
Integrating Floorplanning In Data-Transfer Based High-Level Synthesis

Shantanu Tarafdar Miriam Leeser Zixin Yin
Synopsys Inc.

700 East Middlefield Rd.
Mountain View, CA 94040

Dept. of Electrical and Computer Engineering
Northeastern University

Boston, MA 02115

Abstract

Modern digital systems move and process vast amounts of
data. Designing good ASIC architectures for these sysLems
requires efficient data routing and storage. A high-level syn-
thesis (HLS) system must consider spatial aspects of the
architecture it synthesizes to achieve this. In this pilper,
we discuss using floorplanning information in the main HLS
flow. Our HLS system, Midas, incorporates floorplanning
and formulates HLS using a data-transfer model. Midas
synthesizes an architecture whose data storage and transfer
subsystems are spatially integrated with its execution unit.
Midas also generates a high-level floorplan for the arcf itec-
ture, which contains the shapes and coordinates of its com-
ponents and routing channel specifications for its buses. Our
experiments comparing Midas’s architectures to those gen-
erated by a HLS system that does not use the data-transfer
model or floorplanning show that Midas’s architectures are
smaller and yet allow for large amounts of simultaneous data
motion and storage.

1 Introduction

Advances in fabrication technology allow digital integrated
circuits (ICs) to contain an increasing number of transis-
tors. Computer-aided design (CAD) tools are needed to
manage the increasing design complexity. In addition, high-
throughput, memory-intensive digital systems, like those in
multimedia applications, place heavy demands on IC timing
and area, making the interdependence between layout and
IC architecture design more critical today than ever bl3fore.

We address the importance of data-issues and floorplan-
ning in high-level synthesis (HLS). HLS is a branch of CAD
for ICs that synthesizes an architecture for an IC given its
intended behavior. In modern IC’s, interconnect and stor-
age dominate the IC area, yet most HLS systems do not con-
sider IC layout during synthesis, and treat data-issues as sec-
ondary. Midas, our HLS system, uses the data-transfer (DT)
model [l, 21 and floorplanning in the core HLS flow. The
DT-model formulates HLS around data-transfers in the be-
havior as opposed to operations as is more traditional The

Permission to make digital or hard copies of all or part of this work for perjonal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on serwrs or to
redisttibutc to lists, requires prior specific permission and/or a fee.
ICCAD98, San Jose, CA, USA
0 1998 ACM 1~58113-008-2/Y8/0011..$5.00

floorplanners - a global one and an incremental one - pro-
vide Midas with the shapes and placement of components
and buses very early in the HLS flow. The result is a high-
level floorplan and an architecture in which data is stored
close to where it is produced and used. Our experiments
show this methodology yields architectures with smaller lay-
outs than a methodology that ignores floorplanning.

2 Previous work

While most HLS systems ignore the floorplanning aspects
of the architectures they synthesize, there are some notable
exceptions. Kurdahi et al. [3] propose a layout predictive
model, for use in high-level design automation tools, which
accounts for a variety of register transfer level design styles
and uses floorplanning. In BUD [4], operations in the design
are clustered hierarchically and each cluster is scheduled,
allocated, and then floorplanned. BUD evaluates the gen-
erated design and re-synthesizes until an acceptable design
is achieved. The IBA (interleaved binder/allocator) HLS
system uses a module called Fasolt [5] as a post-processing
step to re-optimize a previously synthesized and then floor-
planned architecture. 3D [6] is an HLS system that first
schedules and binds operations, then performs floorplan-
ning and finally makes changes to the architecture to re-
duce wiring delays computed from the floorplan. BINET [7]
is a binding algorithm that performs incremental binding
and floorplanning on a previously scheduled behavior using
a network flow approach.

In contrast to the above approaches, our HLS system,
Midas, tightly integrates the utilization of floorplanning in-
formation in the main HLS flow. Floorplanning is not a
post-processing option. Midas uses floorplanning to take
into account the area cost of a data-transfer] t,o measure
data-transfer congestion at points in the floorplan or in the
schedule] and to project more accurate area estimates for
the architecture being synthesized.
guide all aspects of HLS in Midas:
and binding.

3 The DT-model

Midas aims at elevating the status

These design metrics
scheduling, allocation,

of data issues in HLS
by formulating the classic HLS subproblems like scheduling
and binding in terms of data-transfers 11, 21. In an archi-
tecture, data must be bound to storage elements and data

units, ports of storage elements, and interconnect. The DT-
transfers (DTs) m u a t be bound to terminals of functional

412

model in Midas provides a framework in which to do this
concurrently with operation scheduling and binding.

In HLS, a dataflow graph (DFG) is extracted from the
input behavioral description. The nodes of the DFG rep-
resent operations and the directed edges represent data de-
pendencies between operations. In traditional HLS systems,
scheduling and binding are formulated in terms of opera-
tions. Midas formulates these subproblems in terms of data-
transfers instead. A data-transfer (DT) is a set of operations
corresponding to the movement of a single instance of data.
It contains the operation sourcing the data and all the opera-
tions using the data. In an unscheduled DFG, the operation
represented by each node with outgoing edges is the source
operation of a primary DT and the operations of the node’s
children are the destinations operations of the DT. An op-
eration can be a member of more than one DT. Figure 1
shows DTs extracted from a DFG.

1 A A P
n l n l n2 n2 n3 n3
D T l DT2 DT3 DT4

n4 T A T n4 n5 n5

DT5 DT6 DT7

4 n6 i “ T C n6 n6 f

DT8 DT9 DT10

(a) DFG (b) Extracted DTs

Figure 1: Extracting DTs from a DFG

DTs have a cost associated with them. The cost of trans-
ferring data can be modelled as the product of the area of
the interconnect needed and the length of time the intercon-
nect has to be reserved for the transfer. The sum of the costs
of DTs scheduled in the same control step (cstep) is the cu-
mulative DT-cost at the cstep and reflects the interconnect
requirement of the architecture. A schedule in which each
cstep has roughly the same cumulative DT-cost is one that
efficiently utilizes the available interconnect in the ASIC.
Figure 2 is a snapshot of the floorplan of an architecture at
one cstep in the execution of the behavior. The arrows are
DTs and the areas of the arrows represent the relative costs
of the DTs.

Register dt-a

Figure 2: DT-costs in a cstep during execution

The scheduling directive of the DT-model states that all
the operations of a DT must be scheduled in the same cstep.
The directive allows the storage requirements to be modelled
explicitly in Midas. If all the operations of a primary DT

are scheduled in the same cstep. the da:a generated by rhe
source is consumed immediately and does not need t o be
stored. Often, it is impossible to schedule all the operations
of a DT in the same c s e p due t o resource or timing con-
straints. The primary DT must be partitioned into a se1
of secondary DTs. each of TT-hich meets the scheduling di-
rective. The operations of the primary DT are distributed
among the secondary DTs. DT partitioning implies the data
represented by the primary DT must be stored in the archi-
tecture. Each secondary DT generated requires a read or
write of the data from a storage element and has a stor-
age read or write added to its set of operations. Figure 3
illustrates a general case of DT partitioning.

(a) Original DT

(b) DT Partition

Figure 3: A partition of a primary DT

DT partitioning directly impacts storage and intercon-
nect requirements. Partitioning gives rise to a requirement
to store data, which may increase the size of storage. Each
of the secondary DTs formed by partitioning a DT gives
rise to a storage access requirement, which can increase the
number of ports on storage elements, and an interconnect
requirement, which can increase the number of buses in the
synthesized architecture. In general, DT partitioning is to
be avoided since it has the potential to increase storage size,
the number of storage ports, and the number of buses.

DT partitioning is a core HLS step in Midas since DTs
that cannot meet the scheduling directive must be parti-
tioned before they can be scheduled. Therefore, Midas has
to consider storage and interconnect in its main HLS flow.
Since hIidas has floorplanning information available, it uses
this information to influence DT partitioning. For example,
DTs that meet the scheduling directive, but which would
have to be scheduled in csteps with high cumulative DT-
costs, can be selectively partitioned. This allows the sec-
ondary DTs generated to be scheduled in csteps with lower
cumulative DT-costs, thereby equalizing the cumulative DT-
cost across the schedule and making more efficient use of the
interconnect available.

data transfer that will occur in the synthesized architec-
ture. In addition, a D T neatly encapsulates a data broad-
cast. These allow Midas to make more accurate predic-
tions regarding data accesses and transfers which in turn
helps to guide Midas’s synthesis algorithms. This encapsu-
lation of data broadcasts is difficult to do in the conventional
operation-based model for HLS.

DT binding is tightly coupled with floorplanning and
combines operation binding and data binding. These are
usually decoupled in the operation-based model. When a
DT is bound, its operations are bound to functional units

The scheduling directive makes a DT correspond to a

413

and the data itself to terminals on those functional units.
If the DT is a secondary DT, the data must be bound to
a storage element and the storage read or write to a port
of the storage element. Finally, the transfer of data must
be bound to a bus in the architecture. Binding a DT (:om-
pletely specifies the routing of data in the architecture at a
structural level. Minimizing the area of this routing helps
minimize overall ASIC area.

4 Midas

Midas performs time-constrained HES and minimizes ASIC
area given an upper bound on the execution time for the be-
havior. It synthesizes its architectures incrementally iri the
body of a synthesis loop and uses deterministic algorithms.
The hardware model it uses is shown in Figure 4. The exe-
cution unit is made up of functional units, the storage unit
is made up of distributed, multi-ported register files, and
the data-transfer subsystem is a network of buses connected
to the components through multiplexers. These components
are spatially integrated which means that functional units
are placed close to the register files with which they interact
and buses tend to be many, but short. Midas outputs both
an architecture for the behavior and a high-level flooi plan
for the architecture.

DATAPATH
Storage
Archrtecture
= AGs + MPF 'Fs

Key:
W =Multiplexer - = Bus
AG =Address generator MPRF= Mukiporied register file

Figure 4: Midas's hardware model

Figure 5 illustrates the synthesis flow in Midas. The
DFG is first transformed into the DT-domain and the:a Mi-
das enters its main synthesis loop. Each time through the
loop design metrics are evaluated, DTs are partitioned, and
a single DT is selected, scheduled and bound. At the end of
each loop, the partial design is floorplanned.

Midas uses two floorplanners - a global floorplanner and
an incremental floorplanner. The global floorplanner com-
pletely rebuilds the floorplan. It is used at the end of' each
synthesis loop to generate a floorplan for the partial (xchi-
tecture. This floorplan is used in the next iteration through
the synthesis loop in the evaluation of design metrics and as
an input to the incremental floorplanner. The incremental
floorplanner modifies an existing floorplan based on changes
in the architecture caused by recent scheduling and binding
actions. It is used to guide the DT binding algorithm

The floorplan generated by the global floorplanner is
used to compute the projected ASIC area and DT-costs,
both of which are critical in guiding DT partitioning, schedul-
ing and binding.

Projected ASIC area represents an estimate of the area
of the final architecture. Midas starts with the existin:: par-

Input DFG

Beginning of synthesis loop:

e Are all DTs scheduled?

I --

Output DFG

Figure 5 : HLS flow in Midas

tial floorplan and pads it to account for additional resources
that Midas expects will be required by the final architec-
ture. The additional resource utilization is computed using
distribution graphs that Midas maintains.

Computing the cost of a DT requires that the area of
interconnect needed by the DT be known. For a bound DT,
this is the area of the bus to which the DT is bound which
can be acquired from the routing specification of the bus in
the partial floorplan. For an unbound DT, Midas uses the
worst-case scenario that the DT requires a bus that spans
the diagonal of the partial floorplan.

DT-costs guide DT partitioning in deciding whether to
partition a DT and how to partition it. DTs that would have
to be scheduled in csteps which already have high cumula-
tive DT-costs are partitioned to allow the secondary DTs
generated to be scheduled at csteps with lower cumulative
DT-costs. This prevents DT congestion in any part of the
schedule.

During DT selection and scheduling, Midas evaluates
the effect of each potential scheduling action on the pro-
jected ASIC area and cumulative DT-costs. Every DT can
be scheduled at certain csteps in the schedule. Each such
(DT, cstep) pair is a potential scheduling action. Among
other things, Midas attempts to minimize the increase in
the projected ASIC area and cumulative DT-costs caused
by the selected scheduling action

The incremental floorplanner is used in DT binding. Mi-
das uses a branch-and-bound heuristic to bind a DT to func-
tional units, storage elements, terminals, ports, and a bus.
The cost function guiding the branch-and-bound search is
the area returned by the incremental floorplanner. This
area is a quick estimate of the impact of the suggested bind-
ing actions on the area of the floorplan. The incremental
floorplanner allows Midas to favor binding a data-transfer
to components that are close to one another.

414

Resource allocation is bundled into the binding algo-
rithm. In addition to having the option of binding a DT
to available resources, Midas presents the binder with the
choice of introducing a new resource. The incremental floor-
planner computes if doing so will result in a lower overall
floorplan area due to a reduction in interconnect area. This
enables the binder to trade redundant components for area,
something that is impossible without floorplanning informa-
tion.

5 Global floorplanner

The global floorplanner is based on McFarland's Fast Floor-
planner [8] . The inputs to the floorplanner are a list of
blocks in the architecture, a list of possible shapes for each
block, a list of buses in the architecture, and a list of blocks
that each bus is connected to. A block can be a functional
unit or a register file. Multiplexers in the architecture are
assumed to be bundled into the shape list for the block to
which they are connected. The floorplanner outputs the co-
ordinates and selected shape of each block and a routing
specification for each bus.

Cut7

Dic Vert

(a) Slicing Tree

Cutl;

I
cut4 ;

(b) Relative position of blocks
in floorplan

Figure 6: The relation of a slicing tree to the floorplan

The global floorplanner uses a slicing-tree mechanism.
The set of blocks is bipartitioned recursively until each set
contains only one block. The sets formed in the bipartition-
ing sequence form the nodes of the slicing tree. Each of the
sets formed during recursive bipartitioning corresponds to a
section of the ASIC floorplan. The two sets formed by any
bipartitioning action lie on opposite sides of a "cut" on the
floorplan. Figure 6 illustrates a slicing tree and its relation
to a floorplan. The floorplanner uses the Kernighan-Lin [9]
bipartitioning algorithm and minimizes the number of buses
that connect blocks on the two sides of a cut. This has the ef-
fect of placing interconnected blocks close to one another on
the floorplan. For each cut, the floorplanner decides which
buses must be broadcast over the cut based on the whether
the bus is entirely contained on one side of the cut or not.
Buses that must be broadcast are allocated routing chan-
nels. A shape is selected for each block in the floorplan
so as to minimize the overall area of the floorplan. This is

done by propagating combinarions of possible shapes for the
blocks upwards from the leaves of rhe slicing rree :3:. Ti-hen
the possible shapes of tn-o sides of a cut are combined. ad-
ditional area is added t o the combined shapes ro 2ccouc:
for routing channel allocations at the cut Once the shapes
have been computed. the floorplanner traverses the tree from
top to bottom, computing the coordinates of each block and
each routing channel. The result is block placement and bus
placement in the form of the shape and coordinates of each
block and the global routing channel specifications for each
bus. Figure 7 shows a possible floorplan for the slicing tree
in Figure 6.

bus 1

r bus3 1
I bus4 J

Figure 7: A sample floorplan

The global floorplanner is called at the end of Midas's
synthesis loop and is used to update the partial floorplan
for changes made in the architecture during an iteration of
the synthesis loop. The floorplan generated by the global
floorplanner at the end of the last iteration of the synthe-
sis loop becomes the high-level floorplan output by Midas.
The partial floorplan generated by the global floorplanner
is used to evaluate the design metrics that guide DT parti-
tioning, scheduling, and binding in Midas. The area of the
partial floorplan is used as the starting point in computing
the projected area of the final ASIC architecture. The area
of a bus in the floorplan is available from the routing chan-
nel specification and is used as the area component of the
DT-cost of DTs bound to the bus. The cumulative DT-cost
is used to compute the scheduling cost and to guide DT-
partitioning. The partial floorplan is also used as an input
to the incremental floorplanner that is used by the DT bind-
ing algorithm. The partial floorplan generated by the global
floorplanner is integral to the HLS flow in Midas and Mi-
das's ability to synthesize architectures whose components
are spatially integrated.

6 Incremental floorplanner

The incremental floorplanner modifies a floorplan generated
by the global floorplanner to accomodate changes in the
architecture. Changes include newly allocated blocks and
buses, changes to the shapes of blocks due to the growth
in size of register files or multiplexers, or terminals added
to existing buses. The incremental floorplanner operates
on the slicing tree generated by the global floorplanner. It
first replaces all the blocks in the slicing tree that have been
changed, and updates information at all cuts to reflect any
changes to the connectivity of existing buses or any new
buses. Finally, each newly allocated block is placed in the

415

slicing tree to minimize the increase in buses that cross cuts.
After the slicing tree has been updated, bus broadcasting,
shape generation and coordinate computation is performed
in the same way it was in the global floorplanner.

The incremental floorplanner is used in Midas’s DT bind-
ing algorithm to guide the branch-and-bound search. In the
course of the search, binding actions are evaluated. Each
binding action can change the shape functions of conipo-
nents in the architecture or the connectivity of buses. These
changes are input to the incremental floorplanner along with
the partial floorplan from the previous iteration of the syn-
thesis loop. The area returned by the incremental floorplan
guides the branch-and-bound search. The DT binding se-
lected is the one that results in minimum floorplan area.

The incremental floorplanner is critical to Midas’:; re-
source allocation strategy. Unlike many other HLS systems,
Midas does not allocate a minimum number of resources. In-
stead, Midas allocates resources to minimize floorplan area.
Sometimes adding extra resources can lead to lower iiiter-
connect requirements and this reduces the overall area of
the floorplan. Minimizing the number of functional units,
storage elements, and buses typically leads to buses that are
long, that have many terminals and consume large areas of
the floorplan. The incremental floorplanner allows Midw to
trade extra resources for a decrease in overall area.

7 Incremental versus global floorplanning

The global and incremental floorplanners serve very different
functions and are therefore designed very differently. The
global floorplanner generates the partial floorplan that is
used to evaluate design metrics that guide DT partitioning,
scheduling, and binding in subsequent iterations of the syn-
thesis loop. It is important that it generates a good jloor-
plan that converges to the final high-level floorplan. It is
called only once in each iteration of the synthesis loop and,
therefore, the quality of its result is more import.ant than
its speed. The incremental floorplanner is used to provide a
one-step lookahead function to guide the binding algorithm.
It is called once for every node in the binder’s branch.-and-
bound search tree. It is therefore imperative that the incre-
mental floorplanner be fast. Since the incremental floorplan-
ner’s output is not used as the partial floorplan, its quality is
not as critical as the floorplanner’s speed as long as the qual-
ity is not excessively poor. The global floorplanner is called
after binding has been performed to “refresh” the floorplan.

While the incremental floorplanner uses a simple greedy
heuristic, we find that for the one-step lookahead it :needs
to perform, it is adequate in guiding the DT binding algo-
rithm. In most cases, the area of the floorplan generated
by the incremental floorplanner during DT binding matches
the area of the partial floorplan obtained during the subse-
quent run of the global floorplanner. The actual topoilogies
of the floorplans may differ but the areas are usually very
close.

The combination of incremental and global floorplanners
in Midas allows floorplanning to be integrated in the HLS
flow without sacrificing speed or quality. The DT-model
used by Midas exploits this spatial information and guides
the synthesis algorithms to the spatially integrated dahpath
architecture Midas seeks to generate.

8 Results

We tested Midas by synthesizing architectures and floor-
plans for each of five input DFGs: an arithmetic expression,

a biquad filter, the differential equation solver benchma,rk,
the elliptic filter benchmark, and a motion estimator. For
each input, we varied the maximum allowed length of the
schedule between its minimum possible and 30 control steps.
The measure of merit for a synthesized architecture was the
area of its high-level floorplan. The area was expressed as a
multiple of the unit area in the scalable technology library
used.

In order to provide a control against which to evaluate
Midas, we constructed an alternate HLS system as a com-
petitor for Midas. This HLS system used the same schedul-
ing algorithm as Midas except it did not use the DT-model
or floorplanning information. Binding and floorplanning
were secondary steps. Register allocation and merging min-
imized the number and sizes of register files needed in the
architecture. Functional unit allocation minimized the num-
bers of each type of functional unit. Operation and variable
binding were done with the aim of reducing the number of in-
puts to the multiplexers at the terminals of functional units
and ports of register files in the architecture. Bus allocation
and data-transfer binding were done to minimize the num-
ber of buses and the number of terminals on each bus. The
final step was floorplanning, using the global floorplanner.

16 20 24
C-steps

Figure 8: Results of elliptic filter runs

Figure 8 shows the results of the runs on the elliptic filter
benchmark. In the graph, the solid line represents the areas
of the architectures synthesized by Midas. The dotted line
corresponds to architectures synthesized by the competitor.
As can be seen, Midas performs better consistently. A closer
examination of the floorplans synthesized showed that Midas
opted for more buses than the competitor system did, but
ensured they were short ones. In addition, Midas traded a
larger storage unit for shorter data-transfers. The buses in
the architectures generated by the competitor system were
few, but had many more terminals than the buses in Midas’s
designs. The sum of the areas of the storage elements was
smaller than the sum of register file areas in Midas, but
extra routing was required to reach them. The execution
units synthesized by both systems had identical numbers
of components. Midas was able to exploit spatial locality
between storage and functional units while scheduling and
binding. The synthesis runs on the elliptic filter benchmark
clearly showed the advantages of floorplanning information

approach.
Figure 9 shows the results of runs on the motion esti-

mator. Even though the results are not as dramatic as the

used early in HLS and underlined the potential of Midas’s

416

120000 1

CSteps

100000 i-

1/0 I Add I Mu1 [Bus .Area ~

M l C l M l C l M I C I I 1 , C !.i c ‘ ;

-1

01 ” ” ” ” ” ” ” ” “
10 12 14 16 18 20 22 24 26 28

c-steps

Figure 9: Results of motion estimator runs

ones obtained for the elliptic filter benchmark, we see Mi-
das performs better for architectures with smaller schedule
lengths. We observed this trend in architectures for all of
the other DFGs. Midas synthesizes smaller floorplans when
the schedule length is constrained to be very short.

Shorter schedules require the synthesized architecture to
exhibit greater parallelism, in turn implying a larger number
of components and buses. Midas exploits floorplanning in-
formation to schedule and bind DTs so that communicating
components are close to one another. This reduces routing
area and produces a more compact floorplan. The mar-
gin for this type of improvement increases as the number of
components and, therefore, the binding search space grows.
As a result, we see that Midas tends to perform better for
architectures with shorter schedule lengths.

Table 1 shows the resource counts and floorplan areas for
architectures with different schedule lengths that were syn-
thesized for the elliptic filter example by both Midas and the
competitor. The areas of 1/0 pads, adders and multipliers
in our technology library tend to be smaller than those of
register files and interconnect that the architectures require.
In most of the architectures, we see that Midas has a higher
number of these smaller resources. Midas trades this for
lower register file and interconnect area. Midas’s integration
of floorplanning information and its elevation of data issues
in HLS allows it to make this tradeoff early in the HLS flow,
thereby reducing floorplan area. In the architectures for the
first two schedule lengths, we see that the only difference in
resource counts is that Midas’s architectures have a larger
number of buses. It seems counter-intuitive that their floor-
plan areas are smaller. On a closer examination, we found
that the buses in Midas’s architectures are short ones with
half of them being connected to only two components. The
overall effect is a reduction in floorplan area.

applications motivated our focus on data-issues and physi-
cal design characteristics. These applications typically have
tight execution time constraints. Our results indicate that
the use of the DT-model and floorplanning enables Midas
to generate smaller floorplans, especially for behaviors that
must execute in short lengths of time as is often required by
high-throughput, data-intensive applications.

Custom architectures for high-throughput, data-intensive

9 Conclusions

We have presented a floorplanning approach to HLS in the
form of our HLS system, Midas. Midas formulates HLS us-
ing the DT-model, which allows Midas to encapsulate data
broadcasts and accesses and to incorporate floorplanning in
the main HLS flow, making it an integral part of DT par-
titioning, scheduling and binding. The global floorplanner
in Midas performs a slower, but more optimal floorplanning
a t the end of each synthesis iteration while an incremental
floorplanner provides a fast, but acceptably accurate pre-
diction for effects of synthesis actions on the floorplan. The
combination of the tvo allows floorplanning to be included
in the HLS flow while still ensuring quality and speed. Mi-
das generates an architecture for the input behavior and a
high-level floorplan for the architecture that contains the
shapes and placements of all the components and routing
channels. The architectures Midas synthesizes tend to have
many short buses instead of a few long ones and tend to
trade extra components for a reduction in overall area. The
floorplanning approach that Midas uses in conjunction with
the DT-model results in lower area floorplans, especially
when synthesizing architectures for designs with tight sched-
ule length constraints.

References

[l] S. Tarafdar and M. Leeser, “The DT-Model: High-Level Synthesis
Using D a t a Transfers,” in Proceedings of the 35th A C M / I E E E
Design A u t o m a t i o n Conference, 1998.

[2] S. Tarafdar. A Data-Transfer Model FOT High Level Synthesis
A n d I t s Application In Storage And Interconnect Optimization.
P h D thesis, Cornell University, 1998.

[3] F. Kurdahi . D. D. Gajski, C. Ramachandran, and V. Chaiyakul,
“Linking Register-Transfer and Physical Levels of Design,” IEICE
Transactions o n In format ion and S y s t e m s , September 1993.

[4] M. C . McFarland and T. J. Kowalski, “Incorporating bot tom-
up design into hardware synthesis,” I E E E Transactzons o n
Computer-Aided Design, vol. 9, pp. 938-950, September 1990.

[5] D. W. Knapp , “Fasolt: A Program for Feedback-Driven Data-
P a t h Optimization,” I E E E Transact ions o n Computer-Aided
Design, vol. 11, pp. 677-695, J u n e 1992.

sis with Floorplanning,” 28th A C M / I E E E Design Automatzon
Conference, pp. 668-673, 1991.

[7] M. Rim, A. Majumdar, R. Jain, and R. De Leone, “Optimal and
Heuristic Algorithms for Solving t h e Binding Problem,” I E E E
Transactions o n V L S I Sys tems , vol. 2, pp. 211-225, June 1994.

[SI M. McFarland, “A Fast Floor Planning Algorithm for Architec-
tural Evaluation,” Proceedings of the International Conference
on Computer Deszgn, pp. 96-99, October 1989.

[9] W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for
Par t i t ioning Graphs,” Bell S y s t e m s Technical Journal, vol. 49,
pp. 291-307, 1970.

[6] J -P 15-eng and A. C. Parker, “3D Scheduling: High Level Synbhe-

417

