
Unifying Behavioral Synthesis and Physical Design
William E. Dougherty and Donald E. Thomas
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

(412) 268-{2476, 3435}

{wed, thomas}@ece.cmu.edu

ABSTRACT

Our methodology unifies behavioral synthesis and physical de-
sign, allowing scheduling, allocation, binding, and placement to
occur simultaneously. This is accomplished via set of defined
transformation from both domains acting as forces in a single
behavioral/physical system. Experiments show results with 50%
less area and 10% lower critical path delay than the best results
from a commercial behavioral synthesis tool. Our behavioral
level area, delay, and individual component location estimates
closely match results produced by physical design tools given
only pin locations as a starting point.

Keywords

Behavioral/high level synthesis, physical design.

1. INTRODUCTION
As integrated circuit designs have become more complex, de-
signers have moved to higher levels of abstraction to enable lar-
ger systems to be described and more powerful computer-aided
design tools to be applied. Despite fifteen years of research and
product history, behavioral synthesis lacks a general acceptance
in the electronic system design community, largely due to the low
quality of designs produced by these tools. Although lower qual-
ity may be justified by reductions in design costs and time-to-
market, these are insufficient for high-volume markets. The basic
problem is that the tradeoffs made by these tools have little or no
basis in physical design. Thus, these interconnects (i.e., buses,
multiplexors and direct connects) are poorly designed from the
start. This problem will only get worse in DSM processes where
far more of the delay lies in the wires.

The approach developed here attempts to unify physical design
and behavioral synthesis. Behavioral decisions and transforma-
tions are represented by forces acting on objects in the behavioral
model (i.e., a dataflow graph (DFG)). Likewise, physical design
transformations are represented by forces acting on placeable
objects. In our approach, these are the same objects. This formu-
lation is amenable to quadratic minimization techniques cur-
rently used in physical design, allowing behavioral and physical

decisions to be made simultaneously. Because it is a constructive
technique, design considerations in behavioral synthesis and
physical design are being solved at once.

Unifying the behavioral and physical domains allows the effects
of transformations in either to be immediately viewable while
still in the behavioral format, where the most design flexibility
exists. The final placed and routed design, previously only able
to judge the quality of the behavioral tool’s output, can now ad-
vise within the synthesis process how to manipulate the behavior
to produce a high quality layout. No iterating between the behav-
ioral and physical designs needs to occur because all the informa-
tion is available in the graph throughout the process.

An overview of our consolidated approach appears in Figure 1. It
begins in a traditional behavioral synthesis manner, with a high
level description written in an HDL or programming language. A
simple example of such a behavioral statement is found in Figure
1.1. This code is compiled down into a DFG representation like
that shown in Figure 1.2. The DFG is modified with behavioral
network graph style state cut nodes to allow simultaneous sched-
uling and allocation (Figure 1.3 and Section 2), and then the
operations are physically placed on the chip using quadratic
techniques (Figure 1.4 and Section 3). Along with placement,
this process combines, separates, and duplicates operations, all
of which is done with no knowledge of the schedule. As these
events occur, constraints are generated to ensure the final design
will have a valid schedule. At the end of this phase, all opera-
tions are bound to functional units, but the hardware implemen-
tations and schedule remain unknown.

Based on this placement, a slicing tree is constructed for the
design (Figure 1.5 and Section 4) and used to produce a series of
design spaces covering multiple schedulings and allocations,
while simultaneously building a physical design (Figure 1.6).
Although slicing trees can be used directly to determine place-
ment locations, we choose to build them from a partitioning of
the quadratic placement for efficiency considerations. Greater
emphasis is also placed on interconnect by using quadratic
minimization methods. The slicing tree optimally packs the
shapes representing all possible hardware implementations for
each operation into a final placed design. We have modified this
process to select hardware implementations and build multiple
schedules in tandem with the placement.

2. REPRESENTING THE DESIGN
In order to unify behavioral synthesis and physical design, a de-
sign representation must be conceived allowing manipulations to
occur in scheduling, allocation, and placement simultaneously.
The traditional DFG, representing operations as nodes in a graph
connected by directed edges symbolizing data transfers, has
proven useful for either scheduling or allocating designs, but

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

756

requires an external time frame structure in which the DFG can
be manipulated to perform both simultaneously. SAM [2] did this
manipulation through force directed means, while others [4][8],
used simulated annealing. Tarafdar emphasized the communica-
tion through the Data-Transfer graph [13], but did not allow op-
erations in both domains to occur together.

In order for scheduling to occur in conjunction with placement
and allocation, zero or more registers must be able to appear
between operations. Bergamaschi’s behavioral network graph
(BNG) introduces special nodes between operations representing
potential state cuts [1]. Deciding whether the node will become a
true state cut relies on constant propagation from special input
pins during logic synthesis. While this representation, which we
build upon in our work, allows simultaneous scheduling and
allocation, the implementation has two main drawbacks. First,
constants placed on the special input lines must be externally
determined prior to synthesis, when no physical design informa-
tion is available. Once these constants are fixed, little scheduling
flexibility exists. BNGs allow synthesis to perform scheduling,
but they do not improve synthesis’ ties to physical design. The
second drawback is the increased complexity of the synthesis
process, which already relies heavily on partitioning designs into
non-interacting components to make a solution tractable.

Our approach builds upon existing structures to incorporate
strong ties to physical design early in synthesis process while
yielding a high degree of simultaneous scheduling and allocation
flexibility throughout. Each DFG operation has an associated set
of shapes representing the dimensions and delays of potential
hardware implementations. BNG-style state cut nodes (SCNs)
exist between each operation, but our implementation does not
introduce extra inputs to complicate the synthesis task. Instead,
shapes associated with both registers and wires are assigned to
these nodes. A DFG with added SCNs appears in Figure 1.3.

Using shape information, the physical design process operates
directly on the behavioral DFG, bypassing the need to create
intermediate RTL and gate-level netlists. The placement process
determines the locations and shapes producing the best physical
design, and by doing so implicitly schedules, allocates, and maps
the design at the same time.

3. BEHAVIORAL FORCES IN
QUADRATIC PLACEMENT
3.1 Placing DFGs
Quadratic placement techniques constructively find the place-
ment of graph nodes that minimizes overall wire length [16][5].
They are typically used on gate level netlists, but have been suc-
cessfully demonstrated on RTL netlists as well [11]. To our
knowledge however, they have never been applied to a behav-
ioral DFG directly.

To create accurate physical designs based on a DFG, the relative
location of each operation on the chip must be known. At pre-
sent, the DFG placement is done with a simple zero dimensional
point methodology, and therefore requires the locations of IO
pins to be known. While it may be desirable to operate without
pin information, or have the behavioral synthesis tool determine
optimal pin placements, we leave that to future work and assume
a reasonable guess can be made. DFG edges can be weighted to
reflect timing or other constraints identically to methods cur-
rently used in quadratic physical design only tools. Figure 1.4
shows an example quadratic placement of a DFG.

From the point placement, relative positions of each operation
can be determined. This however, provides no information about
actual design dimensions or timing, which is true in physical
design as well, but the problem is more serious here because the
hardware implementing each operation has not yet been chosen.
To determine this, we rely on a placement technique based on
slicing trees, which are discussed in section 4.

3.2 Performing Behavioral Transformations
Direct substitution of the DFG for a gate level netlist is all that is
required to determine operation locations, but the placement
process can be further manipulated to perform behavioral trans-
formations like hardware sharing, separation, duplication, and
scheduling. Performing these tasks quadratically emphasizes the
importance of distance and commonality in the interconnect.

Quadratic placement can be viewed as a physical system that
naturally settles to its lowest energy state in the presence of vari-
ous forces. In placement, forces are introduced by DFG edges

out = a + b + c + d; 1. Behavioral code:

+ +

+

a b c d

out

2. DFG:

4. DFG as placeble
objects in quadratic
placement:

3. DFG with SCN
nodes added:

+ +

+

a b c d

out

+
+

b

d out

a c
+

5. DFG in slicing tree
based on quadratic
placement:

6. Scheduled physical
designs from slicing
tree:

+
+

b

d out

a c

+

delay

area

3 states

2 states

1 state

SCN:
 Register

 Wire

ADD:
 RipAdd

 CLA

Figure 1. Simultaneous behavioral synthesis and physical design flow.

757

acting like interconnected springs, each with a spring constant
reflecting its importance to the design constraints. We introduce
new forces, loosely analogous to gravity and the strong force, to
allow operations to behave as particles in the system.

3.2.1 Sharing Hardware During Placement
Hardware sharing is accomplished using a gravitational force.
Each node has an associated gravitational pull based on the char-
acteristics of its potential hardware implementations. This force
attempts to pull objects closer to the node, but the effect falls off
over distance so that distant objects are unaffected. Sufficiently
close objects can be attracted with enough force to cause them to
collapse into a single node. A gravitationally induced operation
merge must meet the following conditions:

Merge(op1,op2) = ((dist(op1, op2) < D) && Compatible(op1, op2));

Where D is the maximum distance over which the gravitational pull
can be felt. D can be unique to each operation type and need not

remain constant throughout the run.

When such a collapse occurs, there are three side effects. First,
the merged operations will share a functional unit. Second, mux
nodes will be inserted into the DFG. Third, constraints will ap-
pear denoting which subsets of SCN nodes must use register
shapes to legalize the schedule. The constraints implicitly sched-
ule the design by forcing the existence of certain states.

Because gravitational forces lead to hardware sharing, they only
exist along compatibility edges. If the behavioral design is cycle
accurate, scheduling is prevented by creating compatibility edges
only between operations in mutually exclusive states. For non
cycle-accurate descriptions, compatibility edges exist between all
operations capable of executing on the same type of hardware.

An example of gravitationally induced hardware sharing is
shown in Figure 2. Each add operation exerts a gravitational pull
on all compatible objects within the gray circle they center.
Compatibility edges are shown as dashed lines. Since +1 and +3
lie within each other’s gravitational fields, they collapse upon
each other, yielding the design in Figure 2b. Two mux nodes
have been added to the DFG and the SCN that existed between
+1 and +3 has been constrained to be a register.

3.2.2 Separating and Duplicating Hardware
When operations merge, a force analogous to the strong force
holding particles together in atomic nuclei binds them. This at-
tractive force must compete with pulling forces created by the
interconnect. If the external forces should prove more powerful
than the internal forces associated with the merged node, one or
more operations break free, returning to independent nodes. This
causes the input muxes to lose an input and the constraints on the

SCNs to be reevaluated, implicitly scheduling the design.

When interconnect forces place exceptional stress on a single
operation (one which is not currently merged), there is no strong
force to break, and the only way to alleviate the system stress is
to replicate the operation, allowing each copy to feed a subset of
the downstream operations. Each replicated operation performs
the same computation, but can be located closer to its usage.

Forces placed on operations can be derived from interconnect
distances, the directional pull, and the net’s relative weighting
from the constraints. The strong force between operations can be
based on the potential implementation hardware and the amount
of interconnect that is saved or lost by the separation. The condi-
tions to split or duplicate an operation are shown below.

Split(op1,op2) = StrongForce(op1,op2) < (InterconnectForce(op1->op*) +
InterconnectForce(op2->op*));

Duplicate(op) = StrongForce(op) < (InterconnectForce(op->op*));

Figure 3 shows how the strong force is overcome to separate
operations. This example begins from the design in Figure 2b,
but has altered constraints, so that input pin connections are
heavily weighted and pull connected operations very close. This
leaves +1 and +2 at opposite corners of the chip connected by
long wires. These wires exert a stress on the merged operation
+13, causing the strong force to break down. The effects can be
seen in Figure 3b, where +1 and +3 are again independent nodes,
input muxes have been removed from the DFG, and constraints
on the SCN between +1 and +3 no longer exists.

4. BEHAVIORAL SYNTHESIS IN SLICING
TREES
Slicing trees are a placement technique designed to find the most
compact design configuration based on a recursive slicing (a
specific style of partitioning) by finding the best orientation for
each gate in the design [17].

Most previous work incorporating physical design into behav-
ioral synthesis has used slicing trees as an evaluative tool, not as
a decision making tool. McFarland pioneered the approach with
BUD [10] in which physical implications of various clustering
schemes ware estimated prior to actually performing behavioral
synthesis. The best clustering was given to the behavioral syn-
thesis tool, but there were no guarantees that the synthesized
results would be the best implementation of the clustering. Ta-
rafdar [14] used an approach with data transfers, in which itera-
tive operation binding was performed based on the minimum
incremental cost reported by a slicing tree. Because the designs
being operated on were only partially complete, the estimates
decisions were based on lacked accurate placement and delay

+1

+3

b

d out

a c
+2

+13

b

d out

a c
+2 constrained to

register shape

a) b)

Figure 2. Gravitational force based hardware sharing.

+13
b

d out

a c
+2

highly stressed wires +1
b

d out

a c
+2

+3

No longer needs to
be a register

a) b)

Figure 3. Strong force based hardware separation.

758

information, potentially leading tools down unrealistic and irre-
versible paths. Xu used slicing trees to determine how operations
were to be bound to a fixed number of functional units in FPGAs
[19], but the algorithm could not handle delay information, had a
complexity that grew exponentially with the amount of operator
chaining, and precluded alternate placement information.

FASOLT [7] began with a structural design, from which slicing
trees could derive accurate information. This design was then
perturbed, creating a complete structural design in each iteration.
Under this method, the quality of the final design is likely to
depend on the initial implementation, and the tool cannot predict
the impact of transformations in future iterations or how easily it
can be undone. Kucukcakar [9] and Hassoun [6] also took struc-
turally based approaches, but it is unclear how placement infor-
mation for slicing trees was derived. Natesan [11] used quadratic
placement techniques to provide estimates on structural designs,
but this only passed judgment after the synthesis process and
could not offer guidance for improving the design.

4.1 Performing Binding and Scheduling
Our approach relies on slicing trees to perform all library binding
and scheduling of the DFG while simultaneously constructing the
most compact placement. Slicing is performed on a quadratically
placed DFG where all operation sharing, duplication, and split-
ting has been performed. Although slicing trees can be used to
determine hardware sharing, we avoid this because such actions
have drastic effects on the placement and thus, the quality of the
design partitioning that created the slicing tree.

Figure 4 shows how two adders are mapped across a horizontal
slice. Next to the slicing node are the shapes representing com-
binations of +2 positioned above +1 in the layout. The leftmost
shape binds +2 to a RipAdd while a CLA executes +1. The shape
combinations yield a range of area and delay tradeoffs.

The slicing tree schedules the design through SCNs as shown in
Figure 5, where a SCN is placed above an adder. The first two
shapes have assigned a register to the SCN, and therefore require
two states to execute. The third shape requires only a single state
because the SCN is a wire. The wire shape actually has zero
dimensions, but is shown here for clarity.

Figure 1.5 shows how a slicing tree is built from the DFG point
placement of Figure 1.4. As in Figures 4 and 5, each adder and
SCN can take on a variety of shapes that are combined while
moving up the tree. Upon reaching the root node, all shapes for
the design are known and can be plotted in area-delay curves like
those in Figure 1.6. A single pass through the slicing tree creates
designs with one (no SCNs are registers) to three states (all
SCNs are registers). A range of designs exists for each schedule
because multiple adder shapes are available. The smallest and
slowest point on the curve consists only of ripple carry adders,

while the largest and fastest point consists solely of CLA adders.

4.1.1 Pruning the Exploration Space
Existing slicing tree techniques rely heavily upon early pruning
of shapes ultimately leading to inferior final designs, and effi-
cient algorithms exist to deal with area considerations. In behav-
ioral synthesis, area differences are often accompanied by sig-
nificant delay differences because shapes represent different
implementations, not just orientations, of hardware. As such, we
developed a pruning algorithm incorporating area and delay.

Data transfer information is available during behavioral synthe-
sis, and so all true paths in a design can be determined. At each
level in the slicing tree, implementation shapes for a certain
number of operations are available. By combining shape informa-
tion with knowledge about the paths, fully constructed subpaths
can be examined to determine if they will lead to area/delay infe-
riority. The delay estimates are accurate because both the imple-
mentation and location of the operation are known and thus, we
can determine routing distances between all elements within that
slice. When the shape of a SCN on the subpath is not known, the
shape cannot be removed unless it proves inferior under both the
wire and register implementations.

Figure 6 shows an example of this style of pruning. Shape A
implements all three adds in slow adders. Since this is the mini-
mum area for that delay, we keep the shape. Shape B implements
+3 in a fast adder. While the area is larger, the critical path is
smaller, so this shape is kept. Shape C however, implements
only +2 in a fast adder. The critical path is the same as in shape
A, but the area is larger so this point is pruned. Pruning can be
done regardless of what is downstream of +3.

Other design constraints typically associated with behavioral
synthesis, such as area, delay, and min/max number of states
between operations can be used to prune shapes from the tree.

5. RESULTS
A series of experiments were run to test our methodology’s abil-

� � � � � � � �

1

3

2

+1

+2

+3

1

2

3

1

2
3

a) b) c)

Slow adder

Fast adder

+1 +2

+3

Figure 6. Area and delay based shape pruning.

ADD:
 RipAdd

 CLA

 High Speed

+1 +2

 � � ��� ��� � 	

Figure 4. Allocating adders in a slicing tree.

SCN:
 Register

 Wire

+3

SCN

ADD:
 RipAdd

 CLA

 High Speed

 � �
 � �

� � � � � �
� � � � � � �

Figure 5. Scheduling in a slicing tree.

759

ity to simultaneously schedule, allocate, and place designs under
resource constraints. The application set consisted of an elliptical
filter, an 8-tap FIR filter, and a DCT. Behavioral code for the
designs can be found at [18]. Resource constraints limited the
number of adders and multipliers in the final design to the fol-
lowing (# adders, # multipliers): (3,3), (3,2), (2,2), (2,1). In the
designs containing subtractions, the number of subtractors was
constrained to be the same as the number of adders.

To explore the effects of parameters in our tool, we created sev-
eral designs for each constraint set. The parameters altered were:
fully vs. non-fully connected graphs in quadratic placement, and
combining SCNs during placement, as a post-processing step, or
both. The large number of points generated arises from the vari-
ous parameter and constraint combinations. Results are com-
pared to equivalent designs produced by a commercial behavioral
synthesis tool and in some cases, to hand designs. Regardless of
methodology, each behavioral design was mapped onto TSMC’s
four metal layer .25µm standard cell library using Design Com-
piler [3], and placed and routed by Silicon Ensemble [12]. Area
and delay results do not include controllers for any methodology.
In each case, libraries were limited to a single functional unit per
operation type so that a fair comparison could be made as to each
method's ability to share hardware. Over all design points, me-
dian savings for the elliptical filter, FIR, and DCT were
(area%,delay%): (-13, -3), (11,14), and (-39,-5) respectively.

In our behavioral design flow, designs start in a DFG representa-
tion. It then iterates through the quadratic placement until re-

source constraints have been met. From there, the slicing tree
produces the final bindings and schedules used to make the ac-
tual physical design. No iterations occur between the final placed
and routed designs and the behavioral tool.

Figure 7 shows area and critical path comparisons normalized to
the best values achieved by a corresponding commercially syn-
thesized design, allowing them all to be plotted on a single
graph. Each application and resource constraint pair was normal-
ized independently. Area and critical path numbers are post place
and route, based on data from Silicon Ensemble. Large shadowed
symbols on the graph represent hand and commercial behavior-
ally synthesized designs, while unshadowed shapes are designs
produced by our tool. Most designs produced by our tool have
both shorter critical paths (up to 15% faster) and smaller areas
(up to 50% smaller) than their reference designs. The elliptical
filter designs are up to 20% smaller with 9% shorter critical
paths than comparable hand designs. As predicted, knowing how
sharing hardware affects the final physical design can lead to
significant improvements. The commercial tool produced no
designs superior to the hand designs in either area or delay. Run
times for scheduling and allocation between our tool and the
commercial one were comparable, O(minutes).

To ensure the improved results were due to increased physical
design knowledge, we measured the accuracy of our design esti-
mates. Figures 8 and 9 plot our area and delay predictions re-
spectively (x axes), against those from the physical designs (y
axes). Area estimates were within 4% on average with a standard
deviation of 2%. Delay predictions, based on bounding box esti-
mates, averaged 13% error with 15% standard deviation. To
determine how closely we predicted the placement of each func-
tional unit, we computed centers of gravity by taking the average
locations of all the element’s standard cells in the final design
and compared it to the center of gravity of the shape used in our
synthesis run. Silicon Ensemble was given no placement infor-
mation except for pin locations. A visual comparison of one of
the three adder, three multiplier elliptical filter designs can be
found in Figure 10. On average, individual component locations
predictions were off 24% horizontally and 28% vertically. Most
of this error arises from orientation mistakes and the ability of
standard cells to lie in nonadjacent locations in the actual design.
Error calculations are based on a population of 172 designs.

6. CONCLUSIONS
Using a BNG-style DFG representation, we have unified behav-

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10

Predicted Critical Path (ns)

A
ct

u
al

 C
ri

ti
ca

l P
at

h
 (

n
s)

Average Error: 12.74%
Standard Deviation: 14.92%
Min Error: .60%
Max Error: 73.93%
N: 172

predicted == actual

Underestimated Critical Path

Overestimated Critical Path

Figure 9. Delay prediction accuracy.

-20

-10

0

10

20

30

40

-55 -45 -35 -25 -15 -5 5 15 25 35

Percent Difference From Best Commercial Behaviorally Synthesized Area

P
er

ce
n

t
D

if
fe

re
n

ce
 F

ro
m

 B
es

t
C

o
m

m
er

ci
al

 B
eh

av
io

ra
ll

y
S

yn
th

es
iz

ed
 C

ri
ti

ca
l

P
at

h

Commercial Tool Elliptical Filter
Hand Designed Elliptical Filter
Our Tool Elliptical Filter
Commercial Tool 8-tap FIR
Our Tool 8-tap FIR
Commercial Tool DCT
Our Tool DCT

x

Slower

Faster

Smaller Larger

Origin == best area and
critical path from commercial
tool for each application

Figure 7. Normalized area and critical path comparison.

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

0.00E+00 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08 6.00E+08 7.00E+08

Predicted Area (nm2)

A
ct

u
al

 A
re

a
(n

m
2)

Average Error: 3.99%
Standard Deviation: 2.13%
Min Error: ~0%
Max Error: 14.83%
N: 172

predicted == actual

Overestimated Area

Underestimated Area

Figure 8. Area prediction accuracy.

760

ioral synthesis and physical design into a single process, allowing
both domains to interact and guide each other toward a high
quality final design. We have defined a number of transforma-
tions that operate through forces appearing in the merged behav-
ioral and physical system. Using quadratic placement techniques
and slicing trees to schedule, allocate, bind, and place designs
provides a rapid and constructive way to produce a variety of
designs where the behavioral estimates of physical characteristics
closely match those that are actually produced.

Our experiments show that these techniques can produce
datapaths that are 50% smaller and have critical paths 15%
lower than the best commercially synthesized equivalent. These
results also prove to be up to 20% smaller with 8% shorter criti-
cal paths than comparable hand designs. Our behavioral level
area, delay, and individual component location estimates closely
match results produced by physical design tools given only pin
locations as a starting point. Overall area estimates had an aver-
age error of less than 4%, while average critical path estimate
error was about 13%. We were able to predict the locations of
individual components to within less than 30% of their actual
locations, with much of the error arising from standard cell dis-
bursement and orientation mistakes.

6.1 Limitations and Future Work
While this technique provides a constructive way to perform
simultaneous behavioral synthesis and physical design, it does
not yet provide a good methodology for the application of com-
piler style optimizations such as loop unrolling, code motion, or
speculative execution. Presently, the algorithm needs to be set
before our techniques are applied.

As we are still very early on in the development process, the
algorithm has been developed only for datapaths. While the
scheduling changes will impact the controller, and these effects
can be handled by the manipulation of shapes in the slicing tree
(potentially in a way that also performs synthesis and tech map-
ping), these techniques have not yet been implemented or tested.
The tool cannot presently handle conditionals or loops.

There is much work to be done finding a balance between the
placement forces and those that exist for synthesis purposes. For
instance, it may be beneficial to increase the strength of the
gravitational pull between operations in mutually exclusive states
or make the strength proportional to the combinational distance
between nodes. The former would attempt to minimize the num-

ber of additional states created, while the latter would prevent
the schedule from bunching up because many operations lying
close together on a path fell into the same piece of hardware.
Register lifetime analysis is difficult when the schedule is un-
known, so new algorithms will need to be developed for register
combination during the placement process.

7. ACKNOWLEDGMENTS
Thanks to all those who helped. This work was supported by the
Semiconductor Research Corporation under Task ID 068-073.
The United States government has certain rights to this material.

8. REFERENCES
[1] Bergamaschi, R., “Behavioral Network Graph Unifying the

Domains of High-Level and Logic-Synthesis,” 36th DAC,
Jun. 1999.

[2] Cloutier, R. and Thomas, D., “The Combination of Schedul-
ing Allocation, and Mapping in a Single Algorithm,” DAC,
1990.

[3] Design Compiler Reference Manual, Synopsys Inc, 1998.
[4] Devadas, S. and Newton, R., “Algorithms for Hardware

Allocation in Data Path Synthesis,” IEEE Transactions on
Computer-Aided Design, vol. 8, no. 7, July 1989.

[5] Eisenmann, H. and Johannes, F., “Generic Global Place-
ment and Floorplanning,” DAC, June 1998.

[6] Hassoun, S., “Fine Grained Incremental Rescheduling Via
Architectural Retiming,” 11th ISSS, Dec. 1998.

[7] Knapp, D., “Fasolt: A Program for Feedback-Driven Data-
Path Optimization,” IEEE Trans. on CAD, vol. 11, no. 6,
July 1992.

[8] Kollig, P., Al-Hashimi, B., “Simultaneous Scheduling, Al-
location and Binding in High Level Synthesis,” Electronics
Letters, vol.33, no.18, 28 Aug. 1997.

[9] Kucukcakar, K., et al, “Matisse: An Architectural Design
Tool for Commodity ICs,” IEEE Design & Test of Com-
puters, April-June 1998.

[10] McFarland, M. and Kowalski “ Incorporating Bottom-
Up Design Techniques into Hardware Synthesis,”
IEEE Trans. on CAD, vol. 9 no. 9, Sep 1990.

[11] Natesan, V., et al., “A Constructive Method for Data Path
Area Estimation During High-Level Synthesis,” ASP-DAC,
1997.

[12] Silicon Ensemble (DSM) Reference Manual 5.0, Cadence
Design Systems, Inc, 1997.

[13] Tarafdar, S. and Leeser, M., “The DT-Model: High-Level
Synthesis Using Data Transfers,” DAC, June 1998.

[14] Tarafdar, S., et al., “ Integrating Floorplanning in Data-
Transfer Based High-Level Synthesis,” ICCAD, 1998.

[15] Thomas, et al., Algorithmic and Register-Transfer Level
Synthesis: The System Architect’ s Workbench, Kluwer Aca-
demic Publishers, 1990.

[16] Tsay, R., et al., “Proud: A Sea-of-Gates Placement Algo-
rithm,” IEEE Design & Test of Computers, Dec. 1998.

[17] van Ginneken, L. and Otten, R., “Optimal Slicing of Plane
Point Placements,” EDAC, 1990.

[18] www.ece.cmu.edu/~wed/dac200files.html
[19] Xu, M. and Kurdahi, F., “Layout-Driven High Level Syn-

thesis for FPGA Based Architectures,” DATE, 1998.

� � � �
� � � � � � �
� �

� � �

! " # "

$ % & '

() * + ,
- . / 0 0 1 2 3 4 5

6 7 8 9 :
; < = > ?
@ A B C D

E F G H IJ K L M M

N O P Q R
N P P Q PS T U

V W X YZ [\]_^` a a
r 15 0

b c d c

e f g h e f h i

j k l m
n o p q

r2 06 r s t uv w x x y z {
y z | |

y z { |

} ~ � ~

� � � �

� � � � �
� � � � � � � � � �

� � � � �
� � � � �
� � � �

¡ ¢ £ ¤ ¥¦ § ¨ © ©

ª « ¬ ®
ª ¬ ¬ ¬¯ ° ±¯ ° ±

² ³ ´ µ¶ · ¸ ¹_º» ¼ ¼
r 15 0

½ ¾ ¿ ¾

À Á Â Ã À Á Ã Ä

Å Æ Ç È
É Ê Ë Ì

r2 06

ÍÎÏÎ

Ð Ñ Ò Ó
Ð Ô Õ Õ

Ö Ñ × Ø

Ö Ñ Ø Ø Ö Ñ ×

Ù Ú Ñ Ò Ô

Ù × Ñ Ò Ò Ù Ú Ñ Ò Ø

Ù Ø Ñ Ò ÚÛ Ü Ý Þ ß Û à Ý Þ ÞÛ à Ü á Ý

â ã ã ä ã

åæçèé
ê ë ì í î ï ð ñ
ò ó ô õ

ö÷øø

ù ú û ü

ù ú ý û

þÿ�ÿ� � � � ���
�

	
 � � � � �
���� ���

�

���
�

� � � �

� � � �

 � ! "

 � " "
 � !

$ � � �

! � � � # $ � � "

" � � $
% & ' () % * ' ((% * & + '

, - - . -

/01
234 5 6 7 8 9 : ;

< = > ?

@ABB

C D E F

C D G E

HIJ
IK L M N OPQ

R

S T U VW X Y Z
[\]^ [_

`

a b c b d e f g f h i j k c i
h l m f n m o n d i c c c m p e q l

r i s m t b e o m c h p f l s i h b h
u o i n b d l i n c m p e q l

Figure 10. Actual and predicted layouts for a 3 adder, 3 mul-
tiplier elliptical filter design.

761

