
M216A 1

High-Level Design
Hardware Description Language

(Verilog)

C.K. Ken Yang
University of California at Los Angeles

yang@ee.ucla.edu

M216A 2

Overview

Reading
– W&H: Appendix A
– Verilog According to Tom
– Synopsys Handout

Introduction
The next level up in abstraction after discussing logic design
and finite state machine is how to more efficiently describe
them. To handle increasingly large and complex designs, we
use a hardware description language instead of handling all the
gates. These languages differ from algorithmic languages like
Matlab or C in that they operate like hardware. Unless specified,
blocks will operate concurrently much like functional hardware
blocks. These blocks will interact through interfacing signals. In
this lecture, we will focus on Verilog as the language of choice
and introduce how we can use it to specify a system.

M216A 3

High-Level Design Issues

Many people think that design is a straight-forward logical
process

• Start with the idea of what you need to build
• And then you build it
Real design is not like that
• Think you have an idea of what you need to build
• Through the design process you figure out what you

really want to build
– Need to validate basic idea early in the process

• What you build depends on the implementation
capabilities and constraints

– Implementation issues will change the
specification

Need a language that helps with the real (interactive)
design process

Specification

Implementation

Verification

M216A 4

Hardware Description Languages

• Need a description level up from logic gates.
• Work at the level of functional blocks, not logic gates

– Complexity of the functional blocks is up to the designer
– A functional unit could be an ALU, or could be a

microprocessor
• The description consists of functions blocks and their

interconnections
– Describe functional block (not predefined)
– Support hierarchical description (function block nesting)

• To make sure the specification is correct, make it executable.
– Run the functional specification and check what it does

M216A 5

Hardware Description Languages (HDLs)

There are many different systems for modeling and simulating
hardware.

• Verilog
• VHDL
• L-language, M-language (Mentor)
• DECSIM (DEC)
• Aida (IBM / HaL)
• and many others
The two most standard languages are Verilog and VHDL.
• For this class (and many others) we will be using Verilog
• Given to UCLA for classes
• Runs on many machines (including in HP Computer Lab)
• Have both a simulator and synthesis tools that work with Verilog

M216A 6

Verilog from 20,000 Feet

• Verilog Descriptions look like programs:

• Block structure is a key principle
– Use hierarchy/modularity to manage complexity

• But they aren’t ‘normal’ programs
– Module evaluation is concurrent. (Every block has its own

“program counter”)
– Model is really communicating blocks

C / Pascal Verilog
Procedures/Functions
Procedure parameters
Variables

Modules
Ports
Wires / Regs

M216A 7

Verilog (or any HDL) View of the World

• A design consists of a set of
communicating modules

• There are graphic inputs
devices for Verilog, but we will
not use them

• Instead we will use the text
method. Label the wires, and
pass them between modules as
you would parameters in
function calls.
– Wires are input/output nets

for a module.

Ctrl

Datapath

Memory

bus da

b

c

M216A 8

Physical and Verilog Partition

• Handy to use the same partition in Verilog and physically.
– Partition is hierarchical
– Allows different implementation method for the two blocks.
– Example: MIPS processor

M216A 9

Ways to Describe A Function

• Structural
– Consists only of module calls

• Declarative
– Concurrently executed combinational logic

• Procedural
– Sequentially executed program

• A state machine (with storage)
• Or combinational logic

• Functional
– Function calls
– not mapped to hardware so we ignore this

M216A 10

Structural Description

• Compose a module out of
module calls.
– Specify components, and

wiring
• Maps a physical structure

into verilog.
– Example is one shown

earlier.
• Possible heirarchically

– List of functions.
– List of sub-functions.
– List of gates
– List of transistors.

• Typically don’t need to go
below a gate level list.
– And only near the end of

a design.

module system;
wire [7:0] bus_v1, const_s1;
wire [2:0] regSpec_s1, regSpecA_s1,

regSpecB_s1;
wire [1:0] opcode_s1;
wire Phi1, Phi2, writeReg_s1,

ReadReg_s1,nextVector_s1
clkgen clkgen(Phi1, Phi2);
datapath datapath(Phi1, Phi2,

regSpec_s1, bus_v1,
writeReg_s1, readReg_s1);

controller controller1(Phi1, Phi2,
regSpec_s1, bus_v1, const_s1,
writeReg_s1, readReg_s1,
opcode_s1, regSpecA_s1, regSpecB_s1,
nextVector_s1);

patternsource patternsource(Phi1,
Phi2,nextVector_s1, opcode_s1,
regSpecA_s1, regSpecB_s1, const_s1);

ModuleName InstanceName (wires);

• In this example the instance name and
the module name are the same, except
for controller1.

M216A 11

Example: Gate-Level Structural Verilog

module V_mux_4 (in1, in2, out1, sel);
input [3:0] in1, in2;
input sel;
output [3:0] out1;

MX2X1 I_0 (.A(in1[0]), .B(in2[0]), .Y(out1[0]),
.S0(sel));
MX2X1 I_1 (.A(in1[1]), .B(in2[1]), .Y(out1[1]),

.S0(sel));
MX2X1 I_2 (.A(in1[2]), .B(in2[2]), .Y(out1[2]),

.S0(sel));
MX2X1 I_3 (.A(in1[3]), .B(in2[3]), .Y(out1[3]),

.S0(sel));
endmodule
• This is commonly the output of synthesized logic that has been

assigned to logic gates.
– The node names use a special convention to identify specific port

of the logic cell (even if logically equivalent)
– The A-input of the MUX corresponds to in1

M216A 12

Declarative Statements

Provides the logical relations between inputs and outputs.
• Assign outputs to be some function of the inputs (continuously)

– Key word is assign
• Models a piece of combinational logic
• Uses a C-like expression syntax
• Denoted by keyword assign
Examples (all execute in parallel):

assign nor = ~(b | c);

assign a = x & y, o = x | y;
assign sum[4:0] = a[3:0] + b[3:0];
assign out = (Sel) ? in1: in2; //conditional

Outputs are wires, and can be a single bit or multiple bits.
• It is good practice to declare all variables even though Verilog

allows undeclared single bit wires.

CL

M216A 13

Declarative Order of Execution

• Even though declarative statements are still executed in a
particular order.
– Verilog has an internal event linked list.
– There is no guarantee of that order
assign out = aaa;
assign out = bbb;
– This yields a warning and is not allowed.

• Don’t assume any particular order.
– Each statement is occuring concurrently.
assign x = aaa;
assign aaa = bbb;
– In C, it matters the order of the above statements but not in

Verilog.

M216A 14

Procedural Statements

• Still need flow control statements
– This type of control statement implies sequential ordering
– keyword always provides functionality of a tiny program that executes sequentially.

• Inside an always block, can use standard control flow statements:
– if (<conditional>) then <statements> else <statements>;
– case (<var>) <value>: <statements>; … default: <statements>
– Case statements are actually prioritized

• The second case entry can’t happen unless the first does not match.
• May not be what the actual hardware implies – especially when cases are mutually exclusive.
• Need additional directives (parallel-case) to indicate this. More later.

• Statements can be compound (use begin and end to form blocks)
• Example:

always @ (Activation List…stuff we still need to talk about)
begin
// more than 1 statement allowed inside here

if (x==y) then
out= in1

else
out = in2;

end

M216A 15

Always Block Issues

• Two issues with always blocks
– unset outputs

• Are all outputs given a value with an explicit assignment
statement at the end of the block?

• If not, then it is unset.
• Similar to switch logic.
• If the output is always set, then the always block is no different

from a combinational logic.
– activation list

• Determines when to execute the always block.

M216A 16

Unset Outputs

• Occur when an output of the block is not set on all the paths through the code.
• Example:

always @ (Activation List…stuff we still need to talk about)
begin
// more than 1 statement allowed inside here

if (x==y) then
out= in1

// not else so if x!= y then out is unset.
end

– In Verilog, this creates storage
• The value of the output remains the previous value.
• Similar to dynamic storage, except in synthesized result, it appears as an explicit

FF or latch.
• Is this storage what we want?

– Be careful to not build storage elements when you don’t intend to.
• Since the outputs of always blocks MIGHT act as storage elements

– Left-hand sides of expressions in always blocks must be declared as
registers (regs).

• Note, that does not mean the synthesized result contains registers.
• Output is set on all paths so there is no storage.

M216A 17

Intentionally Creating Storage in Verilog

• To make a simple latch in Verilog is easy. Just make the output
of an always block not get set when you want to hold its value.

• Example:
reg myout; //a latch
always @ (stuff we still need to talk about)

if (Enable) then

myout = in;

– When Enable is high, the output myout is updated
– When Enable is low, myout will hold its last value.
– This is like the simple pass transistor latch in Lecture 6.

• In this example, myout would need to be declared a register,
because it is the LHS of an expression in an always block.

M216A 18

Activation List

• The last tricky part about the always block is the activation list.
• Activation List

– Tells the simulator when to run this block
– Allows the user to specify when to run the block and makes the

simulator more efficient.
• If not sensitized to every input, you get a storage element

– But also enables subtle errors to enter into the design.
• Two forms of activation list in Verilog:

– @(signalName or signalName or …)
• Evaluate this block when any of the named signals change (either

positive or negative change)
– @(posedge signalName);or @(negedge signalName);

• Makes an edge triggered flop. Evaluates only on one edge of a signal.
• Can have @(posedge signal1, posedge signal2)

– Implied OR (not AND) because edges are singular events
– Not used in this class because difficult to map to an actual gate.

M216A 19

Activation Lists

• Example:
always @ (Enable or In)

if (Enable) then
out=In;

always @ (x or y or in1 or in2) //combinational logic
begin
if (x==y) then

out= in1
else

out = in2;
end //same as out = (x==y) ? in1 : in2;

• To represent Combinational Logic
– The activation lists must contain everything on the RHS of the

expressions (and both side of conditionals).
– Otherwise, there is implied storage.

• Beware, if an always block has no activation list (or # delay
statements), then the simulator goes into an infinite loop.

M216A 20

Activation Errors - Examples

always @(phi) always @(phi) always @(phi or in)
outA =in; if(phi) outB = in; if(phi) outC = in;

phi

in

outA

outB

outC

M216A 21

Procedural Order of Execution

• Be careful of the sequential nature. C-like behavior
• Case 1

always @(posedge clock) begin
q2=q1;
q1=q0;

end
• Case 2

always @(posedge clock) begin
q1=q0;
q2=q1;

End
• Case 3 – Which one is this case more similar to?

always @(posedge clock) begin
q1=q0;

end
always @(posedge clock) begin

q2=q1;
end

M216A 22

Non-Blocked Assignment

• A newer feature of Verilog helps by eliminating the order of
evaluation.
– Instead of “=“ ; known as a blocking assignment

• Blocks future action until RHS is updated.
– Use “<=“; known as non-blocking assignment

• All LHS are changed first before the RHS is updated.
always @ (posedge clock)

begin
a[0] <= inp;
a[1] <= a[0];
a[2] <= a[1];
a[3] <= a[2];

end
• The above is equivalent to a[3:0]={a[2:0],inp};
• If we had used “=“ instead of “<=“, then a = 4{inp};

M216A 23

Initial Block

• This is another type of procedural block
– Does not need an activation list
– It is run just once, when the simulation starts.

• Used to do extra stuff at the very start of simulation
– Initialize simulation environment
– Initialize design

• This is usually only used in the first pass of writing a design.
• Beware, real hardware does not have initial blocks.

– Allows testing of a design (outside of the design module)
• Best to use initial blocks only for non-hardware statements

(like $display or $gr_waves)

M216A 24

Summary of Verilog Variables

• There are two types of “physical” variables in Verilog:
– Wires (all outputs of assign statements must be wires)
– Regs (all outputs of always blocks must be regs)

• Both variables can be used as inputs anywhere
– Can use regs or wires as inputs (RHS) to assign statements

assign bus = LatchOutput + ImmediateValue
• bus must be a wire, but LatchOutput can be a reg

– Can use regs or wires as inputs (RHS) in always blocks
always @ (in or clk)
if (clk) out = in
• in can be a wire, out must be a reg

• Module outputs are typed can be either regs or wires.
module div_ctrl(ctl1,ctl2,dp1, clock, reset, start);

output ctl1,ctl2;
input dp1, clock, reset, start;

• Integer and real do not map into hardware.
– Useful for initial functional description but not for implementation.

M216A 25

Delays in Verilog

• Verilog simulated time is in “units” or “ticks”.
– Simulated time is unrelated to the wall-clock to run the simulator.
– Simulated time models the time in the modeled machine

• When the computer completes with all the “events” that occur at the
current simulated time

• The computer increases time until another signal is scheduled to
change values.

• User must specify delay values explicitly to Verilog
– # delayAmount

• When the simulator sees this symbol, it stops “evaluating”, and pause
delayAmount of simulated time (# of ticks).

• Delays are often used to model the delay in functional units.
• Can be tricky to use properly

– We will design our logic to have zero (or unit) delay.
• The standard cell library we use can annotate delay information.

M216A 26

Declarative Delay Control

• A way to specifying delay of a signal
• Make out a delayed version of the input (by 10 ticks)

– assign #10 out = in;
– Delayed assignment.

• Anywhere else to put delay is not allowed
– assign out = #10 in; //is not allowed

10 ticks

in

out

M216A 27

Procedural Delay Control

• Procedural delay control is a little tricky
always @(phi or in)

#10 if (phi) then out = in;
– Wait 10 ticks after either input changes, then checks to see if phi ==

1, and then updates the output.
• Delayed evaluate

• If you wanted to sample the input when it changed, and then delay
updating the output:
always @(phi or in)

if (phi) then out = #10 in;
– This code runs the code when the inputs change, and just delays

the update of the output for 10 ticks.
• Delayed assignment

– An always block is not reactivated until every line of code is
completed.

• So while waiting for the delayed event, new inputs are ignored.

M216A 28

Delay Control

• Example
always

#100 out = in;

• Since the always does not have an activation, it runs all the time.
– As a result every 100 time ticks the output is updated with the

current version of the input.

• Delay control is used most commonly for clock or pattern
generation;
always

#100 out = ~out;

in

out

M216A 29

Verilog Code for a State Machine

• State Transition diagrams convert nicely to always blocks
– Use case statement to get into the correct state
– Use another case, or if - then - else to deal with the inputs
– At the end of every choice, set the next state, and the outputs

• Must be cautious about not creating any accidental storage elements.
– A very constrained way of writing Verilog can avoid accidental

flipflops
– Often helps to make an always block be only combinational logic

• Uses currentState and the inputs
• Produces nextState and the outputs

– Then use a separate always block for the storage
– Easier to make sure that the “logic” block does not have any

accidental latches in it.

M216A 30

Verilog Example – Divider

• Example of a serial Divider using subtract-compare algorithm.
– Start indicates the starting of subtracting the denominator

from the numerator until numerator is less.
– The divider is broken into two parts: div_ctrl, div_dpath

• Uses flipflop based clocking for the entire machine

div_ctrl div_dpath

clocksrc

testdivider INIT

DIV

n=numerator
d=denominator

n!<d && start

n!<d

n<d

div_ctrl

M216A 31

Code for Divider – 1

module div_ctrl(ctl1,ctl2,dp1, clock, reset, start);
output ctl1,ctl2;
input dp1, clock, reset, start;

reg state_s, state_v;
wire n_less_d;

parameter
INIT = 1'b0,
DIV = 1'b1;

always @(posedge clock) begin
state_s = state_v;

end
always @(state_s or reset or start or n_less_d) begin

if (reset) begin
state_v = INIT;

end
else begin

case (state_s)
INIT:

if (start)
if (n_less_d)

state_v = INIT;
else

state_v = DIV;
else

state_v = INIT;

DIV:
if (n_less_d)

state_v = INIT;
else

state_v = DIV;
endcase

end
end
assign ctl1 = state_s;
assign n_less_d = dp1;
Endmodule

module div_dpath(ctl1, ctl2, dp1, num_in, den_in,
quot, rem, clock);
output dp1;
input ctl1,ctl2, clock;
input [15:0] num_in,den_in;
output [15:0] quot, rem;

reg [15:0] num_s, den_s, tmp_quot_s,
quot, rem;
wire overflow;
wire [15:0] num_v,den_v,tmp_quot_v,
quot_v, rem_v;
wire [15:0] comp_v;
wire count, n_less_d;

Logic

Logic

Flipflop

M216A 32

Code for Divider – 2

always @(posedge clock) begin
num_s = num_v;
den_s = den_v;
quot = quot_v;
tmp_quot_s = tmp_quot_v;
rem = rem_v;

end
assign #1 {overflow,num_v} = count ? num_s - den_s :

{1'b0,num_in};
assign #1 den_v = count ? den_s : den_in;
assign #1 tmp_quot_v = count ? tmp_quot_s + 1 : 16'b0;
assign #1 quot_v = count ? tmp_quot_s : quot;
assign #1 rem_v = count ? num_s : rem;
assign n_less_d = num_v[15];
// you can also do another subtraction to look ahead.
// assign comp_v = num_v - den_s;
// assign n_less_d = comp_v[15];
// quot_v = count ? tmp_quot_v : quot;
// yet another alternative if you use a 2nd subtraction

is to
// introduce another state into the state machine

to save the quot
// register.

assign count = ctl1;
assign dp1 = n_less_d;
endmodule

module clocksrc (out);
output out;
reg clk;

initial
clk = 1'b0;

always #100
clk = ~clk;

assign out = clk;
endmodule

module testdivider;
reg [15:0] num_in,den_in;
reg reset, start;
wire clock,dp1,ctl1,ctl2;
wire [15:0] quot, rem;

clocksrc clkmod(clock);
div_dpath dpath(ctl1, ctl2, dp1, num_in,
den_in,quot, rem, clock);

div_ctrl ctrl(ctl1, ctl2, dp1, clock,reset,
start);

initial begin
#1 reset = 1'b0;

start = 1'b0;
$dumpvars(2,testdivider);

#10 reset = 1'b1;
num_in = 16'b0000000000001111;
den_in = 16'b0000000000000100;

#400 reset = 1'b0;
start = 1'b1;

#600 num_in = 16'b0000000000011111;
#600 start = 1'b0;
#100000 $finish;

end
endmodule

M216A 33

Verilog Example - SerAdd

• Example of a serial Adder called serAdd that is called by a top-level module
called testAdd

• Uses latch-based 2 phase clocking

• They are separate just to isolate the real hardware from the shell we are using
for illustration.

SerAdd

testAdd

clkGen
Sum_s1

A_v1

B_v1

Reset_s2

phi1

phi2

M216A 34

Code for SerAdd – 1

// serAdd.v -- 2 phase serial adder module
module serAdd(Sum_s1, A_v1, B_v1, Reset_s2,
 phi1, phi2);
output Sum_s1;
input A_v1, B_v1, phi1, phi2, Reset_s2;

reg Sum_s1;
reg A_s2, B_s2, Carry_s1, Carry_s2;

always @(phi1 or A_v1)
 if (phi1)
 A_s2 = A_v1;

always @(phi1 or B_v1)
 if (phi1)
 B_s2 = B_v1;

always @(A_s2 or B_s2 or Reset_s2 or Carry_s2 or phi2)
 if (phi2)
 if (Reset_s2) begin

Sum_s1 = 0;
Carry_s1 = 0;

end
 else begin
 Sum_s1 = A_s2 + B_s2 + Carry_s2;
 Carry_s1 = A_s2 & B_s2 |
 A_s2 & Carry_s2 |
 B_s2 & Carry_s2;
 end

always @(Carry_s1 or phi1)
 if (phi1)
 Carry_s2 = Carry_s1;

endmodule

// testAdd.v -- serial adder test vector generator

// 2 phase clock generator

module clkGen(phi1, phi2);
output phi1,phi2;
reg phi1, phi2;

initial
 begin
 phi1 = 0;
 phi2 = 0;
 end

always
 begin
 #100
 phi1 = 0;
 #20
 phi2 = 1;
 #100
 phi2 = 0;
 #20
 phi1 = 1;
 end
endmodule

/*
The above clock generator will produce a clock with
a period of 240 units of simulation time.
*/

Latch (phi1)

Latch (phi1)

Latch (phi2)

M216A 35

Code for SerAdd – 2

/* // test module for the adder
module testAdd; // top level

wire A_v1, B_v1;
reg Reset_s2;

serAdd serAdd(Sum_s1, A_v1, B_v1, Reset_s2, phi1,
phi2);

/*
 The serial adder takes inputs during phi1
 and produces _s1 outputs during phi2.
 The _s1 output corresponds to the addition of
 the inputs at the previous falling edge of phi1
*/

clkGen clkGen(phi1,phi2);

reg [5:0] tstVA_s1, tstVB_s1;
reg [6:0] accum_Sum;

initial
 $gr_waves("phi1",phi1,"phi2",phi2,

"Reset_s2",Reset_s2,"A_v1",A_v1,
 "B_v1",B_v1,"Sum_s1",Sum_s1,
 "Carry_s1",serAdd.Carry_s1,
 "accum_Sum",accum_Sum);

/*
Since SerAdd is a serial adder, we put in the
operands one bit at a time, and accumulate the
output one bit at a time.
 */
assign A_v1 = tstVA_s1[0];
assign B_v1 = tstVB_s1[0];

always @(posedge phi1) begin
 #10
 release A_v1;

 release B_v1;
end

always @(posedge phi2) begin
 #10
 force A_v1 = 1'b0;
 force B_v1 = 1'b0;
end

initial begin
 Reset_s2 = 1;
 tstVA_s1 = 6'b01000;
 tstVB_s1 = 6'b11010;
 accum_Sum = 0;
 @(posedge phi1)
 #50 Reset_s2 = 0;
end

always @(negedge phi1) begin
 $display ("A_v1=%h, B_v1=%h,
 sum_s1=%h, time=%d",
 A_v1, B_v1, Sum_s1,$time);
 accum_Sum = accum_Sum << 1 | Sum_s1;
 $display ("tstVA=%h, tstVB=%h,

 sum_s1=%h,accum_Sum=%h\n",

tstVA_s1,tstVB_s1,Sum_s1,accum_Sum);
end

always @(posedge phi2) begin
 #15
 if (~Reset_s2) begin
 tstVA_s1 = tstVA_s1 >> 1;
 tstVB_s1 = tstVB_s1 >> 1;
 if (tstVA_s1 == 0 && tstVB_s1 == 0) begin
 #800 $stop;
 end
 end
end
endmodule

M216A 36

Code for SerAdd – 1 (Separate Latches)

//SerAdd code with isolated latches
module serAdd(Sum_s1, A_v1, B_v1, Reset_s2, phi1,

phi2);
output Sum_s2;
input A_v1, B_v1, phi1, phi2, Reset_s2;

reg Sum_s1, A_s2, B_s2, Carry_s1, Carry_s2;
reg Sum_v2, Carry_v2;

always @(phi1 or A_v1)
if (phi1) A_s2 = A_v1;

always @(phi1 or B_v1)
if (phi1) B_s2 = B_v1;

always @(phi1 or Carry_s1)
if (phi1) Carry_s2 = Carry_s1;

always @(phi2 or Carry_v2)
if (phi2) Carry_s1 = Carry_v2;

always @(phi2 or Sum_v2)
if (phi2) Sum_s1 = Sum_v2;

always @(A_s2 or B_s2 or Reset_s2 or Carry_s2)
if (Reset_s2) begin

Sum_v2 = 0;
Carry_v2 = 0;

end

else begin

Sum_v2 = A_s2 + B_s2 + Carry_s2;

Carry_v2 = A_s2 & B_s2 |

A_s2 & Carry_s2 |

B_s2 & Carry_s2;

end

endmodule

Either code style is fine. The strict version
guarantees mapping/binding to the
latches and logic.

Latch (phi1)

Latch (phi2)

Logic

Logic

M216A 37

Verilog Summary

• An HDL provides a means for the user to specify a design at a higher
level than just gates.
– This lecture addresses mostly form and not content

• How to represent combinational logic and state machines
– We can now use this tool to specify any machine with state.

• A good question to ask is
– “What should my code look like?”
– “Are there certain styles of hardware that are easier to understand /

build / test?”
– This gets back to the question of abstractions, and is really asking

whether there are some hardware abstractions that work well.
• We’ve talked about partitioning of the problem as a good approach

– Finite State Machines
– Dataflows

M216A 38

Synthesis

M216A 39

Logic Synthesis and Place & Route

1. Convert HDL into logic gate netlist (standard cell library).
– For us, synopsys – synthesis tool
– Translate HDL
– Optimize logic
– Map into gates

2. Place the gates and connect between them
– For us, Silicon Ensemble – place and route tool
– Place cells within specified area constraint
– Connect between cells with minimum distance

• Ultimate goal is speed/area/power.
– Typically need to iterate the design

• Identify critical nets each time to optimize.

M216A 40

Guts of a Synthesis Tool

• Parsing VHDL
– Language is quite simple.

• Logic Optimization
• Reduce logic (2-level logic reduction)
• Factorization
• Merging
• If specified as a FSM, determine states and optimal state

assignments.
• Mapping into a standard cell library

– Many mapping possible, depends on the size of the library.
• Can be quite slow

– Can use functional blocks in library to synthesize bigger
logical functions

• Entire adder/multiplier etc.

M216A 41

Gate Binding

• Binding – the mapping from a boolean equation into gates in a
standard cell library.
– A.k.a. technology mapping
– Many possible bindings.
– Pattern matching problem

• Minimize number of gates

• Example gate-binding methodology
– Write Boolean network in canonical

NAND form.
– If reconvergent or splitting, break it

into simple trees.

M216A 42

Gate-Binding Example

• Write each library gate in canonical NAND form.
– Example: And-Or-Invert

• Assign cost to each library gate
– Speed/Area/Power

• If network is a tree, can use dynamic programming to select
minimum-cost cover of network by library gates

M216A 43

Helping Synthesis

• In an ideal world it shouldn’t matter how you write the Verilog
– Optimization in the CAD tools will find the best solution

• But the world is not ideal, yet (and progress is slow)
– Logic optimizers tend to use your module decomposition

• Need to partition.
• Choose which part to custom design (structural verilog)

– Tools use your code as a starting point
• Your structure is not completely eliminated during logic optimization.

(probably good)
• Finding a “good” way to think about the problem is key.

– Experience helps with finding a good architecture/algorithm to start
with.

• Like optimizing compliers for C, logic optimizers are good for local
optimizations, but don’t expect them to rewrite your code and change your
algorithm.

M216A 44

Branches in Computers

• In a computer, the address of the next instruction can depend on
the result of a previous branch instruction. Assume that the
preceding branch has a compare in it, and this signal is called
TakeBranch. Your job is to speed up the PC adder, since it is on
the critical path after the branch comparison.

if (TakeBranch) then

PCBus_s2 = PCreg_s2 + Disp_s2;

else

PCBus_s2 = PCreg_s2 +1;

• Since TakeBranch arrives late, the add must be fast

MuxTakeB

M216A 45

Faster Branches

• Change the code to do the adds and compares in parallel

– Then use the comparison to do a “late select”

• Takes two adders, but is much faster

PCDisp_s2 = PCreg_s2 + Disp_s2;

PCNext_s2 = PCreg_s2 + 1;

if (TakeBranch) then

PCBus_s2 = PCDisp_s2;

else

PCBus_s2 = PCNext_s2;

• Explicitly defining the intermediate signals help determine the
position of the MUX.

MuxTakeB

+ +

M216A 46

If-then-elseif Implies Priority

• Example: Priority Encoder for interrupts
always @(int0 or int1 or int2 or int3) begin

active[3:0] = 4’b0000;

if (int0) active[0] = 1’b1;

else if (int1) active[1] = 1’b1;

else if (int2) active[2] = 1’b1;

else if (int3) active[3] = 1’b1;

end

• Using “case” is safer and can be controlled

int0 active[0]

int1
active[1]

active[2]

active[3]

int2

int3

M216A 47

Case Statements

• Don’t forget the default state, otherwise storage is created
always @(active[0] or active[1] or active[2] or active[3]) begin

case ({active[0], active[1], active[2], active[3})

4’b1000: temp = 3’b010;

4’b0100: temp = 3’b011;

4’b0010: temp = 3’b100;

4’b0001: temp = 3’b101;

4’b0000: temp = 3’b000;

default: temp = 3’bxxx;

endcase

end

• Use // synopsys full_case helps avoid storage
• Case also implies priority

– Use // synopsys parallel_case to avoid implying any
priority, when the states are mutually exclusive.

M216A 48

For-Loop Synthesis

• Loops are unrolled in implementation
always @(a or b) begin

for (i = 0 ; i <= 3; i = i + 1)

out[i] = a[i] & b[3-i];

end

– Results in 4 AND gates
• Dependencies are maintained (parity checker for data[])

sum = 0;

for (i = 0 ; i < 8; i = i + 1)

sum = sum + data[i];

odd_parity = sum[0];

data[0]

data[1]
data[2]

data[3] data[7]

data[6]

M216A 49

Example: Re-Coding the Parity

• Use XORs instead for the bit-wise operation
always @(data) begin

odd_parity = ^data;

end

• Synopsys will optimize or you can structure it by hand

data[0]
data[1]

data[2]

data[7]

data[7]

data[0]

M216A 50

Local Optimization with Verilog Syntax

• Watch ordering of variables and parenthesis
– How you order your computation will set the actually logic

• a + b + c + d implies 3 serial adders
• (a+b) + (c+d) implies a tree adder

– Need to make sure you choose which you want.
• Slow Input - if you have an input signal that comes in late

– Write your logic so that this signal has little logic in its path
• If AEqualB is late
• TakeBranch = (bunch of logic) & AEqualB;

– The optimization will generally do this for you, but sometimes the
signals cross partition boundaries, and reordering the variable
becomes harder to do

• Local changes can help the synthesis but it can also be eliminated by
synthesis. It depends on the level of “optimization”

M216A 51

Synthesis Summary

• Synthesis tools are like compilers
– Allow the user to work at a higher level
– Show you what the details look like (maybe)

• Use tools to understand the parts that need extra work
– Like a profile of a program
– Optimize the parts that don’t meet the constraints
– Don’t improve what is not broken

• The role of tools are partitioned: need to iterate within each
partition.

• Tools leverage your creativity
– Not a substitute for thinking
– Need to compete with others using the same tools!

	High-Level Design� Hardware Description Language�(Verilog)
	Overview
	High-Level Design Issues
	Hardware Description Languages
	Hardware Description Languages (HDLs)
	Verilog from 20,000 Feet
	Verilog (or any HDL) View of the World
	Physical and Verilog Partition
	Ways to Describe A Function
	Structural Description
	Example: Gate-Level Structural Verilog
	Declarative Statements
	Declarative Order of Execution
	Procedural Statements
	Always Block Issues
	Unset Outputs
	Intentionally Creating Storage in Verilog
	Activation List
	Activation Lists
	Activation Errors - Examples
	Procedural Order of Execution
	Non-Blocked Assignment
	Initial Block
	Summary of Verilog Variables
	Delays in Verilog
	Declarative Delay Control
	Procedural Delay Control
	Delay Control
	Verilog Code for a State Machine
	Verilog Example – Divider
	Code for Divider – 1
	Code for Divider – 2
	Verilog Example - SerAdd
	Code for SerAdd – 1
	Code for SerAdd – 2
	Code for SerAdd – 1 (Separate Latches)
	Verilog Summary
	Synthesis
	Logic Synthesis and Place & Route
	Guts of a Synthesis Tool
	Gate Binding
	Gate-Binding Example
	Helping Synthesis
	Branches in Computers
	Faster Branches
	If-then-elseif Implies Priority
	Case Statements
	For-Loop Synthesis
	Example: Re-Coding the Parity
	Local Optimization with Verilog Syntax
	Synthesis Summary

