TWO-DIMENSIONAL PLACEMENT
USING TABU SEARCH

John M. Emmert! and Dinesh K. Bhatia?

! Design Automation and Test Laboratory, Dept of EE
University of Kentucky
Lexington, KY 40506-0046, USA
emmert@engr.uky.edu
2 Design Automation Laboratory, Dept of ECECS
University of Cincinnati
Cincinnati, OH 45221-0030, USA
dinesh@ececs.uc.edu

Abstract

Search based placement of modules is an important problem in VLSI design. It
is always desired that the search should converge quickly to a high quality solution.
This paper presents a tabu search based optimization technique to place modules on
a regular two-dimensional array. The goal of the technique is to speed up the place-
ment process. The technique is based on a two-step placement strategy. The first step
is targeted toward improving circuit routability and the second step addresses circuit
performance. The technique is demonstrated through placement of several benchmark
circuits on academic as well as commercial FPGAs. Results are compared to place-
ments generated by commercial CAE tools and published simulated annealing based
techniques. The tabu search technique compares favorably to published simulated an-
nealing based techniques, and it demonstrates an average execution time speedup of
20 with no impact on quality of results when compared to commercial tools.

Key Words: Placement, Floorplanning, Tabu Search, FPGA, VLSI, Circuit Mapping

1 INTRODUCTION

Two-dimensional placement is a well studied topic. However, the importance of placement
cannot ever be ignored due to changing design complexities and requirements. One tech-
nology that is evolving very rapidly is field programmable gate array (FPGA). Currently,
commercially available devices can map up to one million gate equivalent designs[12] and
some of the newly announced products like Altera’s APEX series[11] will map two million
gate equivalent designs. Typical CAD flow for mapping circuits to FPGAs takes place in
four inter-dependent steps: design entry, technology mapping, physical placement, and in-
terconnect routing. Improvements in CAD tool technology for mapping circuits to FPGAs
has not kept pace with hardware improvements. Currently it takes minutes to hours to map
circuits of 10K gate equivalent designs to FPGAs. We need faster algorithms that provide
high quality (relative to mapped circuit performance) results. Our goal is to speed up the
mapping process by speeding up the placement step. Motivated with this goal, we have
designed a two-step fast placement tool for array based designs. Our algorithms make use of
tabu search[9] based optimization for finding good placement solutions. Circuit routability
is enhanced using an edge based model for minimizing the total wire length of the circuit.
The circuit timing optimizations are carried out using an edge based model for critical path
length minimization. As a practical demonstration, we map several benchmark designs on
FPGAs and compare the results against a simulated annealing search based technique for
placement [21]. We also compare the results to the simulated annealing based, ultra fast
placement work done in [22], and we compare results with commercial CAE tools from Xil-
inx, both the XACT 5.2 PPR tools and the M1 tools. We show significant speedup relative
to convergence on good quality solutions when compared to simulated annealing. Similarly
we show favorable results when compared to [22], and we show an average execution time
speedup of 20 with no impact on quality of results when compared to commercial tools.
This paper is organized as follows. In section 2 we describe fundamentals of the tabu
search optimization technique. In sections 3 and 4 we formally describe the placement prob-
lem and related research. In section 5 we describe our two-dimensional placement solution.
We formally describe the model we used for placing circuits on two-dimensional arrays. Then
we describe our placement based on total wire length minimization and critical edge length
minimization respectively. In sections 6 and 7 we describe our test methodology and analyze
the data, and in section 8 we conclude the paper by providing a summary and ideas for

future work.

Procedure GENERIC_TS()
begin
Initialize solution;
repeat
Perform IntenseSearch();
Perform DiverseSearch();
until stop criterion met;
return BestSolution;

end;

2 TABU SEARCH

In this section we present an overview to the tabu search optimization technique. Tabu search
is a meta-heuristic approach for solving constrained optimization problems. When used
properly, tabu search approaches near optimal solutions in a relatively short amount of time
compared to other non-deterministic random move based methods [9]. Unlike approaches
like simulated annealing that rely on good random choices, tabu search exploits both good
and bad strategic choices to guide the search process. Tabu search uses the idea of a move
to define the neighborhood of any given solution, and imposes restrictions in the form of a
tabu on certain moves to avoid local optima.

As a meta-heuristic, tabu search guides local heuristic search procedures beyond local
optima. In tabu search, a list of possible moves is created. In the short term, as moves in the
list are executed, tabu, or restrictions, are placed on the executed moves in order to avoid
local optima. This tabu is typically in the form of a time limit, and unless certain conditions
are met (e.g. aspiration criteria), the move will not be performed again until the time limit
has expired. This short term phase is associated with intensification of the search strategy.
During the intensification stage, short term memory is used to explore closely related solu-
tions in the local neighborhood. Good tabu search strategies also include long term memory
that is used to diversify the search. Diversification moves the current solution out of the local
neighborhood. For example, frequency of moves is a good candidate for long term memory
storage. Penalties can be placed on moves that are frequently executed. Then, less frequently
executed moves can lead the search to unexplored areas. Procedure GENERIC_TS shows a

typical tabu search algorithm for solving general optimization problems.

3 PROBLEM

In this section, we formally describe the placement problem. We use M to represent a set of
modules that will be placed onto a two-dimensional array L. The set S is used to represent

the signals connecting the modules in M together.

Given a set of modules M = {my, ma,...,m,} and a set of signals S = {s1, s, ..., 5.}, we
associate with each module m; € M a set of signals S,,,, where S,,,, C S. Similarly, with
each signal s; € S we associate a set of modules M,,, where M, = {m; | s; € Sp,}. M,
is said to be a signal net. We are also given a set of locations L = {ly,ls,...,1,}, where
p >| M |. The placement problem then becomes how to assign each module m; € M to
a unique location [; € L such that an objective function is optimized[4]. In our case, the
objective function is to maximize circuit performance by minimizing path length. For the
case of mapping m; € M to a regular two-dimensional array, each [; € L is represented by
a unique (x;,y;) location on the surface of the two-dimensional array where z; and y; are

integers. Figure 1 shows the 16 element set L for an example 4 x 4 two-dimensional array.

4 RELATED WORK

Much research is associated with placement and floorplanning for FPGAs [1, 2, 3, 4, 5, 6, 7,
8, 10, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26]. However, use of the tabu search technique
for placement is very limited. In this section we briefly describe research related to tabu
search for placement or floorplanning.

Song and Vannelli developed a tabu search based placement algorithm for minimizing
total wire length[23]. Their cost function was based only on total wire length, and therefore,
designed to enhance routability and not performance, whereas our algorithm also improves
circuit performance.

Lim, Chee, and Wu developed a tabu search based placement with global routing strategy
for standard cells[14][15]. Their algorithm for standard cells is a divide and conquer strategy

based on successive partitioning while ours uses force directed placement.

5 PLACEMENT

In this section we describe our two-dimensional placement solution. First we describe our
model for abstracting the information from M and S into a Graph GG. Then we describe our
total wire length minimization and critical edge length minimization tabu searches respec-

tively.

5.1 Model

We convert each multi-terminal net to a set of edges where each edge consists of the driving
terminal and one driven terminal. We use this model to keep net sources and sinks in close

proximity thereby enhancing circuit performance. We create the set of edges by converting

the hyper-graph input circuit model described earlier to a graph G = (V, FE) where V =
{v1,v9, .on}, | V |=n, E ={e1,ea,...e}, and | E' |= m. Each vertex v; € V' corresponds to
a circuit module m; € M. Each edge e; € E connects a pair of vertices (vj,vy) | vj, v, € V.
The elements of £ are created by considering each signal, s; € S. If we let m; € Mj, be the
source module for signal s; then an edge (vj, vy) is added to E for each my € M, | j # k. At
any given time, each element of V' is mapped to a unique element of L, and the minimum
requirement for mapping is | V' |<| L |.

For the first step of our tabu search based placement strategy, TS_'TWL, we seek to
enhance routability by minimizing total wire length (TWL). We estimate TWL using the

Manhattan length of each edge e; € F, and we seek to minimize the following function:

TWL= Y MLength(e;)
Ve, €E

The second step of our tabu search based placement strategy, TS_EDGE, seeks to enhance
circuit performance by minimizing the length of critical circuit edges. To accomplish this,
we traverse G and determine a path weight pw; for each path p; € P where P is the set of
all paths for GG. For simplicity we let pw; be the maximum level for each p; € P. Edges
in critical paths receive a higher weight. Figure 2 shows an example circuit with six paths.
In figure 2 path p; is at level 1; paths p, and ps are at level 2; and paths p4, ps, and pg
are at level 3. We associate with each edge e; € £ a set of paths F,;, where P, C P. For
example, in figure 2 we have P, = {p1} for e; € FE, P., = {p2, ps,ps, 05, p6} for es € E, P,,
= {ps,p5,p6} for es € E, P., = {p2} for e, € E, P., = {ps} for es € E, P., = {ps} for
eg € E, P, = {ps} for ez € £, and P,, = {ps} for es € E. Then we determine a weight w;
for each edge e; € .

Ve; € B,w; = maz(pw;) V p; € P,

For example, in figure 2 the weight for edge es is the maximum path weight for each path
in the set {p2, ps, ps, Ps, Pe} or we = 3. Similarly for ez in figure 2, w3 is the maximum path
weight for the all paths in the set {ps,ps,ps} or ws = 3. The determination of the edge
weights is accomplished with a breadth first search. Then we weight the Manhattan length
of each edge e; € E by multiplying the Manhattan length of edge e; by its corresponding
weight w;. For our timing driven tabu search based step, TS_EDGE, we use a two part
optimization function. First we minimize the weighted length of the longest edge. Second,
since many configurations may have the same weighted longest edge length, we add together

n of the longest edges (NLF) and minimize N LE in the event of a tie.

N
NLE =Y MLength(e;) x w;

=1

5.2 Wire Length Minimization

Key to the development of a tabu search is a search list. For TS_'TWL our search list U
consists of all possible swaps of vertices occupying adjacent locations in L. This implies two
basic swap moves: horizontal (swap of adjacent vertices with the same y coordinate) and
vertical (swap of adjacent vertices with the same x coordinate). Valid swaps also include the
exchange of a vertex from a position in L into an adjacent empty location in L. There are
two reasons this move type was chosen: 1) to keep the move list short, and 2) to minimize the
overhead of updating the move list after a move is executed. Given a two-dimensional array
L of width W units and height H units, there are | U |= ((H x (W —1)) + ((H —1) x W))
~ 2(H x W) possible swaps or moves in U. Therefore U = {uy, ug, ...,u,} where n =| U |.
Figure 3 shows an example horizontal swap move u; and vertical swap move u;. For TS_TWL,
given a random initial placement in L (by selecting an appropriate sequence of moves from
U) we seek to optimize our objective function, minimization of TW L.

In TS_TWL, each move u; € U has an associated attractiveness A; or sum of the adjacent

forces pulling on the vertices v; and v, that make up move u;. For the vertical move we have
A; = M(vj) x PE(vj) + M(vg) x PW ()

and for the horizontal move
A; = M(vj) X PN(v;) + M(vi) x PS(vg).

Each vertex v; € V has one multiplication factor M (v;) and four associated pulls or forces:
PN(v;), PE(v;), PS(v;), and PW (v;). If the functions X(v;) and Y (v;) respectively return

the current and y coordinates of vertex v; then,

PN(v;) = > Y(y) - Y(w)
VekEEvi|€k:(vi7”j)
PEw)= Y X()-X(w)
\v’ekEEyi|€k:(”iv'Uj)
PS@)= 3 Y()-Y(v)
VekEEvi|ek:(’Uiv'Uj)
PWw)= > X(u)—X(v).

Ver€ By, |er=(vi,v;)
For example figure 4 shows edges e; = (v1,v2) and e3 = (v1,vs) € E,,. Therefore we can
calculate PN (v1) = (Y(v2) =Y (v1))+ (Y(v3) =Y (v1)) = (2)+(=1) = 1, PS(v1) = (Y(v1) —
Y(v2)) + (Y (v1) =Y (v3)) = (=2)+ (1) = =1, PE(v1) = (X(v2) =X (v1)) + (X (v3) = X(v1)) =
(=1)4+(—2) = =3, and PW (v1) = (X (v1)—X(v2))+ (X (v1)— X (v3)) = (1)+(2) = 3. Overall

we see vertex vy has a slight pull to the north and a strong pull to the west. Similarly in figure
4 we see vertex vy has PN (vy) = PS(vy) = 0, PE(v4) = 2, and PW (v4) = —2 due to edge
e = (vy,v5) € B, Figure 4 shows horizontal move u; consists of swapping the positions of
vertices vy and vy. If initially M(v;) = 1 Vv; € V we can calculate the attractiveness A; for
horizontal move u; in figure 4, A; =M (v4) X PE(vy) + M (v1) X PW(v1) =1 x 241X 3 =5.
In a similar manner A; is calculated for each u; € U. (For a given move wu; € U if one(both)
of the adjacent slots is(are) empty of vertices then the pull(s) corresponding to the empty
slot(s) is(are) set to 0.)

If we used the move list U in a typical greedy search strategy (i.e. given an initial
placement find a move that would improve the minimum 7'W L) we would quickly reach
a local optima. This local optima would probably not be close to the global optima or
minimum 7T'W L. However, by applying the concepts of tabu search i.e. accepting strategic
moves that may not improve the current minimum 7TW L we climb out of local optima to
rapidly converge on near optimal solutions. After executing move u; € U we set a tabu
tenure for u;. Move u; will not be executed again until the tabu tenure has expired or our
aspiration criteria is satisfied. In this way we climb out of local optima and accept the

current best move even if it does not improve the current minimum 7'W L.

5.3 Timing Driven Placement

For our timing driven tabu search based algorithm, TS_EDGE, we use the edge list £ as our
search list. We order our edge list £ in descending order according to each edge’s weighted
Manhattan length. Then search the edge list looking at each of the two vertices attached to
each edge as possible candidates for a move. Therefore in algorithm TS_EDGE, E = {e;,
€2, ..., en} Where n =| F | is our search or move list. The vertices attached to the edges with
the longest weighted Manhattan lengths are the most attractive candidates for moving closer
together. By moving these vertices closer together, the longest edges are shortened thereby
enhancing circuit performance and reducing the longest paths. Once an edge is selected from
the search list, we look at only one of the edge’s two vertices as a possible move candidate.
For simplicity we pick one of two possible moves for the vertex selected: vertical swap or
horizontal swap. For the horizontal swap adjacent vertices with the same y coordinate are
swapped. For the vertical swap adjacent vertices with the same x coordinate are swapped.
Figure 5 shows an example horizontal swap move for vertex vy attached to vertex vy by edge
e; € E. In this case the Manhattan length of edge e; is reduced by one. Figure 6 shows an
example vertical swap move for the vertex vs attached to vertex vy by edge e; € E. Similarly
edge e; is reduced by one. In our tabu search based algorithm, TS_EDGE, given a random

or otherwise initial placement in L (by selecting an appropriate sequence of moves from F)

we seek to optimize our objective function, minimization of the longest weighted edge length
(or in the case of a tie, NLFE).

If we used the search list £ in a typical greedy search strategy (i.e. given an initial
placement find a move that would improve the current minimum longest edge length) we
would quickly reach a local optima. This local optima would probably not be close to the
global optima or minimum longest edge length/NLE combination. However, by applying
the concepts of tabu search, i.e. accepting strategic moves that may not improve the current
minimum NLE, our TS_EDGE algorithm climbs out of local optima to rapidly converge
on near optimal solutions. After executing a move for a vertex on edge e; € E we set a
tabu tenure (number of iterations a vertex’ position is locked) for the moved vertex on edge
e;. This vertex on edge e; will not be moved again until the tabu tenure has expired or
our aspiration criteria is satisfied. In this way we climb out of local optima and accept the

current best move even if it does not improve the current best solution.

6 TEST METHOD

We empirically tested TS_.TWL, TS_EDGE, and the 2-step (TS_TWL followed by TS_EDGE)
tabu search based placement methodologies described above using Xilinx Netlist Format
(XNF) benchmark circuits available from MCNC (email benchmarks@mcnc.org) and netlist
benchmark circuits from the University of Toronto (http://www.eecg.toronto.edu/~vaughn).
For comparison to the simulated annealing technique, we placed the benchmark circuits using
our algorithms as well as a simulated annealing placement algorithm with the same T'W L
cost function [21]. For the XNF benchmark circuits (see table I), we used Xilinx routers to
route all placed circuits. Additionally we placed and routed the XNF benchmark circuits
using Xilinx PPR and the more recent M1 tools for comparison of execution times and result
quality. We used statistics available from the Xilinx tools to compare XNF circuit placement
quality. For the benchmark circuits from Toronto (see table I1), we placed the circuits using
our TS_TWL algorithm and compared the execution time to the ultra fast placement [22]
work done at Toronto. We assume each of the vertices in the circuits can be mapped to
one and only one location on the smallest square array L such that | L | = [\/m 12
The unix time function was used to determine system placement times for our tabu search

algorithms and the simulated annealing based algorithm.

7 RESULTS

Figures 7, 8, and 9 show respectively execution time on the x-axis and current minimum
TW L on the y-axis for example runs of TS TWL and simulated annealing on XNF circuits
¢2670, ¢3540, and c6288. In each of the figures, the solid line shows T'W L versus execution
time for TS_.TWL and the dashed lines show TW L versus execution time for the simulated
annealing algorithm set for three different rates of convergence. These figures demonstrate
the fast convergence of the generic tabu search on good solutions relative to the generic
simulated annealing algorithm. The simulated annealing algorithm approaches the near
optimal solution of minimum 7T'W L, but it suffers from either slow start up time or slow
overall rate of convergence depending on how the simulated annealing parameters are chosen.
Overall, these graphs demonstrate the applicability of using tabu search as a stand alone
placement tool or as an ideal first pass placement method for initializing the input for further
refinement by simulated annealing or other random move based approaches to placement.
It should be noted that many methods exist to enhance simulated annealing, but many of
these can also be applied to tabu search to speed it up.

Table IIT shows average execution times for the placement step of circuit mapping by PPR,
M1, TS_.TWL, TS_.EDGE, and combined tabu search approach (TS_-TWL then TS_EDGE).
The same random placements were used as inputs to all algorithms (except for M1 where
we had no control over technology mapping). All algorithms and tools were executed on an
ULTRASPARC1 workstation. Times for PPR and M1 were taken for the default tool settings
and just used for comparison. We found that performing a 2-step approach (TS_TWL then
TS_-EDGE) could greatly reduce the execution time of our tabu search based algorithms.
Obviously a true comparison cannot be made between tabu search and the commercial tools
since the objective functions of the commercial tools are unknown; however, we provide data
from the commercial tools for informational purposes. The 2-step tabu search is approxi-
mately 25 times faster than PPR and 20 times faster than M1.

Table IV shows the static delay calculations done on the postrouted XNF circuits. The
worst case static pad-to-pad delay for the 2-step tabu search is very similar to that of the
XNF circuits placed by PPR and M1. Therefore for the benchmark XNF circuits used to test
the tabu search method, result quality was similar to that of the commercial tools.

Table V shows the execution time comparison of TS_.TWL to the Ultra Fast placement
tool and the modified VPR tool (modified to improve execution time at the cost of placement
quality[22]) from the University of Toronto[22]. A direct comparison of the algorithms cannot
be made since they have different goals and cost functions; however, relative to execution

time, the tabu search method is on the same order as that of the tools from Toronto.

8 CONCLUSIONS

We have described a two-step routability and performance driven tabu search based search
algorithm for placement of circuits on two-dimensional arrays. Our tabu search based method
performs extensive local and diversified searches that result in very well placed circuits
resulting in high performance. We demonstrated the approach with benchmark circuits from
MCNC and the University of Toronto. For the benchmark circuits from MCNC, we compared
the results to both simulated annealing|21] and commercial tools. Our results demonstrate
that good placement was determined much quicker and of similar quality to that of the
commercial tools. For the benchmark circuits from Toronto, our placement times compared
favorably to the Ultra Fast placement work at the University of Toronto. We feel the tabu
search based methods presented here can be used in a stand alone fast placement tool for
large designs or for fast initial placement to use as input to other placement algorithms.
Our future work includes adding routability and performance estimation to the tabu
search based placement approach. This will reduce the necessity of successively performing
the placement step and allow feedback for any necessary iterations of the circuit mapping

Process.

9

1]

[9]
[10]

[11]

[12]

REFERENCES

M. J. Alexander, J. P. Cohoon, J. L. Colflesh, J. Karro, E. L. Peters, and G. Robins,
"Placement and Routing for Three-Dimensional FPGAs,” Proceedings of the 4th Cana-
dian Workshop on Field-Programmable Devices, pages 11-18, May 1996.

V. Betz and J. Rose, ”"VPR: A New Packing, Placement, and Routing Tool for FPGA
Research,” Lecture Notes in Computer Science, volume 1304, pages 213-222, Springer-
Verlag, 1997.

J. P. Blanks, "Near-Optimal Placement Using a Quadratic Objective Function,” Pro-
ceedings of the 22nd ACM/IEEE Design Automation Conference, pages 609-615, 1985.

M. A. Breuer, "Min-Cut Placement,” Journal of Design Automation and Fault Tolerant
Computing, volume 1, pages 343-362, October 1977.

T. J. Callahan, P. Chong, A. DeHon, and J. Wawrzynek, ”Fast Module Mapping and
Placement for Datapaths in FPGAs,” ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 123-132, February 1998.

C. S. Chen, Y. W. Tsay, T. T. Hwang, A. C. H. Wu, and Y. L. Lin, "Combining
Technology Mapping and Placement for Delay-Minimization in FPGA Designs,” IFEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume 14,
pages 1076-1084, September 1995.

J. P. Cohoon and W. D. Parris, ”"Genetic Placement,” In Proceedings of the IEEE
International Conference on Computer-Aided Design, pages 422-425, 1986.

C. Ebeling, L. McMurchieand S. A. Hauck, and S. Burns, "Placement and Routing
Tools for the Triptych FPGA,” IEEE Transactions on VLSI Systems, volume 3, pages
473-482, December 1995.

F. Glover and M. Laguna, Tabu Search, Kluwer Academic Publishers, 1997.

K. M. Hall, ” An r-Dimensional Quadratic Placement Algorithm,” Management Science,
pages 219-229, November 1970.

Altera Inc., http://www. altera.com.

Xilinx Inc., http://www.zilinz. com.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

R. M. King and P. Banerjee, ”ESP: Placement by Simulated Evolution,” IEEE Trans-
actions on Computer-Aided Design, volume 8, pages 245-256, March 1989.

A. Lim, ”Performance Driven Placement Using Tabu Search,” Informatica, volume 7,
number 1, 1996.

A. Lim, Y. M. Chee, and C. T. Wu, "Performance Driven Placement with Global
Routing for Macro Cells,” Proceedings of Second Great Lakes Symposium on VLSI,
pages 3541, 1991.

A. Mathur and C. L. Liu, ”Compression-Relaxation: A New-Approach to Performance
Driven Placement for Regular Architectures,” Proceedings of the International Confer-
ence on Computer Aided Design, pages 130-136, 1994.

M. Mogaki, C. Miura, and H. Terai, " Algorithm for Block Placement with Size Opti-
mization Technique by the Linear Programming Approach,” Proceedings of the IEEE
International Conference on Computer-Aided Design, pages 80-83, 1987.

S. K. Nag and R. A. Rutenbar, ” Performance-Driven Simultaneous Place and Route for

Island-Style FPGAs,” SRC Pub C95174, June 1995.

S. Raman, C. L. Liu, and L. G. Jones, " Timing-Constrained FPGA Placement: A Force-
Directed Formulation & Its Performance Evaluation,” VLSI Design: An International

Journal of Custom-Chip Design, Simulation, and Testing, 1994.

K. Roy, B. Guan, and C. Sechen, ”A Sea-of-Gates Style FPGA Placement Algorithm,”
Journal of VLSI Design: Special Issue on FPGAs, 1993.

S. M. Sait and H. Youssef, VLSI Physical Design Automation, IEEE Press, 1995.

Y. Sankar and J. Rose, "Trading Quality for Compile Time: Ultra-Fast Placement for
FPGAs,” ACM Seventh International Symposium on Field-Programmable Gate Arrays,
pages 157-166, February 1999.

L. Song and A. Vannelli, ” A VLSI Placement Method Using Tabu Search,” Microelec-
tronics Journal, volume 23, pages 167172, May 1992.

P. R. Suaris and G. Kedem, ”"An Algorithm for Quadrisection and Its Application to
Standard Cell Placement,” IEEE Transactions on Circuits and Systems, volume 35,
pages 294-303, March 1988.

[25] A. Subramaniam and D. Bhatia, Timing Driven Placement for Logic Cell Arrays, PhD
thesis, University of Cincinnati, 1994.

[26] N. Togawa, K. Hagi, M. Yanagisawa, and T. Ohtsuki, ”An Incremental Placement and
Global Routing Algorithm for Field-Programmable Gate Arrays,” Asia-South Pacific
Design Automation Conference Proceedings, page 8C.2, 1998.

10 BIOGRAPHIES

John Emmert received a Bachelor’s of Science degree in Electrical Engineering from the
University of Kentucky, Lexington, Kentucky in 1987. He was commissioned and spent
seven years on active duty with the United States Air Force. In 1993 he received a MS
in Electrical Engineering from the Air Force Institute of Technology, Dayton, Ohio, and
in 1999 he received a Ph.D. in Computer Science and Engineering from the University of
Cincinnati, Cincinnati, OH. His doctoral work was sponsored by grants from the state of Ohio
and Defense Advanced Research Projects Agency (DARPA). Currently he is an Assistant
Professor in the Department of Electrical Engineering at the University of Kentucky. He is
also co-director of the Design Automation and Test Laboratory. He is a member of IEEE,
ACM, and Eta Kappa Nu.

Dinesh Bhatia received a Bachelor’s in Electrical Engineering from Regional Engineering
College, Suratkal, India in 1985 followed by a MS and Ph.D. in Computer Science from
University of Texas at Dallas in 1987 and 1990 respectively. His doctoral work was supported
by ACM SIGDA scholarships. He joined the Computer Science and Engineering Department
at the Southern Methodist University in Dallas in 1990 and moved to University of Cincinnati
in 1991. Currently he is Associate Professor in the Department of Electrical and Computer
Engineering and Computer Science at the University of Cincinnati. He also directs the Design
Automation Laboratory and his research interests include all aspects of architecture and
CAD for field programmable gate arrays, reconfigurable and adaptive computing, physical
design automation of VLSI systems, applied graph theory, and algorithms. He has authored
over fifty papers and has been invited to present tutorials at various conferences. He also
served as a guest editor for a special issue on field programmable gate arrays (FPGAs) for
the VLSI Design journal. He is an associate editor of IEEE Transactions on Computers. His
research is actively supported by Defense Advanced Research Projects Agency (DARPA),
the United States Air Force, and various industries. He is a member of IEEE, ACM, and
Eta Kappa Nu.

Figure 1: Example L = {l, s, ..., l16}.

Figure 2: Example circuit with 6 paths in P.

Figure 3: Example horizontal and vertical moves.

Figure 4: Example pull calculation.

Figure 5: Example horizontal move.

Figure 6: Example vertical move.

Figure 7: Runtime vs TWL for ¢2670

Figure 8: Runtime vs TWL for ¢3540

Figure 9: Runtime vs TWL for ¢6288

Table I: XNF circuit statistics.

Table II: Toronto circuit statistics.

Table I1I: Placement Execution Times (secs).

Table IV: Placement Static Timing Analysis.

Table V: Execution time comparison to Toronto’s Ultra Fast Placement|[22].

level O

level 1

level 2

level 3

before move

€
‘ T
V2 / \ V3
L

after move

before move after move
[]
v4
e
]
v6
/V
P
V5 V6
@

TWL

12500 | | | | | | | | | | | | |

12000 [[, . SA,NEE -
11500 - |- T —
11000 |i: i 7
10500 | |\ .
10000 | | % .
9500 | | \w :
9000 |- k\\;g___‘"“‘ ________________ .

execution time (secs)

TWL

21000
20000
19000
18000
17000
16000
15000
14000
13000
12000
11000

execution time (secs)

| | | |
I TS ———
R S , SA, M=1 --——---
. SA, M=|S|/2 -------- 7]
Ve - SA, M=[§|/20 - .
R [[
0 5 10 15 20 25

TWL

60000

?Y e . ' ' Té
55000 ff, ! . SA M=1

\ 1 SA, M=|S|/2
50000 1 SA Maalbg
45000 fr i

40000
35000
30000
25000

execution time (secs)

XNF Circuit Data

Ckt ||V | | E |

c432 88 237

c499 129 270

¢880 181 417

cl355 | 288 o81

c1908 | 185 563

c2670 | 398 758

c3540 | 361 1427

c6288 | 848 2992

University of Toronto
Circuit Data

Ckt | V|
clma.net 8383
elliptic.net 3604
ex1010.net 4598
frisc.net 3556
pdc.net 4575
s38417.net 6406
s38584.net 6447
spla.net 3690

Execution Times (secs)

Ckt | PPR | M1 | TS.TWL | TS_LEDGE | TS 2-Step
c432 16 | 27 0.6 1.9 0.9
c499 191 34 0.7 2.0 0.9
¢880 341 35 0.8 3.8 1.3
c1355 37 40 1.4 2.7 1.8
c1908 ol | 75 1.7 3.0 2.3
c2670 90 | 75 2.1 4.8 3.8
¢3540 166 | 159 4.5 7.2 6.2
c6288 355 | 169 8.7 15.9 13.1

Static Timing Analysis (ns)

Ckt SA | PPR | M1 | TS.TWL | TS_EDGE | TS 2-Step
c432 65.5 | 634 | 67.6 65.9 62.8 63.8
c499 40.5 | 40.0 | 45.3 40.1 374 40.0
¢880 49.1 | 55.7| 49.0 o4.5 06.4 04.8
cl355 | 60.0 | 58.3 | 61.7 63.9 65.6 64.3
cl908 | 62.1 | 56.8 | 67.1 60.2 62.5 59.7
c2670 | 93.4 | 100.6 | 118.5 112.0 110.0 93.6
c3540 | 849 | 829 | 79.6 115.5 98.4 91.5
c6288 | 451.0 | 378.0 | 380.8 429.0 414.9 398.0

Execution Times (secs)

Ckt Toronto Ultra Fast | Modified VPR | TS.TWL
clma.net 21.71 29.79 55.5
elliptic.net 6.05 7.16 2.1
ex1010.net 7.96 10.53 14.4
frisc.net 6.15 7.04 4.4
pdc.net 8.43 10.35 18.4
s38417.net 13.33 16.88 4.2
s38584.1.net 14.55 18.35 32.1
spla.net 6.37 7.26 13.4

