
April 2005

Using Virtex4 DSP48 Components with
the Synplify Pro® Software

The Virtex4 FPGA architecture from Xilinx includes a new DSP-oriented component called
the DSP48. This is a dedicated component in the Virtex4 architecture that is specifically
engineered to help with DSP-related operations. This application note gives you a general
understanding of the DSP48 component, and shows you how to infer it with the Synplify Pro
synthesis software. For a complete list of all the DSP48 options and the way in which they are
arranged in the Virtex4 FPGA, refer to the XtremeDSP Design Considerations User Guide or
the Virtex4 Library Guide, both available from www.xilinx.com.

The following figure shows the DSP48 component:

Using Virtex4 DSP48 Components with the Synplify Pro® Software

Page 2 Synplicity, Inc. Application Note

What is the DSP48?
At its most basic, the DSP48 is a multiplier that is followed by an adder with several optional
registers on the ports and between the multiplier and adder. The following figure shows a basic
representation of the DSP48 component.

The multiplier takes two 18-bit signed signals and multiplies them into a 36-bit result. This is
then sign extended to 48 bits and can be fed into the adder or routed directly to the outputs of
the DSP48. The adder, which can be configured either as an adder or subtractor, can accept the
sign-extended output of the multiplier and 48-bit C input to the DSP48. In addition, the adder
can also accept itself as an input, to form an accumulator.

Along with the multiplier and adder are several registers. All these registers are optional and
their usage is controlled by attributes set with the DSP48 when it is inferred. The A and B
inputs that go to the multiplier can have up to two registers, known as the AREG and BREG
registers. The C input that goes to one of the operands of the adder can have up to one register,
which is known as the CREG. There can be up to one register between the multiplier and
adder; this is called MREG. Finally, there can be up to one register after the adder, and this is
called the PREG.

Each of these registers has enables and resets, which can be different from each other. The
only exception to this is if there are two AREG or two BREG registers, they must share the
same enable and reset. AREG and BREG can have different enables, but if there are two
AREGs for example, both of them must have the same enable and reset. Also note that all the
resets are synchronous. Finally, there is only one clock pin on the DSP48, so all of the registers
must use the same clock.

Using Virtex4 DSP48 Components with the Synplify Pro® Software

Synplicity, Inc. Application Note Page 3

The Synplify Pro tool recognizes the architecture of these registers and uses that knowledge to
infer the DSP48 block. If you want registers to go inside the DSP48 block, it is very important
that your Verilog or VHDL register description match what can go into a DSP48. If you
describe asynchronous resets for example, the DSP48 will not include that register inside it.

One more basic control of the DSP48 is the OPMODE input to the DSP48. This is a 7-bit input
to the DSP48 that controls the functionality of the DSP. Different combinations of these 7 bits
control the different muxes inside the DSP48 and thus control how the DSP48 works. The
synthesis tool automatically sets this when it infers the DSP48 components. For a complete list
of all the combinations of the OPMODE input, please consult the DSP48 component
description in the Virtex4 Library Guide available at www.xilinx.com.

Inferring DSP48 Components
When the Synplify Pro tool detects structures that can be mapped into a DSP48, it writes out a
DSP48 in the EDIF netlist.The following sections show examples of structures that the
synthesis tool implemented in a DSP48. The first section will show general structures, and the
second section will show coding styles that will use specific parts of the DSP48 architecture.

The syn_dspstyle Attribute

For more control over the inference of the DSP48 component, use the new syn_dspstyle
attribute. You can apply the attribute to operators (adders and multipliers), registers, and
modules/architectures. This attribute can take 2 values: logic or dsp48. When it is set to logic,
the software does not infer DSP48s; if it is set to dsp48, the tool infers DSP48s.

In the Synplify Pro 8.0 software, adders and counters are not automatically put in the DSP48
components, to ensure that the DSP48 components are only used for the most important struc-
tures in the design. In subsequent versions of the tool, more structures will automatically go
into the DSP48. In order to get adders and counters into DSP48s for Synplify Pro 8.0, you
must use the syn_dspstyle attribute.

You can also use the syn_dspstyle attribute to map structures to logic that would by default go
into the DSP48. For example, a multiplier name mult_sig, that drives a register named mult_reg
would go into the DSP48. If you want to leave the mult in the DSP48 and take out the register,
you must add the syn_dspstyle attribute to the register:

VHDL attribute syn_dspstyle : string;
attribute syn_dspstyle of adder_sig : signal is “dsp48”;

Verilog wire [9:0] adder_sig /* synthesis syn_dspstyle = “dsp48” */;

VHDL attribute syn_dspstyle : string;
attribute syn_dspstyle of mult_reg : signal is “logic”;

Verilog wire [19:0] mult_reg /* synthesis syn_dspstyle = “logic” */;

Using Virtex4 DSP48 Components with the Synplify Pro® Software

Page 4 Synplicity, Inc. Application Note

Example 1: Adder

This is an 18x18 signed adder.The inputs and output each have a register with a different
synchronous reset signal. They all fit into one DSP48 block.

module adder_example(in1, in2, clk, rst1,rst2, rst3, out1);
input signed [17:0] in1, in2;
input rst1,rst2,rst3;
input clk;
output signed [17:0] out1;
reg signed [17:0] out1;
reg signed [17:0] in1_reg, in2_reg;
wire signed [17:0] adder_sig /* synthesis syn_dspstyle = "dsp48" */;

always@(posedge clk)
if (rst1)

in1_reg <= 18'b0;
else

in1_reg <= in1;

always@(posedge clk)
if (rst2)

in2_reg <= 18'b0;
else

in2_reg <= in2;

always@(posedge clk)
if (rst3)

out1 <= 18'b0;
else

out1 <= adder_sig;

assign adder_sig = in1_reg + in2_reg;
endmodule

Using Virtex4 DSP48 Components with the Synplify Pro® Software

Synplicity, Inc. Application Note Page 5

Example 2: Counter

This design is a loadable counter with a synchronous reset and a variable count increment.
Like the adder, all of this fits in one DSP48.

module loadable_counter (in1,rst1, load,count_val, clk, out1);
input signed [17:0] in1, count_val;
input load;
input rst1;
input clk;
output signed [17:0] out1;
reg signed [17:0] out1;

wire signed [17:0] counter_sig /* synthesis syn_dspstyle = "dsp48" */;

always@(posedge clk)
if (rst1)

out1 <= 18'b0;
else if (load)

out1 <= in1;
else

out1 <= counter_sig;

assign counter_sig = out1 + count_val;

endmodule

One other interesting thing to note about this example is the OPMODE reg input to the DSP48.
In the figure below, notice that it is not static. Depending on the load signal, this design can
either be a counter, or can pass the in1 value straight through. This load input can then control
OPMODE to tell the DSP48 how it should be behaving. In the following figure, note that the
INV component is absorbed into the DSP48 by the Xilinx Place and Route software. This
means that you do not need to use a LUT for that path.

Using Virtex4 DSP48 Components with the Synplify Pro® Software

Page 6 Synplicity, Inc. Application Note

Example 3: Multiplier

This design is a simple 6x6 multiplier that has registers with the same reset on the inputs and
the output. One difference here is that the clocks are all active low.

module mult_example(in1, in2, clk, rst, out1);
input [5:0] in1, in2;
input clk;
input rst;
output [11:0] out1;
wire [11:0] out1;
reg [5:0] in1_reg, in2_reg;
reg [11:0] out1_reg;
always@(negedge clk)
begin

if (rst)
begin

in1_reg <= 6'b0;
in2_reg <= 6'b0;
out1_reg <= 12'b0;

end
else

begin
in1_reg <= in1;
in2_reg <= in2;
out1_reg <= in1_reg * in2_reg;

end
end
assign out1 = out1_reg;
endmodule

Using Virtex4 DSP48 Components with the Synplify Pro® Software

Synplicity, Inc. Application Note Page 7

The DSP48 does not have an inverted clock port, so the Synplify Pro tool inverts the clock
before the CLK input. The Xilinx Place and Route software absorbs that INV component into
the DSP48, so that you do not need a LUT for that path. The following figure illustrates:

Example 4: Mult_add

A mult_add takes the multiplier and makes it drive an adder. In the following example, we are
going to make use of all the registers that are in the DSP48. This whole design will fit into one
DSP48.

module mult_add(in1, in2, in3, clk, rst, out1);
input [5:0] in1, in2;
input [11:0] in3;
input clk;
input rst;
output [11:0] out1;

wire [11:0] out1;

reg [5:0] in1_reg1, in1_reg2, in2_reg1, in2_reg2;
reg [11:0] in3_reg;
reg [11:0] mult;
reg [11:0] adder;

always@(negedge clk)
begin

if (rst)
begin

in1_reg1 <= 6'b0;
in2_reg1 <= 6'b0;
in1_reg2 <= 6'b0;
in2_reg2 <= 6'b0;
in3_reg <= 12'b0;
mult <= 12'b0;
adder <= 12'b0;

end
else

 begin
in1_reg1 <= in1;
in2_reg1 <= in2;
in1_reg2 <= in1_reg1;
in2_reg2 <= in2_reg1;

Using Virtex4 DSP48 Components with the Synplify Pro® Software

Page 8 Synplicity, Inc. Application Note

in3_reg <= in3;
mult <= in1_reg2 * in2_reg2;
adder <= mult + in3_reg;

end
end

assign out1 = adder;
endmodule

Example 5: Mult_subtract

There are two approaches to implementing a multiply and subtract:
• Take the result of the multiplier and subtract a value from that.
• Take a value, and subtract the result of multiplier from that.

The approach you use is important in DSP48 architecture because there is a subtract input that
performs a subtraction when it is active. This input uses the equation below. If you code the
VHDL or Verilog to use the same equation, the Synplify Pro tool can map directly to the
DSP48:

P <= C (input) – mult

However if you code your Verilog or VHDL code using the equation below, the Synplify Pro
tool will have to add some extra logic to get it to work.

P <= mult – C (input)

The following sections show examples of the two approaches.

Mult_sub (Example 1)

module mult_sub(in1, in2, in3, clk, rst, out1);
input [6:0] in1, in2;
input [13:0] in3;
input clk;
input rst;
output [13:0] out1;
wire [13:0] out1;
reg [6:0] in1_reg1, in2_reg1;
reg [13:0] mult;
reg [13:0] subtractor;

Using Virtex4 DSP48 Components with the Synplify Pro® Software

Synplicity, Inc. Application Note Page 9

always@(posedge clk)
begin

if (rst)
begin

in1_reg1 <= 7'b0;
in2_reg1 <= 7'b0;
mult <= 14'b0;
subtractor <= 14'b0;

end
else

begin
in1_reg1 <= in1;
in2_reg1 <= in2;
mult <= in1_reg1 * in2_reg1;
subtractor <= in3 - mult;

end
end

assign out1 = subtractor;

endmodule

In the following example, since the equation is set as in3 – mult, this will fit directly into the
DSP48. So all you have to do is to set the subtract input to 1.

Using Virtex4 DSP48 Components with the Synplify Pro® Software

Page 10 Synplicity, Inc. Application Note

Mult_sub (Example 2)

In this case, instead of Q <= Cin – mult, it is written as Q <= mult –c. Since this is not possible as
is in the DSP48, something else needs to be done. In this case, the Synplify Pro tool inverts the
Cin, adds that to multiply, and adds 1 to it. In other words, it performs a two’s complement
addition that is the same as a subtraction.

Since there is no inversion on the data inputs of the DSP48, the Synplify Pro tool performs it
outside the DSP48.

Using Virtex4 DSP48 Components with the Synplify Pro® Software

Synplicity, Inc. Application Note Page 11

Example 6: Mult-accumulate

A multiply accumulate is just like an adder, with the exception that the adder’s operands are
the output of the multiplier and the output of the adder itself.

module mult_accum(in1, in2, clk, rst, out1);
input [5:0] in1, in2;
input clk;
input rst;
output [11:0] out1;
wire [11:0] out1;

reg [5:0] in1_reg1, in1_reg2, in2_reg1, in2_reg2;
reg [11:0] mult;
reg [11:0] adder;
wire [11:0] add_sig;

always@(posedge clk)
begin

if (rst)
begin

in1_reg1 <= 6'b0;
in2_reg1 <= 6'b0;
in1_reg2 <= 6'b0;
in2_reg2 <= 6'b0;
mult <= 12'b0;
adder <= 12'b0;

end
else

begin
in1_reg1 <= in1;
in2_reg1 <= in2;
in1_reg2 <= in1_reg1;
in2_reg2 <= in2_reg1;
mult <= in1_reg2 * in2_reg2;
adder <= add_sig;

end
end

assign add_sig = mult + adder;
assign out1 = adder;
endmodule

Using Virtex4 DSP48 Components with the Synplify Pro® Software

Page 12 Synplicity, Inc. Application Note

This whole design fits inside one DSP48 component.

Example 7: Filter

Filters are more complicated structures, but they are built out of the components that have
been implemented above. The main thing to remember when designing filters is that you must
keep them as mult_adds (multiplier followed by an adder) if you want the Synplify Pro tool to
map them to DSP48s. This is because mult_adds match the structure of a DSP48. When the
Synplify Pro tool detects mult adds in the design, it automatically places them in the DSP48
architecture. This is a sample filter:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity filter_new is
generic(

tap_length: integer := 8;
width: integer := 16;
coeff_width: integer := 14;
out_width: integer := 32

);
port (

clk: in std_logic;
inp: in signed(width-1 downto 0);
outp: out signed(out_width-1 downto 0)

);
end filter_new;

architecture behav of filter_new is
type bus16 is array (0 to tap_length-1) of signed(width-1 downto 0);
type bus32 is array (0 to tap_length-1) of signed(out_width-1 downto 0);
type bus14 is array (0 to tap_length-1) of signed(coeff_width-1 downto 0);

signal in_flop : signed(width-1 downto 0);
signal in_flop_a : signed(width-1 downto 0);
signal out_flop : signed(out_width-1 downto 0);
signal adderOut : bus32;
attribute syn_preserve : boolean;
attribute syn_preserve of adderOut : signal is true;
signal multOut : bus32;
constant coeff: bus14 := (to_signed(-3,coeff_width),

to_signed(-10,coeff_width),
to_signed(-20,coeff_width),
to_signed(-30,coeff_width),
to_signed(30,coeff_width),
to_signed(20,coeff_width),
to_signed(10,coeff_width),
to_signed(3,coeff_width));

signal coeff_sig : bus14;
attribute syn_keep : boolean;
attribute syn_keep of coeff_sig : signal is true;

Using Virtex4 DSP48 Components with the Synplify Pro® Software

Synplicity, Inc. Application Note Page 13

begin
coeff_sig <= coeff;
filt: process(clk)
begin

if(rising_edge(clk)) then
in_flop_a <= inp;
in_flop <= in_flop_a;
multOut(0) <= resize(in_flop * coeff_sig(0), out_width);
adderOut(0) <= multOut(0);
for i in tap_length-1 downto 1 loop

multOut(i) <= resize(in_flop * coeff_sig(i), out_width);
adderOut(i) <= adderOut(i-1) + multOut(i);

end loop;
out_flop <= adderOut(tap_length-1);

end if;
end process;
outp <= out_flop;
end behav;
Notice that this is in the form of registers, multipliers and adders.

Using Virtex4 DSP48 Components with the Synplify Pro® Software

Page 14 Synplicity, Inc. Application Note

The figure below shows how the Synplify Pro software implemented the DSP48s.

Using syn_preserve to Infer Mult-accumulates

Notice that these DSP48s use the PCOUT/PCIN pins in order to use the chain features of the
DSP48. In order to make use of the PCOUT/PCIN pins, the Synplify Pro software automati-
cally sign extends the size of the adder so that it uses all 48 bits. One other thing to note about
this design, is that if the adders are not the same size, the Synplify Pro 8.0 tool does not
support the use of PCOUT/PCIN pins. In this example, the code says the following:

for i in tap_length-1 downto 1 loop
multOut(i) <= resize(in_flop * coeff_sig(i), out_width);
adderOut(i) <= adderOut(i-1) + multOut(i);

end loop;

This means that even though the adderOut registers are all declared as the same size (8 x 16
array), the Synplify Pro tool prunes out the unused ones because not all the array elements are
used. This causes the DSP48 not to be implemented. In the example above, this problem was
fixed by using the syn_preserve attribute to keep the unused registers. In the Synplify Pro 8.1
release, this will be done automatically, so you will not need the syn_preserve attribute.

Using syn_keep to Infer Mult-accumulates

In filters, one of the operands of the multiplier is usually a constant. Historically, when it found
a multiplier with a constant on one operand, the Synplify Pro tool propagated the constant on
that multiplier to optimize the design for area, and removed unneeded logic. In the case of
Virtex4 with DSP48s, the extra logic is not a problem because it all goes into the DSP48.
However, the Synplify Pro 8.0 tool still propagates the constant, and this prevents the multi-
plier with a constant operand from being inferred as a DSP48. This will be fixed in Synplify
Pro 8.1 software. In the mean time, the way to fix this is to make a signal that gets the constant,
and then place a syn_keep on that signal, as shown in the previous code.

Using Virtex4 DSP48 Components with the Synplify Pro® Software

Synplicity, Inc. Application Note Page 15

Pipelining Registers to Maximize Use of DSP48s
In addition to inferring many types of structures for DSP48 components, the Synplify Pro tool
also pipelines registers around logic in order to more effectively utilize the registers inside the
DSP48. It does this by taking registers that are outside the mult_adds, and moving them inside
the mult_adds so that they match the DSP48 structure. The following figure shows the first
mult_add has an MREG, the second has one AREG and one BREG, but there are several
registers after the second mult_add. If the registers are not moved, the first and second DSP48
would only use 1 and 2 registers respectively.

A

A

M

*
B

B A

*

B

BA

M

C P+ P+ 1

2

3

4

Page 16 Synplicity, Inc. Application Note

Synplicity, Inc.
600 W. California Ave, Sunnyvale, CA 94085 USA
Phone: (U.S.) +1 408 215-6000, Fax: (U.S.) +1 408 222-0268
www.synplicity.com
Copyright © 2005 Synplicity, Inc. All rights reserved. Specifications subject to change without notice.
Synplicity, the Synplicity logo, “Simply Better Results”, and Synplify Pro are registered trademarks of Syn-
plicity, Inc. All other names mentioned herein are trademarks or registered trademarks of their respective com-
panies.

Using Virtex4 DSP48 Components with the Synplify Pro® Software

The Synplify Pro mapper uses pipelining to move the four registers into the DSP48s, so that
the design looks like the following figure. The circled numbers represent the four registers that
were previously outside the DSP48s (see previous figure) and show how they have been
packed into the components. Now, the only registers that are left over are the two on the
operands of the second mult_add and the one on the C input of the first mult_add.

Conclusion
The Xilinx mapper within the Synplify Pro tool has been specifically optimized to make use of
the new DSP48 component within the Virtex4 architecture. The DSP48 component is essential
if you want to create fast Virtex4 designs that utilize DSP functions.

The examples provided in this application note are meant to show you the types of coding
styles you can use to create the design you want. However, they are not meant to be the only
way to code for this architecture. The most important thing to remember is if you want to infer
and implement DSP48s, your code structure must resemble the DSP48 itself. If the source
code has structures that are in the DSP48 (like multipliers, adders, counters, and mult_adds),
and if DSP48 rules are followed (synchronous registers), the Synplify Pro tool can automati-
cally implement the DSP48 structures you want.

A

A

M

*
B

B A

*

B

BA

M

C P+ P+

1

2

3

4

1

1 1

1

2

2 2

3

These two registers have
been moved outside the
component. In the previous
figure, these were registers A
and B.

	Using Virtex4 DSP48 Components with the Synplify Pro® Software
	What is the DSP48?
	Inferring DSP48 Components
	The syn_dspstyle Attribute
	Example 1: Adder
	Example 2: Counter
	Example 3: Multiplier
	Example 4: Mult_add
	Example 5: Mult_subtract
	Example 6: Mult-accumulate
	Example 7: Filter

	Pipelining Registers to Maximize Use of DSP48s
	Conclusion

