Fast Floorplanning for FPGAs~*

John M Emmert, Akash Randhar and Dinesh Bhatia

Design Automation Laboratory,
ECECS Department
University of Cincinnati,
Cincinnati, OH 45221-0030

Abstract

Floorplanning is a crucial step in the physical design flow for FPGAs. In this paper, we
use min-cut based successive bipartitioning to floorplan circuits for application to FPGAs.
The primary motivation of this work is reduction of execution time required to accomplish
the floorplanning step of device mapping. Our method includes clustering to enhance cir-
cuil performance and terminal propagation to reduce total wire length and enhance circuit
routability. The floorplanner is intended to take predefined macro based designs as input.
Using the Xilinx zc4000 series of FPGAs as the target architecture, we have demonstrated
effective and fast floorplanning on a collection of designs.

1 Introduction

Field Programmable Gate Arrays (FPGAs) have become very prevalent in every possible
design scenario. Since their introduction in the mid 1980s, FPGA device architectures
have undergone significant changes. Devices with an ability to map 100,000 gate equivalent
designs have become common and new research and commercial development has shown the
promise of one million gate equivalent devices in the near future[12]. While technological
innovations are easily facilitating higher density devices, not much progress has been made
towards CAD tools facilitating the implementation of large designs. Once the device density
reaches one million gates and beyond, the design complexity will fall close to what we
currently have for custom ASICs. These new high density FPGAs will require new and
innovative methods for rapidly mapping circuits to device architectures.

In this paper, we present a min-cut successive bipartitioning based floorplanner for
mapping macro based designs to high density FPGAs. Our approach makes use of prechar-
acterized macros 2 that are used during the application design process as well as during
the physical mapping process. Figure 1 illustrates the design flow. The subsequent netlist
defining the interconnection of macros is used to floorplan the design for an FPGA device.

Breuer [2] suggested a min-cut based floorplanning approach for general VLSI circuits.
We adapt this approach and make use of combinational force directed clustering along
with Fiduccia Mattheyses [1] successive bipartitioning to relatively place macros within

* This research is partially supported by contract number F33615-96-C1912 from Wright
Laboratory of the US Air Force and a grant from Lucent Technologies

2 Components in the library include macros like adders, multipliers, shifters,
decoders, and more. These macros have fixed size, expressed in terms of number of
logic blocks. In addition, each block also has a shape with logic blocks optimally preas-
signed within the predefined shape. Such a preplacement of logic blocks within a shape
boundary helps in precharacterizing the performance of the macro. Also, after floorplan-
ning, macros can be forced to retain their shape thus avoiding the need of reassigning
logic blocks within macros after floorplan completion.

¢

Design Entry
&
- Synthesis
Library
Floorplanning
Routing

Fig. 1. The floorplanning based design flow.

partitions. This is followed by legal placement within each partition. During legal placement,
flexible macros are reshaped and all macros are assigned a physical location. For flexible
macros, any intra macro placement is accomplished using simulated annealing. Finally,
compaction is performed on the floorplanned design to minimize the overall area.

The floorplanning problem has been studied extensively in VLSI CAD, but relatively
little work has been done in the area of FPGA floorplanning for macro based designs.
Shi has proposed a force directed method for macro based FPGA floorplanning [5, 6].
Mathur proposed a combination of net based and path based approaches for timing driven
floorplanning [7] . Simulated annealing based approaches have been suggested [9], but they
are not efficient in terms of execution time. Various other techniques suggested for general
VLSI floorplanning have been adopted for FPGAs [11][2]. In this paper section 2 defines
the floorplanning problem and illustrates each step in our floorplanning approach. Section
3 presents benchmarks circuits, test results, and test analysis.

2 Floorplanning

Macros are a collection of relatively placed configurable logic blocks (CLBs). They can
be hard (of fixed area and shape) or soft (of fixed area but flexible shape). The goal of
floorplanning is to determine a valid physical location for each macro and the dimensions
and internal placement for each flexible macro. More formally stated:

Given : A set of macro blocks M = {m1, m2,...,mn}, with area a1, az,...,an respectively.
Objective : Assign a width w; and height kh; to each flexible block m; € M and assign a
physical location to each macro m; € M such that the following constraints are satisfied:

1. the area of the mapped circuit is < the area of the target FPGA,
2. the circuit delay is minimized, and
3. the circuit is 100 % routable.

2.1 Definitions

Partition Segment: A set of modules generated by bipartitioning is called a partition
segment. Bipartitioning of a set generates two partition segments.

Segment Number: A unique number assigned to each partition segment.

Parent Partition Segment: A partition segment is parent to all modules it contains.

Cardinality of Partition Segment: The number of modules in the segment.

Area Slice: An area slice is a block of area on the FPGA generated by cutlines. Each
partition segment is mapped to one and only one area slice, and each area slice has one
and only one partition segment mapped to it.

Pseudo Module: A pseudo module is a module of size zero, introduced by the process of
terminal propagation. A pseudo module is always contained in a partition segment.
Coordinates of Partition Segment: The coordinates of a partition segment are the coor-
dinates of the area slice, to which it is mapped. They are represented by top left and

bottom right coordinates of the area slice.

2.2 Successive Bipartitioning

Successive bipartitioning is the process of dividing the design into multiple segments, such
that the cardinality of each segment is less than or equal to a constant, K. We start with
the input design as the initial partition segment and assign it to the whole FPGA area.
We continue to bipartition the segments, until the terminating condition (cardinality of
each partition segment < K) is satisfied. With every bipartitioning of a segment, the area
allocated to that segment is also divided into two area slices. Then, we allocate each new
partition segment to an area slice.

Following describes the process of successive bipartitioning. A queue is maintained
to keep track of partition segments which are candidates for further bipartitioning. A
partition segment is a candidate for further bipartitioning if and only if the cardinality
of the segment is > K. The queue is initially loaded with the original design. In one pass
of successive bipartitioning, the head of the queue is bipartitioned. At the same time, the
area of the target FPGA 1is sliced into two parts by a vertical cut, and each area slice is
allocated to a segment obtained as a result of the bipartitioning. Out of these two partition
segments, eligible candidates for further bipartitioning are loaded into the queue. The
process stops when the queue is empty. It should be noted that vertical cuts of the target
FPGA are followed by horizontal cuts and horizontal cuts are followed by vertical cuts in
an alternating pattern. This process of iterative bipartitioning effectively forms a partition
tree whose nodes are H or V indicating horizontal or vertical cuts respectively, and leaf
cells of the tree are the partition segments with < K modules. Each of these leaf cells has
an area slice assigned to it on the FPGA. A possible order of cuts is shown in Figure 2 (A),
and the corresponding partition tree is shown in Figure 2 (B). A two dimensional integer
array keeps track of which segment numbers are mapped to which FPGA CLBs. Integer
values at the (z,y) indices of this array, correspond to the segment numbers occupying the
CLB slots on the FPGA. Since all leaf nodes of the partition tree are mapped to the array,
the physical area of the FPGA is allocated by the tree nodes. Each of these nodes contains
< K macros. Hence, effectively mapping the groups of macros to localities on the FPGA.

We perform connectivity based clustering to form the initial partition for input to the
FM bipartitioning algorithm. We extract two clusters out of the initial macro set, M. Each
contains macros which are densely connected. Since initial clusters are further operated on
by the partitioner to refine the cutset, execution speed takes precedence over quality during
clustering. Therefore, a simple greedy method is used to obtain the clusters.

The FM partitioning algorithm, being iterative in nature, is highly dependent on the
quality of the initial cut. Hence a good initial cut produced by clustering, remarkably im-
proves the performance of the FM bipartitioner. Table 1 demonstrates cutset improvement
for clustered input relative to random input for the FM bipartitioner.

AS v
(&}

n /\ __. Oneiteration
=Y. BTN -Y:) f

of
H H Successive

A
I
A
) . 4 . Bipartitioning
ACUTZV - __cuT3 /\ /\
i v v

CcuT4
w
CuT1

Y
Lk kg ¥
cqu»OS 8 389 A /\&8/\9/\
: | ARCR R
Y i 1234 6 7 1112
(A)] (B)
leaf nodes

Fig.2. (A4)-A possible order of cuts. (B)-Corresponding partition tree.

Cutset by FM Partitioner
Design |Random Clustered
CKT1 62 40
Mult16 79 45
MultRace 57 50
CLA 148 82
CPU 58 73

Table 1. Cutset after first cut on input netlist.

Terminal Propagation: The purpose of terminal propagation is to provide knowledge
of inter-partition connections to modules in each partition [3]. This aids in reducing total
interconnection length of the placed design. We begin with preprocessing of existing pseudo
terminals. The pseudo terminals, which were unlocked during clustering, belong to one of
the sub partitions generated by the FM partitioner. They are initially unlocked. During
preprocessing, we first lock such pseudo modules. If a pseudo module belongs to a partition
segment p; € P and its previous lock position was (z,y), then given a horizontal cutline its
new lock position is (z, W). (BRY (pi) and T'LY (p;) return the bottom-right
and top-left coordinates of the partition segment p; € P respectively.) Similarly, given a
w, y). After allocating the new lock
positions to all unlocked pseudo modules, we lock the corresponding pseudo modules in
every module pair, such that the relative lock position of the pair of modules is maintained.

vertical cutline its new lock position is (

After this preprocessing, we introduce a new pseudo module for each cut-net in both
of the subpartitions. These new pseudo modules are located on the center of the cut-line.
Hence, a new pair of pseudo modules belonging to two different partitions but locked to
adjacent positions are introduced. Hereafter, when any pseudo module of this pair is moved
to another location, the other pseudo module is also moved to maintain the same relative
position. In this manner the pseudo modules form an intermediate connection that draws
modules connected to these pseudo modules closer together (see figure 3).

In figure 3, the modules m; and m; € M are cut by the first vertical cut Vi. At
this point, two pseudo modules (shown as circles) are introduced and locked to the the
center of the cutline V3. After the horizontal cut Hi, the module m; is placed in the top
partition. Because of this movement, the pseudo module in the partition of m; moves to the
center position on the previous vertical cut-line in the new partition of m;. This causes the
corresponding pseudo module (m;) of the pair to be attracted to the top partition during

partition H>. In the absence of any bias from the pseudo module, the module m; could go
in the top or bottom partition made by horizontal cut Hz But as a result of the pseudo
modules, m; has a bias to go to the top partition. This will reduce the cutset by one and
m; will remain close to m;. For the same reason, the two modules will tend to remain in
nearby partitions during subsequent cuts.

V1

Hi

V1

Hi1

V1

Fig. 3. Terminal propagation : pseudo modules.

2.3 Legal Placement

At the end of successive bipartitioning, each leaf node of the partitioning tree contains a
maximum of K macros. Also, each leaf node is mapped on the target FPGA. In effect,
it gives a locality on the FPGA chip corresponding to a leaf node, within which, macros
contained in the leaf node should be placed. Legal placement is performed individually
on each leaf node to decide the exact location and shape of macros contained in them.
First, we decide relative placement of macros inside each partition. Then, we place hard
macros. Finally, we process soft macros and place them. Processing of soft macros includes
reshaping and deciding CLB placement inside the reshaped macro. Legal placement is also
largely responsible for highly compact floorplans. This is achieved during reshaping and
placement of soft macros. We place the macros maintaining actual rectilinear boundaries
of the modules under consideration, figure 4.

Relative placement of Macro Blocks: To obtain relative placement of macros in-
side a partition, we perform an exhaustive search for the best relative placement (least
total wire length). Since there are a maximum of K modules in each partition, there are
K'! combinations to be explored in this search. Experimentally we found K = 3 to be a
manageable value. K values beyond 3 require other methods for placement [4].

During macro block placement pseudo modules, introduced during terminal propaga-
tion, are still present at the boundaries of the partition. These give the direction from
which each net enters or exits the partition. While deciding the relative placement of mod-
ules inside a partition, we account for wire length for connections among various macros
as well as the pseudo modules in the partition. This takes care of both inter-partition and
intra-partition connections. Hence an attempt to limit global minimum wire length is made.

To identify the best arrangement out of all possible permutations of macros inside a
partition, we first compute the number of connections between macros within the boundary
of the partition. Next, we calculate the number of connections between each module in
the partition and the left boundary of the partition. Then the right boundary. Finally we
exhaustively place the modules in a horizontal direction based on the number of connections.

Hard Macros: We performed successive bipartitioning and relative placement while
considering module size only. No attention was paid to module dimensions. This may re-
sult in partitions that despite having enough area, are not wide enough or tall enough to

accommodate a fixed m; € M. In case of such a discrepancy, we place the macro in free
space of adequate dimensions nearest to the location allocated to it. Suppose the decided
module location is (z,y). If this location can not accommodate the hard macro m; € M,
then m; is placed at a location (z + éz,y + 8y), where |6z| and |6y| are minimum, and
location (z + 6z, y + 8y) can accommodate the hard macro.

Soft Macros: We reshape soft macros to fit in the dimensions of the space allocated
to their leaf cellin the partition tree. This is done by sequentially allocating available CL.B
slots on the FPGA to macros in the partition segment. This allocation is done in a snake
like fashion (even columns start from the top row, odd from the bottom). The method of
CLB assignment is such that we first fill the column of available space beginning from the
first row of the column. After a column is filled the next successive column is filled starting
from the last row up to the first row. The remaining CLBs of the macro start occupying
the available CLB slots in the next column. This process is continued until all CL.Bs inside
the macro are placed. If a high degree of compactness is desired, the next soft macro starts
where the previous one ends. Hence the shape of the soft macros can be nonrectangular,
which helps in placing the macros in the minimum possible space (figure 4). But if less
compactness is desired, the next macro starts from the top row of the next column. In this
case the shape of macros is always rectangular.

Order off C
Sotfassigni

——_
Macros CLB Slot ‘\Mac(CLB Slo
Degree of Compactness = 0

Degree of Compactness= 1 or 2

Fig. 4. Legal Placement: Example nonrectangular shaped of macros.

Simulated Annealing for Intra Macro Placement: CLBs inside each soft macro
are placed using simulated annealing [10]. The constraints for placement are minimum total
wire length and minimum longest wire. In this step both intra module connections and inter
module connections are considered. Hence a global picture is in view while attempting wire
length minimization.

2.4 Compaction

After legal placement, we have a valid floorplan. This floorplan has tightly placed modules
inside each leaf cell of the partition tree, but the floorplan may have some unused CLBs
surrounding the placed area inside leaf cells. This is illustrated in figure 5(A). During
compaction, we work on the floorplan generated by the legal placement step and strive to
eliminate such unused space from within the bounding box of the floorplanned layout. We
are constrained by the fact that we cannot disturb the relative placement of the macros. We
perform compaction by eliminating unutilized rows and columns of CLBs from the floorplan
if any exist inside the boundary of the placed design. Partially empty rows and/or columns
are left as they are. This ensures that relative placement obtained so far is respected. This
step is carried out only if a high degree of compactness is desired. Figure 5 illustrates an
example floorplan before and after compaction. After any compaction, we have our final
floorplan.

(A) Before Compaction (B) After Compaction

Fig.5. Compaction example for high degree of compaciness.

3 Results and Analysis

All results reported here were obtained on a SUN-ULTRA 2300, running solaris 2.5 (with
the exception of the force directed floorplan of the CLA design, which was obtained on a
SUN-SPARC 5). Table 2 describes various benchmark circuits used to test the floorplanner
[8]. In this table, column 1 defines the benchmark circuit names. Columns 2 and 3 (labeled
#CLB and #Macro) define the number of CLBs and number of macro blocks used for each
of the bench mark circuits. Columns 4 and 5 (labeled Part and #CLB) define the target
FPGA part and the total number of CLBs available on the target FPGA part. Column 6

gives the percentage of CLB utilization by the benchmark circuit on the target FPGA part
(Eetimng)-

Design |#CLB|#Macro|Part |#CLB| %Util
Ckt1 180 9 4005| 196 |91.8%
Ckt2 200 10 4006| 256 |78.1%

Mult16 576 16 4020 784 |73.46%

Mult16 576 16 4025| 1024 |56.25%

MultRace| 618 23 4020 784 |78.82%
MultRace| 618 23 4025| 1024 |60.35%
CLA 607 128 (4020 784 |77.42%
CLA 607 128 [4025| 1024 [59.27%
CPU 674 168 (4020 784 |(85.87%
CPU 674 168 (4025 1024 [65.82%

Table 2. Benchmarks circuits used for testing.

Table 3 gives the CPU execution time required by our floorplanner [8], the Xilinx XACT
PPR floorplanner, and the force directed floorplanner [5] to floorplan the various benchmark
circuits. In this table columns 3 and 4 (labeled Macro) give the execution times for the Xilinx
PPR tool using macro based input circuits. In this table and subsequent tables, column 3
provides data for the default placement effort (=2) and column 4 provides data for the
maximum placement effort (=5). Columns 5 and 6 (labeled Flat) give the CPU time for
executing the Xilinx PPR tool on the flattened input circuits (circuits are flattened and
macro hierarchy is removed). In this table and subsequent tables, column 5 provides data
for the lower, default placement effort and column 6 provides data for the highest placement
effort. Column 7 (labeled FD) gives the execution time for the force directed floorplanner
[5], and Column 8 (labeled This Work) gives the execution time for our floorplanner.

The data in table 3 indicates our floorplanner exhibits a fast execution time relative
to the other methods tested. This fast execution time by our floorplanner is possible be-

cause of the linear nature of the FM bipartitioning algorithm. It was shown that the FM
bipartitioner can bipartition a hypergraph with n terminals in O(n) time [1]. This will
enable our floorplanner to handle very large circuits in an extremely short amount of time.
Table 3 shows the time required by Xilinx increases monotonically as the size of the input
design increases. On the other hand, our floorplanner is substantially faster when number
of macros is larger. Hence when the average size of the macros is small compared to the
design size our floorplanner is substantially faster. But when the design has fewer macros
our floorplanner does not greatly outperform Xilinx PPR The force directed floorplanner
takes the longest time to floorplan the larger designs. The most time consuming process
in the force directed floorplanner is reshaping of the macro blocks. For circuits where the
percentage of utilization of the target FPGA is low (reshaping is not performed) the force
directed floorplanner is extremely fast. Our floorplanner is faster for circuits with a higher
percentage utilization of the target FPGA.

CPU Time (sec)
Design |Part XACT FD|This Work
Macro | Flat
CKT1 |4005({NA(NA|42|153 INA 8
CKT2 |4006|17 |27 451|217 |11 12
Mult16 |4020{123|174(|195]1408| 14 81
Multl6 |4025({127|175|197|1483| 14 81
MultRace|4020{NA|NA|[308|1428 NA 90
MultRace|4025{143({170(302|1460|NA 90
CLA |4020({172|294|297[1458 NA 32
CLA |4025(158|273|291{1400|5hr 32
CPU [4020(247(563|412|2937|NA 36
CPU [4025|210(385|418|3035|NA 36

Table 3. Fzecution times for various algorithms.

Table 4 describes performance characteristics of the mapped circuits. It gives the max-
imum operating frequency for each of the benchmark circuits floorplanned by the various
tools [8]. Maximum frequency (F') was calculated from the worst case delay (D) reported
by the Xdelay tool from the Xilinx tool set (F' = %) After importation into the Xilinx tool,
the floorplanned designs were routed using the Xilinx PPR tool, and the routed designs
were analyzed using the Xdelay timing analysis tool.

Columns 3 and 4 give the maximum operating frequency for the macro based bench-
mark circuits floorplanned by the Xilinx PPR tools. Columns 5 and 6 give the maximum
operating frequency for the flattened benchmark circuits mapped by the Xilinx PPR tools.
Column 7 gives the operating frequency for the benchmark circuits floorplanned by the
force directed tool. Column 8 (labeled H) gives the operating frequency for the benchmark
circuits floorplanned by our floorplanner with a high degree of compactness, and column 9
(labeled L) gives the operating frequency for the benchmark circuits floorplanned by our
floorplanner with a low degree of compactness.

Performance is a critical metric for floorplanned circuits. A fast floorplanner that results
in circuit maps with very low maximum operating frequency is not acceptable. Table 4
shows the operating frequency of our floorplanned designs have performance characteristics
similar to those of the commercial tools (except mult16 on xc4025). The table also shows

performance characteristics for our floorplanned designs are at least as good of those that
were successfully floorplanned by the force directed floorplanner.

Frequency (MHz)
Design|Part XACT FD |This Work
Macro Flat H L
CKT1|4005|NA|{NA|5.8[6.0 NA|5.7| NA
CKT2[4006| 4.5 4.7 | 5.1 | 5.7|4.8|4.9| 4.7
M16 (4020{13.5(13.7|13.7|13.7(13.6|13.8| 13.4
M16 |4025|13.6(13.8|{13.4|12.9(13.2{13.4| 13.3
MultR 4020 NA |NA |{10.6{10.0| NA|10.7| 10.3

MultR|4025| 9.6 [9.9 9.8 9.7 [NA|10.1| 9.5
CLA (4020{8.5 8.8 [8.4|8.6 |[NA|8.54| 8.4
CLA (4025|7.5|7.5(8.1(8.9|6.7|81| 7.9
CPU |4020| 6.6 | 6.7|7.8 | 7.8 [NA|7.1| 6.9
CPU [4025|5.5[6.9|7.1 |79 |NA|6.9| 6.9

Table 4. Mazimum operating frequency for floorplanned benchmark circuits.

Table 5 shows the bounding box of the placed designs for various runs of the benchmark
circuits [8]. In this case the bounding box is described by the number of CLBs required to
accommodate the floorplanned circuit. Obviously the flat designs require the fewest total
CLBS since they are the most compact. Since inevitably macro based floorplans of circuits
with fixed shaped macros cannot be 100% area efficient, the macro based floorplans require
more CLB area and hence a larger bounding box area than flat designs. This is part of the
cost of using a fast executing, macro based floorplanner. When high area utilization of the
FPGA is required this becomes a factor and a tradeoff between execution time and area
utilization may be required. Our floorplanner addresses this issue by reshaping the soft
macros to reduce the overall area required by the mapped circuit. The effective reshaping
and packing of macros by our floorplanner allowed it achieved feasible placement for all of
the test runs.

Bounding Box
Design|Part XACT FD|This Work
Macro Flat H L
CKT1[4005|NA|NA| 182|182 |[NA|196] NA
CK'T2{4006|240(240| 200 | 200 |240({210| 240
M16 |4020|675|675| 506 | 506 [576|625| 672
M16 |4025|702|702| 506 | 506 |576|625| 672
MultR|4020{NA[NA| 644 | 644 |[NA|[T29| 784
MultR|4025(992|992(|1024|1024(NA|729| 864
CLA |4020(628|628| 584 | 584 [NA|625| 784
CLA |4025|650(650| 676 | 676 [780(625| 1024
CPU [4020(756|756| 616 | 616 |NA|702| 784
CPU (4025|736|736| 640 | 640 [NA|702| 870

Table 5. Smallest bounding box area for floorplanned benchmark circuits.

4 Conclusions

In this paper we have described the implementation of a large scale macro based floorplan-
ner that exhibits fast execution when compared to industry standard Xilinx tools. Due to
predesigned macros, the floorplanner need not address the problem of CLB level placement
for all of the macros. Only soft macros, whose shapes are changed during the floorplanning
process must be placed. In the majority of cases, the overall approach resulted in mapped
circuits whose performance was similar to that of the circuits produced by the Xilinx tools.

The successive bipartitioning method is ideal for initial floorplanning of very large cir-
cuits. It quickly divides the circuit into sections that can be assigned to various areas on
the FPGA. With the addition of clustering to improve the initial cutsets and terminal
propagation to limit the total wire length the quality of the floorplan is greatly improved.
In the future we expect that library based design approaches will become fairly common
right from synthesis to physical mapping. Thus, floorplanning will play a significant role in
both area estimation during synthesis and final mapping during late stages of the design. In
our future work, we will integrate this floorplanning methodology with performance driven
algorithms to enhance the performance of mapped designs [4]. We will use the successive
bipartitioning method with clustering and terminal propagation in the early stages of floor-
planning for very large designs. In the latter stages we incorporate performance enhancing
methods to aid in the final assignment and placement of the macro blocks.

References

1. C. Fiduccia and R. Mattheyses, “A Linear time Heuristic for Improving Network Par-
titions”, Proc. of DAC, pp.175-181, June 1982.

2. M. Breuer, “A class of min-cut placement algorithms”, Proc. of DAC, pp. 284-290,
1980.

3. A. E. Dunlop and B. W. Kernighan, “A Procedure for Placement of Standard-Cell
VLSI Circuits”, IEEE Transactions on Computer-Aided Design, pp. 92-98, January
1985.

4. J. M. Emmert and D. K. Bhatia, “Fast Placement Using TABU Search for Total Wire
Length Minimization”, University of Cincinnati, ECECS Technical Report, 1998.

5. Jianzhong Shi, Akash Randhar and Dinesh Bhatia “Macro block based FPGA Floor-
planning” Proc. of Intl. Conf. on VLSI Design, January 1997.

6. J. Shi and D. Bhatia, “Performance Driven Floorplanning for FPGA Based Designs”
Proc. of ACM Symposium on Field Programmable Gate Arrays, February 1997.

7. A. Mathur and C.L. Liu, “Compression-Relaxation:A New Approach to Timing Driven
Placement for Regular Architectures” IEEE Transactions on CAD of Integrated Cir-
cuits and Systems, pp. 597-608, June 1997.

8. A. Randhar, “Macro Based Floorplanning for FPGAs” Thesis: University of Cincinnati,
December 1997.

9. C. Sechen “Chip Planning, Placement, and Global Routing of Macro/Custom Cell
integrated Circuits Using Simulated Annealing” in Proc. of DAC, pp. 73-80, June
1988.

10. A. Subramaniam and D. Bhatia ”Timing Driven Placement for Logic Cell Arrays”
University of Cincinnati, ECECS Technical Report, 1994.

11. D.F. Wong and C.L. Liu “A new method for floorplan design” Proc. of DAC, pp.
101-107, 1986.

12. www.xilinx.com.

This article was processed using the INTpX macro package with LLNCS style

