
A Methodology for Fast FPGA Floorplanning *

John M. Emmert and Dinesh Bhatiat

Design Automation Laboratory
ECECS Department

l? 0. Box 210030
University of Cincinnati

Cincinnati, OH 45221-0030

{jemmert,dinesh} @ececs.uc.edu

Abstract

Floorplanning is an important problem in FPGA circuit mapping.
As FPGA capacity grows, new innovative approaches will be re-
quired for eficiently mapping circuits to FPGAs. In this paper
we present a macro basedjoorplanning methodology suitable for
mapping large circuits to large, high density FPGAs. Our method
uses clustering techniques to combine macros into clusters, and
then uses a tabu search based approach to place clusters while
enhancing both circuit routability and performance. Our method
is capable of handling both hard (axed size and shape) macros
and soft (fixed size and variable shape) macros. We demonstrate
our methodology on several macro based circuit designs and com-
pare the execution speed and qualiw of results with commercially
available CAE tools. Our approach shows a dramatic speedup in
execution time without any negative impact on quality.
Key Words: Floorplanning, Placement, FPGA, Clustering, Tabu
Search

1 Introduction

Placement and floorplanning are extensively studied topics. How-
ever, the importance of placement and floorplanning cannot ever
be ignored due to changing design complexities and requirements.
One technology that is evolving very rapidly is field programmable
gate array (FPGA). Currently, commercially available devices can
map up to one million gate equivalent designs[l9] (and some of
the newly announced products like Altera’s APEX series will map
over two million gate equivalent designs[11). Such complex design
densities also demand tools that can efficiently and quickly make
use of available gates.

Improvements in CAD tools for FPGAs have not kept pace
with hardware improvements. The available tools typically require
from minutes to hours to map’ designs (or circuits) with just a few
thousand gates, and as design sizes increase the execution time will
increase. One way to address the problem of long mapping times is

*this work is partially supported by Air Force Research Laboratory of the US Air
Force under contract number F33615-97-C-1043

tcorresponding author
I typical mapping steps include technology mapping, placement, and routing

Copyright ACM 1999 I-581 13-08%0/99/02...$5.00

create designs that use premapped macros’ to create larger designs
(macro based circuits). Then we floorplan and route these macro
based circuits. In general, floorplanning is an NP-hard problem
[141. For FPGAs, it is more difficult due to fixed logic resources.

To address the problem of mapping large designs to large FPGA
circuits, we have taken a macro based approach [18]. We floorplan
interconnected macro based circuits. At the lowest level a macro is
composed of one or more interconnected and relatively placed logic
blocks. In this paper we present a method (based on clustering and
tabu search (TS) optimization) to quickly floorplan macro based
circuits while attempting to minimize throughput delay and meet
area and routability constraints.

The basic flow of our method is summarized as follows. We
start with a set of macros (M) interconnected by a set of signals
(S). We then group (cluster) macros together to form clusters.
Each cluster in the set of clusters (B) is smaller in area than some
predefined limit3. We then use TS optimization to perform two-
dimensional placement on the set of clusters B. Then, for each
cluster that is composed of more than one macro, we perform in-
tracluster placement4. Finally, for any macro whose shape was
changed during the intracluster placement process, we perform in-
tramacro placement5.

2 Floorplanning Problem

Given a set of macros M = {ml, m2, m,} and a set of signals
s = {Si,.Q, ss}, we associate with each macro rni E M, a size
ai (number of logic blocks in mi); a width ZLJ~ (maximum width
of m, in number of logic blocks); a height hi (maximum height
of m, in number of logic blocks); a flexibility fi (0 for hard/fixed
macros or 1 for soft/flexible macros); and a set of interconnecting
signals S,, (S,, c S). For hard macros (macros with fixed size,
shape, and internal placement), 2ui and h, are both fixed and fi =
0. For soft macros (macros with fixed size and variable shape), wi
and h, are considered flexible (both w, and hi can take on a range
of values typically between 1 and ai) and fi = 1. Additionally,
with each signal si E S we associate a set of macros M,, where
M,, = {m3 1 si E Smj}. M,, is said to be a signal net. We
can divide M into two distinct sets, MS and MH (subset of soft
macros and subset of hard macros), where M = { MH U MS (

%mxos are predelined circuit components like adders, shifters, decoders, multi-
pliers, signal processors, CPUs, etc.

‘predefined limit implies the total area of each cluster (sum of the areas of the
macros within the cluster) is less than some maximum

4intracluster placement is the task of assigning the macros that make up the cluster
a physical location and reshaping any macro whose shape must be altered to meet area
constraints

5intramacro placement is the process of relatively placing the logic blocks that
make up a macro component

47

’ (1.3) ’

‘1
I

IZ-.!

1(1,27 ’

‘1
I

II-.!

, ‘1.1) ;

‘1
Ii__’

/ Logic Block

, ‘4,4) ’

‘1
I

I _!“_ _’

, ‘2,3) ’

--- ---

‘1
I

, ‘3.3’ ’

‘1
I

’ ‘4,3’ ’
I

I ‘“_ _! I _!I_- 1
‘1
I P- 1

1(2,27 ’

I
, ‘3,2) ’

I
, ‘4.2’ ’

‘1
I

I?__!
‘1
II-1

‘1
I!_/

, ‘2,l’ ’

--- ---

‘1
I

’ (3.1) ’
I

, (4,1) ’
I

I_?_1
‘1
II-1

‘1
I-!__1

Figure 1: Example two-dimensional array L = {11,12, Ilh} of
physical logic block locations (WL = 4 and HL = 4). One logic
block can be assigned to each physical location 1; E L.

MHnMS=d,fi=OVm,EMH,andf,=1VmiEMS
}. We are also given a target set L = {II, Iz, lp} of locations

where 1 L 12 cl:/ a,. For the case of mapping m, E M to
a regular two-dimensional array, each I, E L is represented by

a unique (zJ , y3) location” on the surface of the two-dimensional
array where z3 and y3 are integers. Additionally, we define the two-
dimensional array L by the width of physical logic block locations,
WL, and the height of physical logic block locations, HL. The
floorplanning problem then becomes how to assign each soft macro
m, E MS a shape and each macro m3 E M = M H U MS a
unique location in L such that an objective function is optimized.
Here uniqueness implies no macro overlaps. Figure 1 shows the 16
element set L for an example 4 x 4 two-dimensional array (WL =
4 and HL = 4). Our goal is to optimize the floorplanned circuit’s
performance while meeting area and routing constraints.

3 Related Work

Many recent papers have addressed placement and floorplanning
for regular arrays. Rose et. al. use simulated annealing as the basis
of their placement tool[2]. Saucier et. al. developed a floorplanner
that matches the hierarchy of the circuit to the hierarchy of the tar-
get FPGA [9]. Mathur et. al. studied the placement problem and
presented methods for re-engineering of regular architectures[131.
Togawa et. al. combined technology mapping, placement, and
global routing[l7]. Yamanouchi et. al. used partial clustering
for macro based floorplanning of standard cells [181. Callahan et.
al. developed a module placement tool for mapping of data paths
to FPGA devices [3]. Shi and Bhatia developed a force directed
optimization based floorplanning tool for fast, high-performance
floorplanning of FPGA mapped designs [15]. Krupnova et. al.
combined the mapping and floorplanning stages to create a new
method for mapping large, hierarchal designs to PPGAs [9]. In ad-
dition, over the past several years many non-deterministic, random
moue based solutions have also been considered [7][8]. These ran-
dom move based methods typically achieve high quality results at
the cost of long execution times. As circuit size increases, the time

“for our application, the location represents a physical logic block location on the
FPGA

required for executing such random move methods becomes exor-
bitant. In most search based methods, there is a tradeoff between
the execution time and the quality of the results.

Song and Vannelli developed a TS based placement algorithm
for minimizing total wire length [16]. Their cost function is based
on total wire length using the half-perimeter net model, and there-
fore, designed to enhance routability and not necessarily perfor-
mance. They sum the total estimated length of all nets. Their cost
function is based on allowing moves within a predefined window
to define local neighborhoods. Their tabu list is composed of the
most recently executed moves. Their method uses no aspiration
criteria and no long term search strategy; and therefore, does not
fully exploit the advantages of a TS based approach. They use
their method to generate an initial placement for further refinement
by other algorithms. Lim, Chee, and Wu have developed a place-
ment with global routing strategy for placement of standard cells
[1 I][121. Their algorithm uses a hierarchical, divide and conquer,
quad-partitioning approach. They use TS in their quad-partitioning
routine. Their algorithm uses the concept of proximity of regions to
approximate interconnection delays during the placement process.

4 FPGA Floorplanning

In this section we give an overview of our method, and in following
subsections we describe each step in detail. First, some preliminary
definitions are required. As stated earlier, a macro is a set of one
or more interconnected and relatively placed logic blocks. We are
given a set M of interconnected macros in our circuit or design
netlist. When necessary we group macros in M together to form
clusters. Therefore, we define a cluster as a set of one or more
macros, and B = {bl, b2, bp} as the set of all clusters. (For
initialization, there is a one to one mapping of the elements of
the set M to the elements of the set B, and therefore, initially
1 B 1 = 1 M I.) As stated earlier we are floorplanning the set
of macros M on the two-dimensional array L of physical logic
block locations. Once macros are grouped to form clusters, our
approach is to perform two-dimensional placement of clusters on
L. To perform this placement we divide our target two-dimensional
array L into a two-dimensional array of buckets where each bucket
(of physical logic block locations) has the same size and shape.
(We define the bucket size by a width of WE logic blocks and a
height of HE logic blocks.) We define the set of buckets as the
set {Ii, I:, I&} = L’, where the number of buckets m equals
1 L’ I. (The two-dimensional array L’ is defined by a width of WLl
buckets and a height of HL, buckets.) Then, instead of performing
two-dimensional placement of clusters directly on L, we perform
two-dimensional placement of clusters on the smaller set L’. Figure
2 shows the example L divided into four equally sized buckets of
physical logic block locations where each bucket is 2 logic blocks
x 2 logic blocks.

Figure 3 shows a flow chart of our floorplanning methodology.
In figure 3, we read in the sets M, S, and L. Next, we initialize
the set of clusters B. Initially, each element of B contains one
element from M, so there is a one to one mapping of the elements
of M to the elements of B. After initialization of B, we initialize
the bucket width, WB, and bucket height, HB, using the Procedure
CreateBuckets(Details for Create-Buckets(M) are found in
subsection 4.1. After bucket size initialization, we create the set of
buckets, L’, as outlined in subsection 4.2. Next, we check the fit
of B on L’. (It should be noted that we create and maintain the
bucket width WE and bucket height HE so any single macro in M
will fit in any bucket in L’ ‘. This allows us to skip the clustering
step if 1 B 1 is less than or equal to I L’ I. This usually occurs
when low device utilization is sufficient and allows for very fast

‘The initial bucket size is based on the dimensions of the largest elements of M.

48

’ (1.3’ ’

I
, (2.3) ’

‘1 ‘1
I

12-J I _!“_ 1
I

Ir
- Bucket

_--
’ (1.2) ’

, (2.2) ’

‘1
I

‘1
I

II_-! l?_-!

, (1.1) ’

I
,(2,1, ’

‘1 ‘1
I

‘I-1 ‘_2__!

;c3,47 ’

’ (4.4) ’

‘1
I f- ._!

‘1
I L”_ _’ r: ---

, (3,3) ’ ;c 3-7 ;

‘1
I 1’_ -!

‘1
I J__ _1

Figure 2: Example L divided into a set L’ of 4 buckets. The
dimensions of L’ are WLJ = 2 buckets and HLI = 2 buckets. The
dimensions of the example bucket are W, = 2 logic blocks and
Hg = 2 logic blocks.

floorplanning.) If there is a fit, we proceed to the placement phase
if there is not a fit we proceed to the clustering phase.

In figure 3, if 1 B 1 is not less than or equal to 1 L’ 1, we
proceed to the clustering phase. To ensure fit, our methodology
requires I B I is less than or equal to I L’ I, and therefore, the goal
of the clustering phase is to group smaller macros together thereby
reducing I B I until I B I is less than or equal to I L’ I. Additionally,
it is required that each cluster bi E B has size less than or equal to
the bucket size. This ensures each cluster will fit in any bucket. The
details of clustering are found in subsection 4.3. After clustering if
I B I is less than or equal to I L’ I then we proceed to the placement
phase else we iteratively increase the bucket size (as described in
subsection 4.4) and continue clustering until) B I is less than or
equal to I L’ I or the bucket size exceeds the dimensions of L.

In figure 3, if I B I is less than or equal to I L’ I, we proceed
to the placement phase. In the placement phase we use TS based
placement to assign each b, E B to a bucket (see subsection 4.5).
Then in intracluster placement, we assign each macro within each
cluster a physical location and shape (see subsection 4.6). Finally
in intramacro placement, we place the logic blocks within any soft
macro whose shape has been altered during intracluster placement
(see subsection 4.7). After this phase, every logic block making
up the circuit or design netlist will have a physical location on the
two-dimensional array L. The floorplanning process is summarized
in Algorithm TS-FP(M,S,L).

In figure 3, if the circuit or design netlist will not fit we have four
options. We can reduce the size of the macro set M by partitioning
the design spatially or temporally. We can increase the size of the
target two-dimensional array L. This assumes a larger FPGA part
is available. We can flatten the netlist and attempt to use standard
placement techniques. This will become more difficult as design
sizes get larger. Finally, if possible we can soften some of the hard
macros to allow better space utilization.

4.1 Initializing Bucket Size

In this subsection, we describe the method for determining the
initial bucket size which subsequently defines I L’ I. The main goal
of our floorplanning method was fast execution time. Therefore,
we quickly initialize the width of the bucket, WB, to the width of

t
Initialize B

1

L.

t

Intracluster Place

.________..- ____________’

FIoorplan

Clustering Phase:

t
Increment Bucket

Size, WB and He

1

Figure 3 : Floorplanner executionflow.

AlgorithmTSJP(M,S,L)
begin

(* initialize the buckets *)
V mi E M let bi = {mi};
(* determine initial bucket size, Hg and WB *)
CreateBuckets(
create L’ where W,l = [$$j and HL~ = 121;

success = checkfit(B,L’);
while(NOT success AND WR < WL AND HB < HL)

B = ChlStCr(M,S,HB ,w;); -

success = checkfit(B,L’);
if NOT success then

increment bucket size (HB and/or WB);

update L’ so WLJ = 121 and HL~ = 121;

end if;
end while;
if success then

TS_place(B,S,L’);
V b,-E B{

intracluster_place(bi ,HB, WB);
V nz3 E bi intrarnacro_place(rn,,bi,H~,W~);

1
else;

return “ERROR: circuit not floorplanned”;
end if;

end;

49

Procedure Create-Buckets(M):
begin

initialize WB = Hg = 0;
for i = 1 to 1 M 1

if WB < W(mi) then
WB = w(m;);

end if;
if Hg < H(mi) then

HB = H(m);
end if;

end for;
return WB and HB;

end;

Figure 4: Example L’ made up of three 6 x 2 buckets.

the widest macro cell (hard or soft’). Similarly we initialize the
height of the bucket, HB, to the height of the tallest macro cell
(hard or soft). This guarantees that any macro m, E M will fit
in any bucket. The procedure used to determine the initial WB
and HB is shown in Procedure CreateBuckets(In procedure
CreateBuckets(H(m;) returns the height of macro mi and
W(mi) returns the width of macro mi.

4.2 Bucket List, L’

The set of bucketsY, L’, is created by dividing the set L into rect-
angles of equal size. The width of L’ (in number of buckets) is

defined as W,, = 121 and the height of L’ (in number of buck-

ets) is defined as HLt = 1% 1. (Note, WL and HL define the

width and the height (in number of logic blocks) respectively of the
two-dimensional array L.) Therefore 1 L’ 1 = HLl x WLJ Figure
4 shows an example L’ for a 7 logic block x 6 logic block L (Wr,
= 6 and HL = 7) and a 6 logic block x 2 logic block bucket (WB
= 2 and Hg = 6).

4.3 Clustering

As stated earlier, the set B is created or initialized by assigning
each m; E M to bi E B, and initially, 1 B 1 = 1 A4 I. When
necessary, the size of set B is reduced by clustering elements of M

*This assumes soft macros are supplied with some initial shape. Effort is made to
maintain tbe shape of soft macros. Tbe shape of soft macros is only changed if required
to make tbe circuit fit the given area.

‘a bucket is a set or group of physical logic block locations from L such that each
bucket has the same size and shape (Hg x Wg)

Procedure Cluster(M,S,Hn,W~,L’):
begin

V mi E M let b; = {mi};
calculate cij V bi and b, E B;
while I B I > I L’ I AND 3ci, > 0

choose mi and m3 with highest connectivity, cij ;
letb,=miUm,;
let b3 = 4;
update connectivity between clusters;

end while;
return B;

end:

so more than one element of M is in some bi E B. There is no
limit placed on the maximum number of macros in each bi as long
as size constraints are satisfied. Size restrictions (described below)
limit the macros used to form each cluster, bi E B.

Each cluster bi E B is divided into two parts, a hard macro part
and a soft macro part. The size restriction on b, requires the total
area of the hard macro part plus the total area of the soft macro part
be less than or equal to the size of the bucket (HB x WB). We
define the width of the hard macro part of each cluster b; as the sum
of the width of the hard macros in bi ,

HMW(bi) = c W(T) ,
VmjEb,lmj is hard

where W(m,) is the width of macro m3 in cluster b, . We define
the area for the hard macro part for each cluster bi as the width of
the hard macro part times the height of the bucket

HMA(bi) = HMW(bi) X HB .

The size for the soft macro part for bi is defined as the width of the
bucket minus the width of the hard macro part times the height of
the bucket

SMA(b,) = (WB - HMW(bi)) x Hg .

The sum of the areas of all soft macros in b, must be less than or
equal to SMA(bi).

With these area constraints in mind, the set M is clustered to
form the set B. The clustering method is derived from the connec-
tivity work done in [18]. The connectivity cost function includes
area constraints. Our connectivity cost function is summarized
below.

Cij = feas(i,j) .C
1 A tot ??Zin(ai, a3)

.-.

SkESnz, nslnj (I Sk I -1) a, + a3 maz(ai, a3)

where a, and a3 are areas of macro m; and m3 respectively, At,t
is the total area of all macros, I Sk I is the number of pins on signal
Sk which connects macros m, and m3, S,, n Smj is the set of all
signals that connect macros mi and m3, and feas(i, j) returns the
feasibility of clustering m, and m, under size constraints described
above. feas(i, j) returns a 1 if it is possible to combine m; with
ITlj else it returns a 0.

The clustering algorithm combines clusters with the highest
connectivity to form larger clusters. In order to enhance routability,
once area constraints have been met (i.e. I B I 5 I L’ I) the
algorithm stops and returns the set B. The clustering algorithm is
summarized in Procedure Cluster(M,S,Hn ,Wg,L’).

After clustering is complete, it returns the set B. The empty
elements of B are removed, and each b, E B consists of a unique
list of elements from M. Here uniqueness implies bi n b, = q5 V bi
r\b, E Bli#j.

50

Macro Statistics

m, Wi 1 hi I f8

ml 13 I 3 I 0
m2 3 3 0
m3 2 3 1
m‘l 2 3 1
ms 2 3 1

Table 1: Macro stutistics for example$oorplan.

Figure 5: Example L’ made up offour 3 x 3 buckets converted to
two 3 x 6 buckets.

4.4 Increment Bucket Size

In the event that the first pass of clustering does not lead to a valid
solution, the bucket size is increased to allow more flexibility during
clustering. This increases the complexity of intracluster placement
but allows more macros to fit in the same area. For example,
consider floorplanning the 5 macros described in table 1 so they fit
on an L with WL = HL = 6 and 1 L I= 36. For the set M, both
WB and Hg will be set to 3 since these values reflect the largest
macro width and height respectively. Figure 5 shows the buckets
on L. Therefore L’ will initially have 4 buckets and M will not fit
since 1 B 1 > I L’ 1. However, by doubling the width of the bucket,
we can cluster ml and rn2 into one cluster and rn3, rnd, and rn5 into
a second cluster that will fit in L.

4.5 Cluster Placement

Once the circuit is guaranteed to fit (I B 111 L’ I) then the clus-
ters b; E B are placed using a two-step tabu searchI (TS) based
two-dimensional placement algorithm [5]. The first step of the
placement strategy minimizes the circuit’s total wire length (see
TS-TWL in section 4.5.1) thereby enhancing the routability of the
circuit. The second step attempts to average the circuit’s edge
lengths by weighting graph edges and minimizing the maximum
weighted edge lengths (see TS-EDGE in section 4.5.2).

For our TS approach, we convert each multi-terminal net to a set
of edges where each edge consists of the driving terminal and one
driven terminal. We use this model to keep net sources and sinks in
close proximity thereby enhancing circuit performance. We create
the set of edges by converting the hyper-graph input circuit model
describedearliertoagraphG = (V,E) whereV = {wu~,IJ~, . ..z)~}.
I V I= 12, E = {el, e2, . . . e,}, and I E I= m. Each vertex u; E V

corresponds to a cluster b, E B (if pad IO locations are available,
we also include preplaced pseudo-elements of V representing the
pad locations to help guide the placement). Each edge ei E E
connects a pair of vertices (Us, 2)k) I vJ , ‘uk E V. The elements of
E are created by considering each signal, si E S. If we let msource
(where msource E M,, and msource E b,) be the source macro
for signal s, then an edge (vJ, Uk) is added to E for each sink on
Si such that m$i& E M,,, mSSnk E bk, and j # k. (In Other

words, an edge is added for each source/sink combination that are
not in the same cluster.) At any given time, each element of V is
mapped to a unique element of L’, and the minimum requirement
for mapping is I V 111 C’ I.

The two-dimensional placement stage basically assigns each
cluster to a unique bucket. After placement of each bi E B, each
bi E B will have associated with it a unique bucket 13 E L’. The

physical location (on L) of each bi E B in bucket 2: can be found
from the following equations:

X(bi) = X(Ii) X WB

and

Y(bi) = Y(Zi) x HB.

where X($) returns the X-axis coordinate of I: on L’ and Y(I;)
returns the Y-axis coordinate of Zi on L’. After each cluster bi E B
is assigned a unique location on L, intracluster placement takes
place to assign each mj E bi E B a physical location on L.
Intracluster placement also reshapes soft elements mk E MS E B
that require further modification.

4.5.1 TS_TWL

For the first step of our TS based placement strategy, TS_TWL, we
seek to enhance routability by minimizing total wire length (TWL).
We conservatively estimate 7WL using the Manhattan length of
each edge e; E E, and we seek to minimize the following function:

TWL = c MLength(ei)

Ve,EE

where MLength(e,) is the Manhattan length of edge ei.

“tab” search is a ma-heuristic approach to solving optimization problems that
(when used properly) approaches near optimal solutions in a relatively short amount
of time compared to non-deterministic random moue based methods [6]. Unlike
approaches like simulated annealing or genetic algorithms that rely on a good random
choice, TS exploits both good and bad strategic choices to guide the search process.
As a meta-heuristic, TS guides local heuristic search procedures beyond local optima.
In TS, a list of possible moves is created. In the short term, as mwes in the list are
executed. tabu, or restrictions, are placed on the executed moves in order to avoid
local optima. This mbu is typically in the form of a time limit. and unless certain
conditions are met (e.g. ospirution criteria), the mc~ve will not be performed again
until the time limit has expired.

51

Figure 6: Example Horizontal and Vertical Moves.

Key to the developmentof a TS is a search list. For TSTWL our
search list U consists of all possible swaps of vertices occupying
adjacent locations in L’. This implies two basic swap moves:
horizontal (swap of adjacent vertices with the same y coordinate)
and vertical (swap of adjacent vertices with the same z coordinate).
Given a two-dimensional array L’ of width WLI units and height
HLI units, there are 1 U 1~ ~(HLI x WLI) possible swaps or
moves in U. Figure 6 shows an example horizontal swap move
ui and vertical swap move u3. In figure 6, move Us represents
the horizontal swap of vertices vi and ~2, or moving vi to us’s
bucket and us to vi’s bucket. For TS_TWL, given a random initial
placement in L’ (by selecting an appropriate sequence of moves
from U), we seek to optimize our objective function, minimization
of TWL.

In TS_IWL, each ti E U has an associated attractiveness, AFi,
or sum of the adjacent forces pulling on the vertices v3 and Vk that
make up Ui. U is ordered so the most attractive moves are first. For
vertical moves

AFi = M(v~) X PE(V,) + M(vk) X PW(vk) ,

and for horizontal moves

AFi = d!f(Vj) X PN(V,) + hf(vk) X Ps(vk) .

Each vertex vi E V has one multiplication factor M(vi) (dis-
cussed later) and four associated pulls or forces: PN(Vi), PE(Vi),
PS(vi), and PW(vi). The pulls are determined by summing the
Manhattan lengths of the edges connecting vi to vertices in the di-
rection of the pulls. If we used U in a typical greedy search strategy
(i.e. given an initial placement, find a move that would improve the
minimum TW L) we would quickly reach a local optima. However,
by applying the concepts of TS (i.e. accepting strategic moves that
may not improve the current minimum TWL), we climb out of
local optima. After executing move Ui E U we set a tabu tenure
for ui. Move ui will not be executed again until the tabu tenure
has expired or our aspiration criteria is satisfied. Initially, V vi
E V, M(vi) is set to 1. For diversification, we penalize moves
that are executed with high frequency in order to take thesearch
into unexplored areas. We do this by increasing M(vi) for low
frequency moves, thereby making them more attractive.

4.5.2 TS-EDGE

The second step of our TS based placement strategy, TSEDGE,
seeks to enhance circuit performance by minimizing the length of
critical circuit edges. To accomplish this, we traverse G and apply
a weight w, to each edge ei E E. Edges in critical paths receive
a higher weight. For TSEDGE, we use a two part optimization
function. First we minimize the weighted length of the longest
edge. Second, since some configurations may have the same longest
weighted edge length, we add together N of the longest edges
(N LE) and minimize N LE.

N

NLE = c MLength(ei) X Wi .

For TSEDGE, we use the edge list E as our search list. We
order E in descending order by weighted Manhattan length. Then,
we search E looking at each of the two vertices attached to each
edge as possible candidates for a move. The vertices attached to
the edges with the longest weighted Manhattan lengths are the most
attractive candidates for moving closer together. By moving these
vertices closer together, the longest edges are shortened thereby en-
hancing circuit performance and reducing the longest paths. Once
an edge is selected from the search list, we look at only one of the
edge’s two vertices as a possible move candidate. For simplicity
we pick one of two possible moves for the vertex selected: vertical
swap or horizontal swap (discussed earlier relative to TS-TWL). In
TSEDGE, given an initial placement in L’ (by selecting an appro-
priate sequence of moves from E), we seek to optimize our objec-
tive function, minimization of the longest weighted edge length and
minimization of N LE.

After executing a move for a vertex on edge e; E E, we set
a tabu tenure (number of iterations a vertex’ position is locked)
for the moved vertex. This vertex on edge e, will not be moved
again until the tabu tenure has expired or our aspiration criteria
is satisfied. In this way we climb out of local minima and accept
the current best move even if it does not improve the current best
solution.

4.6 lntracluster Placement

Once each cluster is assigned a location on L, the macros making
up each cluster must be placed. Each macro rnj E M has asso-
ciated with it a reference coordinate used to describe its physical
location on the FPGA. Each logic block within each mj also has a
reference coordinate that describes its physical location relative to
the reference coordinate for m3. Intracluster placement is the task
of assigning a reference coordinate from the set L to each macro
m, E bi, Vbi E B, and, for any soft macro in M whose shape has
changed, the task of assigning a set of reference coordinates for the
logic blocks within the soft macro”.

Intracluster or intrabucket placement for each bi E B takes
place in three steps. First, we place all hard macros by assigning
each one an X,Y reference coordinate corresponding to some lj E
L. Second, we place all soft macros by assigning each one an X,Y
reference coordinate from L. Third, we change the shape of any
soft macro that requires modification by assigning it a set of logic
block coordinates relative to the reference coordinate of the soft
macro. Figure 7 shows an example set of macros to be placed in
the 9 x 12 Bucket 6 located at coordinates X = 12 and Y = 18. In
figure 7 each hard macro is labeled with f = 0 and each soft macro
is labeled with f = 1. In this subsection we will describe each of
the steps for intracluster placement.

Our feasibility check during clustering guarantees the hard
macros in each bi will fit by ordering them in the horizontal di-
rection. Therefore for each bi E B, we place hard macros in a row,
each with the same Y-axis coordinate. The Y-axis coordinate of
each hard m3 E bi is found from the following equation:

Y(mj) = Y(bi)

where Y(bi) returns the Y-axis coordinate (from the set L) of the
bucket where cluster bi was placed. To compute the X-axis co-
ordinate of each hard m3 E b, a sort key is computed for each
hard m, E b, by averaging the X-axis coordinates of all bk E B
connected to m3 (this includes IO position information). Then the
hard macros in b; are reverse ordered according to the sort key and
stored in an ordered list { qi, q2, . .., qn} = Q. After ordering each
hard macro in b, , the X-axis coordinate of each hard macro in bi is

t’ Note: here only a set of reference coordinatesis assigned for the set of logic blocks
in the soft macro. The specific coordinatesforeach logic block in an altered soft macro
are found during intramacro placement.

i=l

52

Procedure Find_SoftX(bi ,r1;):
begin

if X(bi) + X(rk-1) is eventben
If lUStY(Tk-1) # Y(bi) + Hg

x(Tk) = x(Tk-1);

else
X(Tk) = x(Tk-1) + 1;

end else if;
else

if htY(Tk-1) # 0 then

x(Tk) = X(Tk-1);

else
x(Tk) = x(Tk-1) + 1;

end else if;
end else if

end;

- 1 then

determined by the following. If we let Qk denote the &h element in
the reverse ordered list of hard macros in bi, then

x(qk) = X(Qk-I) - W(qk) v k > 1

where W(qk) is the width of macro qk, X(@+_L) iS the X-axis

coordinate of macro @_I, and X(q1) = X(bi) $ BW - w(ql).
For our example macros in figure 7, since the Y-axis coordinate of
the bucket is 18, the Y-axis coordinate for each hard macro(mi6,
mia, m27, and 1~~41) is 18. If we assume the key for rnih is 3, mis
is 14, rn27 is 13, and rn4i is 43 then the X-axis coordinate for each
hard macro is X(mih) = 16, X(miy) = 20, X(m27) = 18, and
X(m4i) = 22. Figure 8 shows the hard macros from figure 7 placed
in example Bucket 6.

We now describe the method for determining the X,Y reference
coordinates for each soft macro. Similar to the method of ordering
the list of hard macros for b,, a sorting key is determined for each
soft mj E bi by averaging the X-axis coordinates of all clusters
connected to soft macro m3 (this includes IO position information).
Then the soft macros in bi are ordered according to the sort key and
stored in an ordered list (~1, ~2, . . . , TV} = R. After ordering each
soft macro in bi the X,Y reference coordinate of each soft macro
in b, is determined. If we let Tk denote the lith element in the
ordered list of soft macros in b, then the X-axis reference location
of Tk is found from the procedure Find_SoftX(). In Find-Soft-X(),
lcStY(Tk) returns the Y-axis coordinate of the last element in macro
Tk and X(TO) = X(bi). If it is required that the soft macro Tk’s
shape be adjusted, then its Y-axis reference location is Y(bi), but if
the soft macro’s shape does not require adjustment, then Tk ‘s Y-axis
reference location is set relative to the Y-axis location of the last
logic block in Tk__l (ktStY(Tk_l)). If we assume TI = m21, T2

= m7, ~3 = m6, and ~4 = ml3 for the soft macros in the example
shown in figure 7, then using the above methodology figure 9 shows
the final placement and shape for the macros assigned to example
Bucket 6.

4.7 lntramacro Placement

After assigning the reference coordinates for hard and soft macros in
each cluster, the logic blocks that make up any reshaped soft macro
are placed using intramacro_place(). Currently we use two methods
for intramacro_place(), and both are described below. Instead of
actually performing full placement on the logic blocks within the
soft macro, we incrementally reconfigure the placement of the logic
blocks using a transform that matches the X and Y coordinates of
the soft macro to the X and Y coordinates of the available space on
L.

The first method for incrementally reconfiguring the placement
is of O(n) complexity, where rz is the number of logic blocks
within the reshaped soft macro. Starting from the leftmost-lowest
coordinate of the soft macro, the logic blocks within the soft macro

m16
f=O

Figure 7: Example set of hard and soft macros to be placed in
Bucket 6 located at coordinate (12.18).

Figure 8: Example hard macro placement for macros shown in
previousjigure.

Figure 9: Example placement of hard and sof macros.

53

grid point

random point

matching edge

\I”

Figure 10: An instance of grid matching.

are matched to the leftmost-lowest coordinate available in the area
of the bucket set aside for the soft macro. This methodology,
though fast in execution, can substantially increase the length of
nets connecting logic blocks; however, since the delay of the logic
block is currently much greater than the interconnect delay, no
substantial degradation to performance was noted.

The second method (designed to counter any performance degra-
dation due to increased interconnect length) uses a minimax match-
ing strategy to match locations of the logic blocks within the soft
macro to coordinates available in the area of the bucket set aside for
the soft macro. We use general minimax grid matching to accom-
plish this match. The problem of grid matching is stated below:

Instance[lo]: A square with area N in the plane that contains

N g&points arranged in a regularly spaced fi x fi array and
N random points located independently and randomly according to
a uniform distribution on the square as shown in figure 10.

Problem: Find the minimum length D such that there exists a
perfect matching between the N grid points and N random points
where the distance between matched points is at most D. D is also
called the minimax matching length.

The problem of finding D for a given distribution of random
points is solvable in polynomial time since the length D has an

upper bound of O(o). An algorithm that solves this problem
constructs a bipartite graph between the grid points and random
points. Let SG be the set of grid points and SR be the set of
random points. The edges of the bipartite graph will be < i, j >

such that i E SG and j E SR, and i, j are at most distance D
apart. The algorithm starts with the construction of a bipartite graph
for some initial D. It repetitively updates D, adding more edges,
until a perfect matching is found in the bipartite graph. The D
found by such an algorithm is also the minimax length. Leighton
and Shor have proved a bound on the expected length of D for a
random distribution of points which, with very high probability ‘*
is shown to be O(log 3/4 N) [lo]. We use this tight and small bound
to attain a reconfiguration that results in minimal impact on circuit
performance.

Minimax matching attempts to minimize the maximum distance
any logic block within the reshaped macro is displaced. More details
can be found in [4].

5 Test Methodology

We empirically tested the floorplanning methodology described
above using several macro based circuits (the circuits included both

‘*very high probability means probability exceeding 1 - l/N” where

Q = n(m).

Circuit
Name

BOOTH
CLA

Macro Based Circuit Statistics
Total Num

Part 1 M 1 Area 1 B 1 1 S I 10s

4013 64 264 12 473 33
4025 128 736 100 1024 133

I I I I

DCT 1 4085 [122 1 3095 1 77 I 1089 1 113

Table 2: Circuit statistics.

hard and soft macros). The top level macro based circuits were de-
scribedusingthexilinx Netlist Format (XNF). Themacros
were also described using XNF files; however, they also included
logic block placement information in the form of RLOCS so that all
hard and soft macros were preplaced. The designs were mapped
to the Xilinx XC4000E or XC4OOOXL family of ERGAs. Statistics
for the macro based circuits are shown in table 2.

For each circuit we obtained data for comparison in three ways.
The first way we obtained data was to place and route flattened
designs. We flattened each circuit netlist and removed all RLOC
information. Then we used the Xilinx tools in the standard mapping
approach (placement of logic blocks then routing of logic blocks)
to map the circuit netlist. In following tables, the results of this
method are shown in columns labeled Xilinx Flat. The second
way we obtained data for comparison was to floorplan and route the
macro based circuits using the Xilinx tools. In following tables, the
results of this method are shown in columns labeled Xilinx Macro.
The third way we obtained data was to floorplan the circuit with
our TS-FP tool and route the circuits using the Xilinx tools. In
following tables, the results of this method are shown in columns
labeled TSEP Macro.

We used statistics available for the Xilinx tools to compare the
three mapping methods. Specifically, we used static timing analysis
available from Xilinx tools to compare the quality of the mapped
circuits and report data from Xilinx tools to determine placement
and routing times for Xilinx tools. Table 3 shows the tool used to
place (flat designs only) or floorplan (macro based designs) each
of the circuits as well as the Xilinx tool suite used for routing
and static timing analysis. We used the unix time function to
determine system floorplanning times for TS_Fl?

6 Results and Analysis

Table 4 shows the execution times required to floorplan (or place
in the case of the flattened netlists) the circuits. Column TSEP
Macro shows the execution times required by our methodology.
Columns Xilinx FlatI and Xilinx Macro14 show the execution
times required by the Xi 1 inx tools. Column TSEP Macro shows
a 45X improvement in execution time for our methodology over
that of the commercial Xilinx tools. Table 4 also demonstrates
execution speedup for working with macro based circuits versus
flattened netlists. (It should be noted that the DCT design was not
floorplanned using the Xi 1 inx tools. On our Sun Ultra 2, we
experienced memory faults during the circuit mapping process using
the ~1 tool. For the same reason, we could not route or perform
static timing analysis on the DCT design after floorplanning with
our methodology; however, floorplanning execution time using our

“flattened netlist placed and routed by the Xilinx tools
%acro based netlist placed and routed by the Xilinx tools

54

tool is shown.) All circuits (that did not cause memory faults) were
100% routable.

Table 5 shows the results of static timing analysis performed on
the floorplanned circuits (Note: this data is taken from completely
routed circuits). The values shown indicate the worst case pad to
pad delay (in the case of combinational circuits) or the minimum al-
lowable clock period (in the case of sequential circuits). From table
5 we see the circuits floorplanned with our floorplanning methodol-
ogy are similar in quality to those floorplanned by the commercial
tools. Table 5 also shows there is not a substantial difference be-
tween delays encountered for our circuits with flat versus macro
based netlists. This is probably due to the fact that logic block
delay (for short distances or routes with few pips) is substantially
greater than interconnect delay.

Table 6 gives the time taken for the Xilinx tools to route the
circuits. This table shows the time taken to route our floorplanned
designs is similar to that of the Xilinx placed and routed designs.
It should be noted that this time could be significantly reduced
by using not just preplaced macros, but preplaced and prerouted
macros.

Figures 11, 12, 13, and 14 show example floorplans (from
TSFP) for the CLA, CPU, MATMULT, and DCT circuits respec-
tively.

7 Conclusions

We have presented a performance driven fast floorplanning method-
ology for floorplanning macro based circuits. The methodology
includes a clustering algorithm, placement algorithms, and a trans-
form algorithm to quickly floorplan large macro based circuits.
While flattening the netlist should provide better (relative to per-
formance) results during the placement phase of the circuit, ever
increasing circuit densities require an alternative method to han-
dle large circuits in a timely (relative to execution time) fashion.
Our approach shows dramatic improvement in the execution time
without significant impact on quality of the mapped design.

References

PI

PI

[31

141

[51

El

Altera Inc. http://www.altera.com.

V. Betz and J. Rose. VPR: A New Packing, Placement, and

Routing Tool for FPGA Research. In Lecture Notes in Com-

puter Science, volume 1304, pages 213-222. Springer-Verlag.

1997.

T. J. Callahan, P. Chong, A. DeHon, and J. Wawrzynek.

Fast Module Mapping and Placement for Datapaths in FP-

GAS. In ACMKSIGDA International Symposium on Field-

Programmable Gate Arrays, pages 123-132, Feburary 1998.

J. M. Emmett and D. K. Bhatia. ReconfiguringFPGA Mapped

Designs with Applications to Fault Tolerance and Reconfig-

urable Computing. In Lecture Notes in Computer Science,

volume 1304, pages 141-150. Springer-Verlag, 1997.

J. M. Emmett and D. K. Bhatia. University of Cincinnati

Technical Report Number: TR219/09/98/ECECS, 1998.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic

Publishers, 1997.

Placement or Floorplanning Tools
Circuit I Xitinx I Xilinx I TSEP
Name Flat Macro Macro

DCT 1 Ml1 Ml 1 TS_FP

Table 3: Tools usedforplacing Cflat netlist) orfloorplanning(macro
based netlist) test circuits. All circuit were routed using the cor-
responding Xilinx Router All timing static timing analysis was
performed on routed circuits.

Execution times (CPU sets)
Circuit Xihx Xilinx TSEP
Name Flat Macro Macro

Table 4: Floorplanning orplacement execution times.

Table 5: Floorplannert/placed circuit (post route) static timing
ysis results.

Table 6: Floorplannetiplaced circuit routing times.

55

Figure 12: Floorplan for CPU circuit.

Figure 13: Floorplan for MATMULT circuit.

.,,...~...................................”...~......

Figure 14: Floorplan for DCT circuit.

[71 D. E. Goldberg. Genetic Algorithms in Search, Optimization,

and Machine Learning. Addison-Wesley Publishing Com-

pany, 1989.

PI S. Kirkpatrick, D. D. Gelatt, and M. P. Vecchi. Optimization

by Simulated Annealing. Science, 220:671-680, May 1983.

[91 H. Krupnova, C. Rabedaoro, and G. Saucier. Synthesis and

Floorplanning for Large Hierarchical FPGAs. In ACM/SZGDA

International Symposium on Field-Programmable Gate Ar-

rays, pages 105-l 11, Feburary 1997.

[lOI F. T. Leighton and I? W. Shor. Tight Bounds for Minimax

Grid Matching with Applications to Average Case Analysis

of Algorithms. In Proceedings of the Symposium on Theory

of Computing, pages 91-103, May 1986.

[ill A. Lim. Performance Driven Placement Using Tabu Search.

Informatica, 7(l), 1996.

WI A. Lim, Y. M. Chee, and C. T. Wu. Performance Driven Place-

ment with Global Routing for Macro Cells, In Proceedingsof

Second Great Lakes Symposium on VLSI, pages 35-41,199 1.

u31 A. Mathur, K. C. Chen, and C. L. Liu. Re-engineering of

Timing Constrained Placements for Regular Architectures.

In IEEE/ACM International Conference on Computer Aided

Design, pages 485-490, November 1995.

u41 S. M. Sait and H. Youssef. VLSI Physical Design Automation.

IEEE Press, 1995.

[151 J. Shi and D. Bhatia. Performance Driven Floorplanning for

FPGA Based Designs. In ACM/SIGDA International Sympo-

sium on Field-Programmable Gate Arrays, pages 112-l 18,

Feburary 1997.

V61 L. Song and A. Vannelli. A VLSI Placement Method Using

Tabu Search. In Microelectronics Journal, number 3, pages

167-172, May 1992.

[I71 N. Togawa, M. Yanagisawa, and T. Ohtsuki. Maple-opt:

A Performance-Oriented Simultaneous Technology Mapping,

Placement, and Global Routing Algorithm for FPGA’s. IEEE

Transactionson Compter-AidedDesign of Integrated Circuits

and Systems, 17:803-823, September 1998.

V81 T. Yamanouchi, K. Tamakashi, and T. Kambe. Hybrid Floor-

planning Based on Partial Clustering and Module Restructur-

ing. In Proceedings of the IEEE International Conference on

Computer-Aided Design, pages 478-483,1996.

u91 Xilinx Inc. http://ww.xilinx.com.

56

