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Abstract 

Modern digital systems move and process vast amounts of 
data. Designing good ASIC architectures for these sysLems 
requires efficient data routing and storage. A high-level syn- 
thesis (HLS) system must consider spatial aspects of the 
architecture it synthesizes to achieve this. In this pilper, 
we discuss using floorplanning information in the main HLS 
flow. Our HLS system, Midas, incorporates floorplanning 
and formulates HLS using a data-transfer model. Midas 
synthesizes an architecture whose data storage and transfer 
subsystems are spatially integrated with its execution unit. 
Midas also generates a high-level floorplan for the arcf itec- 
ture, which contains the shapes and coordinates of its com- 
ponents and routing channel specifications for its buses. Our 
experiments comparing Midas’s architectures to  those gen- 
erated by a HLS system that does not use the data-transfer 
model or floorplanning show that Midas’s architectures are 
smaller and yet allow for large amounts of simultaneous data 
motion and storage. 

1 Introduction 

Advances in fabrication technology allow digital integrated 
circuits (ICs) to contain an increasing number of transis- 
tors. Computer-aided design (CAD) tools are needed to 
manage the increasing design complexity. In addition, high- 
throughput, memory-intensive digital systems, like those in 
multimedia applications, place heavy demands on IC timing 
and area, making the interdependence between layout and 
IC architecture design more critical today than ever bl3fore. 

We address the importance of data-issues and floorplan- 
ning in high-level synthesis (HLS). HLS is a branch of CAD 
for ICs that synthesizes an architecture for an IC given its 
intended behavior. In modern IC’s, interconnect and stor- 
age dominate the IC area, yet most HLS systems do not con- 
sider IC layout during synthesis, and treat data-issues as sec- 
ondary. Midas, our HLS system, uses the data-transfer (DT) 
model [l, 21 and floorplanning in the core HLS flow. The 
DT-model formulates HLS around data-transfers in the be- 
havior as opposed to operations as is more traditional The 
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floorplanners - a global one and an incremental one - pro- 
vide Midas with the shapes and placement of components 
and buses very early in the HLS flow. The result is a high- 
level floorplan and an architecture in which data is stored 
close to where it is produced and used. Our experiments 
show this methodology yields architectures with smaller lay- 
outs than a methodology that ignores floorplanning. 

2 Previous work 

While most HLS systems ignore the floorplanning aspects 
of the architectures they synthesize, there are some notable 
exceptions. Kurdahi et al. [3] propose a layout predictive 
model, for use in high-level design automation tools, which 
accounts for a variety of register transfer level design styles 
and uses floorplanning. In BUD [4], operations in the design 
are clustered hierarchically and each cluster is scheduled, 
allocated, and then floorplanned. BUD evaluates the gen- 
erated design and re-synthesizes until an acceptable design 
is achieved. The IBA (interleaved binder/allocator) HLS 
system uses a module called Fasolt [5 ]  as a post-processing 
step to re-optimize a previously synthesized and then floor- 
planned architecture. 3D [6] is an HLS system that first 
schedules and binds operations, then performs floorplan- 
ning and finally makes changes to the architecture to re- 
duce wiring delays computed from the floorplan. BINET [7] 
is a binding algorithm that performs incremental binding 
and floorplanning on a previously scheduled behavior using 
a network flow approach. 

In contrast to the above approaches, our HLS system, 
Midas, tightly integrates the utilization of floorplanning in- 
formation in the main HLS flow. Floorplanning is not a 
post-processing option. Midas uses floorplanning to take 
into account the area cost of a data-transfer] t,o measure 
data-transfer congestion at points in the floorplan or in the 
schedule] and to  project more accurate area estimates for 
the architecture being synthesized. 
guide all aspects of HLS in Midas: 
and binding. 

3 The DT-model 

Midas aims at elevating the status 

These design metrics 
scheduling, allocation, 

of data issues in HLS 
by formulating the classic HLS subproblems like scheduling 
and binding in terms of data-transfers 11, 21. In an archi- 
tecture, data must be bound to  storage elements and data 

units, ports of storage elements, and interconnect. The DT- 
transfers (DTs) m u a t  be bound to terminals of functional 
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model in Midas provides a framework in which to do this 
concurrently with operation scheduling and binding. 

In HLS, a dataflow graph (DFG) is extracted from the 
input behavioral description. The nodes of the DFG rep- 
resent operations and the directed edges represent data de- 
pendencies between operations. In traditional HLS systems, 
scheduling and binding are formulated in terms of opera- 
tions. Midas formulates these subproblems in terms of data- 
transfers instead. A data-transfer (DT) is a set of operations 
corresponding to the movement of a single instance of data. 
It contains the operation sourcing the data and all the opera- 
tions using the data. In an unscheduled DFG, the operation 
represented by each node with outgoing edges is the source 
operation of a primary DT and the operations of the node’s 
children are the destinations operations of the DT. An op- 
eration can be a member of more than one DT. Figure 1 
shows DTs extracted from a DFG. 
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(a) DFG (b) Extracted DTs 

Figure 1: Extracting DTs from a DFG 

DTs have a cost associated with them. The cost of trans- 
ferring data can be modelled as the product of the area of 
the interconnect needed and the length of time the intercon- 
nect has to  be reserved for the transfer. The sum of the costs 
of DTs scheduled in the same control step (cstep) is the cu- 
mulative DT-cost at the cstep and reflects the interconnect 
requirement of the architecture. A schedule in which each 
cstep has roughly the same cumulative DT-cost is one that 
efficiently utilizes the available interconnect in the ASIC. 
Figure 2 is a snapshot of the floorplan of an architecture at 
one cstep in the execution of the behavior. The arrows are 
DTs and the areas of the arrows represent the relative costs 
of the DTs. 

Register dt-a 

Figure 2: DT-costs in a cstep during execution 

The scheduling directive of the DT-model states that  all 
the operations of a DT must be scheduled in the same cstep. 
The directive allows the storage requirements to  be modelled 
explicitly in Midas. If all the operations of a primary DT 

are scheduled in the same cstep. the  da:a generated by rhe 
source is consumed immediately and does not  need t o  be 
stored. Often, it is impossible to schedule all the operations 
of a DT in the same c s e p  due t o  resource or timing con- 
straints. The primary DT must be partitioned into a se1 
of secondary DTs. each of TT-hich meets the scheduling di- 
rective. The operations of the  primary DT are distributed 
among the secondary DTs. DT partitioning implies the data 
represented by the primary DT must be stored in the archi- 
tecture. Each secondary DT generated requires a read or 
write of the data from a storage element and has a stor- 
age read or write added to its set of operations. Figure 3 
illustrates a general case of DT partitioning. 

(a) Original DT 

(b) DT Partition 

Figure 3: A partition of a primary DT 

DT partitioning directly impacts storage and intercon- 
nect requirements. Partitioning gives rise to a requirement 
to store data, which may increase the size of storage. Each 
of the secondary DTs formed by partitioning a DT gives 
rise to a storage access requirement, which can increase the 
number of ports on storage elements, and an interconnect 
requirement, which can increase the number of buses in the 
synthesized architecture. In general, DT partitioning is to 
be avoided since it has the potential to increase storage size, 
the number of storage ports, and the number of buses. 

DT partitioning is a core HLS step in Midas since DTs 
that cannot meet the scheduling directive must be parti- 
tioned before they can be scheduled. Therefore, Midas has 
to consider storage and interconnect in its main HLS flow. 
Since hIidas has floorplanning information available, it uses 
this information to influence DT partitioning. For example, 
DTs that meet the scheduling directive, but which would 
have to be scheduled in csteps with high cumulative DT- 
costs, can be selectively partitioned. This allows the sec- 
ondary DTs generated to be scheduled in csteps with lower 
cumulative DT-costs, thereby equalizing the cumulative DT- 
cost across the schedule and making more efficient use of the 
interconnect available. 

data transfer that will occur in the synthesized architec- 
ture. In addition, a D T  neatly encapsulates a data broad- 
cast. These allow Midas to make more accurate predic- 
tions regarding data accesses and transfers which in turn 
helps to guide Midas’s synthesis algorithms. This encapsu- 
lation of data broadcasts is difficult to do in the conventional 
operation-based model for HLS. 

DT binding is tightly coupled with floorplanning and 
combines operation binding and data binding. These are 
usually decoupled in the operation-based model. When a 
DT is bound, its operations are bound to functional units 

The scheduling directive makes a DT correspond to  a 
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and the data itself to terminals on those functional units. 
If the DT is a secondary DT, the data must be bound to 
a storage element and the storage read or write to a port 
of the storage element. Finally, the transfer of data must 
be bound to a bus in the architecture. Binding a DT (:om- 
pletely specifies the routing of data in the architecture at  a 
structural level. Minimizing the area of this routing helps 
minimize overall ASIC area. 

4 Midas 

Midas performs time-constrained HES and minimizes ASIC 
area given an upper bound on the execution time for the be- 
havior. It synthesizes its architectures incrementally iri the 
body of a synthesis loop and uses deterministic algorithms. 
The hardware model it uses is shown in Figure 4. The exe- 
cution unit is made up of functional units, the storage unit 
is made up of distributed, multi-ported register files, and 
the data-transfer subsystem is a network of buses connected 
to the components through multiplexers. These components 
are spatially integrated which means that functional units 
are placed close to  the register files with which they interact 
and buses tend to be many, but short. Midas outputs both 
an architecture for the behavior and a high-level flooi plan 
for the architecture. 

DATAPATH 
Storage 
Archrtecture 
= AGs + MPF 'Fs 

Key: 
W =Multiplexer - = Bus 
AG =Address generator MPRF= Mukiporied register file 

Figure 4: Midas's hardware model 

Figure 5 illustrates the synthesis flow in Midas. The 
DFG is first transformed into the DT-domain and the:a Mi- 
das enters its main synthesis loop. Each time through the 
loop design metrics are evaluated, DTs are partitioned, and 
a single DT is selected, scheduled and bound. At the end of 
each loop, the partial design is floorplanned. 

Midas uses two floorplanners - a global floorplanner and 
an incremental floorplanner. The global floorplanner com- 
pletely rebuilds the floorplan. It is used at the end of' each 
synthesis loop to generate a floorplan for the partial (xchi- 
tecture. This floorplan is used in the next iteration through 
the synthesis loop in the evaluation of design metrics and as 
an input to the incremental floorplanner. The incremental 
floorplanner modifies an existing floorplan based on changes 
in the architecture caused by recent scheduling and binding 
actions. It is used to guide the DT binding algorithm 

The floorplan generated by the global floorplanner is 
used to compute the projected ASIC area and DT-costs, 
both of which are critical in guiding DT partitioning, schedul- 
ing and binding. 

Projected ASIC area represents an estimate of the area 
of the final architecture. Midas starts with the existin:: par- 

Input DFG 

Beginning of synthesis loop: 

e Are all DTs scheduled? 

I -- 

Output DFG 

Figure 5 :  HLS flow in Midas 

tial floorplan and pads it to  account for additional resources 
that Midas expects will be required by the final architec- 
ture. The additional resource utilization is computed using 
distribution graphs that Midas maintains. 

Computing the cost of a DT requires that the area of 
interconnect needed by the DT be known. For a bound DT, 
this is the area of the bus to which the DT is bound which 
can be acquired from the routing specification of the bus in 
the partial floorplan. For an unbound DT, Midas uses the 
worst-case scenario that the DT requires a bus that spans 
the diagonal of the partial floorplan. 

DT-costs guide DT partitioning in deciding whether to 
partition a DT and how to partition it. DTs that would have 
to be scheduled in csteps which already have high cumula- 
tive DT-costs are partitioned to  allow the secondary DTs 
generated to be scheduled at  csteps with lower cumulative 
DT-costs. This prevents DT congestion in any part of the 
schedule. 

During DT selection and scheduling, Midas evaluates 
the effect of each potential scheduling action on the pro- 
jected ASIC area and cumulative DT-costs. Every DT can 
be scheduled at certain csteps in the schedule. Each such 
(DT, cstep) pair is a potential scheduling action. Among 
other things, Midas attempts to  minimize the increase in 
the projected ASIC area and cumulative DT-costs caused 
by the selected scheduling action 

The incremental floorplanner is used in DT binding. Mi- 
das uses a branch-and-bound heuristic to bind a DT to func- 
tional units, storage elements, terminals, ports, and a bus. 
The cost function guiding the branch-and-bound search is 
the area returned by the incremental floorplanner. This 
area is a quick estimate of the impact of the suggested bind- 
ing actions on the area of the floorplan. The incremental 
floorplanner allows Midas to favor binding a data-transfer 
to components that are close to one another. 
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Resource allocation is bundled into the binding algo- 
rithm. In addition to having the option of binding a DT 
to available resources, Midas presents the binder with the 
choice of introducing a new resource. The incremental floor- 
planner computes if doing so will result in a lower overall 
floorplan area due to a reduction in interconnect area. This 
enables the binder to trade redundant components for area, 
something that is impossible without floorplanning informa- 
tion. 

5 Global floorplanner 

The global floorplanner is based on McFarland's Fast Floor- 
planner [8] .  The inputs to the floorplanner are a list of 
blocks in the architecture, a list of possible shapes for each 
block, a list of buses in the architecture, and a list of blocks 
that each bus is connected to. A block can be a functional 
unit or a register file. Multiplexers in the architecture are 
assumed to be bundled into the shape list for the block to 
which they are connected. The floorplanner outputs the co- 
ordinates and selected shape of each block and a routing 
specification for each bus. 

Cut7 

Dic Vert 

(a) Slicing Tree 

Cutl; 

I 
cut4 ; 

(b) Relative position of blocks 
in floorplan 

Figure 6: The relation of a slicing tree to the floorplan 

The global floorplanner uses a slicing-tree mechanism. 
The set of blocks is bipartitioned recursively until each set 
contains only one block. The sets formed in the bipartition- 
ing sequence form the nodes of the slicing tree. Each of the 
sets formed during recursive bipartitioning corresponds to  a 
section of the ASIC floorplan. The two sets formed by any 
bipartitioning action lie on opposite sides of a "cut" on the 
floorplan. Figure 6 illustrates a slicing tree and its relation 
to  a floorplan. The floorplanner uses the Kernighan-Lin [9] 
bipartitioning algorithm and minimizes the number of buses 
that connect blocks on the two sides of a cut. This has the ef- 
fect of placing interconnected blocks close to  one another on 
the floorplan. For each cut, the floorplanner decides which 
buses must be broadcast over the cut based on the whether 
the bus is entirely contained on one side of the cut or not. 
Buses that must be broadcast are allocated routing chan- 
nels. A shape is selected for each block in the floorplan 
so as to minimize the overall area of the floorplan. This is 

done by propagating combinarions of possible shapes for the 
blocks upwards from the leaves of rhe slicing rree :3:. Ti-hen 
the possible shapes of tn-o sides of a cut are combined. ad- 
ditional area is added t o  the combined shapes ro 2ccouc: 
for routing channel allocations at the cut Once the shapes 
have been computed. the floorplanner traverses the tree from 
top to bottom, computing the coordinates of each block and 
each routing channel. The result is block placement and  bus 
placement in the form of the shape and coordinates of each 
block and the global routing channel specifications for each 
bus. Figure 7 shows a possible floorplan for the slicing tree 
in Figure 6. 

bus 1 

r bus3 1 
I bus4 J 

Figure 7: A sample floorplan 

The global floorplanner is called at  the end of Midas's 
synthesis loop and is used to update the partial floorplan 
for changes made in the architecture during an iteration of 
the synthesis loop. The floorplan generated by the global 
floorplanner at the end of the last iteration of the synthe- 
sis loop becomes the high-level floorplan output by Midas. 
The partial floorplan generated by the global floorplanner 
is used to evaluate the design metrics that guide DT parti- 
tioning, scheduling, and binding in Midas. The area of the 
partial floorplan is used as the starting point in computing 
the projected area of the final ASIC architecture. The area 
of a bus in the floorplan is available from the routing chan- 
nel specification and is used as the area component of the 
DT-cost of DTs bound to the bus. The cumulative DT-cost 
is used to  compute the scheduling cost and to  guide DT- 
partitioning. The partial floorplan is also used as an input 
to the incremental floorplanner that is used by the DT bind- 
ing algorithm. The partial floorplan generated by the global 
floorplanner is integral to the HLS flow in Midas and Mi- 
das's ability to synthesize architectures whose components 
are spatially integrated. 

6 Incremental floorplanner 

The incremental floorplanner modifies a floorplan generated 
by the global floorplanner to accomodate changes in the 
architecture. Changes include newly allocated blocks and 
buses, changes to the shapes of blocks due to the growth 
in size of register files or multiplexers, or terminals added 
to  existing buses. The incremental floorplanner operates 
on the slicing tree generated by the global floorplanner. It 
first replaces all the blocks in the slicing tree that have been 
changed, and updates information at  all cuts to reflect any 
changes to the connectivity of existing buses or any new 
buses. Finally, each newly allocated block is placed in the 
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slicing tree to minimize the increase in buses that cross cuts. 
After the slicing tree has been updated, bus broadcasting, 
shape generation and coordinate computation is performed 
in the same way it was in the global floorplanner. 

The incremental floorplanner is used in Midas’s DT bind- 
ing algorithm to guide the branch-and-bound search. In the 
course of the search, binding actions are evaluated. Each 
binding action can change the shape functions of conipo- 
nents in the architecture or the connectivity of buses. These 
changes are input to  the incremental floorplanner along with 
the partial floorplan from the previous iteration of the syn- 
thesis loop. The area returned by the incremental floorplan 
guides the branch-and-bound search. The DT binding se- 
lected is the one that results in minimum floorplan area. 

The incremental floorplanner is critical to Midas’:; re- 
source allocation strategy. Unlike many other HLS systems, 
Midas does not allocate a minimum number of resources. In- 
stead, Midas allocates resources to minimize floorplan area. 
Sometimes adding extra resources can lead to lower iiiter- 
connect requirements and this reduces the overall area of 
the floorplan. Minimizing the number of functional units, 
storage elements, and buses typically leads to buses that are 
long, that have many terminals and consume large areas of 
the floorplan. The incremental floorplanner allows Midw to 
trade extra resources for a decrease in overall area. 

7 Incremental versus global floorplanning 

The global and incremental floorplanners serve very different 
functions and are therefore designed very differently. The 
global floorplanner generates the partial floorplan that is 
used to evaluate design metrics that guide DT partitioning, 
scheduling, and binding in subsequent iterations of the syn- 
thesis loop. It is important that it generates a good jloor- 
plan that converges to the final high-level floorplan. It is 
called only once in each iteration of the synthesis loop and, 
therefore, the quality of its result is more import.ant than 
its speed. The incremental floorplanner is used to provide a 
one-step lookahead function to guide the binding algorithm. 
It is called once for every node in the binder’s branch.-and- 
bound search tree. It is therefore imperative that the incre- 
mental floorplanner be fast. Since the incremental floorplan- 
ner’s output is not used as the partial floorplan, its quality is 
not as critical as the floorplanner’s speed as long as the qual- 
ity is not excessively poor. The global floorplanner is called 
after binding has been performed to  “refresh” the floorplan. 

While the incremental floorplanner uses a simple greedy 
heuristic, we find that for the one-step lookahead it :needs 
to perform, it is adequate in guiding the DT binding algo- 
rithm. In most cases, the area of the floorplan generated 
by the incremental floorplanner during DT binding matches 
the area of the partial floorplan obtained during the subse- 
quent run of the global floorplanner. The actual topoilogies 
of the floorplans may differ but the areas are usually very 
close. 

The combination of incremental and global floorplanners 
in Midas allows floorplanning to be integrated in the HLS 
flow without sacrificing speed or quality. The DT-model 
used by Midas exploits this spatial information and guides 
the synthesis algorithms to the spatially integrated dahpath  
architecture Midas seeks to generate. 

8 Results 

We tested Midas by synthesizing architectures and floor- 
plans for each of five input DFGs: an arithmetic expression, 

a biquad filter, the differential equation solver benchma,rk, 
the elliptic filter benchmark, and a motion estimator. For 
each input, we varied the maximum allowed length of the 
schedule between its minimum possible and 30 control steps. 
The measure of merit for a synthesized architecture was the 
area of its high-level floorplan. The area was expressed as a 
multiple of the unit area in the scalable technology library 
used. 

In order to  provide a control against which to evaluate 
Midas, we constructed an alternate HLS system as a com- 
petitor for Midas. This HLS system used the same schedul- 
ing algorithm as Midas except it did not use the DT-model 
or floorplanning information. Binding and floorplanning 
were secondary steps. Register allocation and merging min- 
imized the number and sizes of register files needed in the 
architecture. Functional unit allocation minimized the num- 
bers of each type of functional unit. Operation and variable 
binding were done with the aim of reducing the number of in- 
puts to the multiplexers at the terminals of functional units 
and ports of register files in the architecture. Bus allocation 
and data-transfer binding were done to minimize the num- 
ber of buses and the number of terminals on each bus. The 
final step was floorplanning, using the global floorplanner. 

16 20 24 
C-steps 

Figure 8: Results of elliptic filter runs 

Figure 8 shows the results of the runs on the elliptic filter 
benchmark. In the graph, the solid line represents the areas 
of the architectures synthesized by Midas. The dotted line 
corresponds to architectures synthesized by the competitor. 
As can be seen, Midas performs better consistently. A closer 
examination of the floorplans synthesized showed that Midas 
opted for more buses than the competitor system did, but 
ensured they were short ones. In addition, Midas traded a 
larger storage unit for shorter data-transfers. The buses in 
the architectures generated by the competitor system were 
few, but had many more terminals than the buses in Midas’s 
designs. The sum of the areas of the storage elements was 
smaller than the sum of register file areas in Midas, but 
extra routing was required to reach them. The execution 
units synthesized by both systems had identical numbers 
of components. Midas was able to  exploit spatial locality 
between storage and functional units while scheduling and 
binding. The synthesis runs on the elliptic filter benchmark 
clearly showed the advantages of floorplanning information 

approach. 
Figure 9 shows the results of runs on the motion esti- 

mator. Even though the results are not as dramatic as the 

used early in HLS and underlined the potential of Midas’s 
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Figure 9: Results of motion estimator runs 

ones obtained for the elliptic filter benchmark, we see Mi- 
das performs better for architectures with smaller schedule 
lengths. We observed this trend in architectures for all of 
the other DFGs. Midas synthesizes smaller floorplans when 
the schedule length is constrained to be very short. 

Shorter schedules require the synthesized architecture to 
exhibit greater parallelism, in turn implying a larger number 
of components and buses. Midas exploits floorplanning in- 
formation to schedule and bind DTs so that communicating 
components are close to one another. This reduces routing 
area and produces a more compact floorplan. The mar- 
gin for this type of improvement increases as the number of 
components and, therefore, the binding search space grows. 
As a result, we see that Midas tends to perform better for 
architectures with shorter schedule lengths. 

Table 1 shows the resource counts and floorplan areas for 
architectures with different schedule lengths that were syn- 
thesized for the elliptic filter example by both Midas and the 
competitor. The areas of 1/0 pads, adders and multipliers 
in our technology library tend to be smaller than those of 
register files and interconnect that the architectures require. 
In most of the architectures, we see that Midas has a higher 
number of these smaller resources. Midas trades this for 
lower register file and interconnect area. Midas’s integration 
of floorplanning information and its elevation of data issues 
in HLS allows it to  make this tradeoff early in the HLS flow, 
thereby reducing floorplan area. In the architectures for the 
first two schedule lengths, we see that  the only difference in 
resource counts is that Midas’s architectures have a larger 
number of buses. It seems counter-intuitive that their floor- 
plan areas are smaller. On a closer examination, we found 
that the buses in Midas’s architectures are short ones with 
half of them being connected to only two components. The 
overall effect is a reduction in floorplan area. 

applications motivated our focus on data-issues and physi- 
cal design characteristics. These applications typically have 
tight execution time constraints. Our results indicate that 
the use of the DT-model and floorplanning enables Midas 
to generate smaller floorplans, especially for behaviors that 
must execute in short lengths of time as is often required by 
high-throughput, data-intensive applications. 

Custom architectures for high-throughput, data-intensive 

9 Conclusions 

We have presented a floorplanning approach to HLS in the 
form of our HLS system, Midas. Midas formulates HLS us- 
ing the DT-model, which allows Midas to encapsulate data 
broadcasts and accesses and to incorporate floorplanning in 
the main HLS flow, making it an integral part of DT par- 
titioning, scheduling and binding. The global floorplanner 
in Midas performs a slower, but more optimal floorplanning 
a t  the end of each synthesis iteration while an incremental 
floorplanner provides a fast, but acceptably accurate pre- 
diction for effects of synthesis actions on the floorplan. The 
combination of the tvo allows floorplanning to be included 
in the HLS flow while still ensuring quality and speed. Mi- 
das generates an architecture for the input behavior and a 
high-level floorplan for the architecture that contains the 
shapes and placements of all the components and routing 
channels. The architectures Midas synthesizes tend to have 
many short buses instead of a few long ones and tend to 
trade extra components for a reduction in overall area. The 
floorplanning approach that Midas uses in conjunction with 
the DT-model results in lower area floorplans, especially 
when synthesizing architectures for designs with tight sched- 
ule length constraints. 
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