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Abstract 

Floorplanning is an important problem in FPGA circuit mapping. 
As FPGA capacity grows, new innovative approaches will be re- 
quired for eficiently mapping circuits to FPGAs. In this paper 
we present a macro basedjoorplanning methodology suitable for 
mapping large circuits to large, high density FPGAs. Our method 
uses clustering techniques to combine macros into clusters, and 
then uses a tabu search based approach to place clusters while 
enhancing both circuit routability and performance. Our method 
is capable of handling both hard (axed size and shape) macros 
and soft (fixed size and variable shape) macros. We demonstrate 
our methodology on several macro based circuit designs and com- 
pare the execution speed and qualiw of results with commercially 
available CAE tools. Our approach shows a dramatic speedup in 
execution time without any negative impact on quality. 
Key Words: Floorplanning, Placement, FPGA, Clustering, Tabu 
Search 

1 Introduction 

Placement and floorplanning are extensively studied topics. How- 
ever, the importance of placement and floorplanning cannot ever 
be ignored due to changing design complexities and requirements. 
One technology that is evolving very rapidly is field programmable 
gate array (FPGA). Currently, commercially available devices can 
map up to one million gate equivalent designs[l9] (and some of 
the newly announced products like Altera’s APEX series will map 
over two million gate equivalent designs[ 11). Such complex design 
densities also demand tools that can efficiently and quickly make 
use of available gates. 

Improvements in CAD tools for FPGAs have not kept pace 
with hardware improvements. The available tools typically require 
from minutes to hours to map’ designs (or circuits) with just a few 
thousand gates, and as design sizes increase the execution time will 
increase. One way to address the problem of long mapping times is 

*this work is partially supported by Air Force Research Laboratory of the US Air 
Force under contract number F33615-97-C-1043 
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create designs that use premapped macros’ to create larger designs 
(macro based circuits). Then we floorplan and route these macro 
based circuits. In general, floorplanning is an NP-hard problem 
[ 141. For FPGAs, it is more difficult due to fixed logic resources. 

To address the problem of mapping large designs to large FPGA 
circuits, we have taken a macro based approach [18]. We floorplan 
interconnected macro based circuits. At the lowest level a macro is 
composed of one or more interconnected and relatively placed logic 
blocks. In this paper we present a method (based on clustering and 
tabu search (TS) optimization) to quickly floorplan macro based 
circuits while attempting to minimize throughput delay and meet 
area and routability constraints. 

The basic flow of our method is summarized as follows. We 
start with a set of macros (M) interconnected by a set of signals 
(S). We then group (cluster) macros together to form clusters. 
Each cluster in the set of clusters (B) is smaller in area than some 
predefined limit3. We then use TS optimization to perform two- 
dimensional placement on the set of clusters B. Then, for each 
cluster that is composed of more than one macro, we perform in- 
tracluster placement4. Finally, for any macro whose shape was 
changed during the intracluster placement process, we perform in- 
tramacro placement5. 

2 Floorplanning Problem 

Given a set of macros M = {ml, m2, . . . . m,} and a set of signals 
s = {Si,.Q, . . . . ss}, we associate with each macro rni E M, a size 
ai (number of logic blocks in mi); a width ZLJ~ (maximum width 
of m, in number of logic blocks); a height hi (maximum height 
of m, in number of logic blocks); a flexibility fi (0 for hard/fixed 
macros or 1 for soft/flexible macros); and a set of interconnecting 
signals S,, (S,, c S). For hard macros (macros with fixed size, 
shape, and internal placement), 2ui and h, are both fixed and fi = 
0. For soft macros (macros with fixed size and variable shape), wi 
and h, are considered flexible (both w, and hi can take on a range 
of values typically between 1 and ai) and fi = 1. Additionally, 
with each signal si E S we associate a set of macros M,, where 
M,, = {m3 1 si E Smj}. M,, is said to be a signal net. We 
can divide M into two distinct sets, MS and MH (subset of soft 
macros and subset of hard macros), where M = { MH U MS ( 

%mxos are predelined circuit components like adders, shifters, decoders, multi- 
pliers, signal processors, CPUs, etc. 

‘predefined limit implies the total area of each cluster (sum of the areas of the 
macros within the cluster) is less than some maximum 

4intracluster placement is the task of assigning the macros that make up the cluster 
a physical location and reshaping any macro whose shape must be altered to meet area 
constraints 

5intramacro placement is the process of relatively placing the logic blocks that 
make up a macro component 
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Figure 1: Example two-dimensional array L = {11,12, . . . . Ilh} of 
physical logic block locations (WL = 4 and HL = 4). One logic 
block can be assigned to each physical location 1; E L. 

MHnMS=d,fi=OVm,EMH,andf,=1VmiEMS 
}. We are also given a target set L = {II, Iz, . . . . lp} of locations 

where 1 L 12 cl:/ a,. For the case of mapping m, E M to 
a regular two-dimensional array, each I, E L is represented by 

a unique (zJ , y3) location” on the surface of the two-dimensional 
array where z3 and y3 are integers. Additionally, we define the two- 
dimensional array L by the width of physical logic block locations, 
WL, and the height of physical logic block locations, HL. The 
floorplanning problem then becomes how to assign each soft macro 
m, E MS a shape and each macro m3 E M = M H U MS a 
unique location in L such that an objective function is optimized. 
Here uniqueness implies no macro overlaps. Figure 1 shows the 16 
element set L for an example 4 x 4 two-dimensional array (WL = 
4 and HL = 4). Our goal is to optimize the floorplanned circuit’s 
performance while meeting area and routing constraints. 

3 Related Work 

Many recent papers have addressed placement and floorplanning 
for regular arrays. Rose et. al. use simulated annealing as the basis 
of their placement tool[2]. Saucier et. al. developed a floorplanner 
that matches the hierarchy of the circuit to the hierarchy of the tar- 
get FPGA [9]. Mathur et. al. studied the placement problem and 
presented methods for re-engineering of regular architectures[ 131. 
Togawa et. al. combined technology mapping, placement, and 
global routing[l7]. Yamanouchi et. al. used partial clustering 
for macro based floorplanning of standard cells [ 181. Callahan et. 
al. developed a module placement tool for mapping of data paths 
to FPGA devices [3]. Shi and Bhatia developed a force directed 
optimization based floorplanning tool for fast, high-performance 
floorplanning of FPGA mapped designs [15]. Krupnova et. al. 
combined the mapping and floorplanning stages to create a new 
method for mapping large, hierarchal designs to PPGAs [9]. In ad- 
dition, over the past several years many non-deterministic, random 
moue based solutions have also been considered [7][8]. These ran- 
dom move based methods typically achieve high quality results at 
the cost of long execution times. As circuit size increases, the time 

“for our application, the location represents a physical logic block location on the 
FPGA 

required for executing such random move methods becomes exor- 
bitant. In most search based methods, there is a tradeoff between 
the execution time and the quality of the results. 

Song and Vannelli developed a TS based placement algorithm 
for minimizing total wire length [16]. Their cost function is based 
on total wire length using the half-perimeter net model, and there- 
fore, designed to enhance routability and not necessarily perfor- 
mance. They sum the total estimated length of all nets. Their cost 
function is based on allowing moves within a predefined window 
to define local neighborhoods. Their tabu list is composed of the 
most recently executed moves. Their method uses no aspiration 
criteria and no long term search strategy; and therefore, does not 
fully exploit the advantages of a TS based approach. They use 
their method to generate an initial placement for further refinement 
by other algorithms. Lim, Chee, and Wu have developed a place- 
ment with global routing strategy for placement of standard cells 
[ 1 I][ 121. Their algorithm uses a hierarchical, divide and conquer, 
quad-partitioning approach. They use TS in their quad-partitioning 
routine. Their algorithm uses the concept of proximity of regions to 
approximate interconnection delays during the placement process. 

4 FPGA Floorplanning 

In this section we give an overview of our method, and in following 
subsections we describe each step in detail. First, some preliminary 
definitions are required. As stated earlier, a macro is a set of one 
or more interconnected and relatively placed logic blocks. We are 
given a set M of interconnected macros in our circuit or design 
netlist. When necessary we group macros in M together to form 
clusters. Therefore, we define a cluster as a set of one or more 
macros, and B = {bl, b2, . . . . bp} as the set of all clusters. (For 
initialization, there is a one to one mapping of the elements of 
the set M to the elements of the set B, and therefore, initially 
1 B 1 = 1 M I.) As stated earlier we are floorplanning the set 
of macros M on the two-dimensional array L of physical logic 
block locations. Once macros are grouped to form clusters, our 
approach is to perform two-dimensional placement of clusters on 
L. To perform this placement we divide our target two-dimensional 
array L into a two-dimensional array of buckets where each bucket 
(of physical logic block locations) has the same size and shape. 
(We define the bucket size by a width of WE logic blocks and a 
height of HE logic blocks.) We define the set of buckets as the 
set {Ii, I:, . . . . I&} = L’, where the number of buckets m equals 
1 L’ I. (The two-dimensional array L’ is defined by a width of WLl 
buckets and a height of HL, buckets.) Then, instead of performing 
two-dimensional placement of clusters directly on L, we perform 
two-dimensional placement of clusters on the smaller set L’. Figure 
2 shows the example L divided into four equally sized buckets of 
physical logic block locations where each bucket is 2 logic blocks 
x 2 logic blocks. 

Figure 3 shows a flow chart of our floorplanning methodology. 
In figure 3, we read in the sets M, S, and L. Next, we initialize 
the set of clusters B. Initially, each element of B contains one 
element from M, so there is a one to one mapping of the elements 
of M to the elements of B. After initialization of B, we initialize 
the bucket width, WB, and bucket height, HB, using the Procedure 
CreateBuckets( Details for Create-Buckets(M) are found in 
subsection 4.1. After bucket size initialization, we create the set of 
buckets, L’, as outlined in subsection 4.2. Next, we check the fit 
of B on L’. (It should be noted that we create and maintain the 
bucket width WE and bucket height HE so any single macro in M 
will fit in any bucket in L’ ‘. This allows us to skip the clustering 
step if 1 B 1 is less than or equal to I L’ I. This usually occurs 
when low device utilization is sufficient and allows for very fast 

‘The initial bucket size is based on the dimensions of the largest elements of M. 
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Figure 2: Example L divided into a set L’ of 4 buckets. The 
dimensions of L’ are WLJ = 2 buckets and HLI = 2 buckets. The 
dimensions of the example bucket are W, = 2 logic blocks and 
Hg = 2 logic blocks. 

floorplanning.) If there is a fit, we proceed to the placement phase 
if there is not a fit we proceed to the clustering phase. 

In figure 3, if 1 B 1 is not less than or equal to 1 L’ 1, we 
proceed to the clustering phase. To ensure fit, our methodology 
requires I B I is less than or equal to I L’ I, and therefore, the goal 
of the clustering phase is to group smaller macros together thereby 
reducing I B I until I B I is less than or equal to I L’ I. Additionally, 
it is required that each cluster bi E B has size less than or equal to 
the bucket size. This ensures each cluster will fit in any bucket. The 
details of clustering are found in subsection 4.3. After clustering if 
I B I is less than or equal to I L’ I then we proceed to the placement 
phase else we iteratively increase the bucket size (as described in 
subsection 4.4) and continue clustering until ) B I is less than or 
equal to I L’ I or the bucket size exceeds the dimensions of L. 

In figure 3, if I B I is less than or equal to I L’ I, we proceed 
to the placement phase. In the placement phase we use TS based 
placement to assign each b, E B to a bucket (see subsection 4.5). 
Then in intracluster placement, we assign each macro within each 
cluster a physical location and shape (see subsection 4.6). Finally 
in intramacro placement, we place the logic blocks within any soft 
macro whose shape has been altered during intracluster placement 
(see subsection 4.7). After this phase, every logic block making 
up the circuit or design netlist will have a physical location on the 
two-dimensional array L. The floorplanning process is summarized 
in Algorithm TS-FP(M,S,L). 

In figure 3, if the circuit or design netlist will not fit we have four 
options. We can reduce the size of the macro set M by partitioning 
the design spatially or temporally. We can increase the size of the 
target two-dimensional array L. This assumes a larger FPGA part 
is available. We can flatten the netlist and attempt to use standard 
placement techniques. This will become more difficult as design 
sizes get larger. Finally, if possible we can soften some of the hard 
macros to allow better space utilization. 

4.1 Initializing Bucket Size 

In this subsection, we describe the method for determining the 
initial bucket size which subsequently defines I L’ I. The main goal 
of our floorplanning method was fast execution time. Therefore, 
we quickly initialize the width of the bucket, WB, to the width of 

t 
Initialize B 

1 

L. 

t 

Intracluster Place 

.________..- ____________’ 

FIoorplan 

Clustering Phase: 

t 
Increment Bucket 

Size, WB and He 

1 

Figure 3 : Floorplanner executionflow. 

AlgorithmTSJP(M,S,L) 
begin 

(* initialize the buckets *) 
V mi E M let bi = {mi}; 
(* determine initial bucket size, Hg and WB *) 
CreateBuckets( 
create L’ where W,l = [$$j and HL~ = 121; 

success = checkfit(B,L’); 
while(NOT success AND WR < WL AND HB < HL) 

B = ChlStCr(M,S,HB ,w;); - 

success = checkfit(B,L’); 
if NOT success then 

increment bucket size (HB and/or WB); 

update L’ so WLJ = 121 and HL~ = 121; 

end if; 
end while; 
if success then 

TS_place(B,S,L’); 
V b,-E B{ 

intracluster_place(bi ,HB, WB); 
V nz3 E bi intrarnacro_place(rn,,bi,H~,W~); 

1 
else; 

return “ERROR: circuit not floorplanned”; 
end if; 

end; 
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Procedure Create-Buckets(M): 
begin 

initialize WB = Hg = 0; 
for i = 1 to 1 M 1 

if WB < W(mi) then 
WB = w(m;); 

end if; 
if Hg < H(mi) then 

HB = H(m); 
end if; 

end for; 
return WB and HB; 

end; 

Figure 4: Example L’ made up of three 6 x 2 buckets. 

the widest macro cell (hard or soft’). Similarly we initialize the 
height of the bucket, HB, to the height of the tallest macro cell 
(hard or soft). This guarantees that any macro m, E M will fit 
in any bucket. The procedure used to determine the initial WB 
and HB is shown in Procedure CreateBuckets( In procedure 
CreateBuckets( H(m;) returns the height of macro mi and 
W(mi) returns the width of macro mi. 

4.2 Bucket List, L’ 

The set of bucketsY, L’, is created by dividing the set L into rect- 
angles of equal size. The width of L’ (in number of buckets) is 

defined as W,, = 121 and the height of L’ (in number of buck- 

ets) is defined as HLt = 1% 1. (Note, WL and HL define the 

width and the height (in number of logic blocks) respectively of the 
two-dimensional array L.) Therefore 1 L’ 1 = HLl x WLJ Figure 
4 shows an example L’ for a 7 logic block x 6 logic block L (Wr, 
= 6 and HL = 7) and a 6 logic block x 2 logic block bucket (WB 
= 2 and Hg = 6). 

4.3 Clustering 

As stated earlier, the set B is created or initialized by assigning 
each m; E M to bi E B, and initially, 1 B 1 = 1 A4 I. When 
necessary, the size of set B is reduced by clustering elements of M 

*This assumes soft macros are supplied with some initial shape. Effort is made to 
maintain tbe shape of soft macros. Tbe shape of soft macros is only changed if required 
to make tbe circuit fit the given area. 

‘a bucket is a set or group of physical logic block locations from L such that each 
bucket has the same size and shape (Hg x Wg) 

Procedure Cluster(M,S,Hn,W~,L’): 
begin 

V mi E M let b; = {mi}; 
calculate cij V bi and b, E B; 
while I B I > I L’ I AND 3ci, > 0 

choose mi and m3 with highest connectivity, cij ; 
letb,=miUm,; 
let b3 = 4; 
update connectivity between clusters; 

end while; 
return B; 

end: 

so more than one element of M is in some bi E B. There is no 
limit placed on the maximum number of macros in each bi as long 
as size constraints are satisfied. Size restrictions (described below) 
limit the macros used to form each cluster, bi E B. 

Each cluster bi E B is divided into two parts, a hard macro part 
and a soft macro part. The size restriction on b, requires the total 
area of the hard macro part plus the total area of the soft macro part 
be less than or equal to the size of the bucket (HB x WB). We 
define the width of the hard macro part of each cluster b; as the sum 
of the width of the hard macros in bi , 

HMW(bi) = c W(T) , 
VmjEb,lmj is hard 

where W(m, ) is the width of macro m3 in cluster b, . We define 
the area for the hard macro part for each cluster bi as the width of 
the hard macro part times the height of the bucket 

HMA(bi) = HMW(bi) X HB . 

The size for the soft macro part for bi is defined as the width of the 
bucket minus the width of the hard macro part times the height of 
the bucket 

SMA(b,) = (WB - HMW(bi)) x Hg . 

The sum of the areas of all soft macros in b, must be less than or 
equal to SMA(bi). 

With these area constraints in mind, the set M is clustered to 
form the set B. The clustering method is derived from the connec- 
tivity work done in [18]. The connectivity cost function includes 
area constraints. Our connectivity cost function is summarized 
below. 

Cij = feas(i,j) .C 
1 A tot ??Zin(ai, a3) 

.-. 

SkESnz, nslnj (I Sk I -1) a, + a3 maz(ai, a3) 

where a, and a3 are areas of macro m; and m3 respectively, At,t 
is the total area of all macros, I Sk I is the number of pins on signal 
Sk which connects macros m, and m3, S,, n Smj is the set of all 
signals that connect macros mi and m3, and feas( i, j) returns the 
feasibility of clustering m, and m, under size constraints described 
above. feas(i, j) returns a 1 if it is possible to combine m; with 
ITlj else it returns a 0. 

The clustering algorithm combines clusters with the highest 
connectivity to form larger clusters. In order to enhance routability, 
once area constraints have been met (i.e. I B I 5 I L’ I) the 
algorithm stops and returns the set B. The clustering algorithm is 
summarized in Procedure Cluster(M,S,Hn ,Wg,L’). 

After clustering is complete, it returns the set B. The empty 
elements of B are removed, and each b, E B consists of a unique 
list of elements from M. Here uniqueness implies bi n b, = q5 V bi 
r\b, E Bli#j. 
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Macro Statistics 

m, Wi 1 hi I f8 

ml 13 I 3 I 0 
m2 3 3 0 
m3 2 3 1 
m‘l 2 3 1 
ms 2 3 1 

Table 1: Macro stutistics for example$oorplan. 

Figure 5: Example L’ made up offour 3 x 3 buckets converted to 
two 3 x 6 buckets. 

4.4 Increment Bucket Size 

In the event that the first pass of clustering does not lead to a valid 
solution, the bucket size is increased to allow more flexibility during 
clustering. This increases the complexity of intracluster placement 
but allows more macros to fit in the same area. For example, 
consider floorplanning the 5 macros described in table 1 so they fit 
on an L with WL = HL = 6 and 1 L I= 36. For the set M, both 
WB and Hg will be set to 3 since these values reflect the largest 
macro width and height respectively. Figure 5 shows the buckets 
on L. Therefore L’ will initially have 4 buckets and M will not fit 
since 1 B 1 > I L’ 1. However, by doubling the width of the bucket, 
we can cluster ml and rn2 into one cluster and rn3, rnd, and rn5 into 
a second cluster that will fit in L. 

4.5 Cluster Placement 

Once the circuit is guaranteed to fit (I B 111 L’ I) then the clus- 
ters b; E B are placed using a two-step tabu searchI (TS) based 
two-dimensional placement algorithm [5]. The first step of the 
placement strategy minimizes the circuit’s total wire length (see 
TS-TWL in section 4.5.1) thereby enhancing the routability of the 
circuit. The second step attempts to average the circuit’s edge 
lengths by weighting graph edges and minimizing the maximum 
weighted edge lengths (see TS-EDGE in section 4.5.2). 

For our TS approach, we convert each multi-terminal net to a set 
of edges where each edge consists of the driving terminal and one 
driven terminal. We use this model to keep net sources and sinks in 
close proximity thereby enhancing circuit performance. We create 
the set of edges by converting the hyper-graph input circuit model 
describedearliertoagraphG = (V,E) whereV = {wu~,IJ~, . ..z)~}. 
I V I= 12, E = {el, e2, . . . e,}, and I E I= m. Each vertex u; E V 

corresponds to a cluster b, E B (if pad IO locations are available, 
we also include preplaced pseudo-elements of V representing the 
pad locations to help guide the placement). Each edge ei E E 
connects a pair of vertices (Us, 2)k) I vJ , ‘uk E V. The elements of 
E are created by considering each signal, si E S. If we let msource 
(where msource E M,, and msource E b,) be the source macro 
for signal s, then an edge (vJ, Uk) is added to E for each sink on 
Si such that m$i& E M,,, mSSnk E bk, and j # k. (In Other 

words, an edge is added for each source/sink combination that are 
not in the same cluster.) At any given time, each element of V is 
mapped to a unique element of L’, and the minimum requirement 
for mapping is I V 111 C’ I. 

The two-dimensional placement stage basically assigns each 
cluster to a unique bucket. After placement of each bi E B, each 
bi E B will have associated with it a unique bucket 13 E L’. The 

physical location (on L) of each bi E B in bucket 2: can be found 
from the following equations: 

X(bi) = X(Ii) X WB 

and 

Y(bi) = Y(Zi) x HB. 

where X($) returns the X-axis coordinate of I: on L’ and Y(I;) 
returns the Y-axis coordinate of Zi on L’. After each cluster bi E B 
is assigned a unique location on L, intracluster placement takes 
place to assign each mj E bi E B a physical location on L. 
Intracluster placement also reshapes soft elements mk E MS E B 
that require further modification. 

4.5.1 TS_TWL 

For the first step of our TS based placement strategy, TS_TWL, we 
seek to enhance routability by minimizing total wire length (TWL). 
We conservatively estimate 7WL using the Manhattan length of 
each edge e; E E, and we seek to minimize the following function: 

TWL = c MLength(ei) 

Ve,EE 

where MLength(e,) is the Manhattan length of edge ei. 

“tab” search is a ma-heuristic approach to solving optimization problems that 
(when used properly) approaches near optimal solutions in a relatively short amount 
of time compared to non-deterministic random moue based methods [6]. Unlike 
approaches like simulated annealing or genetic algorithms that rely on a good random 
choice, TS exploits both good and bad strategic choices to guide the search process. 
As a meta-heuristic, TS guides local heuristic search procedures beyond local optima. 
In TS, a list of possible moves is created. In the short term, as mwes in the list are 
executed. tabu, or restrictions, are placed on the executed moves in order to avoid 
local optima. This mbu is typically in the form of a time limit. and unless certain 
conditions are met (e.g. ospirution criteria), the mc~ve will not be performed again 
until the time limit has expired. 
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Figure 6: Example Horizontal and Vertical Moves. 

Key to the developmentof a TS is a search list. For TSTWL our 
search list U consists of all possible swaps of vertices occupying 
adjacent locations in L’. This implies two basic swap moves: 
horizontal (swap of adjacent vertices with the same y coordinate) 
and vertical (swap of adjacent vertices with the same z coordinate). 
Given a two-dimensional array L’ of width WLI units and height 
HLI units, there are 1 U 1~ ~(HLI x WLI) possible swaps or 
moves in U. Figure 6 shows an example horizontal swap move 
ui and vertical swap move u3. In figure 6, move Us represents 
the horizontal swap of vertices vi and ~2, or moving vi to us’s 
bucket and us to vi’s bucket. For TS_TWL, given a random initial 
placement in L’ (by selecting an appropriate sequence of moves 
from U), we seek to optimize our objective function, minimization 
of TWL. 

In TS_IWL, each ti E U has an associated attractiveness, AFi, 
or sum of the adjacent forces pulling on the vertices v3 and Vk that 
make up Ui. U is ordered so the most attractive moves are first. For 
vertical moves 

AFi = M(v~) X PE(V,) + M(vk) X PW(vk) , 

and for horizontal moves 

AFi = d!f(Vj) X PN(V,) + hf(vk) X Ps(vk) . 

Each vertex vi E V has one multiplication factor M(vi) (dis- 
cussed later) and four associated pulls or forces: PN(Vi), PE(Vi), 
PS(vi), and PW(vi). The pulls are determined by summing the 
Manhattan lengths of the edges connecting vi to vertices in the di- 
rection of the pulls. If we used U in a typical greedy search strategy 
(i.e. given an initial placement, find a move that would improve the 
minimum TW L) we would quickly reach a local optima. However, 
by applying the concepts of TS (i.e. accepting strategic moves that 
may not improve the current minimum TWL), we climb out of 
local optima. After executing move Ui E U we set a tabu tenure 
for ui. Move ui will not be executed again until the tabu tenure 
has expired or our aspiration criteria is satisfied. Initially, V vi 
E V, M(vi) is set to 1. For diversification, we penalize moves 
that are executed with high frequency in order to take thesearch 
into unexplored areas. We do this by increasing M(vi) for low 
frequency moves, thereby making them more attractive. 

4.5.2 TS-EDGE 

The second step of our TS based placement strategy, TSEDGE, 
seeks to enhance circuit performance by minimizing the length of 
critical circuit edges. To accomplish this, we traverse G and apply 
a weight w, to each edge ei E E. Edges in critical paths receive 
a higher weight. For TSEDGE, we use a two part optimization 
function. First we minimize the weighted length of the longest 
edge. Second, since some configurations may have the same longest 
weighted edge length, we add together N of the longest edges 
(N LE) and minimize N LE. 

N 

NLE = c MLength(ei) X Wi . 

For TSEDGE, we use the edge list E as our search list. We 
order E in descending order by weighted Manhattan length. Then, 
we search E looking at each of the two vertices attached to each 
edge as possible candidates for a move. The vertices attached to 
the edges with the longest weighted Manhattan lengths are the most 
attractive candidates for moving closer together. By moving these 
vertices closer together, the longest edges are shortened thereby en- 
hancing circuit performance and reducing the longest paths. Once 
an edge is selected from the search list, we look at only one of the 
edge’s two vertices as a possible move candidate. For simplicity 
we pick one of two possible moves for the vertex selected: vertical 
swap or horizontal swap (discussed earlier relative to TS-TWL). In 
TSEDGE, given an initial placement in L’ (by selecting an appro- 
priate sequence of moves from E), we seek to optimize our objec- 
tive function, minimization of the longest weighted edge length and 
minimization of N LE. 

After executing a move for a vertex on edge e; E E, we set 
a tabu tenure (number of iterations a vertex’ position is locked) 
for the moved vertex. This vertex on edge e, will not be moved 
again until the tabu tenure has expired or our aspiration criteria 
is satisfied. In this way we climb out of local minima and accept 
the current best move even if it does not improve the current best 
solution. 

4.6 lntracluster Placement 

Once each cluster is assigned a location on L, the macros making 
up each cluster must be placed. Each macro rnj E M has asso- 
ciated with it a reference coordinate used to describe its physical 
location on the FPGA. Each logic block within each mj also has a 
reference coordinate that describes its physical location relative to 
the reference coordinate for m3. Intracluster placement is the task 
of assigning a reference coordinate from the set L to each macro 
m, E bi, Vbi E B, and, for any soft macro in M whose shape has 
changed, the task of assigning a set of reference coordinates for the 
logic blocks within the soft macro”. 

Intracluster or intrabucket placement for each bi E B takes 
place in three steps. First, we place all hard macros by assigning 
each one an X,Y reference coordinate corresponding to some lj E 
L. Second, we place all soft macros by assigning each one an X,Y 
reference coordinate from L. Third, we change the shape of any 
soft macro that requires modification by assigning it a set of logic 
block coordinates relative to the reference coordinate of the soft 
macro. Figure 7 shows an example set of macros to be placed in 
the 9 x 12 Bucket 6 located at coordinates X = 12 and Y = 18. In 
figure 7 each hard macro is labeled with f = 0 and each soft macro 
is labeled with f = 1. In this subsection we will describe each of 
the steps for intracluster placement. 

Our feasibility check during clustering guarantees the hard 
macros in each bi will fit by ordering them in the horizontal di- 
rection. Therefore for each bi E B, we place hard macros in a row, 
each with the same Y-axis coordinate. The Y-axis coordinate of 
each hard m3 E bi is found from the following equation: 

Y(mj) = Y(bi) 

where Y(bi) returns the Y-axis coordinate (from the set L) of the 
bucket where cluster bi was placed. To compute the X-axis co- 
ordinate of each hard m3 E b, a sort key is computed for each 
hard m, E b, by averaging the X-axis coordinates of all bk E B 
connected to m3 (this includes IO position information). Then the 
hard macros in b; are reverse ordered according to the sort key and 
stored in an ordered list { qi, q2, . .., qn} = Q. After ordering each 
hard macro in b, , the X-axis coordinate of each hard macro in bi is 

t’ Note: here only a set of reference coordinatesis assigned for the set of logic blocks 
in the soft macro. The specific coordinatesforeach logic block in an altered soft macro 
are found during intramacro placement. 

i=l 
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Procedure Find_SoftX(bi ,r1;): 
begin 

if X(bi) + X(rk-1) is eventben 
If lUStY(Tk-1) # Y(bi) + Hg 

x(Tk) = x(Tk-1); 

else 
X(Tk) = x(Tk-1) + 1; 

end else if; 
else 

if htY(Tk-1) # 0 then 

x(Tk) = X(Tk-1); 

else 
x(Tk) = x(Tk-1) + 1; 

end else if; 
end else if 

end; 

- 1 then 

determined by the following. If we let Qk denote the &h element in 
the reverse ordered list of hard macros in bi, then 

x(qk) = X(Qk-I) - W(qk) v k > 1 

where W(qk) is the width of macro qk, X(@+_L) iS the X-axis 

coordinate of macro @_I, and X(q1) = X(bi) $ BW - w(ql). 
For our example macros in figure 7, since the Y-axis coordinate of 
the bucket is 18, the Y-axis coordinate for each hard macro( mi6, 
mia, m27, and 1~~41) is 18. If we assume the key for rnih is 3, mis 
is 14, rn27 is 13, and rn4i is 43 then the X-axis coordinate for each 
hard macro is X(mih) = 16, X(miy) = 20, X(m27) = 18, and 
X(m4i) = 22. Figure 8 shows the hard macros from figure 7 placed 
in example Bucket 6. 

We now describe the method for determining the X,Y reference 
coordinates for each soft macro. Similar to the method of ordering 
the list of hard macros for b,, a sorting key is determined for each 
soft mj E bi by averaging the X-axis coordinates of all clusters 
connected to soft macro m3 (this includes IO position information). 
Then the soft macros in bi are ordered according to the sort key and 
stored in an ordered list (~1, ~2, . . . , TV} = R. After ordering each 
soft macro in bi the X,Y reference coordinate of each soft macro 
in b, is determined. If we let Tk denote the lith element in the 
ordered list of soft macros in b, then the X-axis reference location 
of Tk is found from the procedure Find_SoftX(). In Find-Soft-X(), 
lcStY( Tk) returns the Y-axis coordinate of the last element in macro 
Tk and X(TO) = X(bi). If it is required that the soft macro Tk’s 
shape be adjusted, then its Y-axis reference location is Y(bi), but if 
the soft macro’s shape does not require adjustment, then Tk ‘s Y-axis 
reference location is set relative to the Y-axis location of the last 
logic block in Tk__l (ktStY(Tk_l)). If we assume TI = m21, T2 

= m7, ~3 = m6, and ~4 = ml3 for the soft macros in the example 
shown in figure 7, then using the above methodology figure 9 shows 
the final placement and shape for the macros assigned to example 
Bucket 6. 

4.7 lntramacro Placement 

After assigning the reference coordinates for hard and soft macros in 
each cluster, the logic blocks that make up any reshaped soft macro 
are placed using intramacro_place(). Currently we use two methods 
for intramacro_place(), and both are described below. Instead of 
actually performing full placement on the logic blocks within the 
soft macro, we incrementally reconfigure the placement of the logic 
blocks using a transform that matches the X and Y coordinates of 
the soft macro to the X and Y coordinates of the available space on 
L. 

The first method for incrementally reconfiguring the placement 
is of O(n) complexity, where rz is the number of logic blocks 
within the reshaped soft macro. Starting from the leftmost-lowest 
coordinate of the soft macro, the logic blocks within the soft macro 

m16 
f=O 

Figure 7: Example set of hard and soft macros to be placed in 
Bucket 6 located at coordinate (12.18). 

Figure 8: Example hard macro placement for macros shown in 
previousjigure. 

Figure 9: Example placement of hard and sof macros. 
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Figure 10: An instance of grid matching. 

are matched to the leftmost-lowest coordinate available in the area 
of the bucket set aside for the soft macro. This methodology, 
though fast in execution, can substantially increase the length of 
nets connecting logic blocks; however, since the delay of the logic 
block is currently much greater than the interconnect delay, no 
substantial degradation to performance was noted. 

The second method (designed to counter any performance degra- 
dation due to increased interconnect length) uses a minimax match- 
ing strategy to match locations of the logic blocks within the soft 
macro to coordinates available in the area of the bucket set aside for 
the soft macro. We use general minimax grid matching to accom- 
plish this match. The problem of grid matching is stated below: 

Instance[ lo]: A square with area N in the plane that contains 

N g&points arranged in a regularly spaced fi x fi array and 
N random points located independently and randomly according to 
a uniform distribution on the square as shown in figure 10. 

Problem: Find the minimum length D such that there exists a 
perfect matching between the N grid points and N random points 
where the distance between matched points is at most D. D is also 
called the minimax matching length. 

The problem of finding D for a given distribution of random 
points is solvable in polynomial time since the length D has an 

upper bound of O(o). An algorithm that solves this problem 
constructs a bipartite graph between the grid points and random 
points. Let SG be the set of grid points and SR be the set of 
random points. The edges of the bipartite graph will be < i, j > 

such that i E SG and j E SR, and i, j are at most distance D 
apart. The algorithm starts with the construction of a bipartite graph 
for some initial D. It repetitively updates D, adding more edges, 
until a perfect matching is found in the bipartite graph. The D 
found by such an algorithm is also the minimax length. Leighton 
and Shor have proved a bound on the expected length of D for a 
random distribution of points which, with very high probability ‘* 
is shown to be O( log 3/4 N) [ lo]. We use this tight and small bound 
to attain a reconfiguration that results in minimal impact on circuit 
performance. 

Minimax matching attempts to minimize the maximum distance 
any logic block within the reshaped macro is displaced. More details 
can be found in [4]. 

5 Test Methodology 

We empirically tested the floorplanning methodology described 
above using several macro based circuits (the circuits included both 

‘*very high probability means probability exceeding 1 - l/N” where 

Q = n(m). 

Circuit 
Name 

BOOTH 
CLA 

Macro Based Circuit Statistics 
Total Num 

Part 1 M 1 Area 1 B 1 1 S I 10s 

4013 64 264 12 473 33 
4025 128 736 100 1024 133 

I I I I 

DCT 1 4085 [ 122 1 3095 1 77 I 1089 1 113 

Table 2: Circuit statistics. 

hard and soft macros). The top level macro based circuits were de- 
scribedusingthexilinx Netlist Format (XNF). Themacros 
were also described using XNF files; however, they also included 
logic block placement information in the form of RLOCS so that all 
hard and soft macros were preplaced. The designs were mapped 
to the Xilinx XC4000E or XC4OOOXL family of ERGAs. Statistics 
for the macro based circuits are shown in table 2. 

For each circuit we obtained data for comparison in three ways. 
The first way we obtained data was to place and route flattened 
designs. We flattened each circuit netlist and removed all RLOC 
information. Then we used the Xilinx tools in the standard mapping 
approach (placement of logic blocks then routing of logic blocks) 
to map the circuit netlist. In following tables, the results of this 
method are shown in columns labeled Xilinx Flat. The second 
way we obtained data for comparison was to floorplan and route the 
macro based circuits using the Xilinx tools. In following tables, the 
results of this method are shown in columns labeled Xilinx Macro. 
The third way we obtained data was to floorplan the circuit with 
our TS-FP tool and route the circuits using the Xilinx tools. In 
following tables, the results of this method are shown in columns 
labeled TSEP Macro. 

We used statistics available for the Xilinx tools to compare the 
three mapping methods. Specifically, we used static timing analysis 
available from Xilinx tools to compare the quality of the mapped 
circuits and report data from Xilinx tools to determine placement 
and routing times for Xilinx tools. Table 3 shows the tool used to 
place (flat designs only) or floorplan (macro based designs) each 
of the circuits as well as the Xilinx tool suite used for routing 
and static timing analysis. We used the unix time function to 
determine system floorplanning times for TS_Fl? 

6 Results and Analysis 

Table 4 shows the execution times required to floorplan (or place 
in the case of the flattened netlists) the circuits. Column TSEP 
Macro shows the execution times required by our methodology. 
Columns Xilinx FlatI and Xilinx Macro14 show the execution 
times required by the Xi 1 inx tools. Column TSEP Macro shows 
a 45X improvement in execution time for our methodology over 
that of the commercial Xilinx tools. Table 4 also demonstrates 
execution speedup for working with macro based circuits versus 
flattened netlists. (It should be noted that the DCT design was not 
floorplanned using the Xi 1 inx tools. On our Sun Ultra 2, we 
experienced memory faults during the circuit mapping process using 
the ~1 tool. For the same reason, we could not route or perform 
static timing analysis on the DCT design after floorplanning with 
our methodology; however, floorplanning execution time using our 

“flattened netlist placed and routed by the Xilinx tools 
%acro based netlist placed and routed by the Xilinx tools 
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tool is shown.) All circuits (that did not cause memory faults) were 
100% routable. 

Table 5 shows the results of static timing analysis performed on 
the floorplanned circuits (Note: this data is taken from completely 
routed circuits). The values shown indicate the worst case pad to 
pad delay (in the case of combinational circuits) or the minimum al- 
lowable clock period (in the case of sequential circuits). From table 
5 we see the circuits floorplanned with our floorplanning methodol- 
ogy are similar in quality to those floorplanned by the commercial 
tools. Table 5 also shows there is not a substantial difference be- 
tween delays encountered for our circuits with flat versus macro 
based netlists. This is probably due to the fact that logic block 
delay (for short distances or routes with few pips) is substantially 
greater than interconnect delay. 

Table 6 gives the time taken for the Xilinx tools to route the 
circuits. This table shows the time taken to route our floorplanned 
designs is similar to that of the Xilinx placed and routed designs. 
It should be noted that this time could be significantly reduced 
by using not just preplaced macros, but preplaced and prerouted 
macros. 

Figures 11, 12, 13, and 14 show example floorplans (from 
TSFP) for the CLA, CPU, MATMULT, and DCT circuits respec- 
tively. 

7 Conclusions 

We have presented a performance driven fast floorplanning method- 
ology for floorplanning macro based circuits. The methodology 
includes a clustering algorithm, placement algorithms, and a trans- 
form algorithm to quickly floorplan large macro based circuits. 
While flattening the netlist should provide better (relative to per- 
formance) results during the placement phase of the circuit, ever 
increasing circuit densities require an alternative method to han- 
dle large circuits in a timely (relative to execution time) fashion. 
Our approach shows dramatic improvement in the execution time 
without significant impact on quality of the mapped design. 
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