCLKIN

EMACOCLIENTTXCLIENTCLKOUT

CLIENTEMACOTXD [15:0]

EMACOCLIENTTXACK

CLIENTEMACOTXDVLD

EMACOCLIENTTXCOLLISION

CLIENTEMACOTXDVLDMSW

EMACOCLIENTTXRETRANSMIT

CLIENTEMACOTXUNDERRUN

EMACOCLIENTTXSTATS

CLIENTEMACOTXIFGDELAY [7:0]

EMACOCLIENTTXSTATSBYTEVLD

CLIENTEMACOTXFIRSTBYTE

EMACOCLIENTTXSTATSVLD

CLIENTEMACITXGMIIMIICLKIN

EMACI1ICLIENTTXGMIIMIICLKOUT

96

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

EMAC

SUXILINX®

Inputs Outputs
CLIENTEMACITXCLIENTCLKIN | EMACICLIENTTXCLIENTCLKOUT
CLIENTEMACITXD [15:0] EMACICLIENTTXACK

CLIENTEMACITXDVLD EMACICLIENTTXCOLLISION
CLIENTEMACITXDVLDMSW EMACICLIENTTXRETRANSMIT
CLIENTEMACITXUNDERRUN EMACICLIENTTXSTATS

CLIENTEMACITXIFGDELAY [7:0]

EMACI1CLIENTTXSTATSBYTEVLD

CLIENTEMACITXFIRSTBYTE

EMACICLIENTTXSTATSVLD

CLIENTEMACOPAUSEREQ

CLIENTEMACOPAUSEVAL [15:0]

CLIENTEMACIPAUSEREQ

CLIENTEMACIPAUSEVAL [15:0]

HOSTADDR [9:0]

HOSTMIIMRDY

HOSTCLK

HOSTRDDATA [31:0]

HOSTMIIMSEL

HOSTOPCODE [1:0]

HOSTREQ

HOSTWRDATA [31:0]

HOSTEMACISEL

DCREMACCLK

DCRHOSTDONEIR

DCREMACENABLE

EMACDCRACK

DCREMACDBUS [0:31]

EMACDCRDBUS [0:31]

DCREMACABUS [8:9]

DCREMACREAD
DCREMACWRITE

PHYEMACORXCLK EMACOPHYTXCLK
PHYEMACORXD [7:0] EMACOPHYTXD [7:0]
PHYEMACORXDV EMACOPHYTXEN
PHYEMACORXER EMACOPHYTXER
PHYEMACOMIITXCLK

PHYEMACOCOL

PHYEMACOCRS

PHYEMACIRXCLK EMACIPHYTXCLK
PHYEMACIRXD [7:0] EMACIPHYTXD [7:0]
PHYEMACIRXDV EMACIPHYTXEN
PHYEMACIRXER EMACIPHYTXER
PHYEMACIMIITXCLK

PHYEMACI1COL

PHYEMACICRS

PHYEMACOSIGNALDET EMACOPHYENCOMMAALIGN
PHYEMACOPHYAD [4:0] EMACOPHYLOOPBACKMSB
PHYEMACORXCLKCORCNT [2:0] | EMACOPHYMGTRXRESET

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

www.Xxilinx.com

97

http://www.xilinx.com

SUXILINX®

EMAC

Inputs Outputs
PHYEMACORXBUFSTATUS [1:0] EMACOPHYMGTTXRESET
PHYEMACORXCHARISCOMMA | EMACOPHYPOWERDOWN

PHYEMACORXCHARISK EMACOPHYSYNCACQSTATUS
PHYEMACORXCHECKINGCRC EMACOPHYTXCHARDISPMODE
PHYEMACORXCOMMADET EMACOPHYTXCHARDISPVAL
PHYEMACORXDISPERR EMACOPHYTXCHARISK
PHYEMACORXLOSSOFSYNC [1:0]

PHYEMACORXNOTINTABLE

PHYEMACORXRUNDISP

PHYEMACORXBUFERR

PHYEMACOTXBUFERR

PHYEMACI1SIGNALDET EMACIPHYENCOMMAALIGN
PHYEMACIPHYAD [4:0] EMACIPHYLOOPBACKMSB
PHYEMACIRXCLKCORCNT [2:0] | EMACIPHYMGTRXRESET
PHYEMACIRXBUFSTATUS [1:0] EMACIPHYMGTTXRESET
PHYEMACIRXCHARISCOMMA | EMACIPHYPOWERDOWN

PHYEMACIRXCHARISK EMAC1PHYSYNCACQSTATUS

PHYEMACIRXCHECKINGCRC EMACIPHYTXCHARDISPMODE

PHYEMACIRXCOMMADET EMACIPHYTXCHARDISPVAL

PHYEMACIRXDISPERR EMACIPHYTXCHARISK

PHYEMACIRXLOSSOFSYNC [1:0]

PHYEMACIRXNOTINTABLE

PHYEMAC1IRXRUNDISP

PHYEMACIRXBUFERR

PHYEMACITXBUFERR

PHYEMACOMCLKIN EMACOPHYMCLKOUT

PHYEMACOMDIN EMACOPHYMDOUT
EMACOPHYMDTRI

PHYEMACIMCLKIN EMAC1PHYMCLKOUT

PHYEMACIMDIN EMACIPHYMDOUT
EMACIPHYMDTRI

Usage

Refer to the Embedded Tri-mode Ethernet MAC Wrapper from the CORE Generator
Tool for information regarding the use of this component.

For More Information

Consult the Virtex-4 Tri-Mode Ethernet Media Access Controller (Ethernet MAC) User

Guide.

98

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

FDCPE S XILINX®

FDCPE

Primitive: D Flip-Flop with Clock Enable and Asynchronous Preset and

Clear
FDCPE is a single D-type flip-flop with data (D), clock enable (CE), asynchronous
preset (PRE), and asynchronous clear (CLR) inputs and data output (Q). The
PRE asynchronous (PRE), when High, sets the (Q) output High; (CLR) , when High, resets
the output Low. Data on the (D) input is loaded into the flip-flop when (PRE) and
b | FDCPE (CLR) are Low and (CE) is High on the Low-to-High clock (C) transition. When (CE)
CE | - Q is Low, the clock transitions are ignored.
c |
The flip-flop is asynchronously cleared, output Low, when power is applied.
CLR ForVirtex-4 devices, the power on condition can be simulated by applying a High-
xa389 level pulse on the GSR net.
The active level of the GSR defaults to active-High but can be inverted by adding an
inverter in front of the GSR input of the STARTUP_VIRTEX4 symbol.
Inputs Outputs
CLR PRE CE D C Q
1 X X X X 0
0 1 X X X 1
0 0 0 X X No Change
0 0 1 0 T 0
0 0 1 1 T 1
Usage
This design element is inferred in the design code; however, the element can be
instantiated for cases where strict placement control, relative placement control, or
initialization attributes must be applied.
VHDL Instantiation Template
- FDCPE : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (FDCPE_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly

-— : connect this function to the design. Delete or comment
-= : out inputs/outs that are not necessary.

-— Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library

-— Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that will be used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <====- Cut code below this line and paste into the architecture body---->

-- FDCPE: Single Data Rate D Flip-Flop with Asynchronous Clear, Set and

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 99
ISE 8.1i

http://www.xilinx.com

ST XILINX® FDCPE
-— Clock Enable (posedge clk). All families.
-- Xilinx HDL Libraries Guide Version 8.11
FDCPE_inst : FDCPE
generic map (
INIT => '0') -- Initial value of register ('0' or '1l"')
port map (
Q =>Q, -- Data output
c => C, -- Clock input
CE => CE, -- Clock enable input
CLR => CLR, -- Asynchronous clear input
D => D, -- Data input
PRE => PRE -- Asynchronous set input
)
-- End of FDCPE_inst instantiation
Verilog Instantiation Template
// FDCPE : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (FDCPE_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. Delete or comment
// out inputs/outs that are not necessary.
/] <=-==== Cut code below this line---->
// FDCPE: Single Data Rate D Flip-Flop with Asynchronous Clear, Set and
// Clock Enable (posedge clk). All families.
// Xilinx HDL Libraries Guide Version 8.1i
FDCPE # (
INIT(1'b0) // Initial value of register (1'b0 or 1'bl)
) FDCPE_inst (
.Q(Q), // Data output
.Cc(C), // Clock input
.CE(CE), // Clock enable input
.CLR(CLR), // Asynchronous clear input
.D(D), // Data input
.PRE (PRE) // Asynchronous set input
)
// End of FDCPE_inst instantiation
For More Information
Consult the Virtex-4 Configuration Guide.
100 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

FDRSE

SUXILINX®

FDRSE

Primitive: D Flip-Flop with Synchronous Reset and Set and Clock

Enable
S
]
D FDRSE Q
D | a
c |
R

-- FDRSE
-= VHDL
-- instance

-- declaration :

-— code

- Library

-- declaration :

-— for
-- Xilinx

X3732

FDRSE is a single D-type flip-flop with synchronous reset (R), synchronous set (S),
and clock enable (CE) inputs and data output (Q). The reset (R) input, when High,
overrides all other inputs and resets the Q output Low during the Low-to-High clock
transition. When the set (S) input is High and R is Low, the flip-flop is set, output
High, during the Low-to-High clock (C) transition. Data on the D input is loaded into
the flip-flop when R and S are Low and CE is High during the Low-to-High clock
transition.

The flip-flop is asynchronously cleared, output Low, when power is applied.

For Virtex-4 devices, the power on condition can be simulated by applying a High-
level pulse on the GSR net.

The active level of the GSR defaults to active-High but can be inverted by adding an
inverter in front of the GSR input of the STARTUP_VIRTEX4 symbol.

Inputs Outputs
R S CE D C Q
1 X X X T 0
0 1 X X) 1
0 0 0 X X No Change
0 0 1 1 T 1
0 0 1 0 T 0

Usage

This design element is inferred in the design code; however, the element can be
instantiated for cases where strict placement control, relative placement control, or
initialization attributes must be applied.

Available Attributes

Attribute Type Allowed Default Description
Values
INIT 1-Bit Binary | 1-Bit Binary 1'b0 Sets the initial value of Q output after
configuration

VHDL Instantiation Template

: In order to incorporate this function into the design,
: the following instance declaration needs to be placed

: in the architecture body of the design code.
instance name
: after the
: connect this function to the design.

The
(FDCRS_inst) and/or the port declarations
"=>" assignment maybe changed to properly
Delete or comment

: out inputs/outs that are not necessary.

: In addition to adding the instance declaration,
statement for the UNISIM.vcomponents library needs to be
: added before the entity declaration.

a use

This library

: contains the component declarations for all Xilinx

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com 101

http://www.xilinx.com

SUXILINX® FDRSE
-- primitives : primitives and points to the models that will be used
-- : for simulation.
-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.
Library UNISIM;
use UNISIM.vcomponents.all;
-— <==——- Cut code below this line and paste into the architecture body---->
-- FDRSE: Single Data Rate D Flip-Flop with Synchronous Clear, Set and
-— Clock Enable (posedge clk). All families.
-- Xilinx HDL Libraries Guide Version 8.11i
FDRSE_inst : FDRSE
generic map (
INIT => '0') -- Initial value of register ('0' or '1l"')
port map (
Q => Q, -- Data output
c => C, -- Clock input
CE => CE, -- Clock enable input
D => D, -- Data input
R => R, -- Synchronous reset input
S => S -- Synchronous set input
)
-- End of FDRSE_inst instantiation
Verilog Instantiation Template
// FDRSE : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (FDCRS_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. Delete or comment
// : out inputs/outs that are not necessary.
/] <-===- Cut code below this line---->
// FDRSE: Single Data Rate D Flip-Flop with Synchronous Clear, Set and
// Clock Enable (posedge clk). All families.
// Xilinx HDL Libraries Guide Version 8.1i
FDRSE # (
INIT(1'b0) // Initial value of register (1'b0 or 1'bl)
) FDRSE_inst (
.Q(Q), // Data output
.Cc(C), // Clock input
.CE(CE), // Clock enable input
.D(D), // Data input
.R(R), // Synchronous reset input
S(s) // Synchronous set input
)
// End of FDRSE_inst instantiation
For More Information
Consult the Virtex-4 Configuration Guide.
102 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

FIFO16

SUXILINX®

FIFO16

Primitive: Virtex-4 Block RAM based built-in FIFO

m FIFO16
DIP(3:0)

RDGLK
RDEN
RST
WRCLK

WREN

ALMOSTEMPTY

ALMOSTFULL

DO(31:0)
DOP(G0)

EMPTY

FULL

RDERR
WRERR
RDCOUNT(11:0)

WRCOUNT(11:0)
——

A large percentage of FPGA designs implement FIFOs using block RAMs. In the
Virtex-4 architecture, additional dedicated logic in the block RAM enables users to
easily implement synchronous or asynchronous FIFOs. This eliminates the need to
use additional CLB logic for counter, comparator, or status flag generation and uses
just one block RAM resource per FIFO. Both standard and first-word fall-through
(FWFT) modes are supported.

The supported configurations are 4K x 4, 2K x 9, 1K x 18, and 512 x 36.

The block RAM can be configured as an asynchronous first-in/first-out (FIFO)
memory with independent read and write clocks for either synchronous or
asynchronous operation. Port A of the block RAM is used as a FIFO read port, and
Port B is a FIFO write port. Data is read from the FIFO on the rising edge of read clock
and written to the FIFO on the rising edge of write clock. Independent read and write
port width selection is not supported in FIFO mode.

The available status flags are:

e Full (FULL): Synchronous to WRCLK

e Empty (EMPTY): Synchronous to RDCLK

¢ Almost Full (AFULL): Synchronous to WRCLK

e Almost Empty (AEMPTY): Synchronous to RDCLK

e Write Count (WRCOUNT): Synchronous to WRCLK

e Write Error (WRERR): Synchronous to WRCLK

¢ Read Count (RDCOUNT): Synchronous to RDCLK

e Read Error (RDERR): Synchronous to RDCLK

The following table shows the FIFO capacity in the two modes:

FIFO Capacity Standard Mode FWFT Mode

4k+1 entries by 4 bits 4k+2 entries by 4 bits

2k+1 entries by 9 bits 2k+2 entries by 9 bits

1k+1 entries by 18 bits 1k+2 entries by 18 bits

512+1 entries by 36 bits 512+2 entries by 36 bits

Port Descriptions

FIFO I/0 Port Names and
Descriptions Port Name

Direction Description

DI

Input Data input

DIP

Input Parity-bit input

WREN Input Write enable. When WREN = 1, data will be written to memory. When WREN =

0, write is disabled.

WRCLK Input Clock for write domain operation.

RDEN Input Read enable. When RDEN = 1, data will be read to output register. When RDEN

=0, read is disabled.

RDCLK Input Clock for read domain operation.

RESET Input Asynchronous reset of all FIFO functions, flags, and pointers.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 103

ISE 8.1i

http://www.xilinx.com

SUXILINX®

FIFO16

FIFO I/O Port Names and — -
Descriptions Port Name Direction Description
DO Output Data output, synchronous to RDCLK
DOP Output Parity-bit output, synchronous to RDCLK
FULL Output All entries in FIFO memory are filled.
ALMOSTFULL Output Almost all entries in FIFO memory have been filled. Synchronous to WRCLK.
The value is user configurable.
EMPTY Output FIFO is empty. No additional read can be performed. Synchronous to RDCLK.
ALMOSTEMPTY Output Almost all valid entries in FIFO are read. Synchronous with RDCLK. The value is
user configurable.
RDCOUNT Output The FIFO data read pointer. It is synchronous with RDCLK. The value will wrap
around if the maximum read pointer value has been reached.
WRCOUNT Output The FIFO data write pointer. It is synchronous with WRCLK. The value will
wrap around if the maximum write pointer value has been reached.
WRERR Output When the FIFO is full, any additional write operation generates an error flag.
Synchronous with WRCLK.
RDERR Output When the FIFO is empty, any additional read operation generates an error flag.
Synchronous with RDCLK.

Available Attributes

Attribute Type Allowed Values Default Description
ALMOST_EMPTY_OFFSE | 12-Bit 12-Bit 12'h080 Sets the almost empty
T Hexadecimal Hexadecimal threshold.
ALMOST_FULL_OFFSET | 12-Bit 12-Bit 12'h080 Sets almost full threshold.
Hexadecimal Hexadecimal
DATA_WIDTH INTEGER 4,9,18,36 36 Sets data width to allowed
value.
FIRST_WORD_FALL_TH | BOOLEAN FALSE, TRUE FALSE Sets the FIFO FWFT to
ROUGH "TRUE" or "FALSE."

Usage

This design element is supported for schematics or instantiation, but is not currently
supported for inference.

Operating Mode

There are two operating modes in FIFO functions. They differ only in output behavior
after the first word is written to a previously empty FIFO.

Standard Mode

After the first word is written into an empty FIFO, the Empty flag deasserts
synchronously with RDCLK. After Empty is deasserted Low and RDEN is asserted,
the first word will appear at DOUT on the rising edge of RDCLK.

104

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

FIFO16

SUXILINX®

First Word Fall Through Mode

After the first word is written into an empty FIFO, it automatically appears at DOUT
after a few RDCLK cycles without asserting RDEN. Subsequent Read operations
require Empty to be Low and RDEN to be High.

Status Flags
Full Flag

The Full flag is asserted when there are no more available entries in the FIFO queue.
When the FIFO is full, the write pointer will be frozen. This ensures the read and write
pointers point to the same entry and no overflow will occur. The Full flag is registered
at the output and takes one write cycle to assert. The Full flag is deasserted three clock
cycles after the last entry is read, and it is synchronous to WRCLK.

Write Error Flag

Once the Full flag has been asserted, any further write attempts will trigger the Write
Error flag. The Write Error flag is deasserted when Write Enable or Full is deasserted
Low. This signal is synchronous to WRCLK.

Almost Full Flag

The Almost Full flag is set when the FIFO has fewer than the number of available
empty spaces specified by the ALMOST_FULL_OFFSET value. The Almost Full flag
warns the user to stop writing. It deasserts when the number of empty spaces in the
FIFO is greater than the ALMOST_FULL_OFFSET value, and is synchronous to
WRCLK.

VHDL Instantiation Template

FIFO16 : In order to incorporate this function into the design,

VHDL : the following instance declaration needs to be placed
instance : in the architecture body of the design code. The
declaration : instance name (FIFOl6_inst) and/or the port declarations
code : after the "=>" assignment maybe changed to properly

connect this function to the design. All inputs
and outputs must be connected.

Library : In addition to adding the instance declaration, a use
declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library
- Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that will be used

-- : for simulation.

-- Copy the following two statements and paste them before the

-- Entity declaration,

Library UNISIM;

unless they already exists.

use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- FIFO16: Virtex-4 512 deep x 36 wide BlockRAM Asynchrnous FIFO
-- Xilinx HDL Libraries Guide Version 8.11

FIFOl6_inst : FIFOl6

generic map (

ALMOST_FULL_OFFSET => X"080", -- Sets almost full threshold

ALMOST_EMPTY_OFFSET => X"080", -- Sets the almost empty threshold

DATA_WIDTH => 36, -- Sets data width to 4, 9, 18, or 36

FIRST_WORD_FALL_THROUGH => FALSE) -- Sets the FIFO FWFT to TRUE or FALSE
port map (

ALMOSTEMPTY => ALMOSTEMPTY, -- 1-bit almost empty output flag

ALMOSTFULL => ALMOSTFULL, -- 1-bit almost full output flag

DO => DO, -- 32-bit data output

DOP => DOP,
EMPTY => EMPTY,

-- 4-bit parity data output
-- 1-bit empty output flag

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 105

ISE 8.1i

http://www.xilinx.com

SUXILINX®

FIFO16

)

FULL => FULL,
RDCOUNT => RDCOUNT,
RDERR => RDERR,
WRCOUNT => WRCOUNT,
WRERR => WRERR,

DI => DI,

DIP => DIP,

RDCLK => RDCLK,
RDEN => RDEN,

RST => RST,

WRCLK => WRCLK,
WREN => WREN

-- 1-bit full output flag

- 12-

bit read count output

-- 1-bit read error output

- 12-

bit write count output

-- 1-bit write error

—- 32-

bit data input

-- 4-bit partity input

-- 1-bit read clock input
-- 1-bit read enable input
-- 1-bit reset input

-- 1-bit write clock input
-- 1-bit write enable input

-- End of FIFOl6_inst instantiation

Verilog Template

// FIFO1l6 : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration (FIFOl16_512x36_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// and outputs must be connected.
/] <===== Cut code below this line---->
// FIFOl6: Virtex-4 BlockRAM Asynchrnous FIFO configured for 512 deep x 36 wide
// Xilinx HDL Libraries Guide Version 8.11
FIFO16 #(
.ALMOST_FULL_OFFSET (12'h080), // Sets almost full threshold
.ALMOST_EMPTY_OFFSET(12'h080), // Sets the almost empty threshold
.DATA_WIDTH(36), // Sets data width to 4, 9, 18, or 36
.FIRST WORD_FALL_THROUGH ("FALSE") // Sets the FIFO FWFT to "TRUE" or "FALSE"
) FIFO1l6_512x36_inst (
.ALMOSTEMPTY (ALMOSTEMPTY), // 1l-bit almost empty output flag
.ALMOSTFULL (ALMOSTFULL) , // 1-bit almost full output flag
.DO (DO) , // 32-bit data output
.DOP (DOP) , // 4-bit parity data output
.EMPTY (EMPTY) , // 1l-bit empty output flag
.FULL (FULL) , // 1-bit full output flag
.RDCOUNT (RDCOUNT) , // 12-bit read count output
.RDERR (RDERR) , // 1l-bit read error output
.WRCOUNT (WRCOUNT) , // 12-bit write count output
.WRERR (WRERR) , // 1l-bit write error
.DI(DI), // 32-bit data input
.DIP(DIP), // 4-bit partity input
.RDCLK (RDCLK) , // 1-bit read clock input
.RDEN (RDEN) , // 1l-bit read enable input
.RST(RST) , // 1-bit reset input
.WRCLK (WRCLK) , // 1-bit write clock input
.WREN (WREN) // 1l-bit write enable input
)
// End of FIFO1l6_512x36_inst instantiation
For More Information
Consult the Virtex-4 User Guide.
106 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

FRAME_ECC_VIRTEX4 S XILINX®

FRAME_ECC_VIRTEX4

Primitive: Reads a Single, Virtex-4 Configuration Frame and Computes
a Hamming, Single-Error Correction, Double-Error Detection
"Syndrome"

The FRAME_ECC_VIRTEX4 module reads a single Virtex-4 configuration frame of
1312-bits, 32-bits at a time. It will then compute a Hamming single error correction,

FRAME_ECC_VIRTEX4

o double error detection "syndrome." This identifies the single frame bit (if any), which
SvaoROVE(110 is in error and should be corrected. It also indicates the presence of two bit errors,
P which cannot be corrected. Note that the FRAME_ECC_VIRTEX4 primitive does not

repair changed bits.

Port List and Definitions

Name Type | Width Function
ERROR Output |1 Error Output
SYNDROME Output | 12 Indicates the location of the erroneous bit
SYNDROMEVALID | Output |1 When value is High, indicates the presence of zero,
one or two bit errors in the frame

ERROR - Output
Indicates whether an error exists or not.
SYNDROME - Output

Provides the bit location of the error and whether zero, one, or two erroneous bits are
present.

SYNDROMEVALID - Output
When asserted HIGH, SYNDROMEVALID indicates that the end of a frame readback.

Usage

In order to use the FRAME_ECC_VIRTEX4, this primitive must be instantiated in a
design. Any readbacks must be performed through the SelectMAP, JTAG, or ICAP.

At the end of each frame readback, the SYNDROME_VALID pin will be asserted
HIGH for one cycle of the readback clock (CCLK, TCK, or ICAP_CLK). The number of
cycles required to read back a frame varies with the interface used.

When SYNDROME_VALID is asserted HIGH, the value on the SYNDROME pin
indicates the presence of zero, one, or two bit errors in the frame. The following table
summarizes the relationship of various SYNDROME value and error status.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 107

ISE 8.1i

http://www.xilinx.com

SUXILINX®

FRAME_ECC_VIRTEX4

Syndrome Value and Corresponding Error Status

Syndrome bit 11 | Syndrome bit 10 to 0 Error Status

0 All Os No bit errors

0 Not equal to 0 One bit error, and syndrome value identifies the position of the erroneous bit
1 All 0s Two bit errors, not correctable

--FRAME_ECC_VIRTEX4:
-= VHDL :
-- instance

-= declaration

-— code

- Library
-= declaration
-— for

-- Xilinx

-— primitives

Note: SYNDROME_VALID must be HIGH for the values on the table above to be useful.

This design element is supported for instantiation and schematics but not for
inference.

VHDL Instantiation Template

In order to incorporate this function into the design,

the following instance declaration needs to be placed

in the architecture body of the design code. The

instance name (FRAME_ECC_VIRTEX4_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly

connect this function to the design. All inputs

and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

-- Copy the following two statements and paste them before the

-- Entity declarati

Library UNISIM;
use UNISIM.vcomponen

on, unless they already exists.

ts.all;

-— <—=——- Cut code below this line and paste into the architecture body---->

-- FRAME_ECC_VIRT

EX4: Configuration Frame Error Correction Circuitry
Virtex-4

-- Xilinx HDL Libraries Guide version 8.11i

FRAME_ECC_VIRTEX4
port map (

_inst : FRAME_ECC_VIRTEX4

ERROR => ERROR,
SYNDROME => SYNDROME,

SYNDROMEVALID
)

-- End of FRAME_E

// FRAME_ECC_VIRTEX4

=> SYNDROMEVALID

CC_VIRTEX4_inst instantiation

Verilog Instantiation Template

In order to incorporate this function into the design,

// Verilog the following instance declaration needs to be placed

// instance in the body of the design code. The instance name

// declaration (FRAME_ECC_VIRTEX4_inst) and/or the port declarations within the
// code parenthesis maybe changed to properly reference and

// connect this function to the design. Delete or comment

// out inputs/outs that are not necessary.

/] <-===- Cut code below this line---->

// FRAME_ECC_VIRTEX4
/7

: Configuration Frame Error Correction Circuitry
Virtex-4

// Xilinx HDL Libraries Guide Version 8.11

FRAME_ECC_VIRTEX4
.ERROR (ERROR) ,

FRAME_ECC_VIRTEX4_inst (
// 1-bit output indicating an error

. SYNDROME (SYNDROME) , // 12-bit output location of erroroneous bit
. SYNDROMEVALID (SYNDROMEVALID) //- 1-bit output indicating 0, 1 or 2 bit errors in frame

108

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

FRAME_ECC_VIRTEX4 S XILINX®

)

// End of FRAME_ECC_VIRTEX4_inst instantiation

For More Information

Consult the Virtex-4 Configuration Guide.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 109
ISE 8.1i

http://www.xilinx.com

SXILINX® FRAME_ECC_VIRTEX4

110 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

GT11_CUSTOM

SUXILINX®

GT11_CUSTOM

Primitive: RocketlO MGTs with 622 Mb/s to 11.1 Gb/s Data Rates, 8 to
24 Transceivers per FPGA, and 2.5 GHz — 5.55 GHz VCO, Less Than
1ns RMS Jitter

RocketIO MGTs have flexible, programmable features that allow a multi-gigabit serial
transceiver to be easily integrated into any Virtex-4 design. The RocketlO MGTs
support the following features:

10.3 Gb/s data rates

8to 24 transceivers per FPGA

2.5 GHz - 5.55 GHz VCO, less than 1ns RMS jitter

Transmitter pre-emphasis

Receiver continuous time equalization

On-chip AC coupled receiver, with optional by-pass

Receiver signal detect and loss of signal indicator, out of band signal receiver
Transmit driver idle state for out of band signaling-both outputs at Vem
8B/10B or 64B/66B encoding, or no data encoding (pass through mode)
Channel bonding

Flexible Cyclic Redundancy Check (CRC) generation and checking

Pins for transmitter and receiver termination voltage

User reconfiguration using secondary (dynamic) configuration bus

Multiple loopback paths including PMA RX-TX path

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 111

ISE 8.1i

http://www.xilinx.com

SUXILINX®

GT11_CUSTOM

Inputs and Outputs

Inputs Outputs
CHBONDI [4:0] DRDY
CSUPMARESET RXBUFERR
DADDR [7:0] RXCALFAIL
DCLK RXCOMMADET
DEN RXCYCLELIMIT
DI [15:0] RXLOCK
DWE RXREALIGN
ENCHANSYNC RXRECCLK1
ENMCOMMAALIGN RXBCLK
ENPCOMMAALIGN RXRECCLK2
GREFCLK RXSIGDET
LOOPBACK [1:0] TXIN
POWERDOWN TX1P
REFCLK1 TXBUFERR
REFCLK2 TXCALFAIL
RX1IN TXCYCLELIMIT
RX1P TXLOCK

RXBLOCKSYNC64B66BUSE | DO [15:0]

RXCLKSTABLE RXLOSSOFSYNC [1:0]
RXCOMMADETUSE RXCRCOUT [31:0]
RXCRCCLK TXCRCOUT [31:0]
RXCRCDATAVALID CHBONDO [4:0]
RXCRCDATAWIDTH [2:0] |RXSTATUS [5:0]
RXCRCIN [63:0] RXDATA [63:0]
RXCRCINIT RXCHARISCOMMA [7:0]
RXCRCINTCLK RXCHARISK [7:0]
RXCRCPD RXDISPERR [7:0]
RXCRCRESET RXNOTINTABLE [7:0]
RXDATAWIDTH [1:0] RXRUNDISP [7:0]
RXDEC64B66BUSE TXRUNDISP [7:0]
RXDEC8B10BUSE TXKERR [7:0]
RXDESCRAM64B66BUSE
RXIGNOREBTF
RXINTDATAWIDTH [1:0]
RXPMARESET
RXPOLARITY
RXRESET
RXSLIDE
RXUSRCLK
RXUSRCLK2

112 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

GT11_CUSTOM

SUXILINX®

Inputs

Outputs

TXBYPASS8B10B [7:0]

TXCHARDISPMODE [7:0]

TXCHARDISPVAL [7:0]

TXCHARISK [7:0]

TXCLKSTABLE

TXCRCCLK

TXCRCDATAVALID

TXCRCDATAWIDTH [2:0]

TXCRCIN [63:0]

TXCRCINIT

TXCRCINTCLK

TXCRCPD

TXCRCRESET

TXDATA [63:0]

TXDATAWIDTH [1:0]

TXENC64B66BUSE

TXENC8B10BUSE

TXENOOB

TXGEARBOX64B66BUSE

TXINHIBIT

TXINTDATAWIDTH [1:0]

TXPMARESET

TXPOLARITY

TXRESET

TXSCRAM64B66BUSE

TXSYNC

TXUSRCLK

TXUSRCLK2

Usage

Refer to the Architecture Wizard in the ISE software for information regarding the use
of this component. If the Architecture Wizard is not used, two GT11 primitives should
be instantiated with the combusout port connected t othe compbusin of the other

GT11 instance.

VHDL and Verilog Instantiation

It is suggested that you use the Architecture Wizard in order to properly create

instantiation code for the GT11_CUSTOM block.

For More Information

Consult the Virtex-4 Data Sheet and the Virtex-4 RocketIO Transceiver User Guide.

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com

113

http://www.xilinx.com

SXILINX® GT11_CUSTOM

114 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

GT11_DUAL

SUXILINX®

GT11_DUAL

Primitive: RocketlO MGT Tile (contains 2 GT11_CUSTOM) with - 622
Mb/s to 11.1 Gb/s data rates, - 8 to 24 transceivers per FPGA, and - 2.5
GHz — 5.55 GHz VCO, less than 1ns RMS jitter

RocketIO MGTs have flexible, programmable features that allow a multi-gigabit serial
transceiver to be easily integrated into any Virtex-4 design. The RocketlO MGTs
support the following features:

622 Mb/s to 11.1 Gb/s data rates

8 to 24 transceivers per FPGA

2.5 GHz - 5.55 GHz VCO, less than 1ns RMS jitter

Transmitter pre-emphasis (pre-equalization)

Receiver continuous time equalization

On-chip AC coupled receiver

Digital oversampled receiver for data rates up to 2.5 Gb/s

Receiver signal detect and loss of signal indicator, out-of-band signal receiver
Transmit driver idle state for out-of-band signaling, both outputs at Vem
8B/10B or 64B/66B encoding, or no data encoding (pass through mode)
Channel bonding

Flexible Cyclic Redundancy Check (CRC) generation and checking

Pins for transmitter and receiver termination voltage

User reconfiguration using secondary (dynamic) configuration bus

Multiple loopback paths including PMA RX-TX path

For complete information about the RocketlO MGTs in Virtex-4 devices, see the
following documents:

Virtex-4 Data Sheet
Virtex-4 RocketIO Multi-Gigabit Transceiver User Guide

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 115

ISE 8.1i

http://www.xilinx.com

SUXILINX®

GT11_DUAL

Inputs and Outputs

Inputs

Outputs

1:0] LOOPBACK_A;

:0] RXLOSSOFSYNC_A;

1:0] LOOPBACK_B;

1
[1:0] RXLOSSOFSYNC_B;
[
[

TXDATAWIDTH_B;

31:0] TXCRCOUT_B;

1:0] RXDATAWIDTH_A; 15:0] DO_A;
1:0] RXDATAWIDTH_B; 15:0] DO_B;

1:0] RXINTDATAWIDTH_A; | [31:0] RXCRCOUT_A;
1:0] RXINTDATAWIDTH_B; [31:0] RXCRCOUT_B;
1:0] TXDATAWIDTH_A; 31:0] TXCRCOUT_A;
1:0]

1:0]

TXINTDATAWIDTH_A;

4:0] CHBONDO_A;

1:0] TXINTDATAWIDTH_B;

4:0] CHBONDO_B;

15:0] DI_A;

5:0] RXSTATUS_A;

15:0] DL_B;

5:0] RXSTATUS_B;

2:0] RXCRCDATAWIDTH_A;

63:0] RXDATA_A;

2:0] RXCRCDATAWIDTH_B;

[
[
[
[
[
[
[
[

63:0] RXDATA_B;

2:0] TXCRCDATAWIDTH_A;

[7:0] RXCHARISCOMMA_A;

2:0] TXCRCDATAWIDTH_B;

[7:0] RXCHARISCOMMA _B;

7:0] RXCHARISK_A;

4:0] CHBONDL_B;

7:0] RXCHARISK_B;

63:0] RXCRCIN_A;

7:0] RXDISPERR_A;

[

[

[
63:0] RXCRCIN_B; [7:0] RXDISPERR_B;
63:0] TXCRCIN_A; [7:0] RXNOTINTABLE_A;
63:0] TXCRCIN_B; [7:0] RXNOTINTABLE_B;
63:0] TXDATA_A; [7:0] RXRUNDISP_A;
63:0] TXDATA_B; [7:0] RXRUNDISP_B;
7:0] DADDR_A; [7:0] TXKERR_A;
7:0] DADDR_B; [7:0] TXKERR_B;

7:0] TXBYPASS8B10B_A;

[7:0] TXRUNDISP_A;

7:0] TXBYPASS8B10B_B;

[7:0] TXRUNDISP_B;

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[4:0] CHBONDL A;
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

7:0] TXCHARDISPMODE_A; |DRDY_A;

7:0] TXCHARDISPMODE_B; |DRDY_B;

7:0] TXCHARDISPVAL_A; RXBUFERR_A;
7:0] TXCHARDISPVAL_B; RXBUFERR_B;
7:0] TXCHARISK_A; RXCALFAIL_A;
7:0] TXCHARISK_B; RXCALFAIL_B;

DCLK_A; RXCOMMADET_A;
DCLK_B; RXCOMMADET_B;
DEN_A; RXCYCLELIMIT_A;
DEN_B; RXCYCLELIMIT_B;
DWE_A; RXLOCK_A;
DWE_B; RXLOCK_B;

116

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

GT11_DUAL

SUXILINX®

Inputs Outputs
ENCHANSYNC_A; RXMCLK_A;
ENCHANSYNC_B; RXMCLK_B;

ENMCOMMAALIGN_A;

RXPCSHCLKOUT_A;

ENMCOMMAALIGN_B;

RXPCSHCLKOUT_B;

ENPCOMMAALIGN_A; RXREALIGN_A;
ENPCOMMAALIGN_B; RXREALIGN_B;
GREFCLK_A; RXRECCLKI1_A;
GREFCLK_B; RXRECCLK1_B;
POWERDOWN_A; RXRECCLK2_A;
POWERDOWN_B; RXRECCLK2_B;
REFCLK1_A; RXSIGDET_A;
REFCLK1_B; RXSIGDET_B;
REFCLK2_A; TXIN_A;
REFCLK2_B; TX1IN_B;
RXIN_A; TX1P_A;
RX1IN_B; TX1P_B;
RX1P_A; TXBUFERR_A;
RX1P_B; TXBUFERR_B;

RXBLOCKSYNC64B66BUSE_A;

TXCALFAIL_A;

RXBLOCKSYNC64B66BUSE_B;

TXCALFAIL_B;

RXCLKSTABLE_A;

TXCYCLELIMIT_A;

RXCLKSTABLE_B;

TXCYCLELIMIT_B;

RXCOMMADETUSE_A;

TXLOCK_A;

RXCOMMADETUSE_B;

TXLOCK_B;

RXCRCCLK_A;

TXOUTCLKI1_A;

RXCRCCLK_B;

TXOUTCLK1_B;

RXCRCDATAVALID_A;

TXOUTCLK2_A;

RXCRCDATAVALID_B;

TXOUTCLK2_B;

RXCRCINIT_A;

TXPCSHCLKOUT_A;

RXCRCINIT_B;

TXPCSHCLKOUT_B;

RXCRCINTCLK_A;

RXCRCINTCLK_B;

RXCRCPD_A;

RXCRCPD_B;

RXCRCRESET_A;

RXCRCRESET_B;

RXDEC64B66BUSE_A;

RXDEC64B66BUSE_B;

RXDEC8B10BUSE_A;

RXDEC8B10BUSE_B;

RXDESCRAM64B66BUSE_A;

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com

117

http://www.xilinx.com

SUXILINX®

GT11_DUAL

Inputs

Outputs

RXDESCRAM64B66BUSE_B;

RXIGNOREBTF_A;

RXIGNOREBTE_B;

RXPMARESET_A;

RXPMARESET_B;

RXPOLARITY_A;

RXPOLARITY_B;

RXRESET_A;

RXRESET_B;

RXSLIDE_A;

RXSLIDE_B;

RXSYNC_A;

RXSYNC_B;

RXUSRCLK_A;

RXUSRCLK_B;

RXUSRCLK2_A;

RXUSRCLK2_B;

TXCLKSTABLE_A;

TXCLKSTABLE_B;

TXCRCCLK_A;

TXCRCCLK_B;

TXCRCDATAVALID_A;

TXCRCDATAVALID_B;

TXCRCINIT_A;

TXCRCINIT_B;

TXCRCINTCLK_A;

TXCRCINTCLK_B;

TXCRCPD_A;

TXCRCPD_B;

TXCRCRESET_A;

TXCRCRESET_B;

TXENC64B66BUSE_A;

TXENC64B66BUSE_B;

TXENC8B10BUSE_A;

TXENC8B10BUSE_B;

TXENOOB_A;

TXENOOB_B;

TXGEARBOX64B66BUSE_A;

TXGEARBOX64B66BUSE_B;

TXINHIBIT_A;

TXINHIBIT_B;

118

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

GT11_DUAL S XILINX®

Inputs Outputs

TXPMARESET_A;
TXPMARESET_B;
TXPOLARITY_A;
TXPOLARITY_B;
TXRESET_A;
TXRESET_B;
TXSCRAM64B66BUSE_A;
TXSCRAM64B66BUSE_B;
TXSYNC_A;

TXSYNC_B;
TXUSRCLK_A;
TXUSRCLK_B;
TXUSRCLK2_A;
TXUSRCLK2_B;

Usage

It is recommended that the GT11_DUAL is instantiated instead of the GT11_CUSTOM
for all usages. It must be used if multiple GT11s are used in a design, or if the dynamic
configuration bus is implemented. If the Architecture Wizard is not used, two GT11
primitives should be instantiated with the combusout port connected t othe
compbusin of the other GT11 instance.

VHDL and Verilog Instantiation

It is suggested that you use the Architecture Wizard ISE 8.1 in order to properly create
instantiation code for the GT11_DUAL block.

For More Information

Consult the Virtex-4 RocketlO Transceiver User Guide.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 119
ISE 8.1i

http://www.xilinx.com

SXILINX® GT11_DUAL

120 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

GT11CLK S XILINX®

GT11CLK

Primitive: A MUX That Can Select Fom Differential Package Input
Clock, refclk From the Fabric, or rxbclk to Drive the Two Vertical
Reference Clock Buses for the Column of MGTs

This block needs to be instantiated when using the dedicated package pins for

TR RocketlO clocks. There are two available per MGT column.The attributes allow this
p—— 9 package input to drive one or both SYNCLK clock trees. Please see the Virtex-4
svoLki RocketlO MGT User Guide for more details.

SYNCLK2IN
REFCLK
RXBOLK SYNCLK20UT

The attribute REFCLKSEL allows more clocking options. These options include:
MGTCLK, SYNCLKI1IN, SYNCLK2IN, REFCLK, RXBCLK.

Inputs and Outputs

Inputs are MGTCLKP, MGTCLKN
Outputs are SYNCLK1OUT, SYNCLK20UT

VHDL and Verilog Instantiation

It is suggested that you use the Architecture Wizard in order to properly create
instantiation code for the GT11CLK block.

For More Information

Consult the Virtex-4 RocketIO Transceiver User Guide.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 121
ISE 8.1i

http://www.xilinx.com

ST XILINX® GT11CLK

122 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

GT11CLK_MGT

SUXILINX®

GT11CLK_MGT

Primitive: Allows Differential Package Input to Drive the Two Vertical
Reference Clock Buses for the Column of MGTs

MGTCLKP
MGTCLKN

GT11CLK_MGT

This block needs to be instantiated when using the dedicated package pins for

swaioer RocketlO clocks. There are two available per MGT column.The attributes allow this
[smeweou package input to drive one or both SYNCLK clock trees. Please see the Virtex-4

RocketIO MGT User Guide for more details.

GT11CLK is also available and has an attribute REFCLKSEL, with the following
VALUE options: MGTCLK, SYNCLK1IN, SYNCLK2IN, REFCLK, RXBCLK.

Usage

This block allows more clocking options for MGTs.

Inputs and Outputs
Inputs are MGTCLKP, MGTCLKN

Outputs are SYNCLK1OUT, SYNCLK20UT

VHDL and Verilog Instantiation

It is suggested that you use the Architecture Wizard in order to properly create
instantiation code for the GT11CLK_MGT block.

For More Information

Consult the Virtex-4 RocketlO Transceiver User Guide.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 123

ISE 8.1i

http://www.xilinx.com

ST XILINX® GT11CLK_MGT

124 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

IBUF S XILINX®

IBUF

Primitive: Single-Ended Input Buffer with Selectable I/O Standard and
Capacitance
Input Buffers are necessary to isolate the internal circuit from the signals coming into
IBUF the FPGA. IBUFs are contained in input/output blocks (IOB). IBUFs allow the

specification of the particular I/O Standard to configure the I/O. In general, an IBUF
| (0] should be used for all single-ended data input or bi-directional pins.

Inputs (I) | Outputs (O)
X9442 0/L 0

1/H 1
U/X/Z X

Usage

IBUFs are automatically inserted (inferred) to any signal directly connected to a top
level input or inout port of the design by the synthesis tool. It is generally
recommended to allow the synthesis tool to infer this buffer however if so desired, the
IBUF can be instantiated into the design. In order to do so, connect the input port, I, of
the component directly to the associated top-level input or in-out port and connect the
output port, O, to the FPGA logic to be sourced by that port. Modify any necessary
generic maps (VHDL) or named parameter value assignment (Verilog) in order to
change the default behavior of the component.

Available Attribute

Attribute Type Allowed Values Default Description
CAPACITANCE STRING "LOW", "DON'T CARE” Specifies whether it is desired to
"NORMAL", use an I/O with lower or normal
"DON'T CARE” intrinsic capacitance.
IOSTANDARD STRING "DEFAULT "DEFAULT” Use to assign an I/O standard to
an I/O primitive.

Note: Consult the device user guide or databook for the allowed values and the default value.

VHDL Instantiation Templates

-— IBUF : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-— instance : in the architecture body of the design code. The

- declaration : instance name (IBUF_inst) and/or the port declarations
-= code : after the "=>" assignment maybe changed to properly

-— : connect this function to the design. Delete or comment
-— : out inputs/outs that are not necessary.

-— Library : In addition to adding the instance declaration, a use

- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library

-— Xilinx : contains the component declarations for all Xilinx

-— primitives : primitives and points to the models that will be used

-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <—=——- Cut code below this line and paste into the architecture body---->

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 125
ISE 8.1i

http://www.xilinx.com

ST XILINX® IBUF

-- IBUF: Single-ended Input Buffer
-- All devices
-- Xilinx HDL Libraries Guide Version 8.11

IBUF_inst : IBUF
generic map (
TIOSTANDARD => "DEFAULT")

port map (
0 => 0, -- Buffer output
I =>1 -- Buffer input (connect directly to top-level port)

)

-- End of IBUF_inst instantiation

Verilog Instantiation Templates

// IBUF : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (IBUF_inst) and/or the port declarations within the

// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment
// : out inputs/outs that are not necessary.

/] <===== Cut code below this line---->

// IBUF: Single-ended Input Buffer
// All devices
// Xilinx HDL Libraries Guide Version 8.11

IBUF # (
. IOSTANDARD ("DEFAULT") // Specify the input I/O standard
) IBUF_inst (
.0(0), // Buffer output
LI(T) // Buffer input (connect directly to top-level port)

)

// End of IBUF_inst instantiation

For More Information
Consult the Virtex-4 User Guide.

126 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

IBUFDS_DIFF_OUT S XILINX®

IBUFDS_DIFF_OUT

Differential I/O Input Buffer with Differential Outputs

IBUFDS_DIFF_OUT is a differential I/O input buffer with differential outputs. The
differential output pair (O&OB) maintains the relation of its differential input pair.

| o

B oB Ljseuge
IBUFDS_DIFF_OUT
This element is instantiated rather than inferred.

X10107

VHDL Instantiation Code

-- IBUFDS: Differential Input Buffer /w Differential Outputs
-- Virtex-4
-- Xilinx HDL Libraries Guide version 8.11i

IBUFDS_DIFF_OUT_inst : IBUFDS_DIFF_OUT
generic map (
TIOSTANDARD => "LVDS_25")

port map (
o => 0, -- Diff_p buffer output
OB => OB, -- Diff_n buffer output
I =>T1, -- Diff_p buffer input (connect directly to top-level port)
IB => IB -- Diff_n buffer input (connect directly to top-level port)

)

-—- End of IBUFDS_DIFF_OUT _inst instantiation

Verilog Instantiation Code

// IBUFDS: Differential Input Buffer /w Differential Outputs
// Virtex-4

// Xilinx HDL Libraries Guide version 8.11

IBUFDS_DIFF_OUT # (

.IOSTANDARD ("LVDS_25") // Specify the input I/O standard
) IBUFDS_DIFF_OUT _inst (
.0(0), // Diff_p buffer output
.OB(OB), // Diff_n buffer output
LI(I), // Diff_p buffer input (connect directly to top-level port)

.IB(IB) // Diff_n buffer input (connect directly to top-level port)
)

// End of IBUFDS_DIFF_OUT _inst instantiation

For More Information

Consult the Virtex-4 Configuration Guide.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 127
ISE 8.1i

http://www.xilinx.com

SXILINX® IBUFDS_DIFF_OUT

128 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

IBUFDS S XILINX®

IBUFDS

Primitive: Differential Signaling Input Buffer with Selectable I/O Interface
and Optional Delay

IBUFDS is an input buffer that supports low-voltage, differential signaling. In

| IBUFDS, a design level interface signal is represented as two distinct ports (I and IB),

B o one deemed the "master” and the other the "slave.” The master and the slave are
opposite phases of the same logical signal (for example, MYNET and MYNETB). The
IBUFDS component allow the specification of the particular I/O Standard to

X9255 configure the IOBs as well as the specification of added delay for the incoming paths

to properly align incoming data with the associated clock source. In general, an
IBUFDS should be used for all differential data input or bi-directional pins.

Inputs Outputs
I IB (@]
0 0 =¥
0 1 0
1 0 1
1 1 =%

* The dash (-) means No Change.

Usage

The IBUFDS must be instantiated in order to be incorporated into the design. In order
to do so, connect the input ports, I and IB, of the component directly to the associated
top-level input or inout ports and connect the output port, O, to the FPGA logic to be
sourced by that port. Modify any necessary generic maps (VHDL) or named
parameter value assignment (Verilog) in order to change the default behavior of the
component.

Available Attributes

Attribute Type Allowed Values Default Description
CAPACITANCE STRING "LOW", "DONT CARE” Specifies whether it is desired to
"NORMAL", use an I/O with lower or normal
"DONT CARE” intrinsic capacitance.
DIFF_TERM Boolean FALSE, TRUE FALSE Enables the built-in differential
termination resistor.
IOSTANDARD STRING "DEFAULT” "DEFAULT” "Use to assign an I/O standard
to an1/O primitive.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 129
ISE 8.1i

http://www.xilinx.com

SUXILINX®

IBUFDS

IBUFDS
VHDL
instance
-- declaration
code

Library
-- declaration
for

Xilinx
primitives

Library UNISIM;

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code. The
instance name (IBUFDS_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exists.

use UNISIM.vcomponents.all;

-—— <————- Cut code below this line and paste into the architecture body---->

-—- IBUFDS:

Differential Input Buffer
Virtex-II/II-Pro,

Spartan-3/3E

-- Xilinx HDL Libraries Guide Version 8.11i

IBUFDS_inst
generic map
. IOSTANDARD =>
port map (
o => O,
I =>T1,
IB => IB
)

IBUFDS
(
"DEFAULT")

-- Clock buffer output
-- Diff_p clock buffer input
-- Diff_n clock buffer input

(connect directly to top-level port)
(connect directly to top-level port)

-- End of IBUFDS_inst instantiation

Verilog Instantiation Template

// IBUFDS In order to incorporate this function into the design,
// Verilog the following instance declaration needs to be placed
// instance in the body of the design code. The instance name
// declaration (IBUFDS_inst) and/or the port declarations within the
// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs
// and outputs must be connect.
/] <===== Cut code below this line---->

// IBUFDS: Differential Input Buffer

// Virtex-II/II-Pro/4, Spartan-3/3E

// Xilinx HDL Libraries Guide Version 8.11i

IBUFDS # (

.DIFF_TERM("FALSE") ,
. IOSTANDARD ("DEFAULT")

// Differential Termination (Virtex-4 only)
// Specify the input I/O standard

) IBUFDS_inst (

.0(0),

LI(I),

.IB(IB)
)

// Clock buffer output
// Diff_p clock buffer
// Diff_n clock buffer

(connect directly to top-level port)
(connect directly to top-level port)

input
input

// End of IBUFDS_inst instantiation

For More Information
Consult the Virtex-4 User Guide.

130

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

www.Xxilinx.com

http://www.xilinx.com

IBUFG S XILINX®

IBUFG

Primitive: Dedicated Input Buffer with Selectable 1/O Interface

The IBUFG is an input buffer that connects to one of the dedicated clock pins of the
device. Its purpose is to connect external clock source to the CLKIN or CLKFB pin of

I O the DCM. It may also be used to connect directly to the low-skew clock routing
resource in the device limiting the amount of clock delay incurred. Via attributes, the
desired I/O standard for this clock pin may be specified. .
IBUF
UFG Input (1) Outputs (O)
X10181
0/L 0
1/H 1
U/X/Z X
Usage
Synthesis tools can infer IBUFGs automatically by detecting ports that are connected
to clock sources. In general, this is the preferred manner to use this buffer however if
desired, it may be instantiated into the design. In order to do so, connect the input
port, I, of the component directly to the associated top-level clock port and connect
the output port, O, to either the DCM input pin or to all associated clocks in the
design. Modify any necessary generic maps (VHDL) or named parameter value
assignment (Verilog) in order to change the default behavior of the component. If a
location constraint (LOC) is used for this port or buffer, ensure the location used is one
of the dedicated clock pins for the device.
Available Attributes
Attribute Type Allowed Values Default Description
CAPACITANCE STRING "LOW", "NORMAL", | "DONT CARE” Specifies whether it is desired
"DONT CARE” to use an I/O with lower or
normal intrinsic capacitance.
IOSTANDARD STRING "DEFAULT” "DEFAULT” Use to assign an 1/O standard
to anI/O primitive.
VHDL Instantiation Template
-- IBUFG In order to incorporate this function into the design,
-— VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (IBUFG_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly

-- : reference and connect this function to the design.
-— : All inputs and outputs must be connected.

- Library In addition to adding the instance declaration, a use

-- declaration statement for the UNISIM.vcomponents library needs to be
-— for added before the entity declaration. This library

- Xilinx contains the component declarations for all Xilinx

-- primitives primitives and points to the models that will be used

-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

www.Xxilinx.com 131

http://www.xilinx.com

SXILINX® IBUFG

-- IBUFG: Single-ended global clock input buffer
-= All FPGA
-- Xilinx HDL Libraries Guide Version 8.1i

IBUFG_inst : IBUFG
generic map (

.IOSTANDARD => "DEFAULT")

port map (
O => 0, -- Clock buffer output
I => I -- Clock buffer input (connect directly to top-level port)

)

-- End of IBUFG_inst instantiation

Verilog Instantiation Template

// IBUFG : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (IBUFG_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// and outputs must be connect.
/] <-==== Cut code below this line---->
// IBUFG: Global Clock Buffer (sourced by an external pin)
// All FPGAs
// Xilinx HDL Libraries Guide Version 8.11
IBUFG # (
.IOSTANDARD ("DEFAULT")
) IBUFG_inst (
.0(0), // Clock buffer output
.I(I) // Clock buffer input (connect directly to top-level port)
)
// End of IBUFG_inst instantiation
For More Information
Consult the Virtex-4 User Guide.
132 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

IBUFGDS

SUXILINX®

IBUFGDS

Primitive: Differential Signaling Dedicated Input Clock Buffer with
Selectable 1/O Interface and Optional Delay

(0)

X9255

The IBUFGDS is an input buffer that connects to one of the dedicated differential
clock pin pairs of the device. Its purpose is to connect an external input differential
clock to the CLKIN or CLKFB pin of the DCM. It may also be used to connect directly
to the low-skew clock routing resource in the device limiting the amount of clock
delay incurred. Via attributes, the desired I/O standard for this clock pin may be
specified.

Inputs Outputs
1B (@)
No Change
0
1
No Change

_= = O O -
=N]

Usage

The IBUFGDS buffer must be instantiated in order to incorporate this into a design. In
order to do so, connect the input port, I, of the component directly to the associated
top-level clock port and connect the output port, O, to either the DCM input pin or to
all associated clocks in the design. Modify any necessary generic maps (VHDL) or
named parameter value assignment (Verilog) in order to change the default behavior
of the component. If a location constraint (LOC) is used for this port or buffer, ensure
the location used is one of the dedicated clock pins for the device.

Available Attributes

Attribute Type Allowed Values Default Description

CAPACITANCE STRING "LOW", "DON'T CARE” | Specifies whether it is desired to
"NORMAL", use an I/O with lower or normal
"DON'T CARE” intrinsic capacitance.

DIFF_TERM Boolean FALSE, TRUE FALSE Enables the built-in differential
termination resistor.

IOSTANDARD STRING "DEFAULT” "DEFAULT” Use to assign an I/O standard to
an I/O primitive.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 133

ISE 8.1i

http://www.xilinx.com

SUXILINX®

IBUFGDS

IBUFGDS
VHDL
instance
-- declaration
code

Library
-- declaration
for

Xilinx
primitives

Library UNISIM;

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the architecture body of the design code. The
instance name (IBUFGDS_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exists.

use UNISIM.vcomponents.all;

-—— <————- Cut code below this line and paste into the architecture body---->

-—- IBUFGDS:

Differential Global Clock Input Buffer
Virtex-II/II-Pro,

Spartan-3/3E

-- Xilinx HDL Libraries Guide Version 8.11i

IBUFGDS_inst

generic map

DIFF_TERM =>

.IOSTANDARD =>
port map (
o => 0,
I =>1I,
IB => IB
)

IBUFGDS
(
"FALSE", -- Differential Termination

"DEFAULT")

(Virtex-4 only)

-—- Clock buffer output
-- Diff_p clock buffer input
-- Diff_n clock buffer input

(connect directly to top-level port)
(connect directly to top-level port)

-- End of IBUFGDS_inst instantiation

Verilog Instantiation Template

// IBUFGDS In order to incorporate this function into the design,
// Verilog the following instance declaration needs to be placed
// instance in the body of the design code. The instance name
// declaration (IBUFGDS_inst) and/or the port declarations within the
// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs
// and outputs must be connect.
/] <-==== Cut code below this line---->

// IBUFGDS: Differential Global Clock Buffer (sourced by an external pin)

// Virtex-II/II-Pro, Spartan-3/3E

// Xilinx HDL Libraries Guide Version 8.1i

IBUFGDS # (

.DIFF_TERM ("FALSE"),
. IOSTANDARD ("DEFAULT")
) IBUFGDS_inst (
.0(0), // Clock buffer output
.I(I), // Diff_p clock buffer input
.IB(IB) // Diff_n clock buffer input
)
// End of IBUFGDS_inst instantiation
For More Information
Consult the Virtex-4 User Guide.

134 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

ICAP_VIRTEX4

SUXILINX®

ICAP_VIRTEX4

Primitive: Virtex-4 Internal Configuration Access Port

70) ICAP_VIRTEX4

—
WRITE
cE

CLK

-- ICAP_VIRTEX4
-= VHDL

-- instance
-- declaration
-= code

-— Library
-- declaration
- for

-- Xilinx

-— primitives

ICAP_VIRTEX4 provides user access to the Virtex-4 internal configuration access port
(ICAP).

Port List and Definitions

Name | Type |Width Function

BUSY |Output 1 Busy signal
o @) Output | 32 |32-bit data bus output

CE Input 1 | Clock enable pin
CLK |Input 1 | Clock input

WRITE | Input 1 | Write signal

I Input 32 | 32-bit data bus input

Available Attributes

Attribute Type Allowed Values | Default Description
ICAP_WIDTH |STRING |"X8"or "X32” "X8” Specifies the data width
for the ICAP component.
Usage

ICAP_VIRTEX4 provides the same config user interface as the SelectIO map interface.
The ICAP port can be connected to external pins or internal signals. This device is
supported for schematics and instantiation only.

VHDL Instantiation Template

In order to incorporate this function into the design,

the following instance declaration needs to be placed

in the architecture body of the design code. The

instance name (ICAP_VIRTEX4_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly

connect this function to the design. Delete or comment

out inputs/outs that are not necessary.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <==——- Cut code below this line and paste into the architecture body---->

-- ICAP_VIRTEX4:

Internal Configuration Access Port
Virtex-4

-- Xilinx HDL Libraries Guide Version 8.11

ICAP_VIRTEX4_inst

generic map (

ICAP_WIDTH =>

ICAP_VIRTEX4

"X8") —-- "X8" or "X32"

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 135

ISE 8.1i

http://www.xilinx.com

SUXILINX®

ICAP_VIRTEX4

port map (

)

BUSY => BUSY,

-- Busy output

0 => 0, -- 32-bit data output
CE => CE, -- Clock enable input
CLK => CLK, -- Clock input
I =>T1, -- 32-bit data input
WRITE => WRITE -- Write input

-- End of ICAP_VIRTEX4_inst instantiation

Verilog Instantiation Template

// ICAP_VIRTEX4 In order to incorporate this function into the design,
// Verilog the following instance declaration needs to be placed
// instance in the body of the design code. The instance name
// declaration (ICAP_VIRTEX4_inst) and/or the port declarations within the
// code parenthesis maybe changed to properly reference and
// connect this function to the design. Delete or comment
// out inputs/outs that are not necessary.
/] <=-==== Cut code below this line---->
// ICAP_VIRTEX4: Internal Configuration Access Port
// Virtex-4
// Xilinx HDL Libraries Guide Version 8.1i
ICAP_VIRTEX4 #(
.ICAP_WIDTH("X8") // "X8" or "X32"
) ICAP_VIRTEX4_inst (
.BUSY (BUSY) , // Busy output
.0(0), // 32-bit data output
.CE(CE), // Clock enable input
.CLK (CLK) , // Clock input
LI(I), // 32-bit data input
.WRITE (WRITE) // Write input
)
// End of ICAP_VIRTEX4_inst instantiation
For More Information
Consult the Virtex-4 Configuration Guide.
136 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

IDDR

SUXILINX®

IDDR

Primitive: A Dedicated Input Register to Receive External Dual Data
Rate (DDR) Signals into Virtex-4 FPGAs

IDDR

Q@

X10109

The IDDR primitive is a dedicated input registers to receive external dual data rate
(DDR) signals into Virtex-4 FPGAs. Unlike previous generations of Xilinx FPGAs,
IDDR primitive is not limited to recovering the data for the FPGA fabric for
processing at opposite edges. IDDR is available with modes that present the data to
the FPGA fabric at the same clock edge. This feature allows designers to avoid
additional timing complexities and CLB usage. In addition, IDDR will work in
conjunction with SelectIO features of Virtex-4 architecture.

IDDR Ports
Q1-Q2-Data These pins are the IDDR output that connects to the FPGA fabric. Q1 is
Output the first data pair while, Q2 is the second data pair.

C - Clock Input Port | The C pin represents the clock input pin.

CE - Clock Enable | When asserted LOW, this port disables the output clock at port O.
Port

D - Data Input This pin is where the DDR data is presented into the IDDR module.
(DDR) This pin connects to the IOB pad.

R - Reset Depends on how SRTYPE is set.

S - Set Asynchronous set pin. Set is assert HIGH.

Port List and Definitions

Name | Type | Width Function
Q1 -Q2 | Output | 1 (each) | Data Output
C Input |1 Clock input
CE Input |1 Clock enable input
D Input |1 Data Input (DDR)
R Input |1 Reset
S Input |1 Set
IDDR Modes

The following section describes the functionality of various modes of IDDR. These
modes are set by the DDR_CLK_EDGE attribute.

OPPOSITE_EDGE

In the OPPOSITE_EDGE mode, data is recovered in the classic DDR methodology.
Given a DDR data and clock at pin D and C respectively, Q1 will change after every
positive edge of clock C, and Q2 will change after every negative edge of clock C.

SAME_EDGE

In the SAME_EDGE mode, data is still recovered by opposite edges of clock C.
However, an extra register has been placed in front of the negative edge data register.
This extra register is clocked with positive clock edge of clock signal C. As a result
DDR data is now presented into the FPGA fabric at the same clock edge. However,
because of this feature the data pair appears to be "separated." Q1 and Q2 no longer

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 137

ISE 8.1i

http://www.xilinx.com

SUXILINX®

IDDR

have pair 1 and 2. Instead, the first pair presented is pair 1 and don’t care, followed by
pair 2 and 3 at the next clock cycle.

SAME_EDGE_PIPELINED

The SAME_EDGE_PIPELINED mode recovers data in a similar fashion as the
SAME_EDGE mode. In order to avoid the "separated" effect of the SAME_EDGE
mode, an extra register has been placed in front of the positive edge data register. A
data pair will now appear at the Q1 and Q2 pin at the same time. However, using this
mode, cost the user an additional cycle of latency for Q1 and Q2 signals to change.

Available Attributes

Attribute Type Allowed Values Default Description
DDR_CLK_EDGE STRING "OPPOSITE_EDGE", "OPPOSITE_EDGE” DDR clock mode recovery
"SAME_EDGE", mode selection
"SAME_EDGE_PIPE-
LINED”
INIT_Q1 INTEGER Oorl 1 Q1 initialization value
INIT_Q2 INTEGER Oorl 1 Q2 initialization value
SRTYPE STRING "SYNC" or "ASYNC” "SYNC” Set/Reset type selection
Usage

This device is supported for inference and instantiation.

138

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

IDDR S XILINX®
VHDL Template

-- IDDR : In order to incorporate this function into the design,

-— VHDL : the following instance declaration needs to be placed

- instance : in the architecture body of the design code. The

-- declaration : instance name (IDDR_inst) and/or the port declarations

- code : after the "=>" assignment maybe changed to properly

- connect this function to the design. Delete or comment

-= out inputs/outs that are not necessary.

- Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be

-— for : added before the entity declaration. This library

- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that will be used

for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

/7

/7
/7
/7
/7
/7

/7

<--—--- Cut code below this line and paste into the architecture body---->

-- IDDR: Double Data Rate Input Register with Set, Reset
-= and Clock Enable. Virtex-4
-- Xilinx HDL Libraries Guide Version 8.11

IDDR_inst : IDDR
generic map (

DDR_CLK_EDGE => "OPPOSITE_EDGE", -- "OPPOSITE_EDGE", "SAME_EDGE"
-- or "SAME_EDGE_PIPELINED"
INIT Q1 => '0', -- Initial value of Ql: '0' or '1'
INIT Q2 => '0', -- Initial value of Q2: '0' or '1°'
SRTYPE => "SYNC") -- Set/Reset type: "SYNC" or "ASYNC"
port map (
Ql => Q1, -- 1-bit output for positive edge of clock
Q2 => Q2, -- 1-bit output for negative edge of clock
c => C, -- 1-bit clock input
CE => CE, -- 1l-bit clock enable input
D => D, -- 1-bit DDR data input
R => R, -- 1-bit reset
S => S -- 1-bit set
)

7

-- End of IDDR_inst instantiation

Verilog Template

IDDR : In order to incorporate this function into the design,

Verilog : the following instance declaration needs to be placed
instance : in the body of the design code. The instance name
declaration : (IDDR_inst) and/or the port declarations within the

code : parenthesis maybe changed to properly reference and
: connect this function to the design. Delete or comment
out inputs/outs that are not necessary.

<----- Cut code below this line---->

// IDDR: Input Double Data Rate Input Register with Set, Reset
// and Clock Enable. Virtex-4
// Xilinx HDL Libraries Guide Version 8.11

IDDR # (

.DDR_CLK_EDGE ("OPPOSITE_EDGE"), // "OPPOSITE_EDGE", "SAME_EDGE"
// or "SAME_EDGE_PIPELINED"

JINIT_Q1(1'b0), // Initial value of Ql: 1'b0 or 1'bl
VINIT_Q2(1'b0), // Initial value of Q2: 1'b0 or 1'bl
.SRTYPE ("SYNC") // Set/Reset type: "SYNC" or "ASYNC"

) IDDR_inst (
.Q1(Ql), // 1-bit output for positive edge of clock
.Q2(Q2), // 1l-bit output for negative edge of clock

.Cc(C), // 1-bit clock input
.CE(CE), // 1-bit clock enable input
.D(D), // 1-bit DDR data input
.R(R), // 1l-bit reset
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 139

ISE 8.1i

http://www.xilinx.com

SXILINX® IDDR

.S(8) // 1l-bit set
)

// End of IDDR_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

140 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

IDELAY

SUXILINX®

IDELAY

Primitive: Startup calibration module for IDELAY elements

IDELAY

CE

INC

RST

Virtex-4 modules have an IDELAY module in the input path of every user I/O.
IDELAY allows the implementation of deskew algorithms to correctly capture
incoming data. IDELAY can be applied to data signals, clock signals, or both. IDELAY
features a fully-controllable, 64-tap delay line. Each tap delay is carefully calibrated to
provide an absolute delay value of 78 ps independent of process, voltage, and
temperature variations. Three modes of operation are available:

Zero hold time delay mode

This mode of operation allows backward compatibility for designs using the zero-
hold time delay feature in Virtex-II and Virtex-II Pro devices. When used in this
mode, the IDELAYCTRL primitive does not need to be instantiated.

Fixed tap-delay mode
In the fixed tap-delay mode, the delay value is set to the number determined by

the attribute IOBDELAY_VALUE. This value cannot be changed during run-time.
When used in this mode, the IDELAYCTRL primitive must be instantiated.

Variable tap-delay mode
In the variable tap-delay mode, the delay value can be changed at run-time by

manipulating the control signals CE and INC. When used in this mode, the
IDELAYCTRL primitive must be instantiated.

The following figure shows the block diagram of the IDELAY module.

Delay for Zero Hold Time

64 Tap Delay Line

BT

[inc > UP/DOWN
[CE_>—— COUNTER

X10164

IDELAY Module Block Diagram
The following figure shows the IDELAY primitive.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 141

ISE 8.1i

http://www.xilinx.com

SXILINX® IDELAY

IDELAY Primitive
The following table lists the availale ports in the IDELAY primitive.

AvailablePorts | Direction | Size Function
I Input 1 |Serial input data from IOB
C Input 1 |Clock input
INC Input 1 |Increment/decrement number of tap delays
CE Input 1 |Enable increment/decrement function
RST Input 1 |Reset delay chain to pre-programmed value. If no value
programmed, reset to 0.
o Output 1 | Combinatorial output

IDELAY Ports

Data Input and Output - I and O

IDELAY primitives are located in general purpose IOB locations. The input and
output connectivity differs for each type of IOB location.

General Purpose IOBs

The input of IDELAY in a general-purpose IOB comes directly from the input buffer,
IBUF. The output of IDELAY (O) is connected directly to the user logic. The input and
output data path is combinatorial and is not affected by the clock signal (C). However,
the user can choose to register the output signal (O) in the IOB.

Regional Clock-Capable I0Bs

Regional clock-capable IOBs are located in one I/O pair directly above and below an
HCLK IOB. The input of IDELAY in a regional clock-capable IOB comes directly from
the input buffer, IBUF. The output of IDELAY in a regional clock-capable IOB can go
to one of the following locations:

1. Directly to the user logic
2. BUFIO (in the case of a regional clock signal)

The regional clock buffer, BUFIO, connects the incoming regional clock signal to the
regional I/O clock tree, IOCLK. BUFIO also connects to the regional clock buffer,
BUER to connect to the regional clock tree, rclk. The input and output data path is
combinatorial and is not affected by the clock signal (C). However, the user can
choose to register the output signal (O) in the IOB.

Global Clock-Capable IOBs

The global clock-capable IOBs are located in the center I/O column. The input of the
IDELAY module in a global clock-capable IOB comes directly from the input global
clock buffer, IBUFG. The output of the IDELAY module in a global clock-capable IOB
can go to one of the following locations:

1. Directly to the user logic
2. BUFG (in the case of a global clock signal)

142 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

IDELAY S XILINX®

The global clock buffer, BUFG, connects the incoming regional clock signal to the
global clock tree, gclk. The input and output data path is combinatorial and is not
affected by the clock signal (C). However, the user can choose to register the output
signal (O) in the IOB.

Clock Input - C

All control inputs to IDELAY (RST, CE and INC) are synchronous to the clock input
(C). The data input and output (I and O) of IDELAY is not affected by this clock signal.
This clock input is identical to the CLKDIV input for the ISERDES. All the clock
sources used to drive CLKDIV can therefore drive the IDELAY clock input (C). The
clock sources that can drive the clock input (C) are:

e Eight gclk (global clock tree)

e Two rclk (regional clock tree)

Module Reset - RST

The IDELAY reset signal, RST, resets the tap-delay line to a value set by the
IOBDELAY_VALUE attribute. If the IOBDELAY_VALUE attribute is not specified, the
tap-delay line is reset to 0.

Increment/Decrement Signals - CE, INC

The increment/decrement enable signal (CE) determines when the
increment/decrement signal (INC) is activated. INC determines whether to increment
or decrement the tap-delay line. When CE = 0, the tap delay remains constant no
matter what the value of INC. When CE = 1, the tap-delay value increments or
decrements depending on the value of INC. The tap delay is incremented or
decremented synchronously with respect to the input clock (C). As long as CE =1, the
tap-delay increments or decrements by one every clock cycle. The
increment/decrement operation is summarized in the following table:

Operation RST | CE | INC
Reset to configured value of tap count | 1 X | X
Increment tap count 0 1] 1
Decrement tap count 0 1 0
No change 0 |0 | x
Note:

1. RST resets delay chain to tap count specified by attribute IOBDELAY_VALUE. If
IOBDLEAY_VALUE not specified, tap count reset to 0.

2. RST, CE, and INC are synchronous to the input clock signal (C).

When CE is raised, the increment/decrement operation begins on the next positive
clock cycle. When CE is lowered, the increment/decrement operation ceases on the
next positive clock cycle.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 143
ISE 8.1i

http://www.xilinx.com

SXILINX® IDELAY
Available Attributes
Attribute Type Allowed Values Default Description
IOBDELAY_TYPE String “DEFAULT”, “DEFAULT” | This attribute sets
“FIXED”, or the type of tap
“VARIABLE” delay.
IOBDELAY_VALUE Integer |0 to 63 0 This attribute
specifies the initial
number of tap
delays.

-= IDELAY
-= VHDL
-- instance

-- declaration :
: after the
: connect this function to the design. Unused inputs
: or outputs may be removed or commented out.

-= code

-— Library
-- declaration
- for

-- Xilinx

-— primitives

: In addition to adding the instance declaration,
: statement for the UNISIM.vcomponents library needs to be
: added before the entity declaration.
: contains the component declarations for all Xilinx

: primitives and points to the models that will be used
: for simulation.

IOBDELAY_TYPE Attribute

The IOBDELAY_TYPE attribute sets the type of delay used. The attribute values are
DEFAULT, FIXED, and VARIABLE. The default value is DEFAULT. When set to
DEFAULT, the zero-hold time delay element is selected. This delay element eliminates
pad-to-pad hold time. The delay is matched to the internal clock-distribution delay of
the Virtex-4 device. When used, it guarantees a pad-to-pad hold time of zero.

When set to FIXED, the tap-delay value is fixed at the number of taps determined by
the IOBDELAY_VALUE attribute. This value is preset and cannot be changed
dynamically.

When set to VARIABLE, the variable tap delay is selected. The tap delay can be
incremented by setting CE = land INC = 1 or decremented by setting CE = 1 and INC
= 0. The increment/decrement operation is synchronous to C, the input clock signal.

IOBDELAY_VALUE Attribute

The IOBDELAY_VALUE attribute specifies the initial number of tap delays. The
possible values are any integers from 0 to 63. The default value is 0. When set to 0, the
total delay becomes the delay of the output MUX which is approximately 400 ps.

The value of the tap delay reverts to IOBDELAY_VALUE when the tap delay is reset
(RST =1), or the IOBDELAY_TYPE is set to FIXED.

VHDL Instantiation Template

: In order to incorporate this function into the design,
: the following instance declaration needs to be placed
: in the architecture body of the design code. The

instance name (IDELAY_inst) and/or the port declarations
"=>" assignment maybe changed to properly

a use

This library

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <—=——- Cut code below this line and paste into the architecture body---->

-— IDELAY:

Input Delay Element

-- Virtex-4

144

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

www.Xxilinx.com

http://www.xilinx.com

IDELAY S XILINX®

-- Xilinx HDL Libraries Guide Version 8.11i

IDELAY_ inst : IDELAY
generic map (

IOBDELAY_TYPE => "DEFAULT", -- "DEFAULT", "FIXED" or "VARIABLE"
IOBDELAY_VALUE => 0) -- Any value from 0 to 63
port map (
o => 0, -- 1-bit output
c => C, -- 1-bit clock input
CE => CE, -- 1-bit clock enable input
I =>T1, -- 1-bit data input
INC => INC, -- 1-bit increment input
RST => RST -- 1l-bit reset input

)

-—- End of IDELAY_ inst instantiation

Verilog Instantiation Template

IDELAY : In order to incorporate this function into the design,
Verilog : the following instance declaration needs to be placed
instance : in the body of the design code. The instance name
declaration : (IDELAY_inst) and/or the port declarations within the
code : parenthesis maybe changed to properly reference and

connect this function to the design. Delete or comment
out inputs/outs that are not necessary.

<—-—-- Cut code below this line---->
// IDELAY: Input Delay Element

// Virtex-4
// Xilinx HDL Libraries Guide Version 8.11

IDELAY #(
.IOBDELAY_TYPE ("DEFAULT"), // "DEFAULT", "FIXED" or "VARIABLE"
.IOBDELAY_VALUE (0) // Any value from 0 to 63
) IDELAY_inst (
.0(0), // 1-bit output
.c(c), // 1-bit clock input
.CE(CE), // 1-bit clock enable input
LI(I), // 1-bit data input

.INC(INC), // 1l-bit increment input
.RST(RST) // 1-bit reset input
) ;

// End of IDELAY_ inst instantiation

For More Information

Consult the Virtex-4 User Guide.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 145
ISE 8.1i

http://www.xilinx.com

SXILINX® IDELAY

146 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

IDELAYCTRL S XILINX®

IDELAYCTRL

Primitive: IDELAY tap delay value control

The IDELAYCTRL module must be instantiated when using the tap-delay line. This

occurs when the IDELAY or ISERDES primitive is instantiated with the

IOBDELAY_TYPE attribute set to Fixed or Variable. The IDELAYCTRL module

» provides a voltage bias, independent of process, voltage, and temperature variations
to the tap-delay line using a fixed-frequency reference clock, REFCLK. This enables
very accurate delay tuning.

IDELAYCTRL

REFCLK RDY

RST

Usage

The most efficient way to use the IDELAYCTRL module is to define and lock down
the placement of every IDELAYCTRL instance used in a design. This is done by
instantiating the IDELAYCTRL instances with location (LOC) constraints.
Instantiating IDELAYCTRL instances without LOC constraints cause the
implementation tools to replicate IDELAYCTRL instances throughout the device,
even in HCLK regions not using the tap-delay line. This increases the power
consumption, uses more global clock resources in every HCLK region, and increases
the use of routing resources.

When instantiating IDELAYCTRL instances with defined LOC constraints, you must
define and lock placement of all ISERDES and IDELAY components using the tap-
delay line (IOBDELAY_TYPE attribute set to Fixed or Variable).

VHDL Instantiation Template

-— IDELAYCTRL : In order to incorporate this function into the design,

- VHDL : the following instance declaration needs to be placed

-- instance : in the architecture body of the design code. The

- declaration : instance name (IDELAYCTRL_inst) and/or the port declarations
-— code : after the "=>" assignment maybe changed to properly

-- : connect this function to the design. All inputs
- : and outputs must be connected.

-- Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
- for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-— primitives : primitives and points to the models that will be used

-= : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <==—=- Cut code below this line and paste into the architecture body---->
-- IDELAYCTRL : Input Delay Element Control
-- Virtex-4

-- Xilinx HDL Libraries Guide Version 8.11

IDELAYCTRL_inst : IDELAYCTRL

port map (
RDY => RDY, -- 1-bit output indicates validity of the REFCLK
REFCLK => REFCLK, -- 1l-bit reference clock input
RST => RST -- 1-bit reset input

)

-- End of IDELAYCTRL_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 147
ISE 8.1i

http://www.xilinx.com

SXILINX® IDELAYCTRL

Verilog Instantiation Template

// IDELAYCTRL : In order to incorporate this function into the design,

// Verilog : the following instance declaration needs to be placed

// instance : in the body of the design code. The instance name

// declaration : (IDELAYCTRL_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment
// : out inputs/outs that are not necessary.

/] <===== Cut code below this line---->

// IDELAYCTRL: Input Delay Control Element (Must be used in conjunction with the IDELAY
// when used in FIXED or VARIABLE tap-delay mode)

// Virtex-4

// Xilinx HDL Libraries Guide Version 8.11i

IDELAYCTRL IDELAYCTRL_inst (

.RDY (RDY) , // 1l-bit ready output
.REFCLK (REFCLK), // 1-bit reference clock input
.RST (RST) // 1l-bit reset input

) ;

// End of IDELAYCTRL_inst instantiation

For More Information
Consult the Virtex-4 User Guide.

148 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

IOBUF

SUXILINX®

IOBUF

Primitive: Bi-Directional Buffer with Selectable I/O Interface
Virtex-4 IOBUFs are bi-directional buffer. The I/O interface corresponds to a specific
T I/0 standard. You can attach an IOSTANDARD attribute to an IOBUF instance.
10 IOBUF components that use the LVTTL, LVCMOS15, LVCMOS18, LVCMOS25, and
I LVCMOS33 signaling standards have selectable drive and slew rates using the DRIVE
and FAST or SLOW constraints. The defaults are DRIVE = 12 mA and SLOW slew.
o)
IOBUFs are composites of IBUF and OBUFT elements. The O output is X (unknown)
X8406 when IO (input/output) is Z. IOBUFs can be implemented as interconnections of their
component elements.
Inputs Bidirectional Outputs
T | 10 (0]
1 X Z X
0 1 1 1
0 0 0 0
Usage
These design elements are instantiated rather than inferred.
Available Attributes
Attribute Type Allowed Values Default Description
CAPACITANCE STRING "LOW", "'NORMAL", | "DONT CARE” Specifies whether it is desired to
"DONT CARE” use an I/O with lower or normal
intrinsic capacitance.
DRIVE INTEGER 2,4,6,8,12,16,24 12 Selects output drive strength
(mA) for the SelectIO buffers that
use the LVITL, LVCMOS12,
LVCMOS15, LVCMOSI18,
LVCMOS25, or LVCMOS33
interface I/O standard.
IOSTANDARD STRING "DEFAULT” "DEFAULT” Use to assign an I/O standard to
an I/O primitive.
SLEW INTEGER "SLOW" or "FAST” | "SLOW” Sets the output rise and fall time.
VHDL Instantiation Template
-— IOBUF In order to incorporate this function into the design,
- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (IOBUF_inst) and/or the port declarations
-— code after the "=>" assignment maybe changed to properly
-- : connect this function to the design. Delete or comment
-— : out inputs/outs that are not necessary.
-- Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
- for added before the entity declaration. This library
-- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used

-= : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

www.Xxilinx.com

149

http://www.xilinx.com

SXILINX® IOBUF

Library UNISIM;
use UNISIM.vcomponents.all;

-— <==——- Cut code below this line and paste into the architecture body---->

-- IOBUF: Single-ended Bi-directional Buffer
-- All devices
-- Xilinx HDL Libraries Guide Version 8.1i

IOBUF_inst : IOBUF
generic map
(DRIVE => 12,
IOSTANDARD => "DEFAULT",
SLEW => "SLOW")

port map (
0 => 0, -- Buffer output
I0 => IO, -- Buffer inout port (connect directly to top-level port)
I=>T1I, -- Buffer input
T => T -- 3-state enable input

)

-- End of IOBUF_inst instantiation

Verilog Instantiation Template

// IOBUF : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (IOBUF_inst) and/or the port declarations within the

// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment
// : out inputs/outs that are not necessary.

/] <-===- Cut code below this line---->

// IOBUF: Single-ended Bi-directional Buffer
// All devices
// Xilinx HDL Libraries Guide Version 8.1i

IOBUF # (
.DRIVE(12), // Specify the output drive strength
.IOSTANDARD ("DEFAULT"), // Specify the I/0 standard
.SLEW("SLOW") // Specify the output slew rate
) IOBUF_inst (
.0(0), // Buffer output
.IO0(I0), // Buffer inout port (connect directly to top-level port)
LI(I), // Buffer input
LT(T) // 3-state enable input

)

// End of IOBUF_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

150 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

IOBUFDS

SUXILINX®

IOBUFDS

Primitive: 3-State Differential Signaling I/O Buffer with Active Low
Output Enable

IOBUFDS is a single 3-state, differential signaling input/output buffer with active

Low output enable.

T
I 10 Inputs Bidirectional Outputs
10B
0 I T 10 I0B)
(o]
X 1 V4 No Change
0827 0 0 0 1 0
1 0 1 0 1
Usage
This design element is instantiated rather than inferred.
Available Attibutes
Attribute Type Allowed Values Default Description
DRIVE INTEGER 2,4,6,8,12,16,24 |12 Selects output drive strength (mA)
for the SelectIO buffers that use the
LVTTL, LVCMOS12, LVCMOS15,
LVCMOS18, LVCMOS25, or
LVCMOS33 interface I/0 standard.
IOSTANDARD STRING "DEFAULT” "DEFAULT” Use to assign an I/O standard to an
1/0 primitive.
SLEW STRING "SLOW" or "SLOW” Sets the output rise and fall time.
"FAST”
VHDL Instantiation Template
-— IOBUFDS In order to incorporate this function into the design,
-— VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (IOBUFDS_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
-- connect this function to the design. Delete or comment
-— out inputs/outs that are not necessary.
-- Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-— for added before the entity declaration. This library
-- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used
-- for simulation.
-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.
Library UNISIM;
use UNISIM.vcomponents.all;
-— <===—= Cut code below this line and paste into the architecture body---->
-- IOBUFDS: Differential Bi-directional Buffer
-— Virtex-II/II-Pro, Spartan-3/3E
-- Xilinx HDL Libraries Guide Version 8.11

TIOBUFDS_inst
generic map
TOSTANDARD =>

IOBUFDS

"DEFAULT")

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com

151

http://www.xilinx.com

SXILINX® IOBUFDS

port map (
O => 0, -- Buffer output
10 => IO, -- Diff_p inout (connect directly to top-level port)
IOB => IOB, -- Diff n inout (connect directly to top-level port)
I =>T1, -- Buffer input
T => T -- 3-state enable input

)

-- End of IOBUFDS_inst instantiation

Verilog Instantiation Template

// IOBUFDS : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (IOBUFDS_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. Delete or comment
// out inputs/outs that are not necessary.
/] <===== Cut code below this line---->
// IOBUFDS: Differential Bi-directional Buffer
// Virtex-II/II-Pro/4, Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.11i
TOBUFDS #(
.IOSTANDARD ("DEFAULT") // Specify the I/O standard
) IOBUFDS_inst (
.0(0), // Buffer output
.IO0(I0), // Diff_p inout (connect directly to top-level port)
.IOB(IOB), // Diff_n inout (connect directly to top-level port)
LI(I), // Buffer input
LT(T) // 3-state enable input
)
// End of IOBUFDS_inst instantiation
For More Information
Consult the Virtex-4 User Guide.
152 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

ISERDES

SUXILINX®

ISERDES

Primitive: Dedicated I/0O Buffer Input Deserializer

D

CE1

CE2

CLK

SR

REV

CLKDIV

OCLK

BITSLIP

DLYING

DLYCE

DLYRST

ISERDES

o

at

Q2

Q3

fes
as
as
SHIFTOUTY

SHIFTOUT2

The Virtex-4 architecture provides a way for the user to easily implement source
synchronous solutions by using the ISERDES module. Unlike previous generations of
FPGAs, ISERDES is a dedicated source synchronous 1/O architecture. This module
helps user by saving logic resources in the FPGA fabric for source synchronous
applications. Furthermore, ISERDES also avoids additional timing complexities that
may be encountered when designing such solution in the FPGA fabric. ISERDES
module is present in all Virtex-4 family of FPGA.

The ISERDES module contains or works in conjunction with the following modules:
serial to parallel converters, serial delay chains, a word alignment unit (BITSLIP), and
a clock enable (CE) module. In addition, ISERDES contains multiple clock inputs to
accommodate various applications and will work in conjunction with the SelectIO
features in Virtex-4 family.

ISERDES Ports (Detailed Description)
O - Combinatorial Output

This port is an unregistered output of the ISERDES module. It is the unregistered
output of the delay chain. In addition, this output port can also be configured to
bypass all the submodules within ISERDES module. This output can be used to drive
the BUFIOs.

Q1 to Q6 — Registered Outputs

This port is a registered output of the ISERDES module. Using these outputs, the user
has a selection of the following combination of ISERDES submodules path as the
inputs:

1. Delay chain to serial to parallel converter to bitslip module.
2. Delay chain to serial to parallel converter.

These ports can be programmed from 2 to 6 bits. In the extended width mode, this
port can be expanded up to 10 bits.

SHIFTOUT 1-2 - Data input expansion (master)
Carry out for data input expansion. Connect to SHIFTIN1/2 of slave.
BITSLIP - BITSLIP Control Pin

This pin allows the ISERDES to perform a BITSLIP operation when logic HIGH is
given and the BITSLIP module is enabled.

CE 1-2 - Clock Enables
Clock Enables input that feeds into the CE module.
CLK - High Speed Forwarded Clock Input

This clock input is used to drive the Serial to Parallel Converter and the BITSLIP
module. The possible source for the CLK port is from one of the following clock
resources:

1. Eight global clock lines in a clock region

2. Two regional clock lines

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 153

ISE 8.1i

http://www.xilinx.com

SUXILINX®

ISERDES

3. Six clock capable 1/Os (within adjacent clock region)
4. Fabric (through bypass)
CLKDIV - Divided High Speed Forwarded Clock Input

This clock input is used to drive the Serial to Parallel Converter, Delay Chain, the
BITSLIP module, and CE module. This clock has to have slower frequency than the
clock connected to the CLK port. The possible source for the CLKDIV port is from one
of the following clock resources:

1. Eight global clock lines in a clock region
2. Two regional clock lines
D - Serial Input Data from IOB

The D is where all the incoming data enters the ISERDES module. This port works in
conjunction with SelectlO features for Virtex-4 architecture to accommodate the
desired I/O standards.

DLYCE - Delay Chain Enable Pin

This pin allows the user to increment/decrement the delay chain tap value by setting
it to logic HIGH.

DLYINC - Delay Chain Increment/Decrement Pin

When the DLYCE pin is asserted HIGH, the value at DLYINC pin
increments/decrements the delay chain value. Logic HIGH increments the tap value,
while logic LOW decrements the tap value.

DLYRST - Delay Chain Reset Pin
Asserting this pin to logic HIGH sets the delay chain value to the IOBDELAY_VALUE.
OCLK - High Speed Clock for Memory Interfaces Applications

This clock input is used to drive the serial to parallel converter in the ISERDES
module. The possible source for the OCLK port is from one of the following clock
resources:

1. Eight global clock lines in a clock region

2. Two regional clock lines

3. Six clock capable 1/Os (within adjacent clock region)
4. Fabric (through bypass)

This clock is an ideal solution for memory interfaces in which strobe signals are
required.

OFB - OQ Internal Feedback

Internal feedback loop from OQ the output of OSERDES. For internal testing
purposes.

REV - Reverse SR pin

When SR is used, a second input, REV forces the storage element into the opposite
state. The reset condition predominates over the set condition.

SR - Set/Reset Input

154

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

ISERDES

SUXILINX®

The set/reset pin, SR forces the storage element into the state specified by the SRVAL
attribute, set through the user constraints file (UCF). SRVAL = “1” forces a logic 1.
SRVAL = “0” forces a logic "0." When SR is used, a second input (REV) forces the
storage element into the opposite state. The reset condition predominates over the set
condition. The following truth tables describes the operation of SR in conjunction
with REV.

Truth Table When SRVAL = “0” (Default Condition)

SR | REV | Function
NOP

Set

Reset
Reset

== o O
=l =]

Truth Table When SRVAL = “1”

SR | REV | Function
NOP
Reset

Set

Reset

== o O
=l =]

SHIFTIN 1-2 — Data input expansion (slave)

Carry input for data input expansion. Connect to SHIFTOUT1/2 of master.

TFB — TQ Internal Feedback

Internal feedback loop from TQ output of OSERDES. For internal testing purposes.
ISERDES Submodules

Delay Chains Module

The Delay Chains module is a dedicated architecture that provides an adjustable or
fixed timing relationship between input data and forwarded clock. This solution is
achieved by placing delays in the ISERDES module that de-skew the inputs. The
input delay chains can be preprogrammed (fixed) or dynamically changed (variable).
In addition this module works in conjunction with IDELAYCTRL, a primitive
available in Virtex-4 devices.

A number of attributes being required in order to use the Delay Chains module. The
attributes are as follow:

1. IOBDELAY_ VALUE
2. IOBDELAY
3. IOBDELAY_TYPE

IOBDELAY_VALUE can take values between 0 and 63. This attribute defines the
number of delay taps used. Default value for this attribute is 0.

Setting the IOBDELAY attribute to "IBUE," "IFD," and "BOTH" allows the Delay
Chains to be used in the combinatorial output (O output), registered output (Q1-Q6
output), and both respectively. Setting the IOBDELAY attribute to "NONE" bypasses
the delay chains module.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 155

ISE 8.1i

http://www.xilinx.com

SUXILINX®

ISERDES

The IOBDELAY_TYPE can take three different values: "DEFAULT," "FIXED," or
"VARIABLE." The "DEFAULT" allows the user to use the 0 hold time value. Using the
"FIXED" mode, the delay taps equal to value defined by IOBDELAY_VALUE. In this
mode, the value can’t be changed after the device is programmed. In the last mode,
"VARIABLE," the delay value is set to an initial value defined by IOBDELAY_VALUE
and adjustable after the device is programmed.

The Delay Chains module is controlled by DLYRST, DLYCE, and DLYINC pins. Each
of the operations performed with these pins are synchronous to the CLKDIV clock
signal. Asserting DLYRST to logic HIGH configures the delay tap to the value defined
in IOBDELAY_VALUE. To increment/decrement the delay tap value, the user will
need to use both DLYCE and DLYINC. For this operation to proceed, the DLYCE must
be asserted to logic HIGH. Setting DLYINC to 1 will increment and setting DLYINC to
0 will decrement the delay tap value.

The following table identifies the Delay Chains Controls:

Operation DLYRST | DLYCE | DLYINC
Reset to IOBDELAY_VALUE | 1 X X
Increment tap value 0 1 1
Decrement tap value 0 1 0
No change 0 0 X

Note: All Delay Chains operations are synchronous to CLKDIV.
Serial to Parallel Converter

The serial to parallel converter in the ISERDES module takes in serial data and
convert them into data width choices from 2 to 6. Data widths larger than 6 (7,8, and
10) is achievable by cascading two ISERDES modules for data width expansion. In
order to do this, one ISERDES must be set into a MASTER mode, while another is set
into SLAVE mode. The user will also need to connect the SHIFTIN of "slave" and
SHIFTOUT of "master" ports together. The "slave" will only use Q3 to Q6 ports as its
output. The serial to parallel converter is available for both SDR and DDR modes.

This module is primarily controlled by CLK and CLKDIV clocks. The following table
describes the relationship between CLK and CLKDIV for both SDR and DDR mode.

The following table illustrates the CLK/CLKDIV relationship of the serial to parallel
converter.

SDR Data Width | DDR Data Width | CLK | CLKDIV
2 4 2X | X
3 6 3X | X
4 8 4X | X
5 10 5X | X
6 - 6X | X
7 - 7X | X
8 - 8X | X
CE Module

CE Module is essentially a 2:1 parallel to serial converter. This module is controlled by
CLKDIV clock input and is used to control the clock enable port of the Serial to
Parallel Converter module.

156

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

ISERDES

SUXILINX®

BITSLIP Module

The BITSLIP module is a "Barrel Shifter" type function that reorders an output
sequence. An output pattern only changes whenever the BITSLIP is invoked. The
maximum number of BITSLIP reordering is always equal to the number of bits in the
pattern length minus one (DATA_WIDTH - 1). BITSLIP is supported for both SDR
and DDR operations. However, note that the output reordering for SDR and DDR
greatly differs.

In order to use the BITSLIP, the attribute "BITSLIP_ ENABLE" must be set to "ON."
Setting this attribute to "OFF" allows the user to bypass the BITSLIP module.

The BITSLIP operation is synchronous to the CLKDIV clock input. In order to invoke
the BITSLIP module, the BITSLIP port must be asserted HIGH for one and only one
CLKDIV cycle. After one CLKDIV cycle the BITSLIP port is asserted HIGH, the
BITSLIP operation is completed. For DDR mode, a BITSLIP operation may not be
stable until after two CLKDIV cycles. All outputs of the BITSLIP appear in one of the
registered output ports (Q1 to Q6) BITSLIP operations are synchronous to CLKDIV.

Additional Features
Width Expansion

It is possible to use the ISERDES modules to recover data widths larger than 6. In
order to use this feature, two ISERDES modules need to be instantiated. Both the
ISERDES must be an adjacent master and slave pair. The attribute SERDES_MODE
must be set to either "MASTER" or "SLAVE" in order to differentiate the modes of the
ISERDES pair. In addition, the user must connect the SHIFOUT ports of the MASTER
to the SHIFTIN ports of the SLAVE. This feature supports data widths of 7, 8, and 10
for SDR and DDR mode. The table below lists the data width availability for SDR and
DDR mode.

Mode Widths

SDR Data Widths
DDR Data Widths

2,3,4,5,6,7,8
4,6,8,10

Port List and Definitions

Name

Type

Width

Description

(@)

Output

1

Combinatorial Output

Ql-6

Output

1 (each)

Registered Outputs

SHIFTOUT1 -2

Output

1 (each)

Carry out for data input expansion. Connect to SHIFTIN1/2 of slave.

BITSLIP

Input

1

Invokes the ISERDES to perform a BITSLIP operation when logic HIGH is given and the
BITSLIP module is enabled.

CE1-2

Input

Clock enables inputs.

CLK

Input

High speed forwarded clock

CLKDIV

Input

Divided clock input.

D

Input

Serial input data from IOB

DLYCE

Input

Enable delay chain to be incremented or decremented

DLYINC

Input

If 1/0, increment/decrement delay chain 1 tap for every CLKDIV cycle.

DLYRST

Input

Resets delay line to programmed value of IOBDELAY_VALUE (=Tap Count). If no value
programmed, resets delay line to O taps.

OCLK

Input

High-speed clock input for memory applications.

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com 157

http://www.xilinx.com

SXILINX® ISERDES

Name Type | Width Description
OFB Input |1 Internal feedback loop from OQ output of OSERDES. For internal testing purposes.
REV Input |1 Reverse SR
SR Input |1 Set/Reset Input

SHIFTIN1-2 |Input |1 (each) | Carry input for data input expansion. Connect to SHIFTOUT1/2 of master.

TFB Input |1 Internal feedback loop from TQ output of OSERDES. For internal testing purposes.

Available Attributes

Attribute Type Allowed Values Default Description

BITSLIP_ENABLE BOOLEAN FALSE, TRUE 0 Allows the user to enable the bitslip

controller.

DATA_RATE STRING "SDR" or "DDR” "DDR” Specify data rate of either allowed

value.

DATA_WIDTH STRING If DATA_RATE = |4 Defines the serial to parallel
"DDR", value is converter width. This value also
limited to 4,6,8, or depends on the SDR vs. DDR and
10.If DATA_RATE the Mode of the ISERDES
="SDR", value is
limited to
2,3,4,5,6,7,or 8.

INIT_Q1 1-Bit Binary 1-Bit Binary 1b0 Defines the intial value of Q outputs

INIT_Q2 1-Bit Binary 1-Bit Binary 1b0 Defines the intial value of Q outputs

INIT_Q3 1-Bit Binary 1-Bit Binary 1'b0 Defines the intial value of Q outputs

INIT_Q4 1-Bit Binary 1-Bit Binary 1'b0 Defines the intial value of Q outputs

INTERFACE_TYPE STRING "MEMORY" or "MEMORY” | Determines which ISERDES use
"NETWORKING” model is used.

IOBDELAY STRING "NONE", "IBUF", | "NONE” Defines where the at the ISERDES
"IFD", "BOTH outputs the Delay Chains will be

used

IOBDELAY_TYPE STRING "DEFAULT", "DEFAULT” | Defines whether the Delay Chains
"FIXED", or is in fixed or variable mode
"VARIABLE”

IOBDELAY_VALUE INTEGER 0to 63 0 Set initial tap delay to an integer

from 0 to 63.
NUM_CE INTEGER lor2 2 Define number or clock enables to
an integer of 1 or 2.

SERDES_MODE STRING "MASTER" or "MASTER” Defines whether the ISERDES
"SLAVE” module is a master or slave when

width expansion is used

SRVAL_Q1 1-Bit Binary 1-Bit Binary 1'b0 Define Q1 output value upon SR

assertion - 1'b1 or 1'b0.

SRVAL_QI1 to SRVAL_Q4 | BINARY 17b0 or 17b1 1'b0 Defines the value of Q outputs

when reset is invoked

SRVAL_Q2 1-Bit Binary 1-Bit Binary 1'b0 Define Q2 output value upon SR

assertion - 1'b1 or 1'b0.

SRVAL_Q3 1-Bit Binary 1-Bit Binary 1'b0 Define Q3 output value upon SR

assertion - 1'b1 or 1'b0.

SRVAL_Q4 1-Bit Binary 1-Bit Binary 1'b0 Define Q4 output value upon SR

assertion - 1'b1 or 1'b0.

VHDL Template
- ISERDES : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed
-— instance : in the architecture body of the design code. The
-- declaration : instance name (ISERDES_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly

-— : connect this function to the design. Delete or comment

158 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

ISERDES S XILINX®

-— : out inputs/outs that are not necessary.

-- Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
- for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-— primitives : primitives and points to the models that will be used

-= : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <————- Cut code below this line and paste into the architecture body---->
-- ISERDES: Input SERDES
-- Virtex-4

-- Xilinx HDL Libraries Guide Version 8.11

ISERDES_inst : ISERDES
generic map (

BITSLIP_ENABLE => FALSE, -- TRUE/FALSE to enable bitslip controller
DATA_RATE => "DDR", -- Specify data rate of "DDR" or "SDR"
DATA_WIDTH => 4, -- Specify data width - For DDR 4,6,8, or 10
-- For SDR 2,3,4,5,6,7, or 8
INIT Q1 => '0', -- INIT for Q1 register - '1l' or 'O’
INIT_Q2 => '0', -- INIT for Q2 register - '1l' or '0'
INIT_Q3 => '0', -- INIT for Q3 register - '1l' or '0'
INIT Q4 => '0', -- INIT for Q4 register - '1l' or 'O’
INTERFACE_TYPE => "MEMORY", -- Use model - "MEMORY" or "NETWORKING"
IOBDELAY => "NONE", -- Specify outputs where delay chain will be applied
-- "NONE", "IBUF", "IFD", or "BOTH"
IOBDELAY_TYPE => "DEFAULT", -- Set tap delay "DEFAULT", "FIXED", or "VARIABLE"
IOBDELAY_VALUE => 0, -- Set initial tap delay to an integer from 0 to 63
NUM_CE => 2, -- Define number or clock enables to an integer of 1 or 2
SERDES_MODE => "MASTER", --Set SERDES mode to "MASTER" or "SLAVE"
SRVAL_Q1 => '0', -- Define Q1 output value upon SR assertion - 'l' or '0’'
SRVAL_Q2 => '0', -- Define Q1 output value upon SR assertion - 'l' or '0’'
SRVAL_Q3 => '0', -- Define Q1 output value upon SR assertion - 'l' or '0'
SRVAL_Q4 => '0') -- Define Q1 output value upon SR assertion - 'l' or '0’'
port map (
o => 0, -- 1-bit output
Ql => Q1, -- 1l-bit output
Q2 => Q2, -- 1l-bit output
Q3 => Q3, -- 1l-bit output
Q4 => Q4, -- 1l-bit output
Q5 => Q5, -- 1-bit output
Q6 => Q6, -- 1l-bit output
SHIFTOUT1 => SHIFTOUT1, -- 1l-bit output
SHIFTOUT2 => SHIFTOUT2, -- 1-bit output
BITSLIP => BITSLIP, -- 1-bit input
CE1 => CE1, -- 1-bit input
CE2 => CE2, -- 1-bit input
CLK => CLK, -- 1-bit input
CLKDIV => CLKDIV, -- 1-bit input
D => D, -- 1-bit input
DLYCE => DLYCE, -- 1-bit input
DLYINC => DLYINC, -- 1-bit input
DLYRST => DLYRST, -- 1-bit input
OCLK => OCLK, -- 1-bit input
REV => REV, -- 1-bit input
SHIFTIN1 => SHIFTIN1l, -- 1l-bit input
SHIFTIN2 => SHIFTIN2, -- 1l-bit input
SR => SR -- 1-bit input

)

-- End of ISERDES_inst instantiation

Verilog Template

// ISERDES : In order to incorporate this function into the design,

// Verilog : the following instance declaration needs to be placed

// instance : in the body of the design code. The instance name

// declaration : (ISERDES_inst) and/or the port declarations within the

// code : parenthesis maybe changed to properly reference and

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 159

ISE 8.1i

http://www.xilinx.com

SUXILINX®

ISERDES

// : connect this function to the design. Delete or
// : out inputs/outs that are not necessary.
/] <-==== Cut code below this line---->

// ISERDES: Source Synchronous Input Deserializer
// Virtex-4
// Xilinx HDL Libraries Guide Version 8.1i

ISERDES # (
.BITSLIP_ENABLE ("FALSE"),
.DATA_RATE ("DDR"), // Specify data rate of "DDR" or "SDR"
.DATA_WIDTH(4), // Specify data width - For DDR 4,6,8, or 10

// For SDR 2,3,4,5,6,7, or 8

JINIT_Q1(1'b0), // INIT for Q1 register - 1'bl or 1'b0
INIT_Q2(1'b0), // INIT for Q2 register - 1'bl or 1'bO0
JINIT_Q3(1'b0), // INIT for Q3 register - 1'bl or 1'b0
JINIT_Q4(1'b0), // INIT for Q4 register - 1'bl or 1'b0
.INTERFACE_TYPE ("MEMORY"), // Use model -
.IOBDELAY ("NONE") ,

// "NONE", "IBUF", "IFD", or "BOTH"
.IOBDELAY_TYPE ("DEFAULT"), // Set tap delay "DEFAULT",
.IOBDELAY_VALUE(OQ),
.NUM_CE(2),
.SERDES_MODE ("MASTER") ,
.SRVAL_Q1(1'b0),
.SRVAL_Q2 (1'b0),
.SRVAL_Q3(1'b0),

"FIXED",
// Set initial tap delay to an integer from 0 to 63

// Define number or clock enables to an integer of 1 or 2

// Set SERDES mode to "MASTER" or "SLAVE"

// Define Q1 output value upon SR assertion - 1'bl or 1'b0
// Define Q2 output value upon SR assertion - 1'bl or 1'b0
// Define Q3 output value upon SR assertion - 1'bl or 1'b0

comment

// TRUE/FALSE to enable bitslip controller

"MEMORY" or "NETWORKING"
// Specify outputs where delay chain will be applied

or "VARIABLE"

.SRVAL_Q4 (1'b0) // Define Q4 output value upon SR assertion - 1'bl or 1'b0

) ISERDES_inst (

.0(0), // 1-bit combinatorial output
.Q1(Ql), // 1l-bit registered output
.Q2(Q2), // 1l-bit registered output
.Q3(Q3), // 1l-bit registered output
.Q4(Q4), // 1l-bit registered output
.Q5(Q5), // 1l-bit registered output
.Q6(Q6), // 1l-bit registered output

. SHIFTOUT1 (SHIFTOUT1) ,
. SHIFTOUT2 (SHIFTOUT2) ,
.BITSLIP(BITSLIP),

// 1-bit carry output
// 1l-bit carry output
// 1l-bit Bitslip input

.CE1(CE1), // 1-bit clock enable input

.CE2 (CE2), // 1l-bit clock enable input

.CLK (CLK) , // 1-bit clock input
.CLKDIV(CLKDIV), // 1l-bit divided clock input
.D(D), // 1l-bit serial data input

.DLYCE (DLYCE) , // 1l-bit delay chain enable input
.DLYINC (DLYINC), // 1-bit delay increment/decrement input
.DLYRST (DLYRST), // 1l-bit delay chain reset input
.OCLK (OCLK) , // 1-bit high-speed clock input
.REV (REV) , // 1-bit reverse SR input
.SHIFTINI (SHIFTIN1), // 1l-bit carry input

.SHIFTIN2 (SHIFTIN2), // 1l-bit carry input

.SR(SR) // 1l-bit set/reset input

)

// End of ISERDES_inst instantiation

For More Information
Consult the Virtex-4 User Guide.

160 www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

KEEPER S XILINX®

KEEPER
Primitive: KEEPER Symbol

KEEPER is a weak keeper element that retains the value of the net connected to its
bidirectional O pin. For example, if a logic 1 is being driven onto the net, KEEPER
drives a weak /resistive 1 onto the net. If the net driver is then 3-stated, KEEPER
continues to drive a weak /resistive 1 onto the net.

Usage

X8718 This design element is instantiated rather than inferred.

VHDL Instantiation Template

-— KEEPER : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed

-- instance : in the architecture body of the design code. The

-- declaration : instance name (KEEPER_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly

-- : connect this function to the design. Delete or comment
-— : out inputs/outs that are not necessary.

-- Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
- for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that will be used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <==—== Cut code below this line and paste into the architecture body---->
-- KEEPER: I/O Buffer Weak Keeper
-= All FPGA, CoolRunner-II
-- Xilinx HDL Libraries Guide Version 8.11
KEEPER_inst : KEEPER
port map (
O =>0 -- Keeper output (connect directly to top-level port)
)

-- End of KEEPER_inst instantiation

Verilog Instantiation Template

// KEEPER : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (KEEPER_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment
// : out inputs/outs that are not necessary.

/] <===== Cut code below this line---->

// KEEPER: I/O Buffer Weak Keeper
// All FPGA, CoolRunner-II
// Xilinx HDL Libraries Guide Version 8.11i

KEEPER KEEPER_inst (

.0(0), // Keeper output (connect directly to top-level port)
)

// End of KEEPER_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 161
ISE 8.1i

http://www.xilinx.com

SXILINX® KEEPER

For More Information

Consult the Virtex-4 User Guide.

162 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

LDCPE

SUXILINX®

LDCPE

Primitive: Transparent Data Latch with Asynchronous Clear and Preset
and Gate Enable

LDCPE is a transparent data latch with data (D), asynchronous clear (CLR),
asynchronous preset (PRE), and gate enable (GE). When CLR is High, it overrides the

PRE

|

LDCPE

PR
m

o

ﬁ

L

X8371

other inputs and resets the data (Q) output Low. When PRE is High and CLR is Low, it
presets the data (Q) output High. Q reflects the data (D) input while the gate (G) input
and gate enable (GE) are High and CLR and PRE are Low. The data on the D input

during the High-to-Low gate transition is stored in the latch. The data on the Q output
remains unchanged as long as G or GE remains Low.

The latch is asynchronously cleared, output Low, when power is applied, or when
global reset is active.

GSR defaults to active-High but can be inverted by adding an inverter in front of the
GSR input of the Virtex-4 symbol.

Inputs

Outputs

CLR

PRE

GE

Q

0

1

No Change

0

1

No Change

elNeollolNeol ol Noll S

oc|lo|lo|lo|lo|—| X

X
X
0
1
1
1
1

—|o|r || XXX ®

T X|~|o|X|X|X| O

D

Usage

This design element is inferred in the design code; however, the element can be
instantiated for cases where strict placement control, relative placement control, or
initialization attributes must be applied.

Available Attributes

Attribute

Type

Allowed Values

Default

Description

INIT

1-Bit

lor0

0

Sets the initial value of Q
output after configuration

VHDL Instantiation Template

All families.

-- LDCPE: Transparent latch with with Asynchronous Reset,
-— Gate Enable.

-- Xilinx HDL Libraries Guide version 8.1i

LDCPE_inst : LDCPE
generic map (
INIT => '0') -- Initial value of the latch
port map (
Q => Q, -- Data output
CLR => CLR, -- Asynchronous clear/reset input
D => D, -- Data input
G => G, -- Gate input

Preset and

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

www.Xxilinx.com

163

http://www.xilinx.com

SXILINX® LDCPE
GE => GE, -- Gate enable input
PRE => PRE -- Asynchronous preset/set input
)
-- End of LDCPE_inst instantiation
Verilog Instantiation Template
// LDCPE : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (LDCPE_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. Delete or comment
// out inputs/outs that are not necessary.
/] <===== Cut code below this line---->
// LDCPE: Transparent latch with with Asynchronous Reset, Preset and
// Gate Enable. All families.
// Xilinx HDL Libraries Guide Version 8.11
LDCPE # (
LINIT(1'b0) // Initial value of latch (1'bO or 1'bl)
) LDCPE_inst (
.Q(Q), // Data output
.CLR(CLR), // Asynchronous clear/reset input
.D(D), // Data input
.G(G), // Gate input
.GE (GE) , // Gate enable input
.PRE (PRE) // Asynchronous preset/set input
)
// End of LDCPE_inst instantiation
For More Information
Consult the Virtex-4 User Guide.
164 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

LUT1,2,3,4

SUXILINX®

LUT1, 2,3,4

Primitive
LUT1
| O
10
X9852
" LUT2
)
10
X8379
2 LUT3
"
10 o]
X8382
i3 | LUT4
12
[¢]
" —
10
X8385

: 1-, 2-, 3-, 4-Bit Look-Up Table with General Output

LUT1, LUT2, LUT3, and LUT4 are, respectively, 1-, 2-, 3-, and 4-bit look-up-tables
(LUTs) with general output (O).

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for
the number of inputs, must be attached to the LUT to specify its function.

LUT1 provides a look-up-table version of a buffer or inverter.

LUTs are the basic Virtex-4 building blocks. Two LUTs are available in each CLB slice;
four LUTs are available in each CLB. The variants, “LUT1_D, LUT2_D, LUT3_D,
LUT4_D” and “LUT1_L, LUT2_L, LUT3_L, LUT4_L" provide additional types of
outputs that can be used by different timing models for more accurate pre-layout
timing estimation.

LUTS3 Function Table

Inputs

Outputs

(o)

INITI[O]

INIT[1]

INIT[2]

INIT[3]

INIT[4]

INIT[5]

=R =R O OO O

_ | OO Rr|Rr|O|O

S| = | O|R|O|R|O

INIT[6]

1

1

1

INIT[7]

INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute

Usage

LUTs are generally inferred with the logic portions of the HDL code. Xilinx suggests
that you instantiate LUTs only if you have a need to implicitly specify the logic
mapping, or if you need to manually place or relationally place the logic.

Available Attributes

LUT1
Attribute Type Allowed Values | Default Description
INIT 2-Bit Hexadecimal | 2-Bit Hexadecimal 2'h0 Initializes ROMs, RAMs, registers,
and look-up tables.
LUT2
Attribute Type Allowed Values | Default Description
INIT 4-Bit Hexadecimal 4-Bit Hexadecimal 4'h0 Initializes ROMs, RAMs, registers,
and look-up tables.

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com

165

http://www.xilinx.com

®
S XILINX LUT1, 2,3, 4
LUT3
Attribute Type Allowed Values | Default Description
INIT 8-Bit Hexadecimal 8-Bit Hexadecimal 8'h00 Initializes ROMs, RAMs, registers,
and look-up tables.
LUT4
Attribute Type Allowed Values | Default Description
INIT 16-Bit Hexadecimal 16-Bit Hexadecimal 16'h0000 | Initializes ROMs, RAMs, registers,
and look-up tables.
VHDL Instantiation Template for LUT1
-- LUT1 In order to incorporate this function into the design,
-— VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (LUT1_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
- reference and connect this function to the design.
-- All inputs and outputs must be connected.
- Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-— for added before the entity declaration. This library
- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used
-- for simulation.
-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.
Library UNISIM;
use UNISIM.vcomponents.all;
-—— <= Cut code below this line and paste into the architecture body---->

-- LUT1:

l-input Look-Up Table with general output

-- Xilinx HDL Libraries Guide Version 8.1i

LUT1_inst
generic map
INIT =>
port map (
o => 0O,
I0 => IO
) ;

LUT1
IIOOII)

-- LUT general output
-- LUT input

-- End of LUTI1_inst instantiation

// LUT1

// Verilog
// instance
// declaration
// code

Verilog Instantiation Code for LUT1

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code. The instance name
(LUT1_inst) and/or the port declarations within the
parenthesis maybe changed to properly reference and
connect this function to the design. All inputs

and outputs must be connected.

/] <-===- Cut code below this line---->

// LUTL:

l-input Look-Up Table with general output

// For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.11i

LUT1 #(

.INIT(2'b00)

) LUT1_inst
.0(0),
.I0(10)

)

// Specify LUT Contents

// LUT general output
// LUT input

// End of LUT1_inst instantiation

166

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

®

LUT1, 2,3, 4 SUXILINX
LUT1_D

VHDL Instantiation Template for LUT2
- LUT2 : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (LUT2_inst) and/or the port declarations
-= code : after the "=>" assignment maybe changed to properly
-— : reference and connect this function to the design.
-— : All inputs and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library
-— Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that will be used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <====- Cut code below this line and paste into the architecture body---->

-- LUT2: 2-input Look-Up Table with general output
-- Xilinx HDL Libraries Guide Version 8.11i

LUT2_inst : LUT2
generic map (
INIT => X"0")

port map (
0O => 0, -- LUT general output
I0 => I0, -- LUT input
I1 => I1 -- LUT input

)

-- End of LUT2_inst instantiation

Verilog Instantiation Code for LUT2

// LUT2 : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (LUT2_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// LUT2: 2-input Look-Up Table with general output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.11i

LUT2 #(

.INIT(4'h0) // Specify LUT Contents
) LUT2_inst (

.0(0), // LUT general output

.I0(I0), // LUT input
.I1(I1) // LUT input
)

// End of LUT2_inst instantiation

VHDL Instantiation Template for LUT3

-- LUT3 : In order to incorporate this function into the design,

-— VHDL : the following instance declaration needs to be placed

-- instance : in the architecture body of the design code. The

-- declaration : instance name (LUT3_inst) and/or the port declarations

- code : after the "=>" assignment maybe changed to properly

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 167

ISE 8.1i

http://www.xilinx.com

®
S XILINX LUT1, 2,3, 4
-— reference and connect this function to the design.
- All inputs and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library
-— Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that will be used
- for simulation.
-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.
Library UNISIM;
use UNISIM.vcomponents.all;
-—— <===== Cut code below this line and paste into the architecture body---->
-- LUT3: 3-input Look-Up Table with general output
-- Xilinx HDL Libraries Guide Version 8.11i
LUT3_inst : LUT3
generic map (
INIT => X"00")
port map (
0O => 0, -- LUT general output
I0 => I0, -- LUT input
I1 => I1, -- LUT input
I2 => I2 -- LUT input
)
-- End of LUT3_inst instantiation
Verilog Instantiation Code for LUT3
// LUT3 : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (LUT3_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// and outputs must be connected.
/] <-===- Cut code below this line---->
// LUT3: 3-input Look-Up Table with general output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.1i
LUT3 #(
.INIT(8'h00) // Specify LUT Contents
) LUT3_inst (
.0(0), // LUT general output
.I0O(I0), // LUT input
.I1(I1), // LUT input
.I2(I2) // LUT input
)
// End of LUT3_inst instantiation
VHDL Instantiation Template for LUT4
- LUT4 : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (LUT4_inst) and/or the port declarations
-= code : after the "=>" assignment maybe changed to properly
-— reference and connect this function to the design.
- All inputs and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library
-— Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that will be used
- for simulation.
168 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

LUT1,2,3,4

SUXILINX®

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <====- Cut code below this line and paste into the architecture body---->

-- LUT4: 4-input Look-Up Table with general output
-- Xilinx HDL Libraries Guide Version 8.11i

LUT4_inst
generic map

INIT => X"0000")

port map (
o => 0,
I0 => IO,
I1 => I1,
I2 => I2,
I3 => I3

)

LUT4

(

LUT general output

LUT input
LUT input
LUT input
LUT input

-- End of LUT4_inst instantiation

// LUT4

// Verilog
// instance
// declaration

// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs

// and outputs must be connected.

/] <===== Cut code below this line---->

Verilog Instantiation Code for LUT4

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code.
(LUT4_inst) and/or the port declarations within the

// LUT4: 4-input Look-Up Table with general output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.11

LUT4 #(

.INIT(16'h0000)

) LUT4_inst
.0(0),
.I0(I0),
I1(1I1),
LI2(12),
I3(I3)

)

(
//
//
//
//
//

LUT
LUT
LUT
LUT
LUT

// Specify LUT Contents

general output
input
input
input
input

// End of LUT4_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

The instance name

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com

ISE 8.1i

169

http://www.xilinx.com

SXILINX® LUT1, 2,3, 4

170 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

LUT1_D, LUT2_D, LUT3_D, LUT4_D S XILINX®

LUT1_D, LUT2_D, LUT3_D, LUT4_D

Primitive: 1-, 2-, 3-, 4-Bit Look-Up Table with Dual Output

LUT1_D, LUT2_D, LUT3_D, and LUT4_D are, respectively, 1-, 2-, 3-, and 4-bit look-
LUT1iD |0 up-tables (LUTs) with two functionally identical outputs, O and LO. The O output is a
general interconnect. The LO output is used to connect to another output within the

o — same CLB slice and to the fast connect buffer.
x8sr7 A mandatory INIT attribute, with an appropriate number of hexadecimal digits for
the number of inputs, must be attached to the LUT to specify its function.
W 0725] 0 LUT1_D provides a look-up-table version of a buffer or inverter.
|o_ _o See also “LUT1, 2, 3,4” and “LUT1_L, LUT2_L, LUT3_L, LUT4_L.”
LUT3_D Function Table

X8380

Inputs Outputs
12 1 10 0} LO
12 LUT3_D Lo
" B 0 0 0 INITI[O] INITI[O]
= 2 0 0 1 INIT[1] INIT[1]
x8383 0 1 0 INIT[2] INITI[2]
0 1 1 INITI[3] INITI[3]
1 0 0 INIT[4] INIT[4]
s [LUTa D
2 Lo 1 0 1 INITI[5] INITI[5]
L | o 1 1 0 INITI[6] INIT[6]
10
] 1 1 1 INIT[7] INIT[7]
X8386 INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute
Usage
LUTs are generally inferred with the logic portions of the HDL code. Xilinx suggests
that you instantiate LUTs only if you have a need to implicitly specify the logic
mapping, or if you need to manually place or relationally place the logic.
Available Attributes
LUT1_D
Attribute Type Allowed Values | Default Description
INIT 2-Bit Hexadecimal | 2-Bit Hexadecimal 2'h0 Initializes ROMs, RAMs, registers,
and look-up tables.
LUT2_D
Attribute Type Allowed Values | Default Description
INIT 4-Bit Hexadecimal 4-Bit Hexadecimal 4'h0 Initializes ROMs, RAMs, registers,
and look-up tables.
LUT3_D
Attribute Type Allowed Values | Default Description
INIT 8-Bit Hexadecimal 8-Bit Hexadecimal 8'h00 Initializes ROMs, RAMs, registers,
and look-up tables.
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 171

ISE 8.1i

http://www.xilinx.com

SUXILINX®

LUT1_D, LUT2_D, LUT3_D, LUT4_D

LUT4_D
Attribute Type Allowed Values | Default Description
INIT 16-Bit Hexadecimal 16-Bit Hexadecimal 16'h0000 | Initializes ROMs, RAMs, registers,
and look-up tables.

VHDL Instantiation Template for LUT1_D

-- LUT1_D In order to incorporate this function into the design,

-— VHDL the following instance declaration needs to be placed

-- instance in the architecture body of the design code. The

-- declaration instance name (LUT1_D_inst) and/or the port declarations

- code after the "=>" assignment maybe changed to properly

- reference and connect this function to the design.

-- All inputs and outputs must be connected.

- Library In addition to adding the instance declaration, a use

-- declaration statement for the UNISIM.vcomponents library needs to be

-— for added before the entity declaration. This library

- Xilinx contains the component declarations for all Xilinx

-- primitives primitives and points to the models that will be used

-- for simulation.

-- Copy the following two statements and paste them before the

-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <————- Cut code below this line and paste into the architecture body---->

-- LUT1_D:

l-input Look-Up Table with general and local outputs

-- Xilinx HDL Libraries Guide Version 8.1i

LUT1_D_inst

generic map
INIT =>

port map (

LO => LO,

0o => 0O,
I0 => IO
)

LUT1_D

"00")

-- LUT local output
-- LUT general output
-- LUT input

-- End of LUT1_D_inst instantiation

// LUT1_D
// Verilog
// instance
// declaration

Verilog Instantiation Code for LUT1_D

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code. The instance name

(LUT1_D_inst) and/or the port declarations within the

// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs
// and outputs must be connected.
/] <-==== Cut code below this line---->
// LUT1_D: l-input Look-Up Table with general and local outputs
// For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.1i
LUT1_D #(
.INIT(2'b00) // Specify LUT Contents
) LUT1_D_inst (
.LO(LO), // LUT local output
.0(0), // LUT general output
.I0O(I0) // LUT input

) ;

// End of LUT1_D_inst instantiation

172

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

LUT1_D, LUT2_D, LUT3_D, LUT4_D

SUXILINX®

-= LUT2_D

-= VHDL

-- instance
-- declaration
-= code

- Library
-- declaration
-= for

-- Xilinx

-- primitives

-- Copy the following two statements and paste them before the

instance name
after the

VHDL Instantiation Template for LUT2_D

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code.
(LUT2_D_inst) and/or the port declarations
"=>" assignment maybe changed to properly

The

reference and connect this function to the design.
All inputs and outputs must be connected.

In addition to adding the instance declaration, a use

statement for the UNISIM.vcomponents library needs to be
added before the entity declaration.

This library

contains the component declarations for all Xilinx

primitives and points to the models that will be used

for simulation.

-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <————- Cut code below this line and paste into the architecture body---->

-- LUT2_D: 2-input Look-Up Table with general and local outputs

-- Xilinx HDL Libraries Guide Version 8.1i

LUT2_D_inst
generic map

(

LUT2_D

INIT => X"0")

port map (
LO => LO,
o => O,
I0 => IO,
Il => I1
)

-- End of LUT2_D_inst instantiation

// LUT2_D
// Verilog
// instance
// declaration

In order to incorporate this function into the design,

LUT
LUT
LUT
LUT

local output
general output
input

input

Verilog Instantiation Code for LUT2_D

the following instance declaration needs to be placed

in the body of the design code.

The instance name

(LUT2_D_inst) and/or the port declarations within the
parenthesis maybe changed to properly reference and

// code

// connect this function to the design.
// and outputs must be connected.

/] <===== Cut code below this line---->

All inputs

// LUT2_D: 2-input Look-Up Table with general and local outputs
// For use with all FPGAs.

// Xilinx HDL Libraries Guide Version 8.11

LUT2_D #(
.INIT(4'h0)

) LUT2_D_inst
.LO(LO), //
.0(0), //
.I0(1I0), //
JI1(1I1) /7

)

// End of LUT2_IL_inst instantiation

-= LUT3_D

-= VHDL

-- 1instance
-- declaration
-= code

(

//

LUT
LUT
LUT
LUT

Specify LUT Contents

local output
general output
input

input

VHDL Instantiation Template for LUT3_D

In order to incorporate this function into the design,

the following instance declaration needs to be placed

in the architecture body of the design code.
(LUT3_D_inst) and/or the port declarations
"=>" assignment maybe changed to properly

instance name
after the

The

reference and connect this function to the design.

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com

173

http://www.xilinx.com

SUXILINX®

LUT1_D, LUT2_D, LUT3_D, LUT4_D

-- Library
-- declaration
- for

-- Xilinx

-- primitives

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <————- Cut code below this line and paste into the architecture body---->

-- LUT3_D: 3-input Look-Up Table with general and local outputs
-- Xilinx HDL Libraries Guide Version 8.1i

LUT3_D_inst
generic map

LUT3_D

INIT => X"00")

port map (
LO => LO,
o => 0,
I0 => IO,
I1 => I1,
I2 => I2

)

-- LUT local output
-- LUT general output
-- LUT input

-- LUT input

-- LUT input

-- End of LUT3_D_inst instantiation

// LUT3_D
// Verilog
// instance
// declaration

Verilog Instantiation Code for LUT3_D

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code. The instance name

(LUT3_D_inst) and/or the port declarations within the

// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs

// and outputs must be connected.

/] <-===- Cut code below this line---->

// LUT3_D: 3-input Look-Up Table with general and local outputs
// For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.1i

LUT3_D #(

.INIT(8'h00) // Specify LUT Contents

) LUT3_D_inst

.LO(LO),
.0(0),
.I0(I0),
JI1(11),
I2(I2)
)

(

// LUT local output
// LUT general output

// LUT input
// LUT input
// LUT input

// End of LUT3_D_inst instantiation

-= LUT4_D

-= VHDL

-- instance
-- declaration
-= code

- Library
-- declaration
-= for

-- Xilinx

-- primitives

VHDL Instantiation Template for LUT4_D

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code. The
instance name (LUT4_D_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used

174

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

LUT1_D, LUT2_D, LUT3_D, LUT4_D

SUXILINX®

-- Copy the following two statements and paste them before the

for simulation.

-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <————- Cut code below this line and paste into the architecture body---->

-- LUT4_D: 4-input Look-Up Table with general and local outputs

-- Xilinx HDL Libraries Guide Version 8.1i

LUT4_D_inst
generic map

INIT => X"0000")

port map (
LO => LO,
o => 0O,
I0 => IO,
Il => 11,
I2 => I2,
I3 => I3

)

(

LUT4_D

- LUT local output

- LUT general output
- LUT input

- LUT input

-- LUT input

- LUT input

-- End of LUT4_D_inst instantiation

// LUT4_D
// Verilog
// instance
// declaration

// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs

// and outputs must be connected.

/] <-===- Cut code below this line---->

// LUT4_D: 4-input Look-Up Table with general and local outputs

Verilog Instantiation Code for LUT4_D

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code.
(LUT4_D_inst)

// For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.11

LUT4_D #(

.INIT(16'h0000)

) LUT4_D_ins
.LO(LO) ,
.0(0),
.I0(I0),
I1(1I1),
LI2(12),
I3(I3)

)

t

//
//
//
//
//
//

(
LUT
LUT
LUT
LUT
LUT
LUT

// Specify LUT Contents

local output
general output
input

input

input

input

// End of LUT4_D_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

The instance name
and/or the port declarations within the

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com

ISE 8.1i

175

http://www.xilinx.com

SXILINX® LUT1_D, LUT2_D, LUT3_D, LUT4_D

176 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

LUT1_L, LUT2_L, LUT3_L, LUT4_L S XILINX®

LUT1_L,LUT2_ L, LUT3_L, LUT4_L

Primitive: 1-, 2-, 3-, 4-Bit Look-Up Table with Local Output

LUT1_L, LUT2_L, LUT3_L, and LUT4_L are, respectively, 1-, 2-, 3-, and 4- bit look-up-
LUT1 L |10 tables (LUTs) with a local output (LO) that is used to connect to another output within
the same CLB slice and to the fast connect buffer.

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for
the number of inputs, must be attached to the LUT to specify its function.

X8378

LUT1_L provides a look-up-table version of a buffer or inverter. See also “LUT1, 2, 3,
n [tuT2 L | o 4” and “LUT1_D, LUT2_D, LUT3_D, LUT4_D.”

LUT3_L Function Table

Inputs Outputs
X8381
12 1 10 LO
0 0 0 INITI[O]
iz | LUTSL |10 0 0 1 INIT[1]
- 0 1 0 INIT[2]
0 1 1 INIT[3]
xoses 1 0 0 INTT[4]
1 0 1 INITI[5]
1 1 0 INIT[6]
13| LUT4_L
12| 1 1 1 INIT[7]
" | Lo
0 | INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute
X8387
Usage
LUTs are generally inferred with the logic portions of the HDL code. Xilinx suggests
that you instantiate LUTs only if you have a need to implicitly specify the logic
mapping, or if you need to manually place or relationally place the logic.
Available Attributes
LUT1_L
Attribute Type Allowed Values | Default Description
INIT 2-Bit Hexadecimal | 2-Bit Hexadecimal 2'h0 Initializes ROMs, RAMs, registers,
and look-up tables.
LUT2_L
Attribute Type Allowed Values | Default Description
INIT 4-Bit Hexadecimal 4-Bit Hexadecimal 4'h0 Initializes ROMs, RAMs, registers,
and look-up tables.
LUT3_L
Attribute Type Allowed Values | Default Description
INIT 8-Bit Hexadecimal 8-Bit Hexadecimal 8'h00 Initializes ROMs, RAMs, registers,
and look-up tables.
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 177

ISE 8.1i

http://www.xilinx.com

SUXILINX®

LUT1_L, LUT2_L, LUT3_L, LUT4_L

LUT4 L
Attribute Type Allowed Values | Default Description
INIT 16-Bit Hexadecimal 16-Bit Hexadecimal 16'h0000 | Initializes ROMs, RAMs, registers,
and look-up tables.
VHDL Instantiation Template for LUT1_L
-- LUT1_L In order to incorporate this function into the design,
-— VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (LUT1_L_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
-- reference and connect this function to the design.
-- All inputs and outputs must be connected.
- Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-— for added before the entity declaration. This library
- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used
-- for simulation.
-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.
Library UNISIM;
use UNISIM.vcomponents.all;
-—— <————- Cut code below this line and paste into the architecture body---->
-- LUT1_L: l-input Look-Up Table with local output
-- Xilinx HDL Libraries Guide Version 8.1i
LUT1_L_inst LUT1_L
generic map (
INIT => "00")
port map (
LO => LO, -- LUT local output
I0 => I0 -- LUT input
)
-— End of LUTI1_L_inst instantiation
Verilog Instantiation Code for LUT1_L
// LUT1_L In order to incorporate this function into the design,
// Verilog the following instance declaration needs to be placed
// instance in the body of the design code. The instance name
// declaration (LUT1_L_inst) and/or the port declarations within the
// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs
// and outputs must be connected.
/] <===== Cut code below this line---->
// LUT1_L: 1l-input Look-Up Table with local output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.11i
LUT1_L #(
.INIT(2'b00) // Specify LUT Contents
) LUT1_L_inst (
.LO(LO), // LUT local output
.I0O(I0) // LUT input
) ;
// End of LUT1_IL_inst instantiation
VHDL Instantiation Template for LUT2_L
- LUT2_L In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
178 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

LUT1_L, LUT2_L, LUT3_L, LUT4_L

SUXILINX®

-- 1instance
-- declaration
-- code

-— Library
-- declaration
- for

-- Xilinx

-- primitives

in the architecture body of the design code. The
instance name (LUT2_L_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- LUT2_L:

2-input Look-Up Table with local output

-- Xilinx HDL Libraries Guide Version 8.11i

LUT2_L_inst
generic map

LUT2_L

INIT => X"0")

port map (
LO => LO,
I0 => IO,
I1 => Il

)

-- LUT local output
-- LUT input
-- LUT input

-—- End of LUT2_L_inst instantiation

// LUT2_L

// Verilog
// instance
// declaration

Verilog Instantiation Code for LUT2_L

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code. The instance name

(LUT2_L_inst) and/or the port declarations within the

// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs
// and outputs must be connected.
/] <===== Cut code below this line---->
// LUT2_L: 2-input Look-Up Table with local output
// For use with all FPGAs.

// Xilinx HDL Libraries Guide Version 8.11

LUT2_L #(

.INIT(4'h0) // Specify LUT Contents

) LUT2_L_inst

.LO (LO) ,

.10(10),

I1(I1)
)

(

// LUT local output
// LUT input
// LUT input

// End of LUT2_IL_inst instantiation

-= LUT3_L

-= VHDL

-- instance
-- declaration
-= code

- Library
-- declaration
-= for

-- Xilinx

-- primitives

VHDL Instantiation Template for LUT3_L

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code. The
instance name (LUT3_L_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com

179

http://www.xilinx.com

SUXILINX®

LUT1_L, LUT2_L, LUT3_L, LUT4_L

for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

<--—--- Cut code below this line and paste into the architecture body---->

-- LUT3_L: 3-input Look-Up Table with local output
-- Xilinx HDL Libraries Guide Version 8.1i

LUT3_L_inst : LUT3_L
generic map (
INIT => X"00")

port map (
LO => LO, -- LUT local output
I0 => IO, -- LUT input
I1 => I1, -- LUT input
12 => I2 -- LUT input

)

-- End of LUT3_L_inst instantiation

Verilog Instantiation Code for LUT3_L

LUT3_L : In order to incorporate this function into the design,

Verilog : the following instance declaration needs to be placed

instance : in the body of the design code. The instance name
declaration : (LUT3_L_inst) and/or the port declarations within the

code : parenthesis maybe changed to properly reference and
: connect this function to the design. All inputs
and outputs must be connected.
<----- Cut code below this line---->

// LUT3_L: 3-input Look-Up Table with local output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.11

LUT3_L #(
.INIT(8'h00) // Specify LUT Contents
) LUT3_L_inst (

LO(LO), // LUT local output
.I0(10), // LUT input
I1(I1), // LUT input
I2(I2) // LUT input

)

// End of LUT3_L_inst instantiation

VHDL Instantiation Template for LUT4_L

LUT4_L : In order to incorporate this function into the design,
VHDL : the following instance declaration needs to be placed
instance : in the architecture body of the design code. The
declaration : instance name (LUT4_L_inst) and/or the port declarations
code : after the "=>" assignment maybe changed to properly

reference and connect this function to the design.
All inputs and outputs must be connected.

Library : In addition to adding the instance declaration, a use
declaration : statement for the UNISIM.vcomponents library needs to be
for : added before the entity declaration. This library
Xilinx : contains the component declarations for all Xilinx

primitives : primitives and points to the models that will be used
for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

<--—--- Cut code below this line and paste into the architecture body---->

180 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

LUT1_L, LUT2_L, LUT3_L, LUT4_L S XILINX®

-- LUT4_L: 4-input Look-Up Table with local output
-- Xilinx HDL Libraries Guide Version 8.1i

LUT4_L_inst : LUT4_L
generic map (
INIT => X"0000")

port map (
LO => LO, -- LUT local output
I0 => I0, -- LUT input
I1 => I1, -- LUT input
I2 => I2, -- LUT input
I3 => I3 -- LUT input

)

-—- End of LUT4_L_inst instantiation

Verilog Instantiation Code for LUT4_L

// LUT4_L : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (LUT4_L_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// LUT4_L: 4-input Look-Up Table with local output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide Version 8.11

LUT4_L #(

.INIT(16'h0000) // Specify LUT Contents
) LUT4_L_inst (

.LO(LO), // LUT local output

(
I0(I0), // LUT input
.I1(I1), // LUT input
.I2(I2), // LUT input
I3(I3) // LUT input

)

// End of LUT4_IL_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 181
ISE 8.1i

http://www.xilinx.com

SXILINX® LUT1_L, LUT2_L, LUT3_L, LUT4_L

182 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

MULT_AND

SUXILINX®

MULT_AND

Primitive: Fast Multiplier AND

MULT_AND is a logical AND gate component that can be used to reduce logic and
improve speed when users are building soft multipliers within the device fabric. It can
also be used in some carry-chain operations to reduce the needed LUTs to implement

-- MULT_AND
-= VHDL

-- instance
-- declaration
-- code

-— Library
-- declaration
- for

-- Xilinx

-- primitives

1 —
LO
10 —D—

X8405

MUXCY, MUXCY_D, or MUXCY_L.

some functions. The I1 and 10 inputs must be connected to the I1 and I0 inputs of the
associated LUT. The LO output must be connected to the DI input of the associated

Inputs Output
1 10 LO
0 0 0
0 1 0
1 0 0
1 1 1
n
LO MUXCY_L
s 01
DI Cl
LUT4
BI@———— 13
Al 2 Ll SuM1
i Lo —n I
XORCY
"

Lo
10)

MULT_AND

CoO

X8733

Example Multiplier Using MULT_AND

Usage

For HDL, this design element is instantiated rather than inferred.

VHDL Instantiation Template

In order to incorporate this function into the design,

the following instance declaration needs to be placed

in the architecture body of the design code. The

instance name (MULT_AND_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

-- Copy the following two statements and paste them before the

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com

183

http://www.xilinx.com

SXILINX® MULT_AND
-- Entity declaration, unless they already exists.
Library UNISIM;
use UNISIM.vcomponents.all;
-—— <= Cut code below this line and paste into the architecture body---->
-- MULT_AND: 2-input AND gate connected to Carry chain
-= All FPGA
-- Xilinx HDL Libraries Guide Version 8.11i
MULT_AND_inst MULT_AND
port map (
LO => LO, -- MULT_AND output (connect to MUXCY DI)
I0 => 1I0, -- MULT_AND data[0] input
I1 => Il -- MULT_AND data[l] input
)
-- End of MULT_AND_inst instantiation
Verilog Instantiation Template
// MULT_AND In order to incorporate this function into the design,
// Verilog the following instance declaration needs to be placed
// instance in the body of the design code. The instance name
// declaration (MULT_AND_inst) and/or the port declarations within the
// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs
// and outputs must be connected.
/] <-==== Cut code below this line---->
// MULT_AND: 2-input AND gate connected to Carry chain
// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.1i
MULT_AND MULT_AND_inst (
.LO(LO), // MULT_AND output (connect to MUXCY DI)
.I0(10), // MULT_AND datal[0] input
LI1(I1) // MULT_AND datal[l] input
)
// End of MULT_AND_inst instantiation
For More Information
Consult the Virtex-4 User Guide.
184 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

MUXCY

SUXILINX®

MUXCY

Primitive: 2-to-1 Multiplexer for Carry Logic with General Output

MUXCY is used to implement a 1-bit high-speed carry propagate function. One such
function can be implemented per slice for a total of 4-bits per configurable logic block

o (CLB) for Virtex-4 devices.
S The direct input (DI) of a slice is connected to the (DI) input of the MUXCY. The carry
m in (CI) input of an LC is connected to the CI input of the MUXCY. The select input (S)
of the MUXCY is driven by the output of the lookup table (LUT) and configured as a
DI CI MUX function. The carry out (O) of the MUXCY reflects the state of the selected input
X8728 and implements the carry out function of each LC. When Low, S selects DI; when
High, S selects CL.
The variants, “MUXCY_D"” and “MUXCY_L” provide additional types of outputs that
can be used by different timing models for more accurate pre-layout timing
estimation.
Inputs Outputs
S DI Cl (0]
0 1 X 1
0 0 X 0
1 X 1 1
1 X 0 0
Usage
This design element can only be instantiated.
VHDL Instantiation Template
- MUXCY In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration : instance name (MUXCY_inst) and/or the port declarations
-— code after the "=>" assignment maybe changed to properly
-— : reference and connect this function to the design.
-— : All inputs and outputs must be connected.
-— Library In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for added before the entity declaration. This library
-— Xilinx contains the component declarations for all Xilinx
-- primitives

: primitives and points to the models that will be used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- MUXCY: Carry-Chain MUX with general output
-- Xilinx HDL Libraries Guide Version 8.11i

MUXCY_inst : MUXCY
port map (
o0 => 0, -- Carry output signal
CI => CI, -- Carry input signal
DI => DI, -- Data input signal
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 185

ISE 8.1i

http://www.xilinx.com

SXILINX® MUXCY
S => S -- MUX select, tie to 'l' or LUT4 out
)
-- End of MUXCY_inst instantiation
Verilog Instantiation Template
// MUXCY : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (MUXCY_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs and
// and outputs of this primtive should be connected.
/] <=-==== Cut code below this line---->
// MUXCY: Carry-Chain MUX with general output
/7 For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.1i
MUXCY MUXCY_inst (
.0(0), // Carry output signal
.CI(CI), // Carry input signal
.DI(DI), // Data input signal
.S(S) // MUX select, tie to 'l' or LUT4 out
)
// End of MUXCY_inst instantiation
For More Information
Consult the Virtex-4 User Guide.
186 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

MUXCY_D

SUXILINX®

MUXCY_D

Primitive: 2-to-1 Multiplexer for Carry Logic with Dual Output

LO O

S MUXCY_D

MUXCY_D implements a 1-bit high-speed carry propagate function. One such
function is implemented per logic cell (LC), for a total of 4-bits per configurable logic
block (CLB). The direct input (DI) of an LC is connected to the DI input of the
MUXCY_D. The carry in (CI) input of an LC is connected to the CI input of the
MUXCY_D. The select input (S) of the MUX is driven by the output of the lookup

o _1 table (LUT) and configured as an XOR function. The carry out (O and LO) of the
| MUXCY_D reflects the state of the selected input and implements the carry out
DI CI function of each LC. When Low, S selects DI; when High, S selects CI.
X8729
Outputs O and LO are functionally identical. The O output is a general interconnect.
The LO outputs is used to connect to other inputs within the same slice.
See also “MUXCY” and “MUXCY_L"
Inputs Outputs
S DI Cl o LO
0 1 X 1 1
0 0 X 0 0
1 X 1 1 1
1 X 0 0 0
Usage
This design element can only be instantiated.
VHDL Instantiation Template
- MUXCY_D In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration : instance name (MUXCY_D_inst) and/or the port declarations
-= code : after the "=>" assignment maybe changed to properly
-— : reference and connect this function to the design.
-— : All inputs and outputs must be connected.
-— Library In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library
-— Xilinx contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that will be used
- for simulation.
-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.
Library UNISIM;
use UNISIM.vcomponents.all;
-—— <= Cut code below this line and paste into the architecture body---->
-- MUXCY_D: Carry-Chain MUX with general and local outputs
-- Xilinx HDL Libraries Guide Version 8.11i
MUXCY_D_inst : MUXCY_D
port map (
LO => LO, -- Carry local output signal
0 => 0, -- Carry general output signal
CI => CI, -- Carry input signal
DI => DI, -- Data input signal
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 187

ISE 8.1i

http://www.xilinx.com

ST XILINX® MUXCY_D
S => S -- MUX select, tie to 'l' or LUT4 out
)
-- End of MUXCY_D_inst instantiation
Verilog Instantiation Template
// MUXCY_D : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (MUXCY_D_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// : and outputs must be connected.
/] <=-==== Cut code below this line---->
// MUXCY_D: Carry-Chain MUX with general and local outputs
/7 For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.1i
MUXCY_D MUXCY_D_inst (
.LO(LO), // Carry local output signal
.0(0), // Carry general output signal
.CI(CI), // Carry input signal
.DI(DI), // Data input signal
.S(8) // MUX select, tie to 'l' or LUT4 out
) ;
// End of MUXCY_D_inst instantiation
For More Information
Consult the Virtex-4 User Guide.
188 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

MUXCY_L

SUXILINX®

MUXCY_L

Pri

mitive: 2-to-1 Multiplexer for Carry Logic with Local Output

MUXCY_L implements a 1-bit high-speed carry propagate function. One such
function can be implemented per slice, for a total of 4-bits per configurable logic block

LO (CLB). The direct input (DI) of an LC is connected to the DI input of the MUXCY_L.
The carry in (CI) input of an LC is connected to the CI input of the MUXCY_L. The
MUXCY_L select input (S) of the MUXCY_L is driven by the output of the lookup table (LUT)
0 1 and configured as an XOR function. The carry out (LO) of the MUXCY_L reflects the
| state of the selected input and implements the carry out function of each slice. When
DI CI Low, S selects DI; when High, S selects CL.
X8730
See also “MUXCY” and “MUXCY_D”
Inputs Outputs
S DI Cl LO
0 1 X 1
0 0 X 0
1 X 1 1
1 X 0 0
Usage
For HDL, this design element can only be instantiated.
VHDL Instantiation Template
MUXCY_L In order to incorporate this function into the design,
VHDL the following instance declaration needs to be placed
instance in the architecture body of the design code. The
-- declaration : instance name (MUXCY_L_inst) and/or the port declarations
code after the "=>" assignment maybe changed to properly
: reference and connect this function to the design.
: All inputs and outputs must be connected.
Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
for added before the entity declaration. This library
Xilinx : contains the component declarations for all Xilinx
primitives : primitives and points to the models that will be used

for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- MUXCY_L: Carry-Chain MUX with local output
-- Xilinx HDL Libraries Guide Version 8.11i

MUXCY_L_inst : MUXCY_L

port map (
LO => LO, -- Carry local output signal
CI => CI, -- Carry input signal
DI => DI, -- Data input signal
S => S -- MUX select, tie to 'l' or LUT4 out

)

-- End of MUXCY_IL_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com
ISE 8.1i

189

http://www.xilinx.com

SUXILINX®

MUXCY_L

Verilog Instantiation Template

MUXCY_L : In order to incorporate this function into the design,

Verilog : the following instance declaration needs to be placed

instance : in the body of the design code. The instance name
declaration : (MUXCY_L_inst) and/or the port declarations within the

code : parenthesis maybe changed to properly reference and
: connect this function to the design. All inputs

and outputs must be connected.
<----- Cut code below this line---->

// MUXCY_L: Carry-Chain MUX with local output
// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.11

MUXCY_L MUXCY_L_inst (

.LO(LO), // Carry local output signal

.CI(CI), // Carry input signal

.DI(DI), // Data input signal

.S(8) // MUX select, tie to 'l' or LUT4 out
) ;

// End of MUXCY_L_inst instantiation

For More Information
Consult the Virtex-4 User Guide.

190

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

MUXF5

SUXILINX®

MUXF5

Primitive: 2-to-1 Lookup Table Multiplexer with General Output

10

’ ‘:: ‘

-= MUXF5

-= VHDL

-- instance
-- declaration
-- code

-— Library
-- declaration
- for

-- Xilinx

-- primitives

MUXEF5 provides a multiplexer function in a CLB slice for creating a function-of-5
lookup table or a 4-to-1 multiplexer in combination with the associated lookup tables.
The local outputs (LO) from the two lookup tables are connected to the 10 and I1
inputs of the MUXF5. The S input is driven from any internal net. When Low, S selects
10. When High, S selects I1.

o)
The variants, “"MUXF5_D” and “MUXF5_L", provide additional types of outputs that
can be used by different timing models for more accurate pre-layout timing
X8431 estimation.
Inputs Outputs
S 10 I (o)
0 1 X 1
0 0 X 0
1 X 1 1
1 X 0 0

Usage

This design element can only be instantiated.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code. The
instance name (MUXF5_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- MUXF5: Slice MUX to tie two LUT4's together with general output
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF5_inst
port map (
O => 0O,

I0 => IO,
I1 => I1,

S => S
)

MUXF5

-- Output of MUX to general routing

-- Input (tie directly to the output of LUT4)
-- Input (tie directoy to the output of LUT4)
-- Input select to MUX

-- End of MUXF5_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 191

ISE 8.1i

http://www.xilinx.com

SXILINX® MUXF5

Verilog Instantiation Code

// MUXF5 : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (MUXF5_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// MUXF5: Slice MUX to tie two LUT4's together with general output
// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.11

MUXF5 MUXF5_inst (

.0(0), // Output of MUX to general routing

.I0(I0), // Input (tie directly to the output of LUT4)
.I1(I1), // Input (tie directoy to the output of LUT4)
.S(8) // Input select to MUX

) ;

// End of MUXF5_inst instantiation

For More Information
Consult the Virtex-4 User Guide.

192 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

MUXF5_D

SUXILINX®

MUXF5_D

P

rimitive: 2-to-1 Lookup Table Multiplexer with Dual Output

MUXEF5_D provides a multiplexer function in a CLB slice for creating a function-of-5
lookup table or a 4-to-1 multiplexer in combination with the associated lookup tables.
LO The local outputs (LO) from the two lookup tables are connected to the 10 and I1
— inputs of the MUXF5. The S input is driven from any internal net. When Low, S selects
| O 10. When High, S selects I1.

-

Outputs O and LO are functionally identical. The O output is a general interconnect.

X8432 The LO output connects to other inputs in the same CLB slice.

See also “MUXF5” and “MUXF5_L”

Inputs Outputs
S 10 I o LO
0 1 X 1 1
0 0 X 0 0
1 X 1 1 1
1 X 0 0 0
Usage
This design element can only be instantiated.
VHDL Instantiation Template
-- MUXF5_D In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (MUXF5_D_inst) and/or the port declarations
-— code after the "=>" assignment maybe changed to properly
-— reference and connect this function to the design.
- All inputs and outputs must be connected.
-— Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-- for added before the entity declaration. This library
-— Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used
- for simulation.
-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.
Library UNISIM;
use UNISIM.vcomponents.all;
-—— <= Cut code below this line and paste into the architecture body---->
-- MUXF5_D: Slice MUX to tie two LUT4's together with general and local outputs
-- Xilinx HDL Libraries Guide Version 8.11i
MUXF5_D_inst MUXF5_D
port map (
LO => LO, -- Ouptut of MUX to local routing
0 => 0, -- Output of MUX to general routing
I0 => I0, -- Input (tie directly to the output of LUT4)
I1 => I1, -- Input (tie directoy to the output of LUT4)
S => S -- Input select to MUX
)
-- End of MUXF5_D_inst instantiation
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 193

ISE 8.1i

http://www.xilinx.com

SXILINX® MUXF5_D

Verilog Instantiation Code

// MUXF5_D : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (MUXF5_D_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// MUXF5_D: Slice MUX to tie two LUT4's together with general and local outputs
// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.11

MUXF5_D MUXF5_D_inst (

.LO(LO), // Ouptut of MUX to local routing

.0(0), // Output of MUX to general routing

.I0(I0), // Input (tie directly to the output of LUT4)
.I1(I1), // Input (tie directoy to the output of LUT4)
.S(8) // Input select to MUX

)

// End of MUXF5_D_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

194 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

MUXF5_L

SUXILINX®

MUXF5_L

Primitive: 2-to-1 Lookup Table Multiplexer with Local Output

MUXEF5_L provides a multiplexer function in a CLB slice for creating a function-of-5
lookup table or a 4-to-1 multiplexer in combination with the associated lookup tables.
The local outputs (LO) from the two lookup tables are connected to the I0 and I1

10| LO inputs of the MUXEF5. The S input is driven from any internal net. When Low, S selects
10. When High, S selects I1.
" The LO output connects to other inputs in the same CLB slice.
S See also “MUXF5” and “MUXF5 _D”.
X8433
Inputs Output
S 10 n LO
0 1 X 1
0 0 X 0
1 X 1 1
1 X 0 0
Usage
This design element can only be instantiated.
VHDL Instantiation Template
- MUXF5_L : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The

-- declaration : instance name (MUXF5_L_inst) and/or the port declarations

-= code : after the "=>" assignment maybe changed to properly
-— : reference and connect this function to the design.
-— : All inputs and outputs must be connected.

-— Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library

-— Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that will be used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- MUXF5_L: Slice MUX to tie two LUT4's together with local output
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF5_L_inst : MUXF5_L

port map (
LO => LO, -- Output of MUX to local routing
I0 => I0, -- Input (tie directly to the output of LUT4)
I1 => I1, -- Input (tie directoy to the output of LUT4)
S => S -- Input select to MUX

)

-- End of MUXF5_I_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com
ISE 8.1i

195

http://www.xilinx.com

SXILINX® MUXF5_L

Verilog Instantiation Code

// MUXF5_L : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (MUXF5_IL_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// MUXF5_L: Slice MUX to tie two LUT4's together with local output
// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.11

MUXF5_L MUXF5_L_inst (

.LO(LO), // Output of MUX to local routing

.I0(I0), // Input (tie directly to the output of LUT4)
.I1(I1), // Input (tie directoy to the output of LUT4)
.S(8) // Input select to MUX

) ;

// End of MUXF5_L_inst instantiation

For More Information
Consult the Virtex-4 User Guide.

196 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

MUXF6

SUXILINX®

MUXF6

Primitive: 2-to-1 Lookup Table Multiplexer with General Output

MUXEF6 provides a multiplexer function in one half of a Virtex-4 CLB (two slices) for
creating a function-of-6 lookup table or an 8-to-1 multiplexer in combination with the
associated four lookup tables and two MUXEF5s. The local outputs (LO) from the two

10 . . .)
—_— MUXEF5s in the CLB are connected to the I0 and I1 inputs of the MUXF6. The S input is
0 driven from any internal net. When Low, S selects I0. When High, S selects I1.
1 The variants, “MUXF6_D” and “MUXF6_L", provide additional types of outputs that
S can be used by different timing models for more accurate pre-layout timing
estimation.
X8434
Inputs Outputs
S 10 I o
0 1 X 1
0 0 X 0
1 X 1 1
1 X 0 0
Usage
This design element can only be instantiated.
VHDL Instantiation Template
- MUXF6 In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (MUXF6_inst) and/or the port declarations
-— code after the "=>" assignment maybe changed to properly
-— reference and connect this function to the design.
- All inputs and outputs must be connected.
-— Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-- for added before the entity declaration. This library
-— Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- MUXF6: CLB MUX to tie two MUXF5's together with general output
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF6_inst MUXF6
port map (
o => 0, -- Output of MUX to general routing
I0 => I0, -- Input (tie to MUXF5 LO out)
I1 => I1, -- Input (tie to MUXF5 LO out)
S => S -- Input select to MUX

)

-- End of MUXF6_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com
ISE 8.1i

197

http://www.xilinx.com

SUXILINX®

MUXF6

Verilog Instantiation Code

MUXF6 : In order to incorporate this function into the design,
Verilog : the following instance declaration needs to be placed
instance in the body of the design code. The instance name
declaration : (MUXF6_inst) and/or the port declarations within the

code : parenthesis maybe changed to properly reference and

connect this function to the design.
and outputs must be connected.

<----- Cut code below this line---->

// MUXF6: CLB MUX to tie two MUXF5's together with general output

// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.11

MUXF6 MUXF6_inst (

.0(0), // Output of MUX to general routing
.I0(10), // Input (tie to MUXF5 LO out)
.I1(I1), // Input (tie to MUXF5 LO out)

.S(8) // Input select to MUX

) ;

// End of MUXF6_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

198

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

MUXF6_D

SUXILINX®

MUXF6_D

Primitive: 2-to-1 Lookup Table Multiplexer with Dual Output

MUXEF6_D provides a multiplexer function in a full Virtex-4 CLB, or one half of a
Virtex-4 CLB (two slices) for creating a function-of-6 lookup table or an 8-to-1
multiplexer in combination with the associated four lookup tables and two MUXE5s.

10 .
LU LO The local outputs (LO) from the two MUXFb5s in the CLB are connected to the 10 and
0 I1 inputs of the MUXF6. The S input is driven from any internal net. When Low, S
T > selects 10. When High, S selects I1.
S Outputs O and LO are functionally identical. The O output is a general interconnect.
X8435 The LO output connects to other inputs in the same CLB slice.
See also “MUXF6” and “MUXF6_L"
Inputs Outputs
S 10 I o LO
0 1 X 1 1
0 0 X 0 0
1 X 1 1 1
1 X 0 0 0
Usage
This design element can only be instantiated.
VHDL Instantiation Template
- MUXF6_D In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (MUXF6_D_inst) and/or the port declarations
-— code after the "=>" assignment maybe changed to properly
-— reference and connect this function to the design.
- All inputs and outputs must be connected.
-— Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-- for added before the entity declaration. This library
-— Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used
- for simulation.
-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.
Library UNISIM;
use UNISIM.vcomponents.all;
-—— <= Cut code below this line and paste into the architecture body---->
-- MUXF6_D: CLB MUX to tie two MUXF5's together with general and local outputs
-- Xilinx HDL Libraries Guide Version 8.11i
MUXF6_D_inst MUXF6_D
port map (
LO => LO, -- Ouptut of MUX to local routing
0 => 0, -- Output of MUX to general routing
I0 => I0, -- Input (tie to MUXF5 LO out)
I1 => I1, -- Input (tie to MUXF5 LO out)
S => S -- Input select to MUX
)
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 199

ISE 8.1i

http://www.xilinx.com

SXILINX® MUXF6_D

-- End of MUXF6_D_inst instantiation

Verilog Instantiation Code

// MUXF6_D : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (MUXF6_D_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// and outputs must be connected.
/] <===== Cut code below this line---->
// MUXF6_D: CLB MUX to tie two MUXF5's together with general and local outputs
// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.11i
MUXF6_D MUXF6_D_inst (
.LO(LO), // Ouptut of MUX to local routing
.0(0), // Output of MUX to general routing
.I0(10), // Input (tie to MUXF5 LO out)
LI1(11), // Input (tie to MUXF5 LO out)
.S(9) // Input select to MUX
)
// End of MUXF6_D_inst instantiation
For More Information
Consult the Virtex-4 User Guide.
200 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

MUXF6_L S XILINX®

MUXF6_L

Primitive: 2-to-1 Lookup Table Multiplexer with Local Output

MUXEF6_L provides a multiplexer function in half of a Virtex-4 CLB (two slices) for
creating a function-of-6 lookup table or an 8-to-1 multiplexer in combination with the
associated four lookup tables and two MUXEF5s. The local outputs (LO) from the two

10
— LO MUXEF5s in the CLB are connected to the I0 and I1 inputs of the MUXF6. The S input is
driven from any internal net. When Low, S selects I0. When High, S selects I1.
"1 The LO output connects to other inputs in the same CLB slice.
S See also “MUXF6” and “MUXF6_D".
X8436
Inputs Output
S 10 I LO
0 1 X 1
0 0 X 0
1 X 1 1
1 X 0 0
Usage
This design element can only be instantiated.
VHDL Instantiation Template
- MUXF6_L : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (MUXF6_L_inst) and/or the port declarations
-= code : after the "=>" assignment maybe changed to properly
-— : reference and connect this function to the design.
-— : All inputs and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library
-— Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that will be used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- MUXF6_L: CLB MUX to tie two MUXF5's together with local output
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF6_L_inst : MUXF6_L

port map (
LO => LO, -- Output of MUX to local routing
I0 => I0, -- Input (tie to MUXF5 LO out)
I1 => I1, -- Input (tie to MUXF5 LO out)
S => S -- Input select to MUX

)

-- End of MUXF6_IL_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 201
ISE 8.1i

http://www.xilinx.com

SXILINX® MUXF6_L

Verilog Instantiation Code

// MUXF6_L : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (MUXF6_IL_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// MUXF6_L: CLB MUX to tie two MUXF5's together with local output
// For use with All FPGAs
// Xilinx HDL Libraries Guide Version 8.11

MUXF6_L MUXF6_L_inst (

.LO(LO), // Output of MUX to local routing
.I0(10), // Input (tie to MUXF5 LO out)
.I1(I1), // Input (tie to MUXF5 LO out)
.S(8) // Input select to MUX

) ;

// End of MUXF6_L_inst instantiation

For More Information
Consult the Virtex-4 User Guide.

202 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

MUXF7

SUXILINX®

MUXF7

Primitive: 2-to-1 Lookup Table Multiplexer with General Output

MUXEF7? provides a multiplexer function in a full Virtex-4 CLB for creating a function-
of-7 lookup table or a 16-to-1 multiplexer in combination with the associated lookup
tables. Local outputs (LO) of MUXF6 are connected to the 10 and I1 inputs of the

10 . R .
— MUXEF?. The S input is driven from any internal net. When Low, S selects 10. When
o High, S selects I1.
I The variants, “"MUXF7_D” and “MUXF7_L", provide additional types of outputs that
S can be used by different timing models for more accurate pre-layout timing
X8431 estimation.
Inputs Outputs
S 10 I o
0 10 X 10
1 X I1 11
X 0 0 0
X 1
Usage
This design element can only be instantiated.
VHDL Instantiation Template
- MUXF7 In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (MUXF7_inst) and/or the port declarations
-— code after the "=>" assignment maybe changed to properly
-— reference and connect this function to the design.
- All inputs and outputs must be connected.
-— Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-- for added before the entity declaration. This library
-— Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- MUXF7: CLB MUX to tie two MUXF6's together with general output
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF7_inst MUXF'7
port map (
o => 0, -- Output of MUX to general routing
I0 => I0, -- Input (tie to MUXF6 LO out)
I1 => I1, -- Input (tie to MUXF6 LO out)
S => S -- Input select to MUX

)

-- End of MUXF7_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com
ISE 8.1i

203

http://www.xilinx.com

SUXILINX®

MUXF7

Verilog Instantiation Code

MUXF7 : In order to incorporate this function into the design,
Verilog : the following instance declaration needs to be placed
instance in the body of the design code. The instance name
declaration : (MUXF7_inst) and/or the port declarations within the

code : parenthesis maybe changed to properly reference and

connect this function to the design.
and outputs must be connected.

<----- Cut code below this line---->

// MUXF7: CLB MUX to tie two MUXF6's together with general output
// For use with Virtex-II/II-Pro and Spartan-3/3E

// Xilinx HDL Libraries Guide Version 8.11

MUXF7 MUXF7_inst (

.0(0), // Output of MUX to general routing
.I0(10), // Input (tie to MUXF6 LO out)
.I1(I1), // Input (tie to MUXF6 LO out)

.S(8) // Input select to MUX

) ;

// End of MUXF7_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

204

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

MUXF7_D

SUXILINX®

MUXF7_D

Primitive: 2-to-1 Lookup Table Multiplexer with Dual Output

10 [— LO

(o)

| —
s =T

X8432

-= MUXF7_D
-= VHDL

-- instance
-- declaration
-- code

-— Library
-- declaration
- for

-- Xilinx

-- primitives

MUXF7_D provides a multiplexer function in one full Virtex-4 CLB for creating a
function-of-7 lookup table or a 16-to-1 multiplexer in combination with the associated
lookup tables. Local outputs (LO) of MUXF6 are connected to the 10 and I1 inputs of
the MUXF?. The S input is driven from any internal net. When Low, S selects I0. When
High, S selects I1.

Outputs O and LO are functionally identical. The O output is a general interconnect.
The LO output connects to other inputs in the same CLB slice.

See also “MUXF7” and “MUXF7_L".

Inputs Outputs
S 10 [} o LO
0 10 X 10 10
1 X I I I
X 0 0 0 0
X
Usage

This design element can only be instantiated.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the

architecture body of the design code. The

instance name (MUXF7_D_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration,

Library UNISIM;

unless they already exists.

use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- MUXF7_D: CLB MUX to tie two MUXF6's together with general and local outputs
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF7_D_inst

port map (
LO => LO,
O => 0O,
I0 => IO,
Il => I1,
S => S

)

MUXF7_D

-- Ouptut of MUX to local routing
-- Output of MUX to general routing
-- Input (tie to MUXF6 LO out)

-- Input (tie to MUXF6 LO out)

-- Input select to MUX

-- End of MUXF7_D_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 205

ISE 8.1i

http://www.xilinx.com

SXILINX® MUXF7_D

Verilog Instantiation Code

// MUXF7_D : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (MUXF7_D_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// MUXF7_D: CLB MUX to tie two MUXF6's together with general and local outputs
// For use with Virtex-II/II-Pro and Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.11

MUXF7_D MUXF7_D_inst (

.LO(LO), // Ouptut of MUX to local routing
.0(0), // Output of MUX to general routing
.I0(1I0), // Input (tie to MUXF6 LO out)
.I1(I1), // Input (tie to MUXF6 LO out)

.S(8) // Input select to MUX

)

// End of MUXF7_D_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

206 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

MUXF7_L

SUXILINX®

MUXF7_L

Primitive: 2-to-1 Lookup Table Multiplexer with Local Output

MUXEF7? provides a multiplexer function in a full Virtex-4 CLB for creating a function-
of-7 lookup table or a 16-to-1 multiplexer in combination with the associated lookup
tables. Local outputs (LO) of MUXF6 are connected to the 10 and I1 inputs of the

10 . A .
—_— LO MUXEF7?. The S input is driven from any internal net. When Low, S selects 10. When
High, S selects I1.
n The LO output connects to other inputs in the same CLB slice.
S See also “MUXF7” and “MUXF7_D".
X8433
Inputs Output
S 10 i LO
0 10 X 10
1 X I1 11
X 0 0 0
X 1
Usage
This design element can only be instantiated.
VHDL Instantiation Template
- MUXF7_L In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (MUXF7_L_inst) and/or the port declarations
-— code after the "=>" assignment maybe changed to properly
-— reference and connect this function to the design.
- All inputs and outputs must be connected.
-— Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-- for added before the entity declaration. This library
-— Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- MUXF7_L: CLB MUX to tie two MUXF6's together with local output
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF7_L_inst

port map (
LO => LO,
I0 => IO,
I1 => I1,
S => S

)

MUXF7_L

-- Output of MUX to local routing
-- Input (tie to MUXF6 LO out)

-- Input (tie to MUXF6 LO out)

-- Input select to MUX

-- End of MUXF7_IL_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 207

ISE 8.1i

http://www.xilinx.com

SXILINX® MUXF7_L

Verilog Instantiation Code

// MUXF7_L : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (MUXF7_L_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// MUXF7_L: CLB MUX to tie two MUXF6's together with local output
// For use with Virtex-II/II-Pro and Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.11

MUXF7_L MUXF7_L_inst (

.LO(LO), // Output of MUX to local routing
.I0(10), // Input (tie to MUXF6 LO out)
.I1(I1), // Input (tie to MUXF6 LO out)
.S(8) // Input select to MUX

) ;

// End of MUXF7_L_inst instantiation

For More Information
Consult the Virtex-4 User Guide.

208 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

MUXF8

SUXILINX®

MUXF8

Primitive: 2-to-1 Lookup Table Multiplexer with General Output

MUXES8 provides a multiplexer function in full Virtex-4 CLBs for creating a function-
of-8 lookup table or a 32-to-1 multiplexer in combination with the associated lookup
tables, MUXF5s, MUXF6s, and MUXF7s. Local outputs (LO) of MUXF? are connected
to the 10 and I1 inputs of the MUXFS8. The (S) input is driven from any internal net.
When Low, (S) selects I0. When High, (S) selects I1.

The variants, “MUXF8_D"”and “MUXF8_L", provide additional types of outputs that
can be used by different timing models for more accurate pre-layout timing
X8434 estimation

Inputs Outputs
) 10 b (o]
0 10 X 10
1 X I 11
X 0 0 0
X 1

Usage

This design element can only be instantiated.

VHDL Instantiation Template

- MUXF8 In order to incorporate this function into the design,
-- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The

-- declaration instance name (MUXF8_inst) and/or the port declarations
-— code after the "=>" assignment maybe changed to properly

-— reference and connect this function to the design.

- All inputs and outputs must be connected.

-— Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-- for added before the entity declaration. This library

-— Xilinx contains the component declarations for all Xilinx

-- primitives primitives and points to the models that will be used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- MUXF8: CLB MUX to tie two MUXF7's together with general output
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF8_inst MUXF8
port map (
o => 0, -- Output of MUX to general routing
I0 => I0, -- Input (tie to MUXF7 LO out)
I1 => I1, -- Input (tie to MUXF7 LO out)
S => S -- Input select to MUX

)

-- End of MUXF8_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com
ISE 8.1i

209

http://www.xilinx.com

SUXILINX®

MUXF8

Verilog Instantiation Code

MUXF8 : In order to incorporate this function into the design,
Verilog : the following instance declaration needs to be placed
instance in the body of the design code. The instance name
declaration : (MUXF8_inst) and/or the port declarations within the

code : parenthesis maybe changed to properly reference and

connect this function to the design.
and outputs must be connected.

<----- Cut code below this line---->

// MUXF8: CLB MUX to tie two MUXF7's together with general output
// For use with Virtex-II/II-Pro and Spartan-3/3E

// Xilinx HDL Libraries Guide Version 8.11

MUXF8 MUXF8_inst (

.0(0), // Output of MUX to general routing
.I0(10), // Input (tie to MUXF7 LO out)
JI1(11), // Input (tie to MUXF7 LO out)

.S(8) // Input select to MUX

) ;

// End of MUXF8_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

210

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

MUXF8_D

SUXILINX®

MUXF8_D

Primitive: 2-to-1 Lookup Table Multiplexer with Dual Output

MUXEF8_D provides a multiplexer function in two full Virtex-4 CLBs for creating a
function-of-8 lookup table or a 32-to-1 multiplexer in combination with the associated
four lookup tables and two MUXFS8s. Local outputs (LO) of MUXEF?7 are connected to
the I0 and I1 inputs of the MUXES. The (S) input is driven from any internal net. When
Low, (S) selects I0. When High, (S) selects I1.

Outputs O and LO are functionally identical. The O output is a general interconnect.
The LO output connects to other inputs in the same CLB slice.

X8434 See also “MUXF8” and “MUXF8_L".
Inputs Outputs

S 10 I (o) LO
0 10 X 10 10
1 X I1 I1 I1

X 0 0 0 0

X

Usage

-= MUXF8_D
-= VHDL

-- instance
-- declaration
-- code

-— Library
-- declaration
- for

-- Xilinx

-- primitives

This design element can only be instantiated.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the architecture body of the design code. The
instance name (MUXF8_D_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly
reference and connect this function to the design.

All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- MUXF8_D: CLB MUX to tie two MUXF7's together with general and local outputs
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF8_D_inst

port map (
LO => LO,
O => 0O,
I0 => IO,
Il => I1,
S => S

)

MUXF8_D

-- Ouptut of MUX to local routing
-- Output of MUX to general routing
-- Input (tie to MUXF7 LO out)

-- Input (tie to MUXF7 LO out)

-- Input select to MUX

-- End of MUXF8_D_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 211

ISE 8.1i

http://www.xilinx.com

SXILINX® MUXF8_D

Verilog Instantiation Code

// MUXF8_D : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (MUXF8_D_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// MUXF8_D: CLB MUX to tie two MUXF7's together with general and local outputs
// For use with Virtex-II/II-Pro and Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.11

MUXF8_D MUXF8_D_inst (

.LO(LO), // Ouptut of MUX to local routing
.0(0), // Output of MUX to general routing
.I0(1I0), // Input (tie to MUXF7 LO out)
.I1(I1), // Input (tie to MUXF7 LO out)

.S(8) // Input select to MUX

)

// End of MUXF8_D_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

212 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

MUXF8_L S XILINX®

MUXF8_L

Primitive: 2-to-1 Lookup Table Multiplexer with Local Output

MUXEF8_L provides a multiplexer function in two full Virtex-4 CLBs for creating a
function-of-8 lookup table or a 32-to-1 multiplexer in combination with the associated
four lookup tables and two MUXFS8s. Local outputs (LO) of MUXEF?7 are connected to

10 . . S .
— LO the I0 and I1 inputs of the MUXFS8. The S input is driven from any internal net. When
Low, S selects I0. When High, S selects I1.
n The LO output connects to other inputs in the same CLB slice.
S See also “MUXF8” and “MUXF8_D”.
X8433
Inputs Output
S 10 I LO
0 10 X 10
1 X I1 11
X 0 0 0
X 1
Usage
FThis design element can only be instantiated.
VHDL Instantiation Template
- MUXF8_L : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (MUXF8_L_inst) and/or the port declarations
-= code : after the "=>" assignment maybe changed to properly
-— : reference and connect this function to the design.
-— : All inputs and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library
-— Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that will be used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- MUXF8_L: CLB MUX to tie two MUXF7's together with local output
-- Xilinx HDL Libraries Guide Version 8.11i

MUXF8_L_inst : MUXF8_L

port map (
LO => LO, -- Output of MUX to local routing
I0 => I0, -- Input (tie to MUXF7 LO out)
I1 => I1, -- Input (tie to MUXF7 LO out)
S => S -- Input select to MUX

)

-- End of MUXF8_I_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 213
ISE 8.1i

http://www.xilinx.com

SXILINX® MUXF8_L

Verilog Instantiation Code

// MUXF8_L : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (MUXF8_IL_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// MUXF8_L: CLB MUX to tie two MUXF7's together with local output
// For use with Virtex-II/II-Pro and Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.11

MUXF8_L MUXF8_L_inst (

.LO(LO), // Output of MUX to local routing
.I0(10), // Input (tie to MUXF7 LO out)
JI1(11), // Input (tie to MUXF7 LO out)
.S(8) // Input select to MUX

) ;

// End of MUXF8_L_inst instantiation

For More Information
Consult the Virtex-4 User Guide.

214 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

OBUF

SUXILINX®

OBUF

Primitive:

OBUF

II\O
l/

Single-ended Output Buffer

Output buffers are necessary for all output signals because they isolate the internal
circuit and provide drive current for signals leaving a chip. The OBUF is a constantly
enabled output buffer that is generally used for specifying a single-ended output
when a 3-state is not necessary for the output. The output (O) of an OBUF should be
connected directly to the top-level ouput port in the design.

Usage
OBUFs are optional for use in the schematic since they will automatically be inserted
into the design, if necessary. If you want to manually add this component, however,
the component should be placed in the top-level schematic connecting the output
directly to an output port marker.
OBUFs are available in bundles of 4, 8, or 16 to make it easier for you to incorporate
them into your design without having to apply multiples of them one at a time. (The
bundles are thus identified as OBUF4, OBUFS8, and OBUF16.)
Available Attributes
Attribute Type Allowed Values Default Description
DRIVE INTEGER 2,4,6,8,12,16,24 12 Selects output drive strength (mA) for
the SelectlO bulffers that use the
LVTTL, LVCMOS12, LVCMOS15,
LVCMOS18, LVCMOS25, or
LVCMOS33 interface I/O standard.
IOSTANDARD STRING "DEFAULT” "DEFAULT” Use to assign an I/O standard to an
1/0 primitive.
SLEW STRING "SLOW" or "FAST” "SLOW” Sets the output rise and fall time.
VHDL Instantiation Template
-— OBUF : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The

-- declaration : instance name (OBUF_inst) and/or the port declarations

-— code : after the

"=>" assignment maybe changed to properly

-- : connect this function to the design. Delete or comment
-— : out inputs/outs that are not necessary.

-- Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that will be used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <===—= Cut code below this line and paste into the architecture body---->

-- OBUF: Single-ended Output Buffer

-- All devices

-- Xilinx HDL Libraries Guide Version 8.11

OBUF_inst : OBUF
generic map (
DRIVE => 12,

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 215

ISE 8.1i

http://www.xilinx.com

ST XILINX® OBUF

TIOSTANDARD => "DEFAULT",
SLEW => "SLOW")

port map (
0 => 0, -- Buffer output (connect directly to top-level port)
I =>1 -- Buffer input

)

-- End of OBUF_inst instantiation

Verilog Instantiation Code

// OBUF : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (OBUF_inst) and/or the port declarations within the

// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment
// : out inputs/outs that are not necessary.

/] <=-==== Cut code below this line---->

// OBUF: Single-ended Output Buffer
/7 All devices
// Xilinx HDL Libraries Guide Version 8.1i

OBUF # (
.DRIVE(12), // Specify the output drive strength
.IOSTANDARD ("DEFAULT"), // Specify the output I/O standard
.SLEW("SLOW") // Specify the output slew rate

) OBUF_inst (
.0(0), // Buffer output (connect directly to top-level port)
LI(T) // Buffer input

) ;

// End of OBUF_inst instantiation
For More Information
Consult the Virtex-4 User Guide.

216 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

OBUFDS S XILINX®

OBUFDS

Primitive: Differential Signaling Output Buffer with Selectable I/O

Interface
OBUFDS is a single output buffer that supports low-voltage, differential signaling (1.8
CMOS). OBUFDS isolates the internal circuit and provides drive current for signals
I O leaving the chip. Its output is represented as two distinct ports (O and OB), one
OB deemed the "master” and the other the "slave." The master and the slave are opposite

phases of the same logical signal (for example, MYNET and MYNETB).

OBUFDS Inputs Outputs
X9259 ! 0 oB
0 0 1
1 1 0
Usage

This design element should be instantiated rather than inferred.

Available Attributes

CAPACITANCE STRING "LOW", "DONT CARE” Specifies whether it is desired to use an
"NORMAL", 1/0 with lower or normal intrinsic
"DONT CARE” capacitance.

DRIVE INTEGER 2,4,6,8,12,16,24 | 12 Selects output drive strength (mA) for

the SelectIO buffers that use the
LVTTL, LVCMOS12, LVCMOS15,
LVCMOS18, LVCMOS25, or
LVCMOS33 interface I/O standard.

IOSTANDARD STRING "DEFAULT” "DEFAULT” Use to assign an I/O standard to an
1/0 primitive.
SLEW STRING "SLOW" or "SLOW” Sets the output rise and fall time.
"FAST”

VHDL Instantiation Template

-- OBUFDS : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed

-- instance : in the architecture body of the design code. The

-- declaration : instance name (OBUFDS_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly

- : connect this function to the design. Delete or comment
-= : out inputs/outs that are not necessary.

- Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library

- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that will be used

-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 217
ISE 8.1i

http://www.xilinx.com

SUXILINX®

OBUFDS

-- OBUFDS: Differential Output Buffer
- Virtex-II/II-Pro, Spartan-3/3E
-- Xilinx HDL Libraries Guide Version 8.11

OBUFDS_inst : OBUFDS

generic map (
TOSTANDARD => "DEFAULT")

port map (
o => 0, -- Diff_p output (connect directly to top-level port)
OB => OB, -- Diff_n output (connect directly to top-level port)
I =>1 -- Buffer input

)

-- End of OBUFDS_inst instantiation

Verilog Instantiation Code

OBUFDS : In order to incorporate this function into the design,
Verilog : the following instance declaration needs to be placed
instance : in the body of the design code. The instance name
declaration : (OBUFDS_inst) and/or the port declarations within the
code : parenthesis maybe changed to properly reference and
: connect this function to the design. Delete or comment
out inputs/outs that are not necessary.

<--—-- Cut code below this line---->

// OBUFDS: Differential Output Buffer
// Virtex-II/II-Pro/4, Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.1i

OBUFDS # (
.IOSTANDARD ("DEFAULT") // Specify the output I/0 standard

) OBUFDS_inst (
.0(0), // Diff_p output (connect directly to top-level port)
.OB(OB) , // Diff_n output (connect directly to top-level port)
LI(T) // Buffer input

)

// End of OBUFDS_inst instantiation

For More Information
Consult the Virtex-4 User Guide.

218 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

OBUFT

SUXILINX®

OBUFT

OBUFT

Primitive: 3-State Output Buffer with Active-Low Output Enable

Output buffers are necessary for all output signals because they isolate the internal
circuit and provide drive current for signals leaving a chip. The OBUFT is a 3-state

output buffer with input I, output O, and active-Low output enables (T). When T is

Low, data on the inputs of the buffers is transferred to the corresponding outputs.

When T is High, the output is high impedance (off or Z state).

o An OBUEFT output should be connected directly to the top-level output or inout port.

L
L

OBUFTs are generally used when a single-ended output is needed with a tri-state

capability, such as the case when building bi-directional I/O.

Inputs Outputs
T | o
1 X Z
0 1 1
0 0 0
Usage
OBUFTs should be placed in the top-level schematic connecting the output directly to
an output or bi-directional port marker.
OBUFTs are available in bundles of 4, 8, or 16 to make it easier for you to incorporate
them into your design without having to apply multiples of them one at a time. (The
bundles are thus identified as OBUFT4, OBUFTS, and OBUFT16.) The bundles are
discussed in the schematics version of the Virtex-4 Libraries Guide.
Available Attributes
CAPACITANCE STRING "LOW", "DONT Specifies whether it is desired to use an1/0O
"NORMAL", CARE” with lower or normal intrinsic capacitance.
"DONT CARE”
DRIVE INTEGER 2,4,6,8,12,16, |12 Selects output drive strength (mA) for the
24 SelectIO buffers that use the LVTTL,
LVCMOS12, LVCMOS15, LVCMOS1S,
LVCMOQOS25, or LVCMOS33 interface I/O
standard.
IOSTANDARD STRING "DEFAULT” "DEFAULT” Use to assign an I/O standard to an I/O
primitive.
SLEW STRING "SLOW" or "SLOW” Sets the output rise and fall time.
"FAST”
VHDL Instantiation Template
-- OBUFT : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (OBUFT_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly
-— : connect this function to the design. Delete or comment
-= : out inputs/outs that are not necessary.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com

219

http://www.xilinx.com

ST XILINX® OBUFT

-— for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that will be used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- OBUFT: Single-ended 3-state Output Buffer
-- All devices
-- Xilinx HDL Libraries Guide Version 8.11

OBUFT_inst : OBUFT

generic map (
DRIVE => 12,
TIOSTANDARD => "DEFAULT",
SLEW => "SLOW")

port map (
o => 0, -- Buffer output (connect directly to top-level port)
I =>T1, -- Buffer input
T => T -- 3-state enable input

)

-- End of OBUFT_inst instantiation

Verilog Instantiation Code

// OBUFT : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (OBUFT_inst) and/or the port declarations within the

// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment
// : out inputs/outs that are not necessary.

/] <-===- Cut code below this line---->

// OBUFT: Single-ended 3-state Output Buffer
// All devices
// Xilinx HDL Libraries Guide Version 8.1i

OBUFT # (
.DRIVE(12), // Specify the output drive strength
.IOSTANDARD ("DEFAULT"), // Specify the output I/O standard
.SLEW("SLOW") // Specify the output slew rate

) OBUFT_inst (
.0(0), // Buffer output (connect directly to top-level port)
LI(I), // Buffer input
.T(T) // 3-state enable input

)

// End of OBUFT_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

220 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

OBUFTDS

SUXILINX®

OBUFTDS

Primitive: 3-State Differential Signaling Output Buffer with Active Low

Output Enable and Selectable 1/O Interface

OBUFTDS is a single 3-state, differential signaling output buffer with active Low

enable and a SelectIO interface.
T

I o
_DE state).

When T is Low, data on the input of the buffer is transferred to the output (O) and
inverted output (OB). When T is High, both outputs are high impedance (off or Z

OBUFTDS Inputs Outputs
X9260 I T o oB
X 1 V4 Z
0 0 0 1
1 0 1 0
Usage
These design elements are instantiated rather than inferred.
Available Attributes
CAPACITANCE STRING "LOW", "DONT Specifies whether it is desired to use an1/O
"NORMAL", CARE” with lower or normal intrinsic capacitance.
"DONT CARE”
DRIVE INTEGER 2,4,6,8,12,16, | 12 Selects output drive strength (mA) for the
24 SelectlO buffers that use the LVTTL,
LVCMOS12, LVCMOS15, LVCMOS18,
LVCMOS25, or LVCMOS33 interface I/O
standard.
IOSTANDARD STRING "DEFAULT” "DEFAULT” Use to assign an I/O standard to an I/O
primitive.
SLEW STRING "SLOW" or "SLOW” Sets the output rise and fall time.
"FAST”
VHDL Instantiation Template
-— OBUFTDS : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (OBUFTDS_inst) and/or the port declarations
-= code : after the "=>" assignment maybe changed to properly
-— : connect this function to the design. Delete or comment
-— : out inputs/outs that are not necessary.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library
-— Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that will be used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com
ISE 8.1i

221

http://www.xilinx.com

SUXILINX®

OBUFTDS

<———=-- Cut code below this line and paste into the architecture body---->

-- OBUFTDS: Differential 3-state Output Buffer
- Virtex-II/II-Pro, Spartan-3/3E
-- Xilinx HDL Libraries Guide Version 8.1i

OBUFTDS_inst
generic map (
TIOSTANDARD => "DEFAULT")

OBUFTDS

port map (
o => 0, -- Diff_p output (connect directly to top-level port)
OB => OB, -- Diff_n output (connect directly to top-level port)
I =>T1, -- Buffer input
T => T -- 3-state enable input

)

-- End of OBUFTDS_inst instantiation

Verilog Instantiation Code

// OBUFTDS In order to incorporate this function into the design,
// Verilog the following instance declaration needs to be placed
// instance in the body of the design code. The instance name
// declaration (OBUFTDS_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. Delete or comment
// out inputs/outs that are not necessary.
/] <=-==== Cut code below this line---->
// OBUFTDS: Differential 3-state Output Buffer
// Virtex-II/II-Pro/4, Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.1i
OBUFTDS # (
.IOSTANDARD ("DEFAULT") // Specify the output I/0 standard
) OBUFTDS_inst (
.0(0), // Diff_p output (connect directly to top-level port)
.OB(OB) , // Diff_n output (connect directly to top-level port)
LI(I), // Buffer input
LT(T) // 3-state enable input
)
// End of OBUFTDS_inst instantiation
For More Information
Consult the Virtex-4 User Guide.
222 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

ODDR

SUXILINX®

ODDR

Primitive: A Dedicated Output Register to Transmit Dual Data Rate
(DDR) Signals From Virtex-4 FPGAs

ODDR

Q

xio116

ODDR primitives are dedicated output registers used in transmitting dual data rate
(DDR) signals from Virtex-4 FPGAs. The ODDR primitive’s interface with the FPGA
fabric is not limited to opposite edges. ODDR is available with modes that allow data
to be presented from the FPGA fabric at the same clock edge. This feature allows
designers to avoid additional timing complexities and CLB usage. In addition, ODDR
will work in conjunction with SelectIO features of Virtex-4 architecture.

ODDR Ports (Detailed Description)

Q - Data Output (DDR)

This pin connects to the IOB pad.

C - Clock Input Port

The C pin represents the clock input pin.

CE - Clock Enable Port

When asserted LOW), this port disables the output clock at port O.
D1 - D2 - Data Input

This pin is where the DDR data is presented into the ODDR module.
R - Reset

Depends on how SRTYPE is set.

ODDR Modes

The following section describes the functionality of various modes of ODDR. These
modes are set by the DDR_CLK_EDGE attribute.

OPPOSITE_EDGE

In the OPPOSITE_EDGE mode, data transmit interface uses the classic DDR
methodology. Given a data and clock at pin D1-2 and C respectively, D1 will be
sampled at every positive edge of clock C, and D2 will be sampled at every negative
edge of clock C. Q changes every clock edge.

SAME_EDGE

In the SAME_EDGE mode, data is still transmitted by opposite edges of clock C.
However, both register are clocked with positive clock edge C and an extra register
has been placed in front of the D2 input data register. The extra register is clocked
with negative clock edge of clock signal C. Using this feature, DDR data can now be
presented into the ODDR at the same clock edge.

Port List and Definitions

Name Type Width Function
Q Output 1 Data Output (DDR)
C Input 1 Clock Input
CE Input 1 Clock Enable Input
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 223

ISE 8.1i

http://www.xilinx.com

SUXILINX®

ODDR

Name Type Width Function
D1-D2 | Input 1 (each) | Data Input
R Input 1 Reset
S Input 1 Set

Available Attributes

DDR_CLK_EDGE STRING "OPPOSITE_EDGE", "OPPOSITE_ DDR clock mode recovery mode
"SAME_EDGE", EDGE” selection
"SAME_EDGE_PIPELIN
ED”

INIT INTEGER Oorl 1 Q initialization value

SRTYPE STRING "SYNC" or "ASYNC” "SYNC” Set/Reset type selection

Usage

This design element is available for schematics and instantiation only.

VHDL Instantiation Template

-— ODDR : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The

- declaration : instance name (ODDR_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly

-- : connect this function to the design. All inputs
- : and outputs must be connected.

-- Library : In addition to adding the instance declaration, a use
- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx
-— primitives : primitives and points to the models that will be used
-- : for simulation.
-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.
Library UNISIM;
use UNISIM.vcomponents.all;
-— <—=—== Cut code below this line and paste into the architecture body---->
-- ODDR: Output Double Data Rate Output Register with Set, Reset
-- and Clock Enable. Virtex-4
-- Xilinx HDL Libraries Guide Version 8.11
ODDR_inst : ODDR
generic map (
DDR_CLK_EDGE => "OPPOSITE_EDGE", -- "OPPOSITE_EDGE" or "SAME_EDGE"
INIT => '0', -- Initial value for Q port ('l' or '0"')
SRTYPE => "SYNC") -- Reset Type ("ASYNC" or "SYNC")
port map (
Q => Q, -- 1-bit DDR output
c => C, -- 1-bit clock input
CE => CE, -- 1-bit clock enable input
D1 => D1, -- 1l-bit data input (positive edge)
D2 => D2, -- 1l-bit data input (negative edge)
R => R, -- 1-bit reset input
S => S -- 1-bit set input

)

-- End of ODDR_inst instantiation

224 www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

®
ODDR S XILINX
Verilog Instantiation Code
// ODDR : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (ODDR_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. Delete or comment
// out inputs/outs that are not necessary.
/] <===== Cut code below this line---->

// ODDR: Output Double Data Rate Output Register with Set, Reset
// and Clock Enable. Virtex-4
// Xilinx HDL Libraries Guide Version 8.11

ODDR # (
.DDR_CLK_EDGE ("OPPOSITE_EDGE"), // "OPPOSITE_EDGE" or "SAME_EDGE"
LINIT(1'b0), // Initial value of Q: 1'b0 or 1'bl

.SRTYPE ("SYNC") // Set/Reset type: "SYNC" or "ASYNC"
) ODDR_inst (

.Q(Q), // 1l-bit DDR output

.Cc(C), // 1-bit clock input

.CE(CE), // 1-bit clock enable input

.D1(D1), // 1l-bit data input (positive edge)

.D2(D2), // 1l-bit data input (negative edge)

.R(R), // 1l-bit reset

.S(S) // 1l-bit set
)

// End of ODDR_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com
ISE 8.1i

225

http://www.xilinx.com

ST XILINX® ODDR

226 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

OSERDES

SUXILINX®

OSERDES

Primitive: Dedicated OB output serializer

OSERDES

CLK
OCE

TCE

SR

REV

CLKDIV.

SHIFTINT

SHIFTIN2

SHIFTOUT1

SHIFTOUT2

The Virtex-4 architecture provides a way for the user to easily implement source
synchronous interface by using the OSERDES module. Unlike previous generations of
FPGAs, OSERDES is an output architecture that contains a parallel to serial converter
resources for both data and tristate. This module helps user by saving logic resources
that is otherwise implemented in the FPGA fabric. Furthermore, OSERDES also
avoids additional timing complexities that may be encountered when designing such
circuitry in the FPGA fabric. OSERDES module is present in all Virtex-4 family of
FPGA. In addition, OSERDES contains multiple clock inputs to accommodate various
applications and will work in conjunction with the SelectIO features of Virtex-4
family.

OSERDES Ports (Detailed Description)
0OQ - Data Path Output

This port is the data output of the OSERDES module. This port connects the output of
the data serial to parallel converter to the data input of the IOB pad. In addition, this
output port can also be configured to bypass all the submodules within OSERDES
module.

SHIFTOUT 1-2 — Data input expansion (slave)
Carry out for data input expansion. Connect to SHIFTIN1/2 of master.
TQ - 3-state Path Output

This port is the 3-state output of the OSERDES module. This port connects the output
of the 3-state serial to parallel converter to the control input of the IOB pad.

CLK - High Speed Clock Input

This clock input is used to drive the parallel-to-serial converters. The possible source
for the CLK port is from one of the following clock resources:

1. Eight global clock lines in a clock region

2. Two regional clock lines

3. Six clock capable I/Os (within adjacent clock region)
4. Fabric (through bypass)

CLKDIV - Divided High Speed Clock Input

This clock input is used to drive the parallel-to-serial converters. This clock has to
have slower frequency than the clock connected to the CLK port. The possible source
for the CLKDIV port is from one of the following clock resources:

1. Eight global clock lines in a clock region
2. Two regional clock lines
D1-D6 - Parallel Data Inputs

Ports D1 to D6 are the location in which all incoming parallel data enters the
OSERDES module. This port is connected to the FPGA fabric, and can be configured
from 2 to 6 bits. In the extended width mode, this port can be expanded up to 10 bits.

OCE - Output Data Clock Enable

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 227

ISE 8.1i

http://www.xilinx.com

SUXILINX®

OSERDES

This port is used to enables the output of the data serial to parallel converter when
asserted HIGH.

REV - Reverse SR pin

When SR is used, a second input, REV forces the storage element into the opposite
state. The reset condition predominates over the set condition. See “Set/Reset Input —
SR” for the truth table that describes the REV operation with respect to SR.

SR - Set/Reset Input

The set/reset pin, SR forces the storage element into the state specified by the SRVAL
attribute. SRVAL = “1” forces a logic 1. SRVAL ="0" forces a logic "0." When SR is
used, a second input (REV) forces the storage element into the opposite state. The
reset condition predominates over the set condition. The following truth tables
describe the operation of SR in conjunction with REV.

The Truth Table when SRVAL = ”0” (Default Condition)

SR | REV | Function

0 |0 NOP
0 |1 Set

1 |0 Reset
1 |1 Reset

The Truth Table when SRVAL = “1”

SR | REV | Function

0 |0 NOP
0 |1 Reset
1 |0 Set

1 |1 Reset

SHIFTIN 1-2 — Data input expansion (master)
Carry input for data input expansion. Connect to SHIFTOUT1/2 of slave.
T1-T4 — Parallel 3-state Inputs

Ports T1 to T4 are the location in which all parallel tristate signals enters the OSERDES
module. This port is connected to the FPGA fabric, and can be configured from 1 to 4
bits. This feature is not supported in the extended width mode.

TCE - 3-state Signal Clock Enable

This port is used to enables the output of the tristate signal serial to parallel converter
when asserted HIGH.

Usage
Parallel-to-Serial Converter (Data)

The data parallel to serial converter in the OSERDES module takes in 2 to 6 bit of
parallel data and convert them into serial data. Data input widths larger than 6 (7,8,
and 10) is achievable by cascading two OSERDES modules for data width expansion.
In order to do this, one OSERDES must be set into a MASTER mode, while another is
set into SLAVE mode. The user will also need to connect the SHIFTOUT of "slave" and

228

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

OSERDES S XILINX®
SHIFTIN of "master" ports together. The "slave" will only use D3 to D6 ports as its
input. The parallel to serial converter is available for both SDR and DDR modes.

This module is designed such that the data input at D1 port is the first output bit. This
module is controlled by CLK and CLKDIV clocks. The following table describes the
relationship between CLK and CLKDIV for both SDR and DDR mode.
SDR Data Width | DDR Data Width | CLK | CLKDIV
2 4 2X X
3 6 3X X
4 8 44X | X
5 10 5X X
6 - 6X | X
7 - 7X | X
8 - 8X | X
Output of this block is connected to the data input of an IOB pad of the FPGA. This
IOB pad can be configured to a desired standard using SelectIO.
Parallel-to-Serial Converter (3-state)
The 3-state parallel-to-serial converter in the OSERDES module takes in up to 4 bits of
parallel 3-state signals and converts them into serial3-state signals. Unlike data
parallel-to-serial converters, the 3-state parallel-to-serial converters are not extendable
to more than 4-bit 3-state signals. This module is primarily controlled by CLK and
CLKDIV clocks. In order to use this module, the following attributes must be
declared: DATA_RATE_TQ and TRISTATE_ WIDTH. In certain cases, the user may
also need to declare DATA_RATE_OQ and DATA_WIDTH. The following table lists
the attributes needed for the desired functionality.
Mode of Operation | DATA_RATE_TQ | TRISTATE_WIDTH
4-bit DDR* DDR 4
2-bit DDR DDR 2
1-bit SDR SDR 1
Buffer BUF 1
Note: If 4-bit DDR is chosen, then the constraints DATA_RATE_OQ and DATA_WIDTH must
be {SDR,2} or {DDR,4} for proper operation.
Output of this block is connected to the tristate input of an IOB pad of the FPGA. This
IOB pad can be configured to a desired standard using SelectIO.
Width Expansion
It is possible to use the OSERDES modules to transmit parallel data widths larger than
six. However, the tristate output is not expandable. In order to use this feature, two
OSERDES modules need to be instantiated. Both the OSERDES must be an adjacent
master and slave pair. The attribute MODE must be set to either "M ASTER" or
"SLAVE" in order to differentiate the modes of the ISERDES pair. In addition, the user
must connect the SHIFTIN ports of the MASTER to the SHIFTOUT ports of the
SLAVE. This feature supports data widths of 7, 8, and 10 for SDR and DDR mode. The
table below lists the data width availability for SDR and DDR mode.
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 229

ISE 8.1i

http://www.xilinx.com

SUXILINX®

OSERDES

Mode Widths
SDR Data Widths |2,3,4,5,6,7,8
DDR Data Widths | 4,6,8,10
Port List and Definitions
Name Type | Width Function

0oQ Output | 1 Data path output
SHIFTOUT1-2 | Output |1 (each) | Carry out for data input expansion. Connect to SHIFTIN1/2 of master.
TQ Output |1 Tristate path output
CLK Input |1 High speed clock input
CLKDIV Input |1 Divided high speed clock input
D1-Dé6 Input |1 Data path inputs
OCE Input |1 Parallel to serial converter (data) clock enable
REV Input |1 Reverse SR
SR Input |1 Set/Reset
SHIFTIN1-2 |Input |1 (each) | Carry input for data input expansion. Connect to SHIFTOUT1/2 of slave.
T1-T4 Input |1 (each) | Tristate inputs
TCE Input |1 Parallel to serial converter (tristate) clock enable

Available Attributes

DATA_RATE_OQ STRING "SDR" or "DDR” | "DDR” Defines whether the data changes at
every clock edge or every positive clock
edge with respect to CLK.

DATA_RATE_TQ STRING "BUF", "SDR", "DDR” Defines whether the 3-state changes at

"DDR” every clock edge, every positive clock
edge, or buffer configuration with
respect to CLK.

DATA_WIDTH STRING If 4 Defines the parallel to serial data

DATA_RATE_O converter width. This value also

Q ="DDR", depends on the DATA_RATE_OQ value
value is limited of the OSERDES

t0 4,6,8, or 10. If

DATA_RATE_O

Q="SDR", value

is limited to

2,3,4,5,6,7, or 8.

INIT_OQ 1-Bit Binary 1-Bit Binary 1'b0 Defines the initial value of OQ output

INIT_TQ 1-Bit Binary 1-Bit Binary 1'b0 Defines the initial value of TQ output

SERDES_MODE STRING "MASTER" or "MASTER” | Defines whether the OSERDES module

"SLAVE” is a master or slave when width
expansion is used

SRVAL_OQ 1-Bit Binary 1-Bit Binary 1'b0 Defines the value of OQ output when
reset is invoked

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

OSERDES

SUXILINX®

SRVAL_TQ 1-Bit Binary 1-Bit Binary 1'b0 Defines the value of TQ output when
reset is invoked

TRISTATE_WIDTH | STRING If 4 Specify parallel to serial converter
DATA_RATE_T width. When DATA_RATE_TQ = DDR:
Q="DDR", 2 or 4. When DATA_RATE_TQ = SDR or
value is limited BUF: 1.
to2and 4. If
DATA_RATE_T
Q ="SDR" or
"BUF", value is
limited 1.

VHDL Instantiation Template

OSERDES In order to incorporate this function into the design,
VHDL the following instance declaration needs to be placed
instance in the architecture body of the design code. The
declaration instance name (OSERDES_inst) and/or the port declarations
code after the "=>" assignment maybe changed to properly
connect this function to the design. Delete or comment
out inputs/outs that are not necessary.
Library In addition to adding the instance declaration, a use
declaration statement for the UNISIM.vcomponents library needs to be
for added before the entity declaration. This library
Xilinx contains the component declarations for all Xilinx
primitives primitives and points to the models that will be used

for simulation.

-- Copy the following two statements and paste them before the

-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

<——-=-- Cut code below this line and paste into the architecture body---->

-- OSERDES: Output SERDES
-= Virtex-4
-- Xilinx HDL Libraries Guide Version 8.11

OSERDES_inst
generic map (

OSERDES

DATA_RATE_OQ => "DDR", -- Specify data rate to "DDR" or "SDR"
DATA_RATE_TQ => "DDR", -- Specify data rate to "DDR", "SDR", or
DATA_WIDTH => 4, -- Specify data width - For DDR: 4,6,8, or 10
-- For SDR or BUF: 2,3,4,5,6,7, or 8

INIT OQ => '0', -- INIT for Q1 register - '1l' or 'O’
INIT_TQ => '0', -- INIT for Q2 register - '1l' or 'O’
SERDES_MODE => "MASTER", --Set SERDES mode to "MASTER" or "SLAVE"
SRVAL_OQ => '0', -- Define Q1 output value upon SR assertion - '1°'
SRVAL_TQ => '0', -- Define Q1 output value upon SR assertion - '1°'
TRISTATE _WIDTH => 4) -- Specify parallel to serial converter width

-— When DATA_RATE_TQ = DDR: 2 or 4

-- When DATA_RATE_TQ = SDR or BUF: 1 "

port map (

0Q => 0Q, -- 1-bit output

SHIFTOUT1 => SHIFTOUT1l, -- 1-bit output
SHIFTOUT2 => SHIFTOUT2, -- 1-bit output
TQ => TQ, -- 1-bit onput

CLK => CLK, -- 1l-bit input

CLKDIV => CLKDIV, -- 1-bit input

D1 => D1, -- 1-bit input

D2 => D2, -- 1-bit input

D3 => D3, -- 1-bit input

D4 => D4, -- 1-bit input

D5 => D5, -- 1-bit input

D6 => D6, -- 1-bit input

OCE => OCE, -- 1l-bit input

REV => REV, -- 1-bit input

SHIFTIN1 => SHIFTIN1, -- 1-bit input
SHIFTIN2 => SHIFTIN2, -- 1l-bit input

SR => SR, -- 1-bit input

"BUF "

or '0"'
or '0"'

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

www.Xxilinx.com

231

http://www.xilinx.com

ST XILINX® OSERDES

Tl => T1, -- 1-bit input
T2 => T2, -- 1l-bit input
T3 => T3, -- 1-bit input
T4 => T4, -- 1-bit input
TCE => TCE -- 1l-bit input

)

-- End of OSERDES_inst instantiation

Verilog Instantiation Code

// OSERDES : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (OSERDES_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment
// : out inputs/outs that are not necessary.

/] <=-==== Cut code below this line---->

// OSERDES: Source Synchronous Output Serializer
/7 Virtex-4
// Xilinx HDL Libraries Guide Version 8.1i

OSERDES # (
.DATA_RATE_OQ("DDR"), // Specify data rate to "DDR" or "SDR"
.DATA_RATE_TQ("DDR"), // Specify data rate to "DDR", "SDR", or "BUF"
.DATA_WIDTH(4), // Specify data width - For DDR: 4,6,8, or 10

// For SDR or BUF: 2,3,4,5,6,7, or 8

LINIT_0Q(1'b0), // INIT for OQ register - 1'bl or 1'b0
INIT_TQ(1'b0), // INIT for OQ register - 1'bl or 1'bO0
.SERDES_MODE ("MASTER"), // Set SERDES mode to "MASTER" or "SLAVE"
.SRVAL_OQ(1'b0), // Define 0Q output value upon SR assertion - 1'bl or 1'b0
.SRVAL_TQ(1'b0), // Define TQ output value upon SR assertion - 1'bl or 1'b0
.TRISTATE_WIDTH(4) // Specify parallel to serial converter width

// When DATA_RATE_TQ DDR: 2 or 4

// When DATA_RATE_TQ SDR or BUF: 1

) OSERDES_inst (
.0Q (0Q) , // 1l-bit data path output
.SHIFTOUT1 (SHIFTOUT1), // 1l-bit data expansion output
.SHIFTOUT2 (SHIFTOUT2), // 1l-bit data expansion output

.TQ(TQ) , // 1l-bit 3-state control output
.CLK (CLK) , // 1-bit clock input
.CLKDIV(CLKDIV), // 1l-bit divided clock input
.D1(D1), // 1l-bit parallel data input

D2 (D2), // 1l-bit parallel data input

D3 (D3), // 1-bit parallel data input

.D4 (D4) , // 1l-bit parallel data input

D5 (D5) , // 1l-bit parallel data input

.D6 (D6) , // 1-bit parallel data input

.OCE(OCE), // 1-bit clock enable input
.REV(REV), // 1l-bit reverse SR input

.SHIFTIN1 (SHIFTIN1), // 1l-bit data expansion input
.SHIFTIN2 (SHIFTIN2), // 1l-bit data expansion input
.SR(SR), // 1-bit set/reset input

T1(DLYINC), // 1l-bit parallel 3-state input

T2 (DLYRST), // 1-bit parallel 3-state input

.T3 (OCLK) , // 1l-bit parallel 3-state input

T4 (REV) , // 1-bit parallel 3-state input

.TCE (TCE) // 1l-bit 3-state signal clock enable input

)

// End of OSERDES_inst instantiation
)

For More Information

Consult the Virtex-4 User Guide.

232 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

PMCD

SUXILINX®

PMCD

: Phase-Matched Clock Divider

The Phase-Matched Clock Dividers (PMCDs) are one of the clock resources available
in the Virtex-4 architecture. PMCDs provide the following clock management

features:

e Phase-Aligned Divided Clocks

The phase-aligned divided clocks create up to four frequency-divided and phse-
aligned versions of an input clock, CLKA. The output clocks are a function of the
input clock frequency: divided-by-1 (CLKA1), divided-by-2 (CLKAD2), divided-
by-4 (CLKA1D4), and divided-by-8 (CLKA1DS8). CLKA1, CLKA1D2, CLKA1D4,
CLKA1DS output clocks are rising-edge aligned.

Matched-Clock Phase

The matched-clock phase preserves edge alignments, phase relations, or skews
between the input clock CLKA and other PMCD linput clocks. Three additional
input clocks (CLKB, CLKC, and CLKD) and three corresponding delayed output
clocks (CLKB1, CLKC1, and CLKD1) are available. The same delay is inserted to
CLKA, CLKB, CLKC, and CLKD; thus, the delayed CLKA1, CLKB1, CLKC1, and
CLKDI1 clock outputs maintain edge alignments, phase relations, and the skews

of the respective inputs.

A PMCD can be used with other clock reosurces, including global buffers and the
digital clock management feature. Together, these clock resources provide flexibility
in managing complex clock networks in designs.

Port Descriptions

PMCD Port Description

Port Name

Direction

Description

CLKA

Input

CLKA is a clock input to the PMCD. The CLKA
frequency can be divided by 1, 2, 4, and 8.

CLKB CLKC CLKD

Input

CLKB, CLKC, and CLKD are clock inputs to the PMCD.
These clock are not divided by PMCD, however, they are
delayed by the PMCD to maintain the phase alignment
and phase relationship to CLKA.

RST

Input

RST is the reset input to the PMCD. Asserting the RST
signal asynchronously forces all outputs Low.
Deasserting RST synchronously allows all outputs to
toggle.

REL

Input

REL is the release input to the PMCD. Asserting the REL
signal releases the divided output synchronous to CLKA.

CLKA1

Output

The CLKA1 output has the same frequency as the CLKA
input. It is a delayed version of CLKA.

CLKA1D2

Output

The CLKA1D2 output has the frequency of CLKA
divided by two. CLKA1D?2 is rising-edge aligned to
CLKA1.

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com 233

http://www.xilinx.com

SUXILINX®

PMCD

-= PMCD

-= VHDL

-- instance
-- declaration
-= code :
-= : connect

CLKAL.

Port Name Direction Description
CLKA1D4 Output | The CLKA1D4 output has the frequency of CLKA
divided by four. CLKA1D4 is rising-edge aligned to
CLKAL.
CLKA1DS8 Output | The CLKA1DS output has the frequency of CLKA

divided by eight, CLKA1DS is rising-edge aligned to

CLKB1 CLKC1 CLKD1 | Output

The CLKB1 output is has the same frequency as the
CLKB input, a delayed version of CLKB. The skew
between CLKB1 and CLKAL1 is the same as the skew
between CLKB and CLKA inputs. Similarly, CLKC1 is a
delayed version of CLKC, and CLKD1 is a delayed

input.

version of CLKD.
Available Attributes
Attribute Type Allowed Values Default Description
EN_REL BOOLEAN FALSE, TRUE 0 This attribute allows for CLKA1D2,

CLKA1D4, and CLKA1D8 outputs to
be released at REL signal assertion.
Note: REL is synchronous to CLKA

RST_DEASSERT_CLK | STRING "CLKA", "CLKB", |"CLKA”

"CLKC", or

This attribute allows the deassertion
of the RST signal to be synchronous
"CLKD” to a selected PMCD input clock.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code. The
instance name (PMCD_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly

this function to the design. Unused inputs

- : and outputs may be removed or commented out.

-- Library
-- declaration
- for

-- Xilinx

-- primitives

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used

-= : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <————- Cut code below

this line and paste into the architecture body---->

-- PMCD: Phase-Matched Clock Divider Circuit for Virtex-4
-- Xilinx HDL Libraries Guide Version 8.11i

PMCD_inst : PMCD
generic map (
EN_REL => FALSE,

RST_DEASSERT_CLK =>

port map (
CLKAl => CLKAl, --
CLKA1D2 => CLKAlD2,
CLKA1D4 => CLKA1D4,
CLKA1D8 => CLKA1DS,
CLKBl1 => CLKB1l, --
CLKC1l => CLKC1l, --
CLKD1 => CLKD1,
CLKA => CLKA, -=
CLKB => CLKB, --

-- TRUE/FALSE to allow synchronous deassertion of RST

"CLKA") -- Reset syncronization to which clock: CLKA, CLKB, CLKC or CLKD

Output CLKA divided by 1
-- Output CLKA divided by 2
-- Output CLKA divided by 4
-- Output CLKA divided by 8
Output phase matched CLKB
Output phase matched CLKC

- Output phase matched CLKD

Input CLKA
Input CLKB

234

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

PMCD S XILINX®

CLKC => CLKC, -- Input CLKC

CLKD => CLKD, -- Input CLKD

REL => REL, -- PCMD release input

RST => RST -- Active high reset input

)

-- End of PMCD_inst instantiation

Verilog Instantiation Code

// PMCD : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (PMCD_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. Unused inputs

// : and outputs may be removed or commented out.

/] <===== Cut code below this line---->

// PMCD: Phase-Matched Clock Divider Circuit for Virtex-4
// Xilinx HDL Libraries Guide Version 8.11

PMCD # (

.EN_REL ("FALSE"), // TRUE/FALSE to allow synchronous deassertion of RST

.RST_DEASSERT_ CLK("CLKA") // Reset syncronization to which clock: CLKA, CLKB, CLKC or CLKD
) PMCD_inst (

.CLKAl (CLKAl), // Output CLKA divided by 1

.CLKA1D2 (CLKA1D2), // Output CLKA divided by 2
.CLKA1D4 (CLKA1D4), // Output CLKA divided by 4
.CLKA1D8 (CLKA1D8), // Output CLKA divided by 8

.CLKB1 (CLKB1) , // Output phase matched CLKB
.CLKC1 (CLKC1), // Output phase matched CLKC
.CLKD1 (CLKD1), // Output phase matched CLKD
.CLKA (CLKA) , // Input CLKA

.CLKB (CLKB) , // Input CLKB

.CLKC (CLKC) , // Input CLKC

.CLKD (CLKD) , // Input CLKD

.REL (REL) , // PCMD release input

.RST (RST) // Active high reset input

)

// End of PMCD_inst instantiation

For More Information
Consult the Virtex-4 User Guide.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 235
ISE 8.1i

http://www.xilinx.com

SXILINX® PMCD

236 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

PPC405_ADV S XILINX®

PPC405_ADV

Primitive: For the Power PC Core

The PowerPC 405 is a 32-bit implementation of the PowerPC embedded environment
architecture that is derived from the PowerPC architecture. Specifically, the PowerPC
405 is an embedded PowerPC 405F6, for Virtex-4 devices, processor core. The
processor core also contains on-chip memory logic (OCM), an APU controller (Virtex-
4 only), and the gasket logic and interface.

The PowerPC architecture provides a software model that ensures compatibility
between implementations of the PowerPC family of microprocessors. The PowerPC
architecture defines parameters that guarantee compatible processor implementations
at the application-program level, allowing broad flexibility in the development
derivative PowerPC implementations that meet specific market requirements.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 237
ISE 8.1i

http://www.xilinx.com

SUXILINX®

PPC405_ADV

| INRNARRARRY IMRRNRRRA | {11111 My | NNy | ANuRAuRunnt | RN A IR UnnnunnRAnn N unnny | A | Innnunmi (i

PPC405_ADV
BRAMDSOCLK APUFCMDECODED
BRAMISOCMCLK APUFCMDECUDIVALID
BRAMISOCMRDDEUS(0:63) APUFCMFLUSH
GPMC405CLOCK APUFCMINSTRUCTION(0:31)
KINACTIVE o
CPMC40SCPUCLKEN APUFCMLOADBYTEEN(03)
CPMCA40SITAGCLKEN APUFCMLOADDATA(0:31)
CPMCA0STIMERCLKEN APUFCMLOADDVALID
CPMCA4OSTIMERTICK APUFCMOPERANDVALID
CPMDCRCLK APUFCMRADATA(0:31)
CPMFCMCLK APUFCMRBDATA(0:31)
DBGC40SDEBUGHALT APUFCMWRITEBACKOK
DBGCA0SEXTBUSHOLDACK APUFCMXERCA
DSARCVALUE(0:7) C405DBGLOADDATAGNAPUDBUS
DSCNTLVALUE(0:7) C405DBGMSRWE
DSOCMRWCOMPLETE C405DBGSTOPACK
EICC405CRITINPUTIRQ C405DBGWBCOMPLETE
EICCA0SEXTINPUTIRQ C40SDBGWBFULL
EXTDCRACK C40SDBGWBIAR(0:29)
EXTDGRDBUSIN(031) C405JTGCAPTUREDR
FOMAPUCR(0:3) C40SJTGEXTEST
FCMAPUDCDCREN C40ITGPGMOUT
FCMAPUDCDFORCEALIGN C40SITGSHIFTDR
FCMAPUDCDFORCEBESTEERING C403UTGTDO
FCMAPUDCDFPUOP C40SITGTDOEN
C405JTGUPDATEDR
FOMAPUDCDLDSTBYTE C405PLBDCUABORT
FOMAPUDCDLDSTOW (C405PLBDCUABUS(0:31)
FOMAPUDCDLDSTHW C405PLBDCUBE(D:7)
FOMAPUDCDLDSTOW. C405PLBDCUCACHEABLE
FOMAPUDCDLDSTWD C405PLBDCUGUARDED
FOMAPUDCDLOAD C405PLBDCUPRIOAITY(0:1)
FOMAPUDCDPRIVOP C405PLBDCUREQUEST
FOMAPUDCDRAEN ‘CA0SPLBOCURNW
FOMAPUDCDRBEN C405PLBDCUSIZE2
FOMAPUDCDSTORE C405PLBDCUUOATTR
FOMAPUDCDTRAPBE C403PLBDCUWRDBUS(0:63)
FCMAPUDCDTRAPLE C405PLBDCUWRITETHRU
FCMAPUDCDUPDATE C405PLBICUABORT
FCMAPUDCDXERCAEN G405PLBICUABUS(0:29)
FCMAPUDCDXEROVEN C405PLBICUCACHEABLE
FCMAPUDECODEBUSY ‘C405PLBICUPRIORITY(0:1)
FOMAPUDONE (C405PLBICUREQUEST
FOMAPUEXCEPTION C40SPLBICUSIZE(2:3)
FOMAPUEXEBLOCKINGMCO G405PLBICUUOATTR
FOMAPUEXECRFIELD(02) C405RSTCHIPRESETREQ
FOMAPUINSTRACK C405RSTSYSRESETREQ
FOMAPULOADWAIT G40STROCYGLE
1031,
TVALID
FOMAPUSL
TYPEQ:10)
ISARCVALUE(0:7) (C405XXXMACHINECHECK
ISCNTLVALUE(0:7) DCREMACENABLER
JTGCA0SBNDSCANTDO DSOCMBRAMABUS(8:29)
JTGCA0STOK DSOCMBRAMBYTEWRITE(03)
JTGCA0STDI DSOCMBRAMEN
JTGCA0sTMS DSOCMBRAMWRDBUS(0:31)
JTGCA0STRSTNEG DSOCMBUSY
MCBCPUCLKEN DSOCMRDADDRVALID
MCBJTAGEN DSOCMWRADDRVALID
MCBTIMEREN EXTDCRABUS(0:9)
MCPPCRST EXTDCRDBUSOUT(0:31)
PLBC4DSDCUADDRACK EXTDCRREAD
PLBC40SDCUBUSY EXTDCRWRITE
PLBC40SOCUERR ISOCMBRAMEN
PLBC40SDCURDDACK ISOCMBRAMEVENWRITEEN
PL
pL)
PLBC40SDCUSSIZET ISOCMBRAMWRABUS (8:28)
PLBC40SDCUWRDACK ISOCMBRAMWRDBUS(0:31)
PLBCA40SICUADDRACK ISOCMDCRERAMEVENEN
PLBCA40SICUBUSY ISOCMDGRBRAMODDEN

PLBC40SICUERR
PLBCA40SICURDDACK
PLBCA40SICURDDBUS(0:63)
PLBCA40SICURDWDADDR(1:3)
PLBCA40SICUSSIZE1
PLBCLK
RSTCAOSRESETCHIP
RSTCAOSRESETCORE
RSTCAUSRESETSYS
TIEAPUCONTROL(0:15)
TIEAPUUDIT(023)
TIEAPUUDIZ(023)
TIEAPUUDI3(023)
TIEAPUUDI4(023)
TIEAPUUDIS(0:23)
TIEAPUUDIG(0:23)
TIEAPUUDI7(0:23)
TIEAPUUDIB(0:23)
TIEC405CLOCKENABLE
TIEC405CLOCKSELECT80
TIEC405CLOCKSELECTS1
TIEC405DCUMARGIN
TIEC405DETERMINISTICMULT
TIEC40SDISOPERANDFWD
TIEC40SDUTYENABLE.
TIEC40SICUMARGIN
TIEC40SMMUEN
TIEDCRADDR(0:5)
TIEPVRBITI0

TIEPVRBIT11

TIEPVRBIT2S

TIEPVRBIT29

TIEPVRBITI0

TIEPVRBITa1

TIEPVRBITS

TIEPVRBITY
TRCCA0STRACEDISABLE
TRCCA0STRIGGEREVENTIN
EMACDCRDBUS(0:31)
EMACDCRACK

ISOCMDCRERAMRDSELECT
DCREMACWRITE
DCREMACREAD
DCREMACDBUS(031)
DCREMACABUS(5:9)
DCREMACCLK

0 L DNARRA | | CNARRA | LR AR 0 MR AR AR U ORNMAMRAR URRANARRI | URE (0L

PPC405_ADV Schematic

X10191

238

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

PPC405_ADV

SUXILINX®

Inputs and Outputs

Inputs Outputs
BRAMDSOCMCLK APUFCMDECODED
BRAMDSOCMRDDBUS [0:31] APUFCMDECUDI [0:2]
BRAMISOCMCLK APUFCMDECUDIVALID
BRAMISOCMDCRRDDBUS [0:31] APUFCMENDIAN
BRAMISOCMRDDBUS [0:63] APUFCMFLUSH
CPMC405CLOCK APUFCMINSTRUCTION [0:31]
CPMC405CORECLKINACTIVE APUFCMINSTRVALID
CPMC405CPUCLKEN APUFCMLOADBYTEEN [0:3]
CPMC405]JTAGCLKEN APUFCMLOADDATA [0:31]
CPMC405SYNCBYPASS APUFCMLOADDVALID
CPMC405TIMERCLKEN APUFCMOPERANDVALID
CPMC405TIMERTICK APUFCMRADATA [0:31]
CPMDCRCLK APUFCMRBDATA [0:31]
CPMFCMCLK APUFCMWRITEBACKOK
DBGC405DEBUGHALT APUFCMXERCA
DBGC405EXTBUSHOLDACK C405CPMCORESLEEPREQ
DBGC405UNCONDDEBUGEVENT | C405CPMMSRCE
DSARCVALUE [0:7] C405CPMMSREE
DSCNTLVALUE [0:7] C405CPMTIMERIRQ
DSOCMRWCOMPLETE C405CPMTIMERRESETREQ
EICC405CRITINPUTIRQ C405DBGLOADDATAONAPUDBUS
EICC405EXTINPUTIRQ C405DBGMSRWE
EMACDCRACK C405DBGSTOPACK
EMACDCRDBUS [0:31] C405DBGWBCOMPLETE
EXTDCRACK C405DBGWBFULL
EXTDCRDBUSIN [0:31] C405DBGWBIAR [0:29]
FCMAPUCR [0:3] C405]TGCAPTUREDR
FCMAPUDCDCREN C405]TGEXTEST
FCMAPUDCDFORCEALIGN C405]TGPGMOUT
FCMAPUDCDFORCEBESTEERING | C405JTGSHIFTDR
FCMAPUDCDFPUOP C405]TGTDO
FCMAPUDCDGPRWRITE C405]TGTDOEN
FCMAPUDCDLDSTBYTE C405]TGUPDATEDR
FCMAPUDCDLDSTDW C405PLBDCUABORT
FCMAPUDCDLDSTHW C405PLBDCUABUS [0:31]
FCMAPUDCDLDSTQW C405PLBDCUBE [0:7]
FCMAPUDCDLDSTWD C405PLBDCUCACHEABLE
FCMAPUDCDLOAD C405PLBDCUGUARDED
FCMAPUDCDPRIVOP C405PLBDCUPRIORITY [0:1]
FCMAPUDCDRAEN C405PLBDCUREQUEST

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com

239

http://www.xilinx.com

SUXILINX®

PPC405_ADV

Inputs Outputs
FCMAPUDCDRBEN C405PLBDCURNW
FCMAPUDCDSTORE C405PLBDCUSIZE2
FCMAPUDCDTRAPBE C405PLBDCUUOATTR
FCMAPUDCDTRAPLE C405PLBDCUWRDBUS [0:63]
FCMAPUDCDUPDATE C405PLBDCUWRITETHRU
FCMAPUDCDXERCAEN C405PLBICUABORT
FCMAPUDCDXEROVEN C405PLBICUABUS [0:29]
FCMAPUDECODEBUSY C405PLBICUCACHEABLE
FCMAPUDONE C405PLBICUPRIORITY [0:1]
FCMAPUEXCEPTION C405PLBICUREQUEST
FCMAPUEXEBLOCKINGMCO C405PLBICUSIZE [2:3]
FCMAPUEXECRFIELD [0:2] C405PLBICUUOATTR
FCMAPUEXENONBLOCKINGMCO | C405RSTCHIPRESETREQ
FCMAPUINSTRACK C405RSTCORERESETREQ
FCMAPULOADWAIT C405RSTSYSRESETREQ
FCMAPURESULT [0:31] C405TRCCYCLE
FCMAPURESULTVALID C405TRCEVENEXECUTIONSTATUS [0:1]
FCMAPUSLEEPNOTREADY C405TRCODDEXECUTIONSTATUS [0:1]
FCMAPUXERCA C405TRCTRACESTATUS [0:3]
FCMAPUXEROV C405TRCTRIGGEREVENTOUT
ISARCVALUE [0:7] C405TRCTRIGGEREVENTTYPE [0:10]
ISCNTLVALUE [0:7] C405XXXMACHINECHECK
JTGC405BNDSCANTDO DCREMACABUS [8:9]
JTGC405TCK DCREMACCLK
JTGC405TDI DCREMACDBUS [0:31]
JTGC405TMS DCREMACENABLER
JTGC405TRSTNEG DCREMACREAD
MCBCPUCLKEN DCREMACWRITE
MCBJTAGEN DSOCMBRAMABUS [8:29]
MCBTIMEREN DSOCMBRAMBYTEWRITE [0:3]
MCPPCRST DSOCMBRAMEN
PLBC405DCUADDRACK DSOCMBRAMWRDBUS [0:31]
PLBC405DCUBUSY DSOCMBUSY
PLBC405DCUERR DSOCMRDADDRVALID
PLBC405DCURDDACK DSOCMWRADDRVALID

PLBC405DCURDDBUS [0:63]

EXTDCRABUS [0:9]

PLBC405DCURDWDADDR [1:3]

EXTDCRDBUSOUT [0:31]

PLBC405DCUSSIZE1 EXTDCRREAD
PLBC405DCUWRDACK EXTDCRWRITE
PLBC405ICUADDRACK ISOCMBRAMEN
PLBC405ICUBUSY ISOCMBRAMEVENWRITEEN

240

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

PPC405_ADV

SUXILINX®

Inputs Outputs
PLBC405ICUERR ISOCMBRAMODDWRITEEN
PLBC405ICURDDACK ISOCMBRAMRDABUS [8:28]

PLBC405ICURDDBUS [0:63]

ISOCMBRAMWRABUS [8:28]

PLBC405ICURDWDADDR [1:3]

ISOCMBRAMWRDBUS [0:31]

PLBC405ICUSSIZE1 ISOCMDCRBRAMEVENEN
PLBCLK ISOCMDCRBRAMODDEN
RSTC405RESETCHIP ISOCMDCRBRAMRDSELECT
RSTC405RESETCORE

RSTC405RESETSYS

TIEAPUCONTROL [0:15]

TIEAPUUDII [0:23]

TIEAPUUDI2 [0:23]

TIEAPUUDIS3 [0:23]

TIEAPUUDI4 [0:23]

TIEAPUUDIS [0:23]

TIEAPUUDIS6 [0:23]

TIEAPUUDI? [0:23]

TIEAPUUDIS [0:23]

TIEC405DETERMINISTICMULT

TIEC405DISOPERANDFWD

TIEC405MMUEN

TIEDCRADDR [0:5]

TIEPVRBIT10

TIEPVRBIT11

TIEPVRBIT28

TIEPVRBIT29

TIEPVRBIT30

TIEPVRBIT31

TIEPVRBIT8

TIEPVRBIT9

TRCC405TRACEDISABLE

TRCC405TRIGGEREVENTIN

Usage

Refer to the EDK software for information regarding the use of this component.

VHDL/Verilog Instantiation

Use the Embedded Development Kit (EDK) in order to generate and instantiate these

components.

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com

241

http://www.xilinx.com

SXILINX® PPC405_ADV

For More Information

For complete information about the PowerPC 405 in Virtex-4 devices, see the
following documents:

e Virtex-4 Data Sheet
e PowerPC 405 Processor Block Reference Guide (for Virtex-4).

More information about this element can be found in the Virtex-4 User Guide.

242 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

PULLDOWN S XILINX®

PULLDOWN
Primitive: Resistor to GND for Input Pads

PULLDOWN resistor elements are connected to input, output, or bidirectional pads
to guarantee a logic Low level for nodes that might float.

Usage
For HDL, the PULLDOWN design element is instantiated rather than inferred.
X3860
VHDL Instantiation Template
-- PULLDOWN : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (PULLDOWN_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly

-- : connect this function to the design. Delete or comment
-— : out inputs/outs that are not necessary.

-- Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that will be used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <—=——- Cut code below this line and paste into the architecture body---->
-- PULLDOWN: I/O Buffer Weak Pull-down
-= All FPGA, CoolRunner-II
-- Xilinx HDL Libraries Guide Version 8.11
PULLDOWN_inst : PULLDOWN
port map (
0O =>0 -- Pulldown output (connect directly to top-level port)
)

-- End of PULLDOWN_inst instantiation

Verilog Instantiation Code

// PULLDOWN : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (PULLDOWN_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment
// : out inputs/outs that are not necessary.

/] <-===- Cut code below this line---->

// PULLDOWN: I/O Buffer Weak Pull-down
// All FPGA, CoolRunner-II
// Xilinx HDL Libraries Guide Version 8.11

PULLDOWN PULLDOWN_inst (
.0(0), // Pulldown output (connect directly to top-level port)
) ;

// End of PULLDOWN_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 243
ISE 8.1i

http://www.xilinx.com

SXILINX® PULLDOWN

For More Information

Consult the Virtex-4 User Guide.

244 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

PULLUP S XILINX®

PULLUP

Primitive: Resistor to Vcc for Input PADs, Open-Drain, and 3-State
Outputs

The pull-up elements establish a High logic level for open-drain elements and macros
(DECODE, WAND, WORAND) or 3-state nodes (TBUF) when all the drivers are set to
off.

The buffer outputs are connected together as a wired-AND to form the output (O).
When all the inputs are High, the output is off. To establish an output High level, a
PULLUP resistor is tied to output (O). One PULLUP resistor uses the least power, two
pull-up resistors achieve the fastest Low-to-High speed.

X3861 To indicate two PULLUP resistors, append a DOUBLE parameter to the pull-up
symbol attached to the output (O) node.

Usage

This design element is instantiated rather than inferred.

VHDL Instantiation Template

-- PULLUP : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed

-- instance : in the architecture body of the design code. The

-- declaration : instance name (PULLUP_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly

- : connect this function to the design. Delete or comment
-= : out inputs/outs that are not necessary.

- Library : In addition to adding the instance declaration, a use

-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library

-- Xilinx : contains the component declarations for all Xilinx

-- primitives : primitives and points to the models that will be used
-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->
-— PULLUP: I/O Buffer Weak Pull-up
-— All FPGA, CoolRunner-II
-- Xilinx HDL Libraries Guide Version 8.11i
PULLUP_inst : PULLUP
port map (
O => 0 -- Pullup output (connect directly to top-level port)
)

-- End of PULLUP_inst instantiation

Verilog Instantiation Code

// PULLUP : In order to incorporate this function into the design,

// Verilog : the following instance declaration needs to be placed

// instance : in the body of the design code. The instance name

// declaration : (PULLUP_inst) and/or the port declarations within the

// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. Delete or comment

// : out inputs/outs that are not necessary.

/] <=-==== Cut code below this line---->

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 245

ISE 8.1i

http://www.xilinx.com

ST XILINX® PULLUP

// PULLUP: I/0 Buffer Weak Pull-up
// All FPGA, CoolRunner-II
// Xilinx HDL Libraries Guide Version 8.11
PULLUP PULLUP_inst (
.0(0), // Pullup output (connect directly to top-level port)
) ;

// End of PULLUP_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

246 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

RAM16X1D

SUXILINX®

RAM16X1D
Primitive: 16-Deep by 1-Wide Static Dual Port Synchronous RAM

[
om

=
%)
Q
=

=)

>
N

>
w

2
>
=}

ki
|>
>

O ouoUgo
TV 3T
03
> >
W N

RAM16X1D | spo

DPO

X4950

RAM16X1D is a 16-word by 1-bit static dual port random access memory with
synchronous write capability. The device has two separate address ports: the read
address (DPRA3 — DPRAO) and the write address (A3 — A0). These two address ports
are completely asynchronous. The read address controls the location of the data
driven out of the output pin (DPO), and the write address controls the destination of a
valid write transaction.

When the write enable (WE) is Low, transitions on the write clock (WCLK) are
ignored and data stored in the RAM is not affected. When WE is High, any positive
transition on WCLK loads the data on the data input (D) into the word selected by the
4-bit write address. For predictable performance, write address and data inputs must
be stable before a Low-to-High WCLK transition. This RAM block assumes an active-
High WCLK. WCLK can be active-High or active-Low. Any inverter placed on the
WCLK input net is absorbed into the block.

Mode selection is shown in the following truth table.

Inputs Outputs

SPO DPO
data_a data_d
data_a data_d
data_a data_d

D data_d
data_a data_d

WE (mode) WCLK

0 (read) X

1 (read) 0

1 (read) 1

1 (write))

1 (read) l
data_a = word addressed by bits A3-A0
data_d = word addressed by bits DPRA3-DPRAO

XX | X|X]| O

The SPO output reflects the data in the memory cell addressed by A3 — A0. The DPO
output reflects the data in the memory cell addressed by DPRA3 — DPRAO.

Note: The write process is not affected by the address on the read address port.

Specifying Initial Contents of a RAM

You can use the INIT attribute to specify an initial value directly on the symbol if the
RAM is 1 bit wide and 16, 32, 64, or 128 bits deep. The value must be a hexadecimal
number, for example, INIT = ABAC. If the INIT attribute is not specified, the RAM is
initialized with zero.

See the "INIT" section of the Constraints Guide for more information on the INIT
attribute.

For Virtex-4 wide RAMs (2, 4, and 8-bit wide single port synchronous RAMs with a
WCLK) can also be initialized. These RAMs, however, require INIT_xx attributes.

Usage

This design element can be inferred or instantiated. The instantiation code is shown
below. For information on how to infer RAM, see the XST User Guide.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 247

ISE 8.1i

http://www.xilinx.com

SXILINX® RAM16X1D
Available Attributes.
Attribute Type Allowed Values Default Description
INIT 64-Bit Hexadecimal 64-Bit Hexadecimal 16'h0000000000 | Initializes ROMs, RAMs,
000000 registers, and look-up tables.

-- declaration

S

RAM16X1D

Library
-- declaration

Xilinx

VHDL
instance

code

instance name

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code.
(RAM16X1D_inst) and/or the port declarations
after the "=>" assignment maybe changed to properly

The

reference and connect this function to the design.
All inputs and outputs must be connected.

for

rimitives

for simulation.

In addition to adding the instance declaration,
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration.
contains the component declarations for all Xilinx

primitives and points to the models that will be used

This library

Copy the following two statements and paste them before the

Entity declaration,

Library UNISIM;
use UNISIM.vcomponents.all;

unless they already exists.

a use

————— Cut code below this line and paste into the architecture body---->

RAM16X1D:

Xilinx

RAM16X1D_inst

ge

po

)

neric map (

INIT => X"0000")

rt map (
DPO => DPO,
SPO => SPO,
A0 => AO,
Al => Al,
A2 => A2,
A3 => A3,

D => D,

DPRAO => DPRAO,
DPRA1 => DPRA1L,
DPRA2 => DPRA2,
DPRA3 => DPRA3,

WCLK => WCLK,
WE => WE

16 x 1 positive edge write,
All FPGAs
HDL Libraries Guide Version 8.11i

RAM16X1D

Port A 1-bit data output
Port B 1l-bit data output
Port A address[0] input bit
Port A address[1l] input bit
Port A address[2] input bit
Port A address[3] input bit
Port A 1-bit data input
Port B address[0] input bit
Port B address[1l] input bit
Port B address[2] input bit
Port B address[3] input bit
Port A write clock input
Port A write enable input

-- End of RAM16X1D_inst instantiation

Verilog Instantiation Code

RAM16X1D In order to incorporate this function into the design,
Verilog the following instance declaration needs to be placed
instance in the body of the design code. The instance name
declaration (RAM16X1D_inst) and/or the port declarations within the
code parenthesis maybe changed to properly reference and
connect this function to the design. All inputs
and outputs must be connected.
<--—-- Cut code below this line---->

// RAM16X1D:
/7

16 x 1 positive edge write,
All FPGAs

// Xilinx HDL Libraries Guide Version 8.11

RAM16X1D # (

)

.INIT(16'h0000)

RAM16X1D_inst

// Initial contents of RAM

asynchronous read dual-port distributed RAM

asynchronous read dual-port distributed RAM

248

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

RAM16X1D S XILINX®
.DPO (DPO) , // Port A 1-bit data output
.SPO(SPO) , // Port B 1l-bit data output
.A0 (AQ), // Port A address[0] input bit
VAl (AL), // Port A address[1l] input bit
A2 (A2), // Port A address[2] input bit
A3 (A3), // Port A address([3] input bit
.D(D), // Port A 1-bit data input
.DPRAQ (DPRAO), // Port B address[0] input bit
.DPRA1 (DPRALl), // Port B address[l] input bit
.DPRA2 (DPRA2), // Port B address[2] input bit
.DPRA3 (DPRA3), // Port B address[3] input bit
.WCLK (WCLK) , // Port A write clock input
.WE (WE) // Port A write enable input

)

// End of RAM16X1D_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com

249

http://www.xilinx.com

SXILINX® RAM16X1D

250 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

RAM16X1S

SUXILINX®

RAM16X1S
Primitive: 16-Deep by 1-Wide Static Synchronous RAM

RAM16X1S is a 16-word by 1-bit static random access memory with synchronous
write capability. When the write enable (WE) is Low, transitions on the write clock

we [RAMIBX1S| o (WCLK) are ignored and data stored in the RAM is not affected. When WE is High,
o | — any positive transition on WCLK loads the data on the data input (D) into the word
WCLK selected by the 4-bit address (A3 — A0). For predictable performance, address and data
A0 inputs must be stable before a Low-to-High WCLK transition. This RAM block
Al assumes an active-High WCLK. However, WCLK can be active-High or active-Low.
A2 Any inverter placed on the WCLK input net is absorbed into the block.
A3 The signal output on the data output pin (O) is the data that is stored in the RAM at
" the location defined by the values on the address pins.
942
You can initialize RAM16X1S during configuration using the INIT attribute. See
“Specifying Initial Contents of a RAM” in the RAM16X1D section.
Mode selection is shown in the following truth table.
Inputs Outputs
WE(mode) WCLK D (o]
0 (read) X X Data
1 (read) 0 X Data
1 (read) 1 X Data
1 (write) T D D
1 (read) l X Data
Data = word addressed by bits A3 — A0
Usage
This design element can be inferred or instantiated. The instantiation code is shown
below. For information on how to infer RAM, see the XST User Guide.
Available Attributes.
Attribute Type Allowed Values Default Description
INIT 64-Bit Hexadecimal 64-Bit Hexadecimal 16'h0000000000 | Initializes ROMs, RAMs,
000000 registers, and look-up tables.
VHDL Instantiation Template
-- RAM16X1S : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (RAM16X1S_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly
-- : reference and connect this function to the design.
-— : All inputs and outputs must be connected.
- Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that will be used
-- : for simulation.
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 251

ISE 8.1i

http://www.xilinx.com

SUXILINX®

RAM16X1S

Copy the following two statements and paste them before the

Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

<-—==-- Cut code below this line and paste into the architecture body---->

-- RAM16X1S: 16 x 1 posedge write distributed => LUT RAM
-= All FPGA
-- Xilinx HDL Libraries Guide Version 8.1i

RAM16X1S_inst : RAM16X1S
generic map (
INIT => X"0000")

port map (
o => 0O, -- RAM output
A0 => A0, -- RAM address[0] input
Al => Al, -- RAM address[1l] input
A2 => A2, -- RAM address[2] input
A3 => A3, -- RAM address[3] input
D => D, -- RAM data input
WCLK => WCLK, -- Write clock input
WE => WE -- Write enable input

)

-—- End of RAMI16X1S_inst instantiation

Verilog Instantiation Code

// RAM16X1S : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (RAM16X1S_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// and outputs must be connect.
/] <===== Cut code below this line---->
// RAM16X1S: 16 x 1 posedge write distributed (LUT) RAM
// All FPGA
// Xilinx HDL Libraries Guide Version 8.11
RAM16X1S #(
.INIT(16'h0000) // Initial contents of RAM
) RAM16X1S_inst (
.0(0), // RAM output
VA0 (A0), // RAM address[0] input
LAl (AL), // RAM address[1l] input
A2 (A2), // RAM address[2] input
A3 (A3), // RAM address[3] input
.D(D), // RAM data input
.WCLK (WCLK), // Write clock input
.WE (WE) // Write enable input
)
// End of RAM16X1S_inst instantiation
For More Information
Consult the Virtex-4 User Guide.
252 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

RAM32X1S

SUXILINX®

RAM32X1S
Primitive: 32-Deep by 1-Wide Static Synchronous RAM

RAMB32X1S is a 32-word by 1-bit static random access memory with synchronous
write capability. When the write enable is Low, transitions on the write clock (WCLK)

we |RAM32x1S| o are ignored and data stored in the RAM is not affected. When (WE) is High, any
2 positive transition on WCLK loads the data on the data input (D) into the word
v ';i> selected by the 5-bit address (A4 — A0). For predictable performance, address and data
A1 inputs must be stable before a Low-to-High WCLK transition. This RAM block
e assumes an active-High WCLK. However, WCLK can be active-High or active-Low.
A4 | Any inverter placed on the WCLK input net is absorbed into the block.
X443 The signal output on the data output pin (O) is the data that is stored in the RAM at
the location defined by the values on the address pins.
You can initialize RAM32X1S during configuration using the INIT attribute. See
“Specifying Initial Contents of a RAM” in the RAM16X1D section.
Mode selection is shown in the following truth table.
Inputs Outputs
WE (mode) WCLK D (o]
0 (read) X X Data
1 (read) 0 X Data
1 (read) 1 X Data
1 (write)) D D
1 (read) l X Data
Data = word addressed by bits A4 — AO
Usage
For HDL, this design element can be inferred or instantiated. The instantiation code is
shown below. For information on how to infer RAM, see the XST User Guide.
Available Attributes
Attribute Type Allowed Values | Default Description
INIT_00 To INIT_07 INTEGER 0,1,2,3,4,5,6,0r7 0 Initializes ROMs, RAMs, registers, and
look-up tables.
VHDL Instantiation Template
-- RAM32X1S : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (RAM32X1S_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly
-- : reference and connect this function to the design.
-— : All inputs and outputs must be connected.
- Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that will be used
-- : for simulation.
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 253

ISE 8.1i

http://www.xilinx.com

SUXILINX®

RAM32X1S

Copy the following two statements and paste them before the

Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

<-—==-- Cut code below this line and paste into the architecture body---->

-- RAM32X1S: 32 x 1 posedge write distributed

-= All FPGA
-- Xilinx HDL Libraries Guide Version 8.1i

RAM32X1S_inst
generic map (

RAM32X1S

INIT => X"00000000")

port map (
O => 0O,
A0 => AO,
Al => Al,
A2 => A2,
A3 => A3,
Ad => A4,
D => D,
WCLK => WCLK,
WE => WE

)

RAM output

RAM address[0] input
RAM address[1l] input
RAM address([2] input
RAM address[3] input
RAM address[4] input
RAM data input

Write clock input
Write enable input

-- End of RAM32X1S_inst instantiation

Verilog Instantiation Code

=> LUT RAM

// RAM32X1S : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (RAM32X1S_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// and outputs must be connect.
/] <-===- Cut code below this line---->
// RAM32X1S: 32 x 1 posedge write distributed (LUT) RAM
// All FPGA
// Xilinx HDL Libraries Guide Version 8.11
RAM32X1S #(
.INIT(32'h00000000) // Initial contents of RAM
) RAM32X1S_inst (
.0(0), // RAM output
.A0 (AOQ), // RAM address[0] input
LAl (AL), // RAM address[1l] input
VA2 (A2), // RAM address[2] input
A3 (A3), // RAM address[3] input
A4 (A4, // RAM address([4] input
.D(D), // RAM data input
.WCLK (WCLK), // Write clock input
.WE (WE) // Write enable input
)
// End of RAM32X1S_inst instantiation
For More Information
Consult the Virtex-4 User Guide.
254 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

RAM64X1S

SUXILINX®

RAM64X1S
Primitive: 64-Deep by 1-Wide Static Synchronous RAM

RAM64X1S is a 64-word by 1-bit static random access memory with synchronous
write capability. When the write enable is Low, transitions on the write clock (WCLK)

WE [RAM64x1S are ignored and data stored in the RAM is not affected. When WE is High, any
Wc& - positive transition on WCLK loads the data on the data input (D) into the word
20| selected by the 6-bit address (A5 — A0). For predictable performance, address and data
A1] inputs must be stable before a Low-to-High WCLK transition. This RAM block
A2 | assumes an active-High WCLK. However, WCLK can be active-High or active-Low.
A3 | Any inverter placed on the WCLK input net is absorbed into the block.
A4
AS | The signal output on the data output pin (O) is the data that is stored in the RAM at
the location defined by the values on the address pins.
X9265
You can initialize RAM64X1S during configuration using the INIT attribute. See
“Specifying Initial Contents of a RAM” in the RAM16X1D section.
Mode selection is shown in the following truth table.
Inputs Outputs
WE (mode) WCLK D (o]
0 (read) X X Data
1 (read) 0 X Data
1 (read) 1 X Data
1 (write)) D D
1 (read) l X Data
Data = word addressed by bits A5 — A0
Usage
For HDL, this design element can be inferred or instantiated. The instantiation code is
shown below. For information on how to infer RAM, see the XST User Guide.
Available Attributes.
Attribute Type Allowed Values Default Description
INIT 64-Bit Hexadecimal | 64-Bit Hexadecimal 64'h000000000 | Initializes ROMs, RAMs,
0000000 registers, and look-up tables.
VHDL Instantiation Template
-- RAM64X1S : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (RAM64X1S_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly
-- : reference and connect this function to the design.
-— : All inputs and outputs must be connected.
- Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that will be used

: for simulation.

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com 255

http://www.xilinx.com

&

XILINX"®

RAM64X1S

Copy the following two statements and paste them before the
Entity declaration,

Library UNISIM;
use UNISIM.vcomponents.all;

-- RAM64X1S:

-- Xilinx

unless they already exists.

<-—==-- Cut code below this line and paste into the architecture body---->

RAM64X1S_inst
generic map (
INIT => X"0000000000000000")

port map (
O => 0O,
A0 => AO,
Al => Al,
A2 => A2,
A3 => A3,
Ad => A4,
A5 => A5,
D => D,
WCLK => WCLK,
WE => WE

)

RAM64X1S

1-bit data output
Address[0] input
Address[1] input
Address[2] input
Address[3] input
Address[4] input
Address[5] input
1-bit data input
Write clock input
Write enable inpu

-- End of RAM64X1S_inst instantiation

64 x 1 positive edge write,
- Virtex-II/II-Pro,
HDL Libraries Guide Version 8.11i

bit
bit
bit
bit
bit
bit

t

Verilog Instantiation Code

asynchronous read single-port distributed RAM
Spartan-3/3E

// RAM64X1S : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration (RAM64X1S_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// and outputs must be connect.
/] <===== Cut code below this line---->
// RAM64X1S: 64 x 1 positive edge write, asynchronous read single-port distributed RAM
// Virtex-II/II-Pro/4, Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.11
RAM64X1S # (
.INIT(64'h0000000000000000) // Initial contents of RAM
) RAM64X1S_inst
.0(0), // 1-bit data output
A0 (A0), // Address[0] input bit
Al (Al), // Address[1l] input bit
A2 (A2), // Address[2] input bit
A3 (A3), // Address[3] input bit
A4 (A4), // Address[4] input bit
A5 (A5), // Address[5] input bit
.D(D), // 1l-bit data input
.WCLK (WCLK), // Write clock input
.WE (WE) // Write enable input
)
// End of RAM64X1S_inst instantiation
For More Information
Consult the Virtex-4 User Guide.
256 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

RAMB16 S XILINX®

RAMB16

Primitive: 16384-Bit Data Memory and 2048-Bit Parity Memory, Single-
Port Synchronous Block RAM with Port Width (n) Configured to 1, 2, 4,
9, 18, or 36 Bits

In addition to distributed RAM memory, Virtex-4 devices feature a large numberof 18

ADDRA(14:0) RAMB16 CASCADEOUTA

e Kb block RAM memories. The block RAM memory is a True Dual-Port™ RAM,
crschomm oo Offering fast, discrete, and large blocks of memory in the device. The memory is
o organized in columns, and the total amount of block RAM memory depends on the
e bons1 size of the Virtex-4 device. The 18 Kb blocks are cascadable to enable a deeper and
JEEEN wider memory implementation, with a minimal timing penalty incurred through
DIPA(3:0)
e sy Specialized routing resources.
ez Available Attributes
_ssne o Table 4-4: Block RAM Memorv Cell
— Initialization Attributes v
,,,,, from to

INIT_00 255 0

INIT_01 511 256

INIT_02 767 512

INIT_OE 3839 3584

INIT_OF 4095 3840

INIT_10 4351 4096

INIT_1F 8191 7936

INIT_20 8447 8192

INIT_2F 12287 12032

INIT_30 12543 12288

INIT_3F 16383 16128

Content Initialization - INIT_xx

INIT_xx attributes define the initial memory contents. By default block RAM memory
is initialized with all zeros during the device configuration sequence. The 64
initialization attributes from INIT_00 through INIT_3F represent the regular memory
contents. Each INIT_xx is a 64-digit hex-encoded bit vector. The memory contents can
be partially initialized and are automatically completed with zeros.

Content Initialization - INITP_xx

INITP_xx attributes define the initial contents of the memory cells corresponding to
DIP/DOP buses (parity bits). By default these memory cells are also initialized to all
zeros. The eight initialization attributes from INITP_00 through INITP_07 represent
the memory contents of parity bits. Each INITP_xx is a 64-digit hex-encoded bit vector

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 257
ISE 8.1i

http://www.xilinx.com

SUXILINX®

RAMB16

with a regular INIT_xx attribute behavior. The same formula can be used to calculate
the bit positions initialized by a particular INITP_xx attribute.

Output Latches Initialization - INIT (INIT_A & INIT_B)

The INIT_A and INIT_B (dual-port) attributes define the output latches values after
configuration. The width of the INIT (INIT_A & INIT_B) attribute is the port width, as
shown in Table 4-5. These attributes are hex-encoded bit vectors and the default value
is 0.

Output Latches Synchronous Set/Reset - SRVAL (SRVAL_A & SRVAL_B)

The SRVAL_A and SRVAL_B (dual-port) attributes define output latch values when
the SSR input is asserted. The width of the SRVAL (SRVAL_A and SRVAL_B) attribute
is the port width, as shown in the following table:

Table 4-5: Port Width Values Port Data Width| DOP Bus | DO Bus | INIT / SRVAL
1 NA <0> 1
2 NA <1:0> 2
4 NA <3:0> 4
9 <0> <7:0> 1+8)=9
18 <1:0> <15:0> 2+16)=18
36 <3:0> <31:0> (4+32)=36

Optional Output Register On/Off Switch - DO[A/B]_REG

This attribute sets the number of pipeline register at A/B output of RAMB16. The
valid values are 0 (default) or 1.

Clock Inversion at Output Register Switch - INVERT_CLK_DO[A/B]_REG

When set to TRUE, the clock input to the pipeline register at A/B output of RAMB16
is inverted. The default value is FALSE.

Extended Mode Address Determinant - RAM_EXTENSION _[A/B]

This attribute determines whether the block RAM of interest has its A/B port as
UPPER/LOWER address when using the cascade mode. When the block RAM is not
used in cascade mode, the default value is NONE.

Read Width - READ_WIDTH_[A/B]

This attribute determines the A /B read port width of the block RAM. The valid values
are: 0 (default), 1, 2, 4,9, 18, and 36.

Write Width - WRITE_WIDTH_[A/B]

This attribute determines the A /B write port width of the block RAM. The valid
values are: 0 (default), 1,2, 4,9, 18, and 36.

Write Mode - WRITE_MODE_[A/B]

This attribute determines the write mode of the A/B input ports. The possible values
are WRITE_FIRST (default), READ_FIRST, and NO_CHANGE.

258

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

RAMB16 S XILINX®

RAMB16 Location Constraints

Block RAM instances can have LOC properties attached to them to constrain
placement. Block RAM placement locations differ from the convention used for
naming CLB locations, allowing LOC properties to transfer easily from array to array.

The LOC properties use the following form:
LOC = RAMBI16_X#Y#
The RAMB16_X0YO0 is the bottom-left block RAM location on the device.

Usage
Read Operation

The read operation uses one clock edge. The read address is registered on the read
port, and the stored data is loaded into the output latches after the RAM access
interval passes.

Write Operation

A write operation is a single clock-edge operation. The write address is registered on
the write port, and the data input is stored in memory.

Operating Modes

There are three options for the behavior of the data output during a write operation
on its port. The "read during write" mode offers the flexibility of using the data output
bus during a write operation on the same port. Output behavior is determined by the
configuration. This choice increases the efficiency of block RAM memory at each clock
cycle and allows designs that use maximum bandwidth.

Three different modes are used to determine data available on the output latches after
a write clock edge.

WRITE_FIRST or Transparent Mode (Default)

In WRITE_FIRST mode, the input data is simultaneously written into memory and
stored in the data output (transparent write).

READ_FIRST or Read-Before-Write Mode

In READ_FIRST mode, data previously stored at the write address appears on the
output latches, while the input data is being stored in memory (read before write).

NO_CHANGE Mode

In NO_CHANGE mode, the output latches remain unchanged during a write
operation.

Mode selection is set by configuration. One of these three modes is set individually for
each port by an attribute. The default mode is WRITE_FIRST.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 259
ISE 8.1i

http://www.xilinx.com

SXILINX® RAMB16
Available Attributes
Attribute Type Allowed Values Default Description
DOA_REG INTEGER Oorl 0 Optional output registers on A
port.
DOB_REG INTEGER Oorl 0 Optional output registers on B
port.
INIT_00 to INIT_39 256-Bit 256-Bit 256'h00000000000000 | To change the initial contents of
Hexadecimal Hexadecimal 000000000000000000 | the RAM to anything other
000000000000000000 | than all zero's.
00000000000000
INIT_OA to INIT_OF | 256-Bit 256-Bit 256'h00000000000000 | To change the initial contents of
Hexadecimal Hexadecimal 000000000000000000 | the RAM to anything other
000000000000000000 | than all zero's.
00000000000000
INIT_1A to INIT_1F | 256-Bit 256-Bit 256'h00000000000000 | To change the initial contents of
Hexadecimal Hexadecimal 000000000000000000 | the RAM to anything other
000000000000000000 | than all zero's.
00000000000000
INIT_2A to INIT_2F | 256-Bit 256-Bit 256'h00000000000000 | To change the initial contents of
Hexadecimal Hexadecimal 000000000000000000 | the RAM to anything other
000000000000000000 | than all zero's.
00000000000000
INIT_3A to INIT_3F | 256-Bit 256-Bit 256'h00000000000000 | To change the initial contents of
Hexadecimal Hexadecimal 000000000000000000 | the RAM to anything other
000000000000000000 | than all zero's.
00000000000000
INIT_A 36-Bit 36-Bit 36'h0 Initial values on A output port.
Hexadecimal Hexadecimal
INIT_B 36-Bit 36-Bit 36'h0 Initial values on B output port.
Hexadecimal Hexadecimal
INITP_00 to 256-Bit 256-Bit 256'h00000000000000 | Applied for the parity bits.
INITP_07 Hexadecimal Hexadecimal 000000000000000000
000000000000000000
00000000000000
INVERT_CLK_DOA | BOOLEAN FALSE, TRUE FALSE Invert clock on A port output
_REG registers.
INVERT_CLK_DOB_ | BOOLEAN FALSE, TRUE FALSE Invert clock on A port output
REG registers.
RAM_EXTENSION_ | STRING "LOWER", "NONE" Allowed value when cascaded.
A "NONE" or
"UPPER”
RAM_EXTENSION_ | STRING "LOWER", "NONE" Allowed value when cascaded.
B "NONE" or
"UPPER”
READ_WIDTH_A INTEGER 0,1,2,4,9,18 or 0 Set/Reset for the allowed
36 value.
READ_WIDTH_B INTEGER 0,1,2,4,9,18 or 0 Set/Reset for the allowed
36 value.
SIM_COLLISION_ STRING "ALL","NONE", |"ALL" Collision check enable for the
CHECK "WARNING_ONL allowed value.
Y" or
"GENERATE_X_
ONLY”
SRVAL_A 36-Bit 36-Bit 36'h0 Use to set/reset value for A
Hexadecimal Hexadecimal port output.
SRVAL_B 36-Bit 36-Bit 36'h0 Use to set/reset value for B port
Hexadecimal Hexadecimal output.
WRITE_MODE_A STRING "WRITE_FIRST", "WRITE_FIRST” Configures port A (Sm) of a
"READ_FIRST" or dual port RAMB16 to support
"NO_CHANGE” one of three write modes.
WRITE_MODE_B STRING "WRITE_FIRST", "WRITE_FIRST” Configures port B (Sn) of a

"READ_FIRST" or
"NO_CHANGE”

dual-port RAMBI16 to support
one of three write modes.

260

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

RAMB16

SUXILINX®

RAMB16
VHDL
instance
declaration
code

Library
declaration
for
Xilinx
primitives

Attribute Type Allowed Values Default Description
WRITE_WIDTH_A INTEGER 0,1,2,4,9,18 or 0 Set/Reset for the allowed
36 value.
WRITE_WIDTH_B INTEGER 0,1,2,4,9,18 or 0 Set/Reset for the allowed
36 value.

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code. The
(RAMB16_inst) and/or the port declarations

after the "=>" assignment maybe changed to properly
reference and connect this function to the design.
All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

Copy the following two statements and paste them before the

Entity declaration,

unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <==—== Cut code below this line and paste into the architecture body---->

-- RAMB16: Virtex-4 16k+2k Parity Paramatizable BlockRAM
-- Xilinx HDL Libraries Guide Version 8.11i

RAMB16_inst

generic map (
DOA_REG => 0,
DOB_REG => 0,

RAMB16

INIT_A => X"000000000", --
INIT_B => X"000000000", --

-- Optional output registers on
-- Optional output registers on
Initial values on
Initial values on

the
the

A port
B port

(0 or 1)
(0 or 1)
A output port

INVERT_CLK_DOA_REG
INVERT_CLK_DOB_REG
RAM_EXTENSION_A =>
RAM_EXTENSION_B =>
READ_WIDTH_A => O,
READ_WIDTH B => O,
SIM_COLLISION_CHECK =>

SRVAL_A => X"000000000", --
SRVAL_B => X"000000000", --
WRITE_MODE_A =>
WRITE_MODE_B =>
WRITE_WIDTH_A => 0,
WRITE_WIDTH_ B => O,

INIT_00 =>
INIT_01 =>
INIT_02 =>
INIT_O03
INIT_04
INIT_O05
INIT_O6
INIT_O07
INIT_08
INIT_09
INIT_OA
INIT_OB
INIT_OC
INIT_OD
INIT_OE
INIT_OF
INIT_10
INIT_11
INIT_12
INIT_ 13
INIT_14
INIT_15

(Il
VVVYVVVVYV

vV Vv

VVVVVVYV

L ¥ 1 1 1 V1 [T
\%

\2

B output port

=> FALSE, -- Invert clock on A port output registers
=> FALSE, -- Invert clock on B port output registers
"NONE", -- "UPPER", "LOWER" or "NONE" when cascaded
"NONE", -- "UPPER", "LOWER" or "NONE" when cascaded
-- Valid values are 1,2,4,9,18 or 36
-- Valid values are 1,2,4,9,18 or 36
"ALL", -- Collision check enable "ALL", "WARNING_ONLY",
-- or "NONE"

Port A ouput value
Port B ouput value

upon SSR assertion

upon SSR assertion
"WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
"WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
-- Valid values are 1,2,4,9,18 or 36

-- Valid values are 1,2,4,9,18 or 36

(TRUE or FALSE)
(TRUE or FALSE)

X"00™,
X"00™,
X"00",
X"00™,
X"00",
X"00",
X"00™,
X"00",
X"00",
X"00™,
X"00 ",
X"00",
X"00™,
X"00",
X"00",
X"00™,
X"00",
X"00™,
X"00™,
X"00",
X"00",
X"00™,

"GENERATE_X_ONLY"

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

www.Xxilinx.com

261

http://www.xilinx.com

SUXILINX®

RAMB16

INIT_16 =
INIT_17 =
INIT_ 18 =
INIT_19 =
INIT_1A =
INIT_1B =
INIT_1C =
INIT_1D =
INIT_1E =
INIT_1F =
INIT_20 =
INIT 21 =
INIT_22 =
INIT_ 23 =
INIT 24 =
INIT_25 =
INIT_26 =
INIT_ 27 =
INIT_28 =
INIT_29 =
INIT_2A =>
INIT_2B =
INIT_2C =
INIT_2D =
INIT_2E =
INIT_2F =
INIT_30 =
INIT_31 =
INIT_32 =
INIT_33 =
INIT_34 =
INIT_35 =
INIT_36 =
INIT_37 =
INIT_38 =
INIT_39 =
INIT_3A =
INIT_3B =
INIT_3C =
INIT_3D =
INIT_3E =
INIT_3F =
INITP_00 =>
INITP_01 =>
INITP_02
INITP_03
INITP_04
INITP_05
INITP_06
INITP_07

VVVYV

\

port map (

)

CASCADEOUTA
CASCADEOUTB
DOA => DOA,
DOB => DOB,
DOPA => DOPA,
DOPB => DOPB,
ADDRA => ADDRA,
ADDRB => ADDRB,
CASCADEINA =>
CASCADEINB =>
CLKA => CLKA,
CLKB => CLKB,
DIA => DIA,
DIB => DIB,
DIPA => DIPA,
DIPB => DIPB,
ENA => ENA,
ENB => ENB,
REGCEA => REGCEA,
REGCEB => REGCEB,
SSRA => SSRA,
SSRB => SSRB,

=> WEA,

=> WEB

=> CASCADEOUTA,
=> CASCADEOUTB,
-- 32-bit A
-- 32-bit B
-- 4-bit A
-- 4-bit B
-- 15-bit A
-- 15-bit B
CASCADEINA,
CASCADEINB,
-- Port A C
-- Port B C
-- 32-bit A
-- 32-bit B
-- 4-bit A
-- 4-bit B
-- 1-bit A
-- 1-bit B
-- 1-bit A
-- 1-bit B
-- 1-bit
-- 1-bit
-- 4-bit
-- 4-bit

W > W

-- 1-bit cascade output
-- 1-bit cascade output

port
port
port
port
port
port

Data Output
Data Output
Parity Output
Parity Output
Address Input
Address Input

1-bit cascade A input
1-bit cascade B input

lock

lock
port
port
port
port
port
port
port
port
port
port
port
port

-- End of RAMB16_inst instantiation

Data Input

Data Input

parity Input

parity Input

Enable Input

Enable Input

register enable input
register enable input
Synchronous Set/Reset Input
Synchronous Set/Reset Input
Write Enable Input

Write Enable Input

> X"00 ™,
> X"00",
> X"00 ™",
> X"00 ™",
> X"00",
> X"00 ™,
> X"00 ™,
> X"00",
> X"00 ™",
> X"00 ™,
> X"00",
> X"00 ™,
> X"00 ™,
> X"00",
> X"00 ™,
> X"00 ™,
> X"00",
> X"00 ™,
> X"00 ™,
> X"00",
X"00™,
> X"00 ™,
> X"00",
> X"00 ",
> X"00 ™,
> X"00",
> X"00 ™",
> X"00™,
> X"00",
> X"00 ",
> X"00 ™,
> X"00",
> X"00 ™,
> X"00 ™,
> X"00",
> X"00 ™,
> X"00 ™,
> X"00",
> X"00 ™,
> X"00 ™",
> X"00",
> X"00 ™,
X"00™,
X"00",
X"00™,
X"00™,
X"00",
X"00",
X"00™,
X"00")

262

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

®
RAMB16 S XILINX
Verilog Instantiation Code
// RAMB16 : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (RAMB_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// and outputs must be connected.
/] <===== Cut code below this line---->

// RAMB1l6: Virtex-4 16k+2k Parity Paramatizable BlockRAM

// Xili

RAMB16

nx HDL Libraries Guide Version 8.11i

#(

.DOA_REG(0), // Optional output registers on A port (0 or 1)
.DOB_REG(0), // Optional output registers on B port (0 or 1)

.INIT_A(36'h000000000), // Initial values on A output port
.INIT_B(36'h000000000), // Initial values on B output port
.INVERT_CLK_DOA_REG("FALSE"), // Invert clock on A port output registers ("TRUE"
.INVERT_CLK_DOB_REG ("FALSE") , // Invert clock on A port output registers ("TRUE"
.RAM_EXTENSION_A ("NONE") , // "UPPER", "LOWER" or "NONE" when cascaded
.RAM_EXTENSION_B("NONE"), // "UPPER", "LOWER" or "NONE" when cascaded

.READ_WIDTH_A(0), // Valid values are 1, 2, 4, 9, 18, or 36
.READ_WIDTH_B(0), // Vvalid values are 1, 2, 4, 9, 18, or 36
.SIM_COLLISION_CHECK ("ALL"), // Collision check enable "ALL", "WARNING_ONLY",

/7 "GENERATE_X_ ONLY" or "NONE"

.SRVAL_A(36'h000000000), // Set/Reset value for A port output
.SRVAL_B(36'h000000000), // Set/Reset value for B port output

.WRI
.WRI
.WRI
.WRI

TE_MODE_A ("WRITE_FIRST"), // "WRITE_FIRST", "READ_FIRST", or "NO_CHANGE"
TE_MODE_B ("WRITE_FIRST"), // "WRITE_FIRST", "READ_FIRST", or "NO_CHANGE"
TE_WIDTH_A(2), // Valid values are 1, 2, 4, 9, 18, or 36
TE_WIDTH_B(0), // Valid values are 1, 2, 4, 9, 18, or 36

// The following INIT_xx declarations specify the initial contents of the RAM

.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI
.INI

JINIT_1A
.INIT_1B
JINIT_1C
JINIT_1D
JINIT_1E
JINIT_1F
JINIT_20
JINIT_ 21
JINIT_ 22
JINIT 23
.INIT_24
.INIT_25
.INIT_26
JINIT_27
.INIT_28
JINIT_ 29
.INIT_2A

T_00(256'h00) ,
T_01(256'h00) ,
T_02(256'h00) ,
T_03(256'h00) ,
T_04(256'h00) ,
T_05(256'h00) ,
T_06(256'h00) ,
T_07(256'h00) ,
T_08(256'h00) ,
T_09(256'h00) ,
T_0A(256'h00) ,
T_0B(256'h00) ,
T_0C(256'h00) ,
T_0D(256'h00) ,
T_OE(256'h00) ,
T_0F(256'h00) ,
T_10(256'h00) ,
T_11(256'h00) ,
T_12(256'h00) ,
T_13(256'h00) ,
T_14(256'h00) ,
T_15(256'h00) ,
T_16(256'h00) ,

256'h00) ,
256'h00) ,
256'h00) ,
256'h00) ,
256'h00) ,
256'h00) ,
256'h00) ,
256'h00) ,

T_17
T_ 18
T_19

256'h00)

256'h00)

256'h00) ,
256'h00) ,
256'h00) ,
256'h00) ,
256'h00) ,
256'h00) ,
256'h00) ,
256'h00) ,
256'h00) ,
256'h00) ,

or
or

"FALSE")
"FALSE")

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com

ISE 8.1i

263

http://www.xilinx.com

SUXILINX®

RAMB16

)

.INIT_2B(256'h00),
.INIT_2C(256'h00),
.INIT_2D(256'h00),
.INIT_2E(256'h00),
.INIT_2F(256'h00) ,
.INIT_30(256'h00),
.INIT_31(256'h00),
.INIT_32(256'h00),
.INIT_33(256'h00),
.INIT_34(256'h00),
.INIT_35(256'h00),
.INIT_36(256'h00),
.INIT_37(256'h00),
.INIT_38(256'h00),
.INIT_39(256'h00),
.INIT_3A(256'h00),
.INIT_3B(256'h00),
.INIT_3C(256'h00),
.INIT_3D(256'h00),
.INIT_3E(256'h00),
.INIT_3F(256'h00),

// The next set of INITP_xx are for the parity bits
.INITP_00(256'h00) ,
.INITP_01(256'h00) ,
.INITP_02(256'h00) ,
.INITP_03(256'h00) ,
.INITP_04(256'h00) ,
.INITP_05(256'h00) ,
.INITP_06(256'h00) ,
.INITP_07(256'h00)

RAMBl6_inst (

.CASCADEOUTA (CASCADEOUTA) ,
.CASCADEOUTB (CASCADEOUTB) ,

// 1l-bit cascade output
// 1l-bit cascade output

.DOA (DOA) , // 32-bit A port data output
.DOB (DOB) , // 32-bit B port data output
.DOPA (DOPA) , // 4-bit A port parity data output
.DOPB (DOPB) , // 4-bit B port parity data output

)

.ADDRA (ADDRA), // 15-bit A port address input
.ADDRB(ADDRB), // 15-bit B port address input
.CASCADEINA (CASCADEINA), // 1-bit cascade A input
.CASCADEINB (CASCADEINB), // 1l-bit cascade B input

.CLKA (CLKAa) , // 1l-bit A port clock input

.CLKB (CLKB) , // 1-bit B port clock input

.DIA (DIA), // 32-bit A port data input
.DIB(DIB), // 32-bit B port data input
.DIPA(DIPA), // 4-bit A port parity data input
.DIPB(DIPB), // 4-bit B port parity data input
.ENA (ENA) , // 1l-bit A port enable input

.ENB (ENB) , // 1-bit B port enable input

.REGCEA (REGCEA), // 1-bit A port register enable input
.REGCEB (REGCEB), // 1-bit B port register enable input
.SSRA(SSRA) , // 1-bit A port set/reset input
.SSRB(SSRB) , // 1l-bit B port set/reset input

.WEA (WEA) , // 4-bit A port write enable input
.WEB (WEB) // 4-bit B port write enable input

// End of RAMBl6_inst instantiation

For More Information
Consult the Virtex-4 User Guide.

264

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

RAMB32_S64_ECC S XILINX®

RAMB32_S64_ECC

Primitive: 512 Deep by 64-Bit Wide Synchronous, Two-Port, Block RAM
with Built-In Error Correction

Two vertically adjacent block RAMs can be configured as a single 512 x 64 RAM with

syl FAvBSeiEslooeg built in Hamming error correction, using the extra eight bits in the 72-bit wide RAM.
— The operation is transparent to the user. The eight protection bits are generated
o during each write operation, and are used during each read operation to correct any
single error, or to detect (but not correct) any double error. Two status outputs indicate
— the three possible read results: No error, single error corrected, double error detected.
__son| The read operation does not correct the error in the memory array, it only presents
S corrected data on DOUT.
_ wrok | kg0 This error correction code (ECC) configuration option is available with any block
e RAM pair, but cannot use the one block RAM immediately above or below the Virtex-
4 PowerPC™ blocks.
Port Names and Descriptions
Port Name Direction Signal Description
DIN<63:0> Input Data input bus
WRADDR<8:0> |Input Write address bus
RDADDR<8:0> Input Read address bus
WREN Input Write enable. When WREN =1, data
will be written into memory. When
WREN = 0, write is disabled.
RDEN Input Read enable. When RDEN = 1, data
will be read from memory. When
RDEN = 0, read is disabled
SSR Input Set/Reset output registers (not the
memory content)
WRCLK Input Clock for write operations
RDCLK Input Clock for read operations
DOUT<63:0> Output Data output bus
STATUS<1:0>(1) |Output Error status bus
Note: Hamming code implemented in the block RAM ECC logic detects one of three
conditions: no detectable error, single-bit error detected and corrected on DOUT (but not
corrected in the memory), and double-bit error detected without correction. The result of
STATUS<1:0> indicates these three conditions.
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 265

ISE 8.1i

http://www.xilinx.com

SUXILINX®

RAMB32_S64_ECC

-- RAMB32_S64_ECC
VHDL
instance
declaration
code

Library
declaration
Xilinx
primitives

Status Bit Truth Table

STATUSI[1:0] Description

00 No bit error.

01 Single-bit error. The block RAM ECC macro detects and automatically
corrects a single-bit error.

10 Double-bit error. The block RAM ECC macro detects a double-bit error.

11 Indeterminate state. The Hamming code implemented in the block
RAM ECC cannot generate a predictable status if STATUS<1:0> is equal
to three. Designers must ensure that the data has at most double-bit

errors for the STATUS<1:0> to generate the proper indicator.

Available Attributes

Attribute Type Allowed Values Default Description
DO_REG INTEGER Oorl 0 Optional output
registers on A port .
SIM_COLLISION_ | STRING “ALL”, "NONE', "ALL” Collision check

enable for the
allowed value.

CHECK "WARNING_ONLY"
or "GENERATE_X_

ONLY”

VHDL Instantiation Template

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the architecture body of the design code.
instance name (RAMB32_S64_ECC_inst) and/or the port declarations
after the

The

"=>" assignment maybe changed to properly

connect this function to the design. All inputs
and outputs must be connected.

for

In addition to adding the instance declaration,
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration.
contains the component declarations for all Xilinx

primitives and points to the models that will be used

a use

This library

for simulation.

Library UNISIM;
use UNISIM.vcomponents.all;

Copy the following two statements and paste them before the
Entity declaration, unless they already exists.

-Cut code below this line and paste into the architecture body---->

—-— RAMB32_S64_ECC: Virtex-4 512 x 64 Error Correction BlockRAM
-- Xilinx HDL Libraries Guide Version 8.11i

RAMB32_S64_ECC_inst:

port map (
DO => DO,
STATUS => STATUS,
DI => DI,
RDADDR => RDADDR,

)

RDCLK => RDCLK,
RDEN => RDEN,
SSR => SSR,
WRADDR =>WRADDR,
WRCLK => WRCLK,
WREN => WREN

RAMB32_S64_ECC_inst (

64-bit output data

2-bit status output
64-bit data input

9-bit data address input
1-bit read clock input
1-bit read enable input
1-bit synchronous reset
9-bit write address input
1-bit write clock input
1-bit write enable input

-- End of RAMB32_S64_FECC_inst instantiation

266

www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

RAMB32_S64_ECC S XILINX®

Verilog Instantiation Code

// RAMB32_S64_ECC: In order to incorporate this function into the design,

// Verilog : the following instance declaration needs to be placed

// instance : in the body of the design code. The instance name

// declaration : (RAMB32_S64_ECC_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// RAMB32_S64_ECC: Virtex-4 512 x 64 Error Correction BlockRAM
// Xilinx HDL Libraries Guide Version 8.1i

RAMB32_S64_ECC RAMB32_S64_ECC_inst (

.DO (DO) , // 64-bit output data
.STATUS (STATUS), // 2-bit status output
.DI(DI), // 64-bit data input

.RDADDR (RDADDR) , // 9-bit data address input
.RDCLK (RDCLK) , // 1l-bit read clock input
.RDEN (RDEN) , // 1l-bit read enable input
.SSR(SSR) , // 1-bit synchronous reset
.WRADDR (WRADDR) , // 9-bit write address input
.WRCLK (WRCLK) , // 1l-bit write clock input
.WREN (WREN) // 1-bit write enable input

)

// End of RAMB32_S64_ECC_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 267
ISE 8.1i

http://www.xilinx.com

SXILINX® RAMB32_S64_ECC

268 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

ROM16X1

SUXILINX®

ROM16X1

Primitive: 16-Deep by 1-Wide ROM

ROM16X1 is a 16-word by 1-bit read-only memory. The data output (O) reflects the
word selected by the 4-bit address (A3 — A0). The ROM is initialized to a known value

ROM16X1 during configuration with the INIT=value parameter. The value consists of four
A0 | | O hexadecimal digits that are written into the ROM from the most-significant digit
Al A=FH to the least-significant digit A=Oh. For example, the INIT=10A7 parameter
A2 produces the data stream:
A3 0001 0000 1010 0111
An error occurs if the INIT=value is not specified.
X4137
Usage
This design element should be instantiated rather than inferred.
Available Attributes
Attribute Type Allowed Values |Default Description
INIT 16-Bit 16-Bit Hexadecimal 16'h0000 | Specifies the contents after
Hexadecimal configuration.
VHDL Instantiation Template
-— ROM16X1 In order to incorporate this function into the design,
-— VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (ROM16X1_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
-- reference and connect this function to the design.
- All inputs and outputs must be connected.
-- Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-— for added before the entity declaration. This library
-- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <—=—== Cut code below this line and paste into the architecture body---->

-- ROM16X

1:

16 x 1 Asynchronous Distributed => LUT ROM

-- Xilinx HDL Libraries Guide Version 8.11i

ROM16X1_inst

generic map
INIT => X"0000")

port map
O =>20
AQ =>
Al =>
A2 =>
A3 =>

)

(
AOQ,
Al,
A2,
A3

ROM16X1

- ROM output

-- ROM address[0]

- ROM address|[1]
- ROM address([2]
- ROM address[3]

—-- End of ROM16X1_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 269

ISE 8.1i

http://www.xilinx.com

SUXILINX®

ROM16X1

// ROM16X1
// Verilog
// instance
// declaration

// code

//

// and outputs must be connect.
/] <===== Cut code below this line---->

Verilog Instantiation Code

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the body of the design code.

The instance name

(ROM16X1_inst) and/or the port declarations within the

parenthesis maybe changed to properly reference and
connect this function to the design.

// ROM16X1: 16 x 1 Asynchronous Distributed (LUT) ROM

// Xilinx HDL Libraries Guide Version 8.11

000)
(
ROM
ROM
ROM
ROM

// Contents of ROM

output

address|[0]
address[1]
address|[2]

// All FPGAs
ROM16X1 #(
LINIT(16'h0
) ROM16X1_inst
.0(0), //
A0 (AQ), //
LAL(AL), //
LA2(A2), //
A3 (A3) //

)

// End of ROM16X1_inst instantiation

ROM

address|[3]

For More Information

Consult the Virtex-4 User Guide.

All inputs

270

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

ROM32X1

SUXILINX®

ROM32X1

Primitive: 32-Deep by 1-Wide ROM

ROMB32X1 is a 32-word by 1-bit read-only memory. The data output (O) reflects the
word selected by the 5-bit address (A4 — A0). The ROM is initialized to a known value

ROM32X1 during configuration with the INIT=value parameter. The value consists of eight
A0 | | O hexadecimal digits that are written into the ROM from the most-significant digit
Al A=1FH to the least-significant digit A=00h. For example, the INIT=10A78F39
A2 | parameter produces the data stream:
A3
A4 0001 0000 1010 0111 1000 1111 0011 1001
An error occurs if the INIT=value is not specified.
X4130
Usage
This design element should be instantiated rather than inferred.
Available Attributes.
Attribute Type Allowed Values |Default Description
INIT 32-Bit 32-Bit Hexadecimal 32'h00000 | Specifies the contents after
Hexadecimal 000 configuration.
VHDL Instantiation Template
-— ROM32X1 In order to incorporate this function into the design,
-— VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (ROM32X1_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
-- reference and connect this function to the design.
- All inputs and outputs must be connected.
-- Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-— for added before the entity declaration. This library
-- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-Cut code below this line and paste into the architecture body---->

-- ROM32X1:
-- Xilinx HDL Libraries Guide Version 8.11i

ROM32X1_inst

generic map
INIT => X"00000000")
port map
O => 0O,

)

A0

Al =

A2
A3
Ad

=>

(

AQ,
Al,
A2,
A3,
A4

32 x 1 Asynchronous Distributed => LUT ROM

ROM32X1

- ROM output

-- ROM address[0]

- ROM address|[1]
- ROM address([2]
- ROM address[3]
- ROM address|[4]

—-- End of ROM32X1_inst instantiation

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 271

ISE 8

Ai

http://www.xilinx.com

SUXILINX®

ROM32X1

// ROM32X1
// Verilog
// instance
// declaration

// code

//

// and outputs must be connect.
/] <===== Cut code below this line---->

Verilog Instantiation Code

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the body of the design code.

The instance name

(ROM32X1_inst) and/or the port declarations within the

parenthesis maybe changed to properly reference and
connect this function to the design.

// ROM32X1: 32 x 1 Asynchronous Distributed (LUT) ROM
// All FPGAs

// Xilinx HDL Libraries Guide Version 8.11

ROM32X1 #(

.INIT(32'h00000000)

) ROM32X1_inst

-0(0), //
.A0(A0), //
.AL(AL), //
LA2(A2), //
LA3(A3), //
.Ad(n4) //

)

// End of ROM32X1_inst instantiation

(
ROM
ROM
ROM
ROM
ROM
ROM

output

address|[0]
address[1]
address|[2]
address|[3]
address[4]

// Contents of ROM

For More Information

Consult the Virtex-4 User Guide.

All inputs

272

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

ROM64X1

SUXILINX®

ROM64X1

Primitive: 64-Deep by 1-Wide ROM

ROM64X1 is a 64-word by 1-bit read-only memory. The data output (O) reflects the

Ao | ROM64X1 | o during configuration with the INIT=value parameter. The value consists of 16
A1 | [hexadecimal digits that are written into the ROM from the most-significant digit
A2 | A=Fh to the least-significant digit A=0h.
A3 An error occurs if the INIT=value is not specified.
A4]
As Usage

X9730

Available Attributes.

This design element should be instantiated rather than inferred.

Attribute Type Allowed Values |Default Description
INIT 64-Bit 64-Bit Hexadecimal 64'h00000 | Specifies the contents after
Hexadecimal 000000000 | configuration.
00

VHDL Instantiation Template

-— ROM64X1 In order to incorporate this function into the design,
-— VHDL the following instance declaration needs to be placed

-- instance in the architecture body of the design code. The

-- declaration instance name (ROM64X1_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly

-- reference and connect this function to the design.

- All inputs and outputs must be connected.

-- Library In addition to adding the instance declaration, a use

-- declaration statement for the UNISIM.vcomponents library needs to be
-— for added before the entity declaration. This library

-- Xilinx contains the component declarations for all Xilinx

-- primitives primitives and points to the models that will be used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-- ROM64X1: 64 x 1 Asynchronous Distributed => LUT ROM
-— Virtex-II/II-Pro, Spartan-3/3E
-- Xilinx HDL Libraries Guide Version 8.11i

ROM64X1_inst : ROM64X1
generic map (
INIT => X"0000000000000000")

port map (

o => 0O, -- ROM output

A0 => A0, -- ROM address|[0]
Al => Al, -- ROM address|[1]
A2 => A2, -- ROM address[2]
A3 => A3, -- ROM address|[3]
A4 => A4, -- ROM address[4]
A5 => A5 -- ROM address|[5]

)

-—- End of ROM64X1_inst instantiation

Cut code below this line and paste into the architecture body---->

word selected by the 6-bit address (A5 — A0). The ROM is initialized to a known value

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com
ISE 8.1i

273

http://www.xilinx.com

SUXILINX®

ROM64X1

ROM64X1
Verilog
instance

// declaration

code parenthesis maybe changed to properly reference and
connect this function to the design. All inputs
and outputs must be connect.
<----- Cut code below this line---->
// ROM64X1: 64 x 1 Asynchronous Distributed (LUT) ROM
// Virtex-II/II-Pro/4, Spartan-3/3E

Verilog Instantiation Code

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the body of the design code.

The instance name

(ROM64X1_inst) and/or the port declarations within the

// Xilinx HDL Libraries Guide Version 8.11

ROM64X1 #(

.INIT(64'h0000000000000000)

) ROM64X1_inst

-0(0), //
.A0(A0), //
.AL(AL), //
LA2(A2), //
LA3(A3), //
.Ad(n4), //
.A5(A5) //

)

(
ROM
ROM
ROM
ROM
ROM
ROM
ROM

output

address|[0]
address[1]
address|[2]
address|[3]
address[4]
address|[5]

// Contents of ROM

// End of ROM64X1_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

274

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

ROM128X1

SUXILINX®

ROM128X1

Ao |
A1
A2 |
A3 |
A4 |
As |
As |

Primitive:

ROM128X1

-- ROM128X1

VHDL

-- 1instance
-- declaration

code

Library

-- declaration

for
Xilinx

-- primitives

X9731

128-Deep by 1-Wide ROM

ROM128X1 is a 128-word by 1-bit read-only memory. The data output (O) reflects the
word selected by the 7-bit address (A6 — A0). The ROM is initialized to a known value
during configuration with the INIT=value parameter. The value consists of 32
hexadecimal digits that are written into the ROM from the most-significant digit
A=Fh to the least-significant digit A=0h.

An error occurs if the INIT=value is not specified.

Usage

This design element should be instantiated rather than inferred.

Available Attributes

Attribute Type Allowed Values | Default Description
INIT 128-Bit 128-Bit Hexadecimal 128'h0000 | Specifies the contents after
Hexadecimal 000000000 | configuration.
000000000
000000000
0

VHDL Instantiation Template

In order to incorporate this function into the design,

the following instance declaration needs to be placed

in the architecture body of the design code. The

instance name (ROM128X1_inst) and/or the port declarations

after the

"=>" assignment maybe changed to properly

reference and connect this function to the design.
All inputs and outputs must be connected.

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-- ROM128X1:

————— Cut code below this line and paste into the architecture body---->

128 x 1 Asynchronous Distributed => LUT ROM

Virtex-II/II-Pro, Spartan-3/3E
-- Xilinx HDL Libraries Guide Version 8.11i

ROM128X1_inst
generic map (
INIT => X"00000000000000000000000000000000")

port map (
O => 0O, -
AQ0 => AO,
Al => Al,
A2 => A2,
A3 => A3,
A4 => A4,
A5 => A5,
A6 => A6

)

ROM128X1

- ROM
- ROM
- ROM
- ROM
- ROM
- ROM
- ROM
- ROM

output

address[0]
address|[1]
address[2]
address[3]
address|[4]
address|[5]
address|[6]

-— End of ROM128X1_inst instantiation

Virtex-4 Libraries Guide for HDL Designs

ISE 8

Ai

www.Xxilinx.com

275

http://www.xilinx.com

SXILINX® ROM128X1

Verilog Instantiation Code

ROM128X1 : In order to incorporate this function into the design,

Verilog : the following instance declaration needs to be placed

instance : in the body of the design code. The instance name
declaration : (ROM128X1_inst) and/or the port declarations within the

code : parenthesis maybe changed to properly reference and
: connect this function to the design. All inputs
and outputs must be connect.
<----- Cut code below this line---->

// ROM128X1: 128 x 1 Asynchronous Distributed (LUT) ROM
// Virtex-II/II-Pro/4, Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.11

ROM128X1 #(

LINIT(128'h00000000000000000000000000000000) // Contents of ROM
) ROM128X1_inst (

.0(0), // ROM output

.A0(AQ0), // ROM address[0]

.Al1(Al), // ROM address[1]

(
A2 (A2), // ROM address[2]
.A3(A3), // ROM address[3]
.A4(A4), // ROM address[4]
.A5(A5), // ROM address[5]
.A6(A6) // ROM address[6]

)

// End of ROM128X1_inst instantiation

For More Information
Consult the Virtex-4 User Guide.

276 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

ROM256X1

SUXILINX®

ROM256X1

Primitive: 256-Deep by 1-Wide ROM

ROM256X1 is a 256-word by 1-bit read-only memory. The data output (O) reflects the
word selected by the 8-bit address (A7— A0). The ROM is initialized to a known value

during configuration with the INIT=value parameter. The value consists of 64
Ao | ROM256X1| o g . .
ol — hexadecimal digits that are written into the ROM from the most-significant digit
Az | A=Fh to the least-significant digit A=0h.
A3 . . ‘e
v An error occurs if the INIT=value is not specified.
As |
A6
e Usage
X9732 This design element should be instantiated rather than inferred.
Available Attributes
Attribute Type Allowed Default Description
Values
INIT 256-Bit 256-Bit 256'h000000000000000 | Specifies the contents after
Hexadecimal | Hexadecimal 0000000000000000000 | configuration.
0000000000000000000
00000000000
VHDL Instantiation Template
-— ROM256X1 In order to incorporate this function into the design,
- VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (ROM256X1_inst) and/or the port declarations
-— code after the "=>" assignment maybe changed to properly
-- reference and connect this function to the design.
- All inputs and outputs must be connected.
-- Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
- for added before the entity declaration. This library
-- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <—=——- Cut code below this line and paste into the architecture body---->

-- ROM256X1:

256 x 1 Asynchronous Distributed
Virtex-II/II-Pro,

=> LUT ROM
Spartan-3/3E

-- Xilinx HDL Libraries Guide Version 8.11i

ROM256X1_inst

generic map

ROM256X1

INIT => X"00™)

port map (
o => 0,
A0 => AOQ,
Al => Al,
A2 => A2,
A3 => A3,
A4 => A4,
A5 => A5,
A6 => A6
A7 => A7

- ROM output

- ROM address|[0]
- ROM address([1]
- ROM address|[2]
- ROM address|[3]
- ROM address[4]
- ROM address|[5]
- ROM address|[6]
- ROM address|[7]

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com 277

http://www.xilinx.com

SXILINX® ROM256X1

/7
/7
/7
/7
/7

/7
/7

-- End of ROM256X1_inst instantiation

Verilog Instantiation Code

ROM256X1 : In order to incorporate this function into the design,

Verilog : the following instance declaration needs to be placed

instance : in the body of the design code. The instance name
declaration : (ROM256X1_inst) and/or the port declarations within the

code : parenthesis maybe changed to properly reference and
: connect this function to the design. All inputs
and outputs must be connect.
<--—-- Cut code below this line---->

// ROM256X1: 256 x 1 Asynchronous Distributed (LUT) ROM
// Virtex-II/II-Pro, Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.1i

ROM256X1 # (
.INIT(256'h00) // Contents of ROM

) ROM256X1_inst (
.0(0), // ROM output
.A0(AQ), // ROM address[0]
Al(Al), // ROM address[1]
A2 (A2), // ROM address[2]
A3 (A3), // ROM address[3]
.A4(A4), // ROM address[4]
A5(A5), // ROM address|[5]
A6 (A6) // ROM address[6]
A7 (A7) // ROM address[7]

) ;

// End of ROM256X1_inst instantiation

For More Information
Consult the Virtex-4 User Guide.

278 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

SRL16

SUXILINX®

SRL16

Primitive:

0
fal

>
)

FR
WIN =

SRL16

o

X8420

16-Bit Shift Register Look-Up Table (LUT)

SRL16 is a shift register look-up table (LUT). The inputs A3, A2, Al, and AO select the
output length of the shift register. The shift register may be of a fixed, static length or
it may be dynamically adjusted.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal
number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most
significant bit. If an INIT value is not specified, it defaults to a value of four zeros
(0000) so that the shift register LUT is cleared during configuration.

The data (D) is loaded into the first bit of the shift register during the Low-to-High
clock (CLK) transition. During subsequent Low-to-High clock transitions data shifts
to the next highest bit position while new data is loaded. The data appears on the Q
output when the shift register length determined by the address inputs is reached.

Static Length Mode

To get a fixed-length shift register, drive the A3 through A0 inputs with static values.
The length of the shift register can vary from 1 bit to 16 bits, as determined by the
following formula:

Length = (8 x A3) +(4 x A2) + 2x Al) + A0 +1

If A3, A2, A1, and AOQ are all zeros (0000), the shift register is one bit long. If they are
all ones (1111), it is 16 bits long.

Dynamic Length Mode

The length of the shift register can be changed dynamically by changing the values
driving the A3 through AQ inputs. For example, if A2, A1, and A0 are all ones (111)
and A3 toggles between a one (1) and a zero (0), the length of the shift register changes
from 16 bits to 8 bits.

Internally, the length of the shift register is always 16 bits and the input lines A3
through A0 select which of the 16 bits reach the output.

Inputs Output

Am CLK D Q

Am X Q(Am)
Am T D Q(Am-1)
m=0,1,2,3

>

Usage

This design element can be inferred or instantiated.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 279

ISE 8.1i

http://www.xilinx.com

SUXILINX®

SRL16

SRL16

VHDL
instance
-- declaration
code

Library
-- declaration
for

Xilinx
primitives

Library UNISIM;

Entity declaration,

Available Attributes

Attribute Type Allowed Values |Default Description
INIT 16-Bit 16-Bit Hexadecimal 16'h0000 | Sets the initial value of Q output
Hexadecimal after configuration

VHDL Instantiation Templates

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the architecture body of the design code.

instance name

after the "=>" assignment maybe changed to properly

The

(SRL16_inst) and/or the port declarations

reference and connect this function to the design.
All inputs and outputs must be connected.

In addition to adding the instance declaration,

a use

statement for the UNISIM.vcomponents library needs to be

added before the entity declaration.

This library

contains the component declarations for all Xilinx
primitives and points to the models that will be used

for simulatio

use UNISIM.vcomponents.all;

n.

Copy the following two statements and paste them before the
unless they already exists.

-—— <= Cut code below this line and paste into the architecture body---->

-- SRL16:

-- Xilinx

SRL16_inst
generic map

SRL16

INIT => X"0000")

port map (
Q => Q,
A0 => A0,
Al => Al,
A2 => A2,
A3 => A3,
CLK => CLK,
D =>D

)

Select [
Select[
Select [
Select [
Clock i
SRL dat

SRL data output

0] input
1] input
2] input
3] input
nput

a input

-- End of SRL16_inst instantiation

16-bit shift register LUT operating on posedge of clock
All FPGAs
HDL Libraries Guide Version 8.11i

Verilog Instantiation Code

// SRL16 In order to incorporate this function into the design,
// Verilog the following instance declaration needs to be placed
// instance in the body of the design code. The instance name
// declaration (SRL16_inst) and/or the port declarations within the
// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs
// and outputs must be connected.
/] <-===- Cut code below this line---->
// SRL16: 16-bit shift register LUT operating on posedge of clock
// All FPGAs
// Xilinx HDL Libraries Guide Version 8.11
SRL16 # (
VINIT(16'h0000) // Initial Value of Shift Register
) SRL16_inst (
.Q(Q), // SRL data output
.A0(A0), // Select[0] input
Al (AL), // Select[1l] input
A2 (A2), // Select[2] input
.A3(A3), // Select[3] input
.CLK (CLK) , // Clock input
280 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

SRL16 S XILINX®

.D(D) // SRL data input
)

// End of SRL16_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 281
ISE 8.1i

http://www.xilinx.com

ST XILINX® SRL16

282 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

SRL16_1

SUXILINX®

SRL16_1

Primitive:
Clock

16-Bit Shift Register Look-Up Table (LUT) with Negative-Edge

SRL16_1 is a shift register look-up table (LUT). The inputs A3, A2, A1, and A0 select
the output length of the shift register. The shift register may be of a fixed, static length
or it may be dynamically adjusted. See “Static Length Mode” and “Dynamic Length

p | SRL61 | q
CLK | . Mode” in “SRL16".
A0”
Al The shift register LUT contents are initialized by assigning a four-digit hexadecimal
A2 | number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most
A3 | significant bit. If an INIT value is not specified, it defaults to a value of four zeros
(0000) so that the shift register LUT is cleared during configuration.
X8422
The data (D) is loaded into the first bit of the shift register during the High-to-Low
clock (CLK) transition. During subsequent High-to-Low clock transitions data shifts
to the next highest bit position as new data is loaded. The data appears on theQ
output when the shift register length determined by the address inputs is reached.
Inputs Output
Am CLK D Q
Am X X Q(Am)
Am 2 D Q(Am-1)
m=0,1,2,3
Usage
This design element can be inferred or instantiated.
Available Attributes
Attribute Type Allowed Values | Default Description
INIT 16-Bit 16-Bit Hexadecimal 16'h0000 | Sets the initial value of Q output
Hexadecimal after configuration
VHDL Instantiation Template
-— SRL16_1 : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (SRL16_1_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly
-- : reference and connect this function to the design.
- : All inputs and outputs must be connected.
-- Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library
-- Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that will be used

Library UNISIM;

: for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exists.

use UNISIM.vcomponents.all;

-— <—=—== Cut code below this line and paste into the architecture body---->

Virtex-4 Libraries
ISE 8.1i

Guide for HDL Designs www.xilinx.com 283

http://www.xilinx.com

SUXILINX® SRL16_1
-- SRL16_1: 16-bit shift register LUT operating on negedge of clock
- All FPGAs
-- Xilinx HDL Libraries Guide Version 8.11
SRL16_1_inst SRL16_1
generic map (
INIT => X"0000")
port map (
Q => Q, -- SRL data output
A0 => A0, -- Select[0] input
Al => Al, -- Select[1l] input
A2 => A2, -- Select[2] input
A3 => A3, -- Select[3] input
CLK => CLK, -- Clock input
D =>1D -- SRL data input
)
-—- End of SRL16_1_inst instantiation
Verilog Instantiation Code
// SRL16_1 In order to incorporate this function into the design,
// Verilog the following instance declaration needs to be placed
// instance in the body of the design code. The instance name
// declaration (SRL16_1_inst) and/or the port declarations within the
// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs
// and outputs must be connected.
/] <===== Cut code below this line---->
// SRL16_1: 16-bit shift register LUT operating on negedge of clock
// All FPGAs
// Xilinx HDL Libraries Guide Version 8.11
SRL16_1 #(
.INIT(16'h0000) // Initial Value of Shift Register
) SRL16_1_inst (
.Q(Q), // SRL data output
A0 (A0), // Select[0] input
LAl (AL), // Select[1l] input
LA2 (A2), // Select[2] input
VA3 (A3), // Select[3] input
.CLK (CLK) , // Clock input
.D(D) // SRL data input
)
// End of SRL16_1_inst instantiation
For More Information
Consult the Virtex-4 User Guide.
284 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

SRL16E

SUXILINX®

SRL16E

Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Clock Enable

SRLI16E is a shift register look-up table (LUT). The inputs A3, A2, A1, and AQ select
the output length of the shift register. The shift register may be of a fixed, static length

p | SRLI6E | g or dynamically adjusted. See “Static Length Mode” and “Dynamic Length Mode” in
CE | “SRL16".
OLK |
A0 | The shift register LUT contents are initialized by assigning a four-digit hexadecimal
A1 . . . e ey .
] number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most
A3 | significant bit. If an INIT value is not specified, it defaults to a value of four zeros
(0000) so that the shift register LUT is cleared during configuration.
X8423
When CE is High, the data (D) is loaded into the first bit of the shift register during the
Low-to-High clock (CLK) transition. During subsequent Low-to-High clock
transitions, when CE is High, data shifts to the next highest bit position as new data is
loaded. The data appears on the Q output when the shift register length determined
by the address inputs is reached.
When CE is Low, the register ignores clock transitions.
Inputs Output
Am CE CLK D Q
Am 0 X X Q(Am)
Am 1) D Q(Am-1)
m=0,1,2,3
Usage
This design element can be inferred or instantiated.
Available Attributes
Attribute Type Allowed Values |Default Description
INIT 16-Bit 16-Bit Hexadecimal 16'h0000 | Sets the initial value of content
Hexadecimal and output of shift register after
configuration
VHDL Instantiation Template
-- SRL16E : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (SRL16E_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly
-— : reference and connect this function to the design.
-— : All inputs and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library
-— Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that will be used

: for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 285

ISE 8.1i

http://www.xilinx.com

ST XILINX® SRL16E
use UNISIM.vcomponents.all;
-—— <————- Cut code below this line and paste into the architecture body---->
-- SRL16E: 16-bit shift register LUT with clock enable operating on posedge of clock
- All FPGAs
-- Xilinx HDL Libraries Guide Version 8.11i
SRL16E_inst : SRL16E
generic map (
INIT => X"0000")
port map (
Q => Q, -- SRL data output
A0 => A0, -- Select[0] input
Al => Al, -- Select[1l] input
A2 => A2, -- Select[2] input
A3 => A3, -- Select[3] input
CE => CE, -- Clock enable input
CLK => CLK, -- Clock input
D =>1D -- SRL data input
)
-- End of SRL16E_inst instantiation
Verilog Instantiation Code
// SRL16E : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (SRL16E_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// and outputs must be connected.
/] <-===- Cut code below this line---->
// SRL16E: 16-bit shift register LUT with clock enable operating on posedge of clock
// All FPGAs
// Xilinx HDL Libraries Guide Version 8.1i
SRL16E # (
INIT(16'h0000) // Initial Value of Shift Register
) SRL16E_inst (
.Q(Q), // SRL data output
A0 (AOQ), // Select[0] input
LAl (Al), // Select[l] input
A2 (A2), // Select[2] input
A3 (A3), // Select[3] input
.CE(CE), // Clock enable input
.CLK (CLK) , // Clock input
.D(D) // SRL data input
286 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

SRL16E S XILINX®

)

// End of SRL16E_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 287
ISE 8.1i

http://www.xilinx.com

ST XILINX® SRL16E

288 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

SRL16E_1

SUXILINX®

SRL16E_1

Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Negative-Edge
Clock and Clock Enable

SRL16E_1 is a shift register look-up table (LUT) with clock enable (CE). The inputs A3,
A2, A1, and AO select the output length of the shift register. The shift register may be

D | SRLIGE1 [q of a fixed, static length or dynamically adjusted. See “Static Length Mode” and
chL “Dynamic Length Mode” in the “SRL16".
Ao] The shift register LUT contents are initialized by assigning a four-digit hexadecimal
Al - . . L
Fem number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most
A3 | significant bit. If an INIT value is not specified, it defaults to a value of four zeros
(0000) so that the shift register LUT is cleared during configuration.
X8421
When CE is High, the data (D) is loaded into the first bit of the shift register during the
High-to-Low clock (CLK) transition. During subsequent High-to-Low clock
transitions, when CE is High, data shifts to the next highest bit position as new data is
loaded. The data appears on the Q output when the shift register length determined
by the address inputs is reached.
When CE is Low, the register ignores clock transitions.
Inputs Output
Am CE CLK D Q
Am 0 X X Q(Am)
Am 1 { D Q(Am-1)
m=0,1,2,3
Usage
This design element can be inferred or instantiated.
Available Attributes
Attribute Type Allowed Values | Default Description
INIT 16-Bit 16-Bit Hexadecimal 16'h0000 | Sets the initial value of content
Hexadecimal and output of shift register after
configuration
VHDL Instantiation Template
-— SRL16E_1 : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (SRL16E_1_inst) and/or the port declarations
-= code : after the "=>" assignment maybe changed to properly
-— : reference and connect this function to the design.
- : All inputs and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library
-— Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that will be used

: for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 289

ISE 8.1i

http://www.xilinx.com

SUXILINX®

SRL16E_1

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <= Cut code below this line and paste into the architecture body---->

-- SRL16E_1:

SRL16E_1_inst
generic map (

INIT => X"0000")

port map (
Q => Q,
A0 => AO,
Al => Al,
A2 => A2,
A3 => A3,
CE => CE,
CLK => CLK,
D =>D

)

-—- End of SRL16E_1_inst instantiation

// SRL16E_1
// Verilog
// instance
// declaration

SRL16E_1

SRL data output
Select[0] input
Select[1l] input
Select[2] input
Select[3] input

Clock enable input

Clock input
SRL data input

Verilog Instantiation Code

// code

// connect this function to the design.
// and outputs must be connected.

/] <===== Cut code below this line---->

// SRL16E_1:
/7

SRL16E_1 #(

LINIT(16'h0000)
) SRL16E_1_inst

.Q(Q),
A0 (RA0),
Al(Al),
A2 (A2),
A3 (A3),
.CE(CE),
.CLK (CLK) ,
.D(D)
)

// End of SRL16E_1_inst instantiation

// Initial Value of Shift Register

SRL data output
Select[0] input
Select[1l] input
Select[2] input
Select[3] input

Clock enable input

Clock input
SRL data input

For More Information

Consult the Virtex-4 User Guide.

The instance name

16-bit shift register LUT with clock enable operating on negedge of clock
All FPGAs
-- Xilinx HDL Libraries Guide Version 8.11

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code.
(SRL16E_1_inst) and/or the port declarations within the
parenthesis maybe changed to properly reference and

All inputs

16-bit shift register LUT with clock enable operating on negedge of clock
All FPGAs
// Xilinx HDL Libraries Guide Version 8.11

290

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

SRLC16

SUXILINX®

SRLC16

Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry

SRLC16 is a shift register look-up table (LUT) with Carry. The inputs A3, A2, A1, and
AQ select the output length of the shift register. The shift register may be of a fixed,
static length, or it may be dynamically adjusted.

_Dl SRLC16
CLK Q15 The shift register LUT contents are initialized by assigning a four-digit hexadecimal
E> [number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most
A1 significant bit. If an INIT value is not specified, it defaults to a value of four zeros
% (0000) so that the shift register LUT is cleared during configuration.
The data (D) is loaded into the first bit of the shift register during the Low-to-High
X9296 clock (CLK) transition. During subsequent Low-to-High clock transitions data shifts
to the next highest bit position as new data is loaded. The data appears on the Q
output when the shift register length determined by the address inputs is reached.
The Q15 output is available for the user to cascade multiple shift register LUTs to
create larger shift registers.
For information about the static length mode, see “Static Length Mode” in “SRL16".
For information about the dynamic length mode, see “Dynamic Length Mode” in
“SRL16".
Inputs Output
Am CLK D Q
Am X X Q(Am)
Am) D Q(Am-1)
m=0,1,2,3
Usage
This design element can be inferred or instantiated.
Available Attributes
Attribute Type Allowed Values |Default Description
INIT 16-Bit 16-Bit Hexadecimal 16'h0000 | Sets the initial value of content
Hexadecimal and output of shift register after
configuration
VHDL Instantiation Template
-- SRLC16 : In order to incorporate this function into the design,
-— VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (SRLC16_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly
-— : reference and connect this function to the design.
-— : All inputs and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-— for : added before the entity declaration. This library
-— Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that will be used
-- : for simulation.
Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 291

ISE 8.1i

http://www.xilinx.com

ST XILINX® SRLC16

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-— <=———- Cut code below this line and paste into the architecture body---->

-- SRLC16: 16-bit cascadable shift register LUT operating on posedge of clock
- Virtex-II/II-Pro, Spartan-3/3E
-- Xilinx HDL Libraries Guide Version 8.1i

SRLC16_inst : SRLC16
generic map (
INIT => X"0000")

port map (

Q => Q, -- SRL data output

Q15 => Q15, -- Carry output (connect to next SRL)
A0 => A0, -- Select[0] input

Al => Al, -- Select[1l] input

A2 => A2, -- Select[2] input

A3 => A3, -- Select[3] input

CLK => CLK, -- Clock input

D =>D -- SRL data input

)

-- End of SRLC1l6_inst instantiation

Verilog Instantiation Code

// SRLC16 : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name

// declaration : (SRLC16_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <===== Cut code below this line---->

// SRLC1l6: 16-bit cascadable shift register LUT operating on posedge of clock
// Virtex-II/II-Pro/4, Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.11

SRLC16 # (
VINIT(16'h0000) // Initial Value of Shift Register
) SRLC1l6_inst (

.Q(Q), // SRL data output

.Q15(Q15), // Carry output (connect to next SRL)
A0 (A0), // Select[0] input

LAl (AL), // Select[1l] input

.A2(A2), // Select[2] input

A3 (A3), // Select[3] input

.CLK (CLK) , // Clock input

.D(D) // SRL data input

)

// End of SRLC1l6_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

292 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

SRLC16_1

SUXILINX®

SRLC16_1

Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry and
Negative-Edge Clock

SRLC16_1 is a shift register look-up table (LUT) with carry and a negative-edge clock.
The inputs A3, A2, A1, and AO select the output length of the shift register. The shift

D | sRLC16_1 register may be a fixed-length, static length, or it may be dynamically adjustable. See
c | Q_ “Static Length Mode” and “Dynamic Length Mode” in “SRL16".
LK Q15
AT p [The shift register LUT contents are initialized by assigning a four-digit hexadecimal
Al number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most
A2 | significant bit. If an INIT value is not specified, it defaults to a value of four zeros
A3 | (0000) so that the shift register LUT is cleared during configuration.
The data (D) is loaded into the first bit of the shift register during the High-to-Low
X9297 clock (CLK) transition. During subsequent High-to-Low clock transitions data shifts
to the next highest bit position as new data is loaded. The data appears on the Q
output when the shift register length determined by the address inputs is reached.
The Q15 output is available for the user to cascade multiple shift register LUTs to
create larger shift registers.
Inputs Output
Am CLK D Q Q15
Am X X Q(Am) No Change
Am d D Q(Am-1) Q14
m=0,1,2,3
Usage
This design element can also be inferred.
Available Attributes
Attribute Type Allowed Values | Default Description
INIT 16-Bit 16-Bit Hexadecimal 16'h0000 | Sets the initial value of content
Hexadecimal and output of shift register after
configuration
VHDL Instantiation Template
-—- SRLC1l6_1 : In order to incorporate this function into the design,
-- VHDL : the following instance declaration needs to be placed
-- instance : in the architecture body of the design code. The
-- declaration : instance name (SRLC16_1_inst) and/or the port declarations
-= code : after the "=>" assignment maybe changed to properly
-— : reference and connect this function to the design.
- : All inputs and outputs must be connected.
-— Library : In addition to adding the instance declaration, a use
-- declaration : statement for the UNISIM.vcomponents library needs to be
-- for : added before the entity declaration. This library
-— Xilinx : contains the component declarations for all Xilinx
-- primitives : primitives and points to the models that will be used

-- : for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

www.Xxilinx.com

293

http://www.xilinx.com

ST XILINX® SRLC16_1
Library UNISIM;
use UNISIM.vcomponents.all;
-—— <= Cut code below this line and paste into the architecture body---->
-- SRLC16_1: 16-bit cascadable shift register LUT operating on negedge of clock
- Virtex-II/II-Pro, Spartan-3/3E
-- Xilinx HDL Libraries Guide Version 8.11
SRLC16_1_inst : SRLC1l6_1
generic map (
INIT => X"0000")
port map (
Q => Q, -- SRL data output
Q15 => Q15, -- Carry output (connect to next SRL)
A0 => A0, -- Select[0] input
Al => Al, -- Select[1l] input
A2 => A2, -- Select[2] input
A3 => A3, -- Select[3] input
CLK => CLK, -- Clock input
D =>1D -- SRL data input
)
-—- End of SRLC16_1_inst instantiation
Verilog Instantiation Code
// SRLCl6_1 : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed
// instance : in the body of the design code. The instance name
// declaration : (SRLC16_1_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and
// : connect this function to the design. All inputs
// and outputs must be connected.
/] <===== Cut code below this line---->
// SRLC16_1: 16-bit cascadable shift register LUT operating on negedge of clock
// Virtex-II/II-Pro/4, Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.11
SRLC16_1 #(
.INIT(16'h0000) // Initial Value of Shift Register
) SRLC1l6_1_inst (
.Q(Q), // SRL data output
.Q15(Q15), // Carry output (connect to next SRL)
A0 (AOQ), // Select[0] input
LAl (Al), // Select[l] input
VA2 (A2), // Select[2] input
A3 (A3), // Select[3] input
.CLK (CLK) , // Clock input
.D(D) // SRL data input
)
// End of SRLC16_1_inst instantiation
For More Information
Consult the Virtex-4 User Guide.
294 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

http://www.xilinx.com

SRLC16E

SUXILINX®

SRLC16E

Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry and

Clock Enable
SRLCI6E is a shift register look-up table (LUT) with carry and clock enable. The
inputs A3, A2, Al, and A0 select the output length of the shift register. The shift
D] SRLC16E register may be of a fixed, static length or it may be dynamically adjusted.
CE Q
CLK |y | Q15 The shift register LUT contents are initialized by assigning a four-digit hexadecimal
A0 | number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most
A1 significant bit. If an INIT value is not specified, it defaults to a value of four zeros
A2 | (0000) so that the shift register LUT is cleared during configuration.
A3
] The data (D) is loaded into the first bit of the shift register during the Low-to-High
X9298 clock (CLK) transition. When CE is High, during subsequent Low-to-High clock
transitions, data shifts to the next highest bit position as new data is loaded. The data
appears on the Q output when the shift register length determined by the address
inputs is reached.
The Q15 output is available for the user to cascade multiple shift register LUTs to
create larger shift registers.
For information about the static length mode, see “Static Length Mode” in “SRL16".
For information about the dynamic length mode, see “Dynamic Length Mode” in
“SRL16".
Inputs Output
Am CLK CE D Q Q15
Am X 0 X Q(Am) Q(15)
Am X 1 X Q(Am) Q(15)
Am T 1 D Q(Am-1) Q15
m=0,1,2,3
Usage
This design element can be inferred or instantiated.
Available Attributes
Attribute Type Allowed Values | Default Description
INIT 16-Bit 16-Bit Hexadecimal 16'h0000 | Sets the initial value of content
Hexadecimal and output of shift register after
configuration
VHDL Instantiation Template
- SRLCl6E : In order to incorporate this function into the design,
- VHDL : the following instance declaration needs to be placed
- instance : in the architecture body of the design code. The
-- declaration : instance name (SRL16E_inst) and/or the port declarations
- code : after the "=>" assignment maybe changed to properly
- : reference and connect this function to the design.
- : All inputs and outputs must be connected.
- Library : In addition to adding the instance declaration, a use

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com

295

http://www.xilinx.com

SUXILINX®

SRLC16E

-- declaration
- for

- Xilinx

-- primitives

-- Copy the following two statements and paste them before the

statement for the UNISIM.vcomponents library needs to be

added before the entity declaration.
contains the component declarations for all Xilinx

This library

primitives and points to the models that will be used
for simulation.

-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <—=——- Cut code below this line and paste into the architecture body---->

-- SRLC16E:

-- Xilinx

SRLC16E_inst
generic map

INIT => X"0000")

port map (
Q => Q,
Q15 => Q1
A0 => AO,
Al => Al,
A2 => A2,
A3 => A3,
CE => CE,
CLK => CL
D =>D

)

16-bit cascable shift register LUT with clock enable operating on posedge of clock

Virtex-II/II-Pro,
HDL Libraries Guide Version 8.11i

Spartan-3/3E

SRLC16E

(

5,

K,

SRL data output
Carry output (connect to next SRL)

Select[0] input
Select[1l] input
Select[2] input
Select[3] input

Clock enable input
Clock input
SRL data input

-- End of SRLC16E_inst instantiation

// SRLC16E
// Verilog
// instance
// declaration

Verilog Instantiation Code

In order to incorporate this function into the design,
the following instance declaration needs to be placed

in the body of the design code.

The instance name

(SRL16E_inst) and/or the port declarations within the

// code parenthesis maybe changed to properly reference and

// connect this function to the design. All inputs

// and outputs must be connected.

/] <===== Cut code below this line---->
// SRLC16E: 16-bit cascable shift register LUT with clock enable operating on posedge of clock
// Virtex-II/II-Pro/4, Spartan-3/3E

// Xilinx HDL Libraries Guide Version 8.11

SRLC16E # (

LINIT(16'h0000)
) SRLC16E_inst (

.Q(Q),
.Q15(Q15)
A0 (AOQ),
LAl (AL),
A2 (A2),
A3 (A3),
.CE(CE) ,
.CLK (CLK)
.D(D)
)

v

v

//
//
//
//
//
//
//
//
//

// Initial Value of Shift Register

SRL data output
Carry output (connect to next SRL)

Select[0] input
Select[1] input
Select[2] input
Select[3] input

Clock enable input
Clock input
SRL data input

// End of SRLC16E_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

296

www.Xxilinx.com

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

SRLC16E_1

SUXILINX®

SRLC16E_1

Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry,
Negative-Edge Clock, and Clock Enable

SRLC16E_1 is a shift register look-up table (LUT) with carry, clock enable, and
negative-edge clock. The inputs A3, A2, Al, and AO select the output length of the

(% SRLC16E 1 a shift register. The shift register may be of a fixed, static length or it may be
CLK] a1 dynamically adjusted. See “SRLC16” and “Dynamic Length Mode” in “SRL16”.
—op v
Ao | The shift register LUT contents are initialized by assigning a four-digit hexadecimal
Al | number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most
A2 | significant bit. If an INIT value is not specified, it defaults to a value of four zeros
As | (0000) so that the shift register LUT is cleared during configuration.
X9299 When CE is High, the data (D) is loaded into the first bit of the shift register during the

SRLC16E_1
VHDL
instance

-- declaration :
: after the
: reference and connect this function to the design.
: All inputs and outputs must be connected.

code

Library

-- declaration :
: added before the entity declaration.
: contains the component declarations for all Xilinx

for
Xilinx

primitives :
: for simulation.

High-to-Low clock (CLK) transition. During subsequent High-to-Low clock
transitions data shifts to the next highest bit position as new data is loaded when CE is
High. The data appears on the Q output when the shift register length determined by
the address inputs is reached.

The Q15 output is available for the user to cascade multiple shift register LUTs to
create larger shift registers.

Inputs Output
Am CE CLK D Q Q15
Am 0 X X Q(Am) No Change
Am X X Q(Am) No Change
Am 1 d D Q(Am-1) Q14
m=0,1,2,3
Usage
This design element can be inferred or instantiated.
Available Attributes
Attribute Type Allowed Values |Default Description
INIT 16-Bit 16-Bit Hexadecimal 16'h0000 | Sets the initial value of content
Hexadecimal and output of shift register after
configuration

VHDL Instantiation Template

: In order to incorporate this function into the design,
: the following instance declaration needs to be placed
: in the architecture body of the design code.

The
instance name (SRLC16E_1_inst) and/or the port declarations
"=>" assignment maybe changed to properly

: In addition to adding the instance declaration, a use

statement for the UNISIM.vcomponents library needs to be
This library

primitives and points to the models that will be used

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com 297

http://www.xilinx.com

SXILINX® SRLC16E_1

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;
use UNISIM.vcomponents.all;

-—— <====- Cut code below this line and paste into the architecture body---->

-- SRLC16E_1: 16-bit shift register LUT with clock enable operating on negedge of clock
- Virtex-II/II-Pro, Spartan-3/3E
-- Xilinx HDL Libraries Guide Version 8.11

SRLC16E_1_inst : SRLC16E_1
generic map (
INIT => X"0000")

port map (
Q => Q, -- SRL data output
Q15 => Q15, -- Carry output (connect to next SRL)
A0 => A0, -- Select[0] input
Al => A1, -- Select[1l] input
A2 => A2, -- Select[2] input
A3 => A3, -- Select[3] input
CE => CE, -- Clock enable input
CLK => CLK, -- Clock input
D =>D -- SRL data input

)

-- End of SRLC16E_1_inst instantiation

Verilog Instantiation Code

// SRLC16E_1 : In order to incorporate this function into the design,
// Verilog : the following instance declaration needs to be placed

// instance : in the body of the design code. The instance name

// declaration : (SRLC16E_1_inst) and/or the port declarations within the
// code : parenthesis maybe changed to properly reference and

// : connect this function to the design. All inputs

// : and outputs must be connected.

/] <-===- Cut code below this line---->

// SRLC16E_1: 16-bit shift register LUT with clock enable operating on negedge of clock
// Virtex-II/II-Pro/4, Spartan-3/3E
// Xilinx HDL Libraries Guide Version 8.1i

SRLC16E_1 #(
INIT(16'h0000) // Initial Value of Shift Register
) SRLC16E_1_inst (

.Q(Q), // SRL data output

.Q15(Q15), // Carry output (connect to next SRL)
.A0(A0), // Select[0] input

VAl (AL), // Select[l] input

A2 (A2), // Select[2] input

A3 (A3), // Select[3] input

.CE(CE), // Clock enable input

.CLK (CLK) , // Clock input

.D(D) // SRL data input

)

// End of SRLC16E_1_inst instantiation

For More Information

Consult the Virtex-4 User Guide.

298 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

STARTUP_VIRTEX4

SUXILINX®

STARTUP_VIRTEX4

CLK

GSR

GTS

USRCCLKO

USRCCLKTS

USRDONEO
USRDONETS

-- STARTUP_VIRTEX4 :

Primitive: Virtex-4 User Interface to Configuration Clock, Global Reset,
Global 3-State Controls, and Other Configuration Signals

STARTUP_VIRTEX4

The STARTUP_VIRTEX4 primitive is used for Global Set/Reset, global 3-state control,
and the user configuration clock. The Global Set/Reset (GSR) input, when High, sets

ws _ or resets all flip-flops, all latches, and every block RAM output register in the device,
depending on the initialization state (INIT=1 or 0) of the component.

Note: Block RAM content, LUT RAMs, the Digital Clock Manager (DCM), and shift register
LUTs (SRL16, SRL16_1, SRL16E, SRL16E_1, SRLC16, SRLC16_1, SRLC16E, and
SRLC16E_1) are not set/reset.

Following configuration, the global 3-state control (GTS), when High—and BSCAN is
not enabled and executing an EXTEST instruction—forces all the IOB outputs into
high impedance mode, which isolates the device outputs from the circuit but leaves
the inputs active.

Port List and Definition

Name Type |Width Function
EOS Output |1 EOS signal
CLK Input |1 Clock input
GTS Input |1 Global 3-state control
GSR Input |1 Global Set/Reset
USRCCLKO |Input |1
USRCCLKTS |Input |1
USRDONEO |Input |1
USRDONETS |Input |1

Usage

Including the STARTUP_VIRTEX4 primitive in a design is optional. You must include
the primitive under the following conditions.

To exert external control over global set/reset, connect the GSR pin to a top level port
and an IBUF, as shown below.

To exert external control over global 3-state, connect the GTS pin to a top level port
and IBUF, as shown below.

To synchronize startup to a user clock, connect the user clock signal to the CLK input,
as shown below. Furthermore, "user clock” must be selected in the BitGen program.

You can use location constraints to specify the pin from which GSR or GTS (or both) is
accessed.

VHDLInstantiation Template

In order to incorporate this function into the design,

-- VHDL : the following instance declaration needs to be placed

-— instance : in the architecture body of the design code. The

-- declaration : instance name (STARTUP_VIRTEX4_inst) and/or the port declarations

-= code : after the "=>" assignment maybe changed to properly

-— : connect this function to the design. Delete or comment

-— : out inputs/outs that are not necessary.

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 299

ISE 8.1i

http://www.xilinx.com

SUXILINX®

STARTUP_VIRTEX4

- Library
-= declaration
-— for

-- Xilinx

-- primitives

In addition to adding the instance declaration, a use
statement for the UNISIM.vcomponents library needs to be
added before the entity declaration. This library
contains the component declarations for all Xilinx
primitives and points to the models that will be used
for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-—— <————- Cut code below this line and paste into the architecture body---->

-- STARTUP_VIRTEX4: Startup primitive for GSR, GTS or startup sequence

control. Virtex-4

-- Xilinx HDL Libraries Guide Version 8.11

STARTUP_VIRTEX4_inst

STARTUP_VIRTEX4

port map (
EOS => EOS, -- End of Startup 1l-bit output
CLK => CLK, -- Clock input for start-up sequence
GSR => GSR_PORT, -- Global Set/Reset input (GSR cannot be used for the port name)
GTS => GTS_PORT, -- Global 3-state input (GTS cannot be used for the port name)
USRCCLKO => USRCCLKO, -- USRCCLKO 1l-bit input
USRCCLKTS => USRCCLKTS, -- USRCCLKTS 1l-bit input
USRDONEO => USRDONEO, -- USRDONEO 1-bit input
USRDONETS => USRDONETS -- USRDONETS 1-bit input

)i

-- End of STARTUP_VIRTEX4_inst instantiation

// STARTUP_VIRTEX4

Verilog Instantiation Code

In order to incorporate this function into the design,

// Verilog the following instance declaration needs to be placed

// instance in the body of the design code. The instance name

// declaration (STARTUP_VIRTEX4_inst) and/or the port declarations within the
// code parenthesis maybe changed to properly reference and

// connect this function to the design. Delete or comment

// out inputs/outs that are not necessary.

/] <-===- Cut code below this line---->

// STARTUP_VIRTEX4: Startup primitive for GSR, GTS or startup sequence

/7

control. Virtex-4

// Xilinx HDL Libraries Guide Version 8.11

STARTUP_VIRTEX4 STARTUP_VIRTEX4_ inst (

.EOS (EOS) ,
.CLK (CLK) ,
(

// End Of Startup 1-bit output

// Clock input for start-up sequence
.GSR (GSR_PORT) ,
.GTS (GTS_PORT) ,

// Global Set/Reset input (GSR can not be used as a port name)
// Global 3-state input (GTS can not be used as a port name)

.USRCCLKO (USRCCLKO) , // USERCLKO 1-bit input
.USRCCLKTS (USRCCLKTS) , // USERCLKTS 1l-bit input
.USRDONEO (USRDONEO) , // USRDONEO 1l-bit input
.USRDONETS (USRDONETS) // USRDONETS 1-bit input

)

// End of STARTUP_VIRTEX4_inst instantiation

For More Information

Consult the Virtex-4 Configuration Guide.

300

Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

www.Xxilinx.com

http://www.xilinx.com

USR_ACCESS_VIRTEX4 S XILINX®

USR_ACCESS_VIRTEX4

Primitive: 32-Bit Register with a 32-Bit DATA Bus and a DATAVALID
Port

The User Access Register (USR_ACCESS_VIRTEX4) module is a 32-bit register that
oamaroy allows data from the bitstream to be directly accessible by the FPGA fabric. This
omvauo - module has two outputs: the 32-bit DATA bus and DATAVALID.

USR_ACCESS_VIRTEX4

The configuration data source clock can be CCLK or TCK. The use model for this
block is that it allows data from a bitstream data storage source (e.g., PROM) to be
accessed by the fabric after the FPGA has been configured. To accomplish this the
STARTUP_VIRTEX4 block should also be instantiated. The STARTUP_VIRTEX4
block has inputs that allow the user to take over the CCLK and DONE pins after the
EOS (End-Of-Startup) signal has been asserted. These pins are USR_CCLK_O,
USR_CCLK_TS, USR_DONE_O, and USR_DONE_TS. The bitgen option —g
DONE_cycle: 7 should be used to prevent the DONE pin from going high since that
would reset the PROM. The USR_CCLK_O pin should be connected to a controlled
clock in the fabric. The PROM should contain a packet of data with the USR_ACCESS
register as the target. After EOS has been asserted, the data packet can be loaded by
clocking the USR_CCLK_O pin while keeping USR_CCLK_TS low (it can be tied low
in this usage).

Alternatively, the USR_ACCESS register can be used to provide a single 32-bit
constant value to the fabric as an alternative to using a BRAM or LUTRAM to hold the

constant.
Name Type erldt Function
DATA Output | 32 32-bit data bus
DATAVALID | Output | 1 Indicates whether the value at the DATA bus is valid or new

DATA — Output

DATA output port is the 32-bit register that allows the FPGA fabric to access data
from bitstream data storage source.

DATAVALID - Output

DATAVALID port indicates whether the value in the DATA bus is new or valid. When
this condition is true, this port is asserted HIGH for one cycle of the configuration
data source clock.

USR_ACCESS_VIRTEX4 Usage

Whenever a new value accessed by USR_ACCESS_VIRTEX4 appeared in the DATA
bus, the DATAVALID signal is asserted for one cycle of the configuration data source
clock. There are many sources for the configuration data source clock. They can be
either CCLK or TCK.

When using this module to access data from bitstream data storage source (e.g.,
PROM) to FPGA fabric after configuration, the STARTUP_VIRTEX4 block should also
be instantiated. The STARTUP_VIRTEX4 module contains inputs that allow the
designer to utilize the CCLK and DONE pins after the EOS (End-Of-Startup) signal
have been asserted. These pins are USR_CCLK_O, USR_CCLK_TS, USR_DONE_O,
and USR_DONE_TS. The USR_CCLK_O pin should be connected to a controlled

Virtex-4 Libraries Guide for HDL Designs www.xilinx.com 301
ISE 8.1i

http://www.xilinx.com

SXILINX® USR_ACCESS_VIRTEX4

clock in the fabric. The data storage source should contain a packet of data with the
USR_ACCESS_VIRTEX4 register as the target. After EOS has been asserted, the data
packet can be loaded by clocking the USR_CCLK_O pin while keeping
USR_CCLK_TS to logic Low. The USR_CCLK_TS can be tied to logic LOW when
using this application.

In addition, when using this module, the bitgen option —-g DONE_cycle: 7 should be
used to prevent the HIGH assertion of DONE pin. Should the DONE pin be asserted
HIGH, the PROM will be reset.

VHDL Instantiation Template

-- USR_ACCESS_VIRTEX4: 32-bit register that allows data from the
-- bitstream

-- to be directly accessible by the FPGA fabric.

-- Virtex-4

-- Xilinx HDL Libraries Guide version 8.11i

USR_ACCESS_VIRTEX4_inst : USR_ACCESS_VIRTEX4

port map (
DATA => DATA, -- 32-bit data output
DATAVALID => DATAVALID -- 1-bit data valid signal

)

// End of USR_ACCESS_VIRTEX4_inst instantiation

Verilog Template

// USR_ACCESS_VIRTEX4: 32-bit register that allows data from the
// bitstream

// to be directly accessible by the FPGA fabric.

// Virtex-4

// Xilinx HDL Libraries Guide version 8.11i

USR_ACCESS_VIRTEX4 USR_ACCESS_VIRTEX4_inst (
.DATA (DATA), // 32-bit data output

.DATAVALID (DATAVALID) // 1l-bit data valid signal
)

// End of USR_ACCESS_VIRTEX4_inst instantiation

For More Information

Consult the Virtex-4 Configuration Guide.

302 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

XORCY

SUXILINX®

XORCY

Primitive:

XOR for Carry Logic with General Output

XORCY is a special XOR with general O output that generates faster and smaller
arithmetic functions.

LI
— o Usage
CI : : " 7 “ 7”7
— Its O output is a general interconnect. See also “XORCY_D” and “XORCY_L".
X8410 o
VHDL Instantiation Code
-— XORCY In order to incorporate this function into the design,
-— VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (XORCY_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
-- reference and connect this function to the design.
- All inputs and outputs must be connected.
-- Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
-— for added before the entity declaration. This library
-- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used

Library UNISIM;

for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exists.

use UNISIM.vcomponents.all;

-— <—=——- Cut code below this line and paste into the architecture body---->

-- XORCY: Carry-Chain XOR-gate with general output
-- Xilinx HDL Libraries Guide Version 8.11i

XORCY_inst
port map (
o => 0,
CI => CI,
LI => LI
)

XORCY

-- XOR output signal
-- Carry input signal
-- LUT4 input signal

-- End of XORCY_inst instantiation

Verilog Instantiation Code

// XORCY In order to incorporate this function into the design,
// Verilog the following instance declaration needs to be placed
// instance in the body of the design code. The instance name

// declaration (XORCY_inst) and/or the port declarations within the
// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs

// and outputs must be connected.

/] <===== Cut code below this line---->

// XORCY: Carry-Chain XOR-gate with general output

/7

For use with All FPGAs

// Xilinx HDL Libraries Guide Version 8.11i

XORCY XORCY_inst (

.0(0),

.CI(CI),

.LI(LI)
) ;

// XOR output signal
// Carry input signal
// LUT4 input signal

// End of XORCY_inst instantiation

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com 303

http://www.xilinx.com

SXILINX® XORCY

For More Information

Consult the Virtex-4 Configuration Guide.

304 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

XORCY_D

SUXILINX®

XORCY_D

Primitive: XOR for Carry Logic with Dual Output

XORCY_D is a special XOR that generates faster and smaller arithmetic functions.

LO
L U
o sage
c) o |
—7 XORCY_D has two functionally identical outputs: O and LO. The O output is a
X8409 general interconnect. The LO output connects to another output within the same CLB
slice.
See also “XORCY” and “XORCY_L.”
VHDL Instantiation Code
-— XORCY_D In order to incorporate this function into the design,
-— VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (XORCY_D_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
-- reference and connect this function to the design.
- All inputs and outputs must be connected.
-- Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
- for added before the entity declaration. This library
-- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used

for simulation.

-- Copy the following two statements and paste them before the
-- Entity declaration, unless they already exists.

Library UNISIM;

use UNISIM.vcomponents.all;

-— <==—== Cut code below this line and paste into the architecture body---->

-- XORCY_D: Carry-Chain XOR-gate with local and general outputs
-- Xilinx HDL Libraries Guide Version 8.11i

XORCY_D_inst

port map (
LO => LO,
o => 0O,
CI => CI,
LI => LI
) ;

XORCY_D

- XOR local output signal

- XOR general output signal
- Carry input signal

- LUT4 input signal

-- End of XORCY_D_inst instantiation

// XORCY_D
// Verilog
// instance
// declaration

Verilog Instantiation Code

In order to incorporate this function into the design,
the following instance declaration needs to be placed
in the body of the design code. The instance name

(XORCY_D_inst) and/or the port declarations within the

// code parenthesis maybe changed to properly reference and
// connect this function to the design. All inputs

// and outputs must be connected.

/] <=-==== Cut code below this line---->

// XORCY_D: Carry-Chain XOR-gate with local and general outputs

/7

For use with All FPGAs

// Xilinx HDL Libraries Guide Version 8.11

XORCY_D XORCY_D_inst (

.LO(LO) ,
.0(0),

// XOR local output signal
// XOR general output signal

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com 305

http://www.xilinx.com

SXILINX® XORCY_D

.CI(CI), // Carry input signal
LI(LI) // LUT4 input signal
)

// End of XORCY_D_inst instantiation.

For More Information

Consult the Virtex-4 Configuration Guide.

306 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

XORCY_L

SUXILINX®

XORCY_L

Primitive: XOR for Carry Logic with Local Output
LO XORCY_L is a special XOR with local LO output that generates faster and smaller
arithmetic functions.
LI \
Cl ’ Usage
—
X8404 The LO output connects to another output within the same CLB slice.
See also “XORCY” and “XORCY_D.”
VHDL Instantiation Code
-— XORCY_L In order to incorporate this function into the design,
-— VHDL the following instance declaration needs to be placed
-- instance in the architecture body of the design code. The
-- declaration instance name (XORCY_L_inst) and/or the port declarations
- code after the "=>" assignment maybe changed to properly
-- reference and connect this function to the design.
- All inputs and outputs must be connected.
-- Library In addition to adding the instance declaration, a use
-- declaration statement for the UNISIM.vcomponents library needs to be
- for added before the entity declaration. This library
-- Xilinx contains the component declarations for all Xilinx
-- primitives primitives and points to the models that will be used

Library UNISIM;

for simulation.

Copy the following two statements and paste them before the
Entity declaration, unless they already exists.

use UNISIM.vcomponents.all;

-— <==—== Cut code below this line and paste into the architecture body---->

-- XORCY_L: Carry-Chain XOR-gate with local

=> direct-connect ouput

-- Xilinx HDL Libraries Guide Version 8.11i

XORCY_L_inst

port map (
LO => LO,
CI => CI,
LI => LI

)

XORCY_L

-- XOR local output signal
-- Carry input signal
-- LUT4 input signal

-- End of XORCY_L_inst instantiation

Verilog Instantiation Code

// XORCY_L In order to incorporate this function into the design,
// Verilog the following instance declaration needs to be placed
// instance in the body of the design code. The instance name

// declaration (XORCY_L_inst) and/or the port declarations within the
// code parenthesis maybe changed to properly reference and

// connect this function to the design. All inputs

// and outputs must be connected.

/] <===== Cut code below this line---->

// XORCY_L: Carry-Chain XOR-gate with local
For use with All FPGAs

/7

(direct-connect) ouput

// Xilinx HDL Libraries Guide Version 8.11i

XORCY_L XORCY_L_inst (

.LO(LO),

.CI(CI),

.LI(LI)
) ;

// XOR local output signal
// Carry input signal
// LUT4 input signal

Virtex-4 Libraries Guide for HDL Designs

ISE 8.1i

www.Xxilinx.com 307

http://www.xilinx.com

SXILINX® XORCY_L

// End of XORCY_L_inst instantiation.

For More Information

Consult the Virtex-4 Configuration Guide.

308 www.xilinx.com Virtex-4 Libraries Guide for HDL Designs
ISE 8.1i

http://www.xilinx.com

	Software Manuals
	Virtex-4 Libraries Guide for HDL Designs
	About this Guide
	Table of Contents
	Functional Categories
	Arithmetic Functions
	Clock Components
	Config/BSCAN Components
	Gigabit Transceivers
	I/O Components
	Processor Components
	RAM/ROM
	Registers & Latches
	Shift Registers
	Slice/CLB Primitives

	About the Virtex-4 Design Elements
	BSCAN_VIRTEX4
	BUFCF
	BUFG
	BUFGCE
	BUFGCE_1
	BUFGCTRL
	BUFGMUX
	BUFGMUX_1
	BUFGMUX_VIRTEX4
	BUFIO
	BUFR
	CAPTURE_VIRTEX4
	DCIRESET
	DCM_ADV
	DCM_BASE
	DCM_PS
	DSP48
	EMAC
	FDCPE
	FDRSE
	FIFO16
	FRAME_ECC_VIRTEX4
	GT11_CUSTOM
	GT11_DUAL
	GT11CLK
	GT11CLK_MGT
	IBUF
	IBUFDS_DIFF_OUT
	IBUFDS
	IBUFG
	IBUFGDS
	ICAP_VIRTEX4
	IDDR
	IDELAY
	IDELAYCTRL
	IOBUF
	IOBUFDS
	ISERDES
	KEEPER
	LDCPE
	LUT1, 2, 3, 4
	LUT1_D, LUT2_D, LUT3_D, LUT4_D
	LUT1_L, LUT2_L, LUT3_L, LUT4_L
	MULT_AND
	MUXCY
	MUXCY_D
	MUXCY_L
	MUXF5
	MUXF5_D
	MUXF5_L
	MUXF6
	MUXF6_D
	MUXF6_L
	MUXF7
	MUXF7_D
	MUXF7_L
	MUXF8
	MUXF8_D
	MUXF8_L
	OBUF
	OBUFDS
	OBUFT
	OBUFTDS
	ODDR
	OSERDES
	PMCD
	PPC405_ADV
	PULLDOWN
	PULLUP
	RAM16X1D
	RAM16X1S
	RAM32X1S
	RAM64X1S
	RAMB16
	RAMB32_S64_ECC
	ROM16X1
	ROM32X1
	ROM64X1
	ROM128X1
	ROM256X1
	SRL16
	SRL16_1
	SRL16E
	SRL16E_1
	SRLC16
	SRLC16_1
	SRLC16E
	SRLC16E_1
	STARTUP_VIRTEX4
	USR_ACCESS_VIRTEX4
	XORCY
	XORCY_D
	XORCY_L

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

