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Abstract
Modern FPGAs have multi-millions of gates and future
generations of FPGAs will be even more complex. This
means floorplanning tools will soon be extremely im-
portant for the physical design of FPGAs. Due to the
heterogeneous logic and routing resources on an FPGA,
FPGA floorplanning is very different from the tradi-
tional floorplanning for ASICs. This paper presents the
first FPGA floorplanning algorithm targeted for FPGAs
with heterogeneous resources (e.g., Xilinx’s Spartan3
chips consisting of columns of CLBs, RAM blocks, and
multiplier blocks). Our algorithm can generate floor-
plans for Xilinx’s XC3S5000 architecture (largest of the
Spartan3 family) in a few minutes.

INTRODUCTION
Modern FPGAs have multi-millions of gates and future gen-
erations of FPGAs will be even more complex. A hierar-
chical approach based upon partitioning and floorplanning is
necessary to successfully map a design onto an FPGA. This
means FPGA floorplanning tools will soon be extremely im-
portant. (In a recent invited talk at ICCAD-2003, Dr. Salil
Rajie clearly articulated the importance of the FPGA floor-
planning problem as one of the multi-million gate FPGA
physical design challenges [1].) A traditional FPGA design
cycle consists of logical optimization [2], technology map-
ping [3], placement [4] and routing [5]; Fig. 1 shows the
new FPGA design cycle with partitioning and floorplanning.
ASIC partitioning algorithms [6] can be applied in the new
FPGA design cycle. Due to the heterogeneous logic and
routing resources on an FPGA, FPGA floorplanning is very
different from the traditional floorplanning for ASICs. As a
result, although there are many algorithms in the literature
for the ASIC floorplanning [7, 8, 9, 10], these algorithms can
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not be used for FPGA designs. There are also some pre-
vious papers [11] on FPGA floorplanning, but all of them
are targeted for older generations of FPGAs consisting only
of CLBs (without RAM and multiplier blocks) where tradi-
tional ASIC floorplanning algorithms can be easily applied
to solve the problem.
This paper is based on the following general FPGA archi-
tecture: An FPGA chip consists of columns of Configurable
Logic Blocks (CLB), with column pairs of RAMs and mul-
tipliers interleaved between them. Xilinx [12] Spartan3
family and Vertex-II family conform to this architecture.
For example, XC3S5000(largest chip of the Spartan3 fam-
ily) consists of 80 columns of CLBs, with four column pairs
of RAMs and multipliers interleaved between CLBs. In the
rest of the paper, we will use a small FPGA chip as shown in
Fig. 2 to illustrate the main ideas of our algorithm.
This paper presents the first FPGA floorplanning algorithm
targeted for FPGAs with heterogeneous resources (e.g., Xil-
inx’s Spartan3 chips consisting of columns of CLBs, RAM
blocks, and multiplier blocks). Our algorithm can generate
floorplans for Xilinx’s XC3S5000 architecture in a few min-
utes. The algorithm is based on a non-trivial extension of
the Stockmeyer floorplan optimization algorithm [13]. We
use slicing structure [7] to represent floorplans, and develop
an efficient algorithm that can find the optimal realization
for a particular slicing structure. In this paper, we also dis-
cuss how to reduce the space complexity and how to assign
irregular shapes to modules.
This paper is organized as follows. In section 2, we define
the FPGA floorplanning problem. In section 3, we propose
our algorithm. In section 4, we present how to compact and
postprocess realizations. Section 5 presents our experimental
results. We conclude our paper in section 6.
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Figure 3. (a) Example floorplan and its (b) slicing tree

PROBLEM DESCRIPTION
Assume we are given a set of modules, each of them having an
associated resource requirement vector φ = (n1, n2, n3),
which means this module requires n1 CLBs, n2 RAMs,
and n3 multipliers. The FPGA floorplanning problem is
to place modules on the chip so that each region assigned
to a module satisfies its resource requirements, regions for
different modules do not overlap with each other, and a given
cost function is optimized.
For example, we have 6 modules, and their resource require-
ment vectors are φ1 = (12, 2, 1), φ2 = (30, 4, 4), φ3 =
(15, 1, 1), φ4 = (24, 4, 4), φ5 = (18, 2, 2), φ6 = (30, 2, 2).
Fig. 3(a) is a feasible floorplan for these modules.
Actually, the floorplan in Fig. 3(a) shows a slicing struc-
ture [7]. Our algorithm uses slicing trees as representation
method. A slicing floorplan is a rectangular floorplan with n

basic rectangles that can be obtained by recursively cutting
a rectangle into smaller rectangles. A slicing floorplan can
be represented by an oriented rooted binary tree, called a
slicing tree (see Fig. 3(b)). Each internal node of the tree
is labelled either v or h, corresponding to either a vertical
or a horizontal cut respectively. Each leaf corresponds to a
basic rectangle and is labelled by the name of the module.
We can use a Polish expression [14] to encode this tree, and
the evaluation of this expression can be done in linear time
for a traditional floorplanning problem.
In order to make our illustration easier, we would like to
employ a coordinate system on the chip. In Fig. 2, the vertical
unit of the coordinate system is the height of a CLB, while
the horizontal unit is the width of a CLB. The lower left CLB
has coordinates (0, 0), the lower left RAM spans coordinates
(1, 0) through (1, 2), and the lower left multiplier spans
coordinates (2, 0) through (2, 2). Let H and W denote the
height and the width of the chip respectively. In the rest of
this paper, when we say that (x, y) is a coordinate on the
chip, we always mean that x, y are integers and 0 ≤ x <

W, 0 ≤ y < H .
A rectangle r = (x, y, w, h) on the chip is characterized by
its lower left coordinate (x, y), its width w and its height
h. x(r), y(r), w(r), h(r) denote the corresponding fields of
r. In Fig. 3(a), the rectangle labelled 1 is r1 = (0, 0, 4, 6).
Given a rectangle r, we use φr to denote the resource vector
associated with r, for example φr1

= (12, 2, 2). Let R
denote the set of all possible rectangles on the chip. Given a

(4,1) (10,0)

Figure 4. Irreducible realization lists

rectangle r ∈ R, x(r) + w(r) ≤ W and y(r) + h(r) ≤ H .
We need several definitions first before we can continue.

Definition 1 Resource vectors comparison: Given two
resource vectors φ = (n1, n2, n3) and φ′ = (n′

1, n
′

2, n
′

3),
the inequality φ ≤ φ′ holds iff n1 ≤ n′

1∧n2 ≤ n′

2∧n3 ≤
n′

3.

Definition 2 Given a module θ with a resource require-
ment vector φ, the realization set of θ is Rθ = {r | r ∈
R, φ ≤ φr}.
Definition 3 Given two rectangles r1 = (x, y, w1, h1)
and r2 = (x, y, w2, h2), r1 dominates r2(r1 ≺ r2) iff
w1 ≤ w2 ∧ h1 ≤ h2.

Intuitively, realization set Rθ is the set of rectangular regions
that satisfy the resource requirement of module θ. r1 domi-
nating r2 means r2 is redundant. Obviously, there are many
redundant realizations in Rθ, so we introduce the following
notation.

Definition 4 Irreducible Realization List(IRL) for mod-
ule θ starting from coordinate (x, y) is defined as L(θ, x, y)
= {r | r ∈ Rθ, x(r) = x∧y(r) = y, and no other r′ ∈ Rθ

dominates r}.
IRLs of a module are different for different starting points.
For example, assume that φ = (12, 1, 1) is the resource
requirement vector of module θ. Its IRLs starting from (4, 1)
and (10, 0) are L(θ, 4, 1) = {(4, 1, 4, 6), (4, 1, 5, 5)} and
L(θ, 10, 0) = {(10, 0, 3, 12), (10, 0, 4, 6), (10, 0, 5, 4), (10, 0, 6, 3)}
(see Fig. 4). We can see from this example that there is
a fundamental difference between the FPGA floorplanning
problem and the traditional floorplanning problem.
By definition, any two realizations in an IRL can’t dominate
each other. If we sort the list according to h(r) from high to
low, then w(r) must be sorted from low to high. An IRL is
always sorted this way in the rest of this paper. We have the
following lemma regarding IRLs:
Lemma 1 Assume we are given a module θ and a rect-
angle r = (x, y, w, h) ∈ Rθ. If x′ ≤ x and y′ ≤ y,
then there is a rectangle r′ ∈ L(θ, x′, y′), such that
x(r′)+w(r′) ≤ x(r)+w(r) and y(r′)+h(r′) ≤ y(r)+h(r)
(see Fig. 5).
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FPGA FLOORPLAN ALGORITHM
Roughly speaking, we use slicing trees to represent an FPGA
floorplan and perturb slicing trees under the control of sim-
ulated annealing in a way similar to [14]. Given a slicing
tree, we calculate IRLs of each node from leaves to the root.
Then we check IRLs of the root. If there is a realization
r ∈ L(root, 0, 0) satisfying w(r) ≤ W and h(r) ≤ H , we
find a feasible solution for the FPGA floorplanning problem.
Now, we are extending the definition of IRL to include tree
nodes. Given two rectangles r1 = (x1, y1, w1, h1) and r2 =
(x2, y2, w2, h2), the bounding rectangle of r1 and r2 is a
rectangle r = (x, y, w, h), where x = min{x1, x2}, y =
min{y1, y2}, w = max{w1 + x1, w2 + x2} − x and h =
max{h1 + y1, h2 + y2} − y. Given a tree node u, if u

represents a module θ, Ru = Rθ. If u is an internal node,
let v, q be the left and the right child of u. If u is vertical, Ru

consists of all bounding rectangles of r1 ∈ Rv and r2 ∈ Rq,
where r1 is to the left side of r2; if u is horizontal,Ru consists
of all bounding rectangles of r1 ∈ Rv and r2 ∈ Rq, where r1

is below r2. The irreducible realization list for a tree node u

is defined asL(u, x, y) = {r | r ∈ Ru, x(r) = x∧y(r) = y,
and no other r′ ∈ Ru dominates r}.
In the next subsection, we will talk about how to compute
IRLs of a node efficiently if we know IRLs of its children.
Then we will present how to reduce the space complexity. In
the third subsection, we present formal algorithms. Finally,
we introduce our cost function and some implementation
details that can improve the performance.

Computing Irreducible Realization Lists
It is obvious that we only need to calculate IRLs once for
basic modules. We precompute them at the beginning of
simulated annealing. Experiments show that this part only
takes a very small amount of runtime.
As we have said, we calculate IRLs for each node from
leaves to the root. Let u denote an internal node which has
a vertical cut, v and q denote the left and the right child of
node u. We have the following lemma:
Lemma 2 If r ∈ L(u, x, y), then there exist r1, r2 such
that r1 ∈ L(v, x, y), r2 ∈ L(q, x + w(r1), y), and r is an
bounding rectangle of r1 and r2.

Proof:

Assume r = (x, y, w, h) is an bounding rectangle of realiza-
tions r1 = (x1, y1, w1, h1) ∈ L(v, x1, y1) and
r2 = (x2, y2, w2, h2) ∈ L(q, x2, y2) that do not satisfy the
lemma. We prove that there exist r′1 and r′2 that satisfy the

rrr

(a) (b) (c)

(d) (e)

r r1 1 1

1
1

1

2 2
2

2
2

2

22

11

(f)

r

(x ,y )
(x ,y )

(x,y)

r r r

rrr

Figure 6. Six combinations

lemma and have r as their bounding rectangle. There are six
combinations of r1, r2 to generate r as shown in Fig. 6.
First we consider case (a) where x = x1, y = y2. Because
r1 is a realization for v, we know by Lemma 1 that there
must exist a realization r′1 = (x, y, w′, h′) ∈ L(v, x, y),
w′ ≤ w1, and y + h′ ≤ y1 + h1. Now it is true that r′2 =
(x + w′, y, w − w′, h) ∈ L(q, x + w′, y), or r ∈ L(u, x, y)
will be a contradiction.
The correctness of the other 5 cases can be proved in a similar
way. �

This lemma tells us that a realization r ∈ L(u, x, y) of an
internal node u can be generated by two horizontally
aligned realizations of its children and there is no hor-
izontal gap between them. With this lemma, we know
that it is enough to combine every realization r ∈ L(v, x, y)
with realizations of L(q, x+w(r), y) to generate L(u, x, y).
The heights of realizations in an IRL are sorted from high
to low; their widths are sorted from low to high. Assume
L(v, x, y) = {r1, r2, . . . , rs} is sorted as expected. When
we combine a realization ri with realizations of q, we do not
need to consider all combinations. For those realizations of
q with heights not larger than h(ri), we only need to con-
sider the highest one to get a minimum width (Fig. 7(a)). We
also do not need to combine ri with a realization r′ of q if
h(r′) ≥ h(ri−1)

1. Let’s refer to Fig. 7(b). We can see from
the figure that if h(r′) ≥ h(ri−1), there must exist a real-
ization r′1 ∈ L(q, x + w(ri−1), y) by Lemma 1, such that
h(r′1) ≤ h(r′) and w(ri−1)+w(r′1) ≤ w(ri)+w(r′), which
means the bounding rectangle of ri−1 and r′1 dominates that
of ri and r′. So we do not need to consider those realizations
of the right child with heights no less than h(ri−1). Let l

denote max{H, W}. With the above analysis, we can prove
the following theorem.

Theorem 1 For an internal node u, and a coordinate
(x, y), L(u, x, y) can be constructed in O(l log l) run-
time.

Proof:

We follow the notations we use in the above paragraph in

1Assume h(r0) = H + 1.

294



Combine these two realization

ri

realizations of q

(a)

i−1

iw(r )

1i−1w(r   )

1
ir

r

w(r’)

w(r’)

r’r’

(b)
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this proof, such as v, q are the left and the right child of u.
First we consider the case in which u is a vertically sliced
node. When we combine ri with realizations of q, we get
a set of realizations with heights between h(ri)(may be in-
clusive) and h(ri−1)(exclusive). For each i, we first find the
highest realization r′ ∈ L(q, x + w(ri), y) with height not
larger than h(ri), then we scan L(q, x + w(ri), y) in reverse
order until we reach a realization with height not less than
h(ri−1). During this time, we scan at most h(ri−1) − h(ri)
realizations. We can design a data structure so that find
operation costs O(log H)(the length of the list is at most
H), and single scan operation costs O(1), so the runtime for
generating L(u, x, y) is

1∑

i=s

O(h(ri−1) − h(ri) + log H)

= O(h(r0) − h(rs) + s log H)

= O(l log l)

For horizontally sliced node, we have a similar proof. �

Figure 8. Pattern of Fig. 2

Taking Advantage of Repetition
If we implement the previous algorithm directly on the chip,
finding IRLs for every coordinate will make the space com-
plexity formidable. Fortunately, real FPGA chips are very
regular. Each chip is a repetition of a basic pattern. Consider
the example chip in Fig. 2, of which basic pattern is shown
in Fig. 8. It turns out that slicing can gracefully utilize
this repetition property, and we only need to perform
computation on the pattern instead of the whole chip.
This is the most important reason that we use slicing in our
algorithm.

(5,0) (10,6)

Figure 9. Example for Observation 2

Let hp and wp denote the height and the width of the pattern.
We have the following observations.
Observation 1 Given a module θ and its two irreducible
realization lists L1 = L(θ, x1, y1),L2 = L(θ, x2, y2) where
x2 = x1 + n1 ∗wp, y2 = y1 + n2 ∗ hp, n1 and n2 are two
integers2. r1 ∈ L1, r2 ∈ L2, we have w(r1) = w(r2) ⇐⇒
h(r1) = h(r2).

Assume (x1, y1) and (x2, y2) map to the same coordinate
on the pattern, and r1 ∈ L(θ, x1, y1), r2 ∈ L(θ, x2, y2),
then r1 and r2 have the same shape if w(r1) = w(r2) or
h(r1) = h(r2). Given a realization r, h(r) ≤ H − y(r) and
w(r) ≤ W − x(r). Let S(L) denote the shape set of L,
S(L) = {(w(r), h(r)) | r ∈ L}. Together with the above
observation, we have:
Observation 2 Given a module θ, two points (x1, y1)
and (x2, y2) where x2 = x1 + n1 ∗ wp, y2 = y1 + n2 ∗
hp, n1 ≥ 0 and n2 ≥ 0 are two integers, then it must be
the case that S(L(θ, x2, y2)) ⊆ S(L(θ, x1, y1))

Fig. 9 shows an example. In this chip layout, wp = 5 and
hp = 3. Given two points (x1, y1) = (5, 0), (x2, y2) =
(10, 6), and a module with resource requirement vector φ =
(12, 1, 1). We know from the figure that S(L(θ, x1, y1)) =
{(6, 3), (5, 4), (4, 6), (3, 12)}, andS(L(θ, x2, y2)) ={(6, 3),
(5, 4), (4, 6)}. So S(L(θ, x2, y2)) ⊆ S(L(θ, x1, y1)).
In our algorithm, we calculate an IRL on every coordinate
of the pattern for every module. The widths and heights of
these realizations range from 1 to W and 1 to H respectively.
We use IRLs on the pattern to represent those on the chip.
Even though this may introduce some illegal realizations (say
x + w > W ), we allow these illegal realizations and pay a
penalty in the objective function.

Algorithm

Algorithm Get Realization list V computes a realization
list for an internal vertically sliced node u. We calculate
IRLs for every point on the pattern separately. This algorithm
takes a node u and a point (x, y) as its input parameters, and
calculates the IRL of u starting from (x, y).

2(x1, y1), (x2, y2) map to the same coordinates on the pattern.

295



Get Realization list V(u, x, y)
Begin:

L(u, x, y) ← ø /*initially empty*/
lv ← L(v, x, y)
len ←| lv | /*length of lv*/
for i:=len to 1

xq = (x + w(lv[i])) mod wp

Let lq be L(q, xq, y)
if i= 1

upperheight ← α ∗ H + 1
else

upperheight ← h(lv[i − 1])
find j, satisfying h(lq[j]) ≤ h(lv[i])

and h(lq[j − 1] > h(lv[i]) 3

while (j ≥ 1 and h(lq[j]) < upperheight) do
hnew ← max(h(lq[j]), h(lv[i]))
wnew ← w(lq[j]) + w(lv[i])
if (L(u, x, y) is empty and wnew < α ∗ W )

or wnew < width of the first element in
L(u, x, y)

rnew = (x, y, wnew, hnew)
insert rnew as the first element toL(u, x, y)

j ← j-1
End

In this algorithm, α ≥ 1 is a constant, and we allow solutions
with areas as large as α ∗W ∗ α ∗H as our intermediate so-
lutions. Algorithm Get Realization list H for horizontally
sliced nodes is very similar to Get Realization list V. We
can prove the following theorem, which tells us that the al-
gorithm can always find the optimal solution for a slicing
structure.
Theorem 2 Given irreducible realization lists of basic
modules, algorithm Get Realization list V always com-
putes the complete irreducible realization list with re-
spect to α, no more no less.

The algorithm for evaluating a slicing tree is presented below.
Evaluate Tree(T)

Evaluate Node(T.root)

Evaluate Node(u)
if u is leaf return
Evaluate Node(u.left)
Evaluate Node(u.right)
for every point (x, y) on the pattern do

if u is vertically sliced
Get Realization list V(u,x,y)

else
Get Realization list H(u,x,y)

Let l denote max(H,W ), m denote the number of modules,
p denote the number of points on the pattern, that is p =
hpwp. The length of an IRL can not be longer than αl.

3We can insert pivot values to both ends of lr to guarantee the
existence of j.

From Theorem 1, the runtime of Get Realization list V
is O(αl log(αl)) = O(l log(l)). Since a slicing tree is a
full binary tree, the number of internal nodes is m − 1. For
each internal node, we compute its p IRLs, so we have the
following theorem.

Theorem 3 The complexity of evaluating a slicing tree
is O(mlp log l). And the algorithm needs O(mlp) mem-
ory space.

Several Implementation Details
We employ following ideas to make our implementation
much more efficient.

1. Cost Function
C = αArea + βRatio Sum + γWire Length

We consider area as well as wire length in our cost
function. In this cost function, the area is the addition
of two parts: the area of the enclosed rectangle of
the floorplan, and the area that are not inside the chip
for an illegal floorplan. Wire length also consists of
two parts, internal wire length inside each module and
external wire length between different modules. For
external wire length, we use traditional half perimeter
of bounding box method. The internal wire length
can be estimated by aspect ratio of the corresponding
module. A smaller aspect ratio tends to decrease the
longest distance between any two devices inside the
module. The smaller the aspect ratio, the smaller is
the internal wire length. For each realization rθ of
module θ, it contributes w(rθ)

h(rθ) + h(rθ)
w(rθ) to Ratio Sum.

So far, we have not considered IOBs in this paper. We
believe we can add another term χ to the cost function
so that the connections between modules and IOBs
are also optimized. χ =

∑
diIOBi, where di is the

distance between module θi and its nearest boundary
of the chip, and IOBi is the number of IOBs module
θi needs. In the cost function, α, β and γ are used to
control the relative importance of Area, Ratio Sum

and Wire Length.
2. When we calculate the IRLs for basic modules, we only

consider those realizations with relatively small aspect
ratios. This technique can greatly reduce the length of
IRLs, thus improving the runtime.

3. We use a traditional floorplanner to generate a better
initial configuration for simulated annealing. To use
a traditional floorplanner, every module should have
dimensional information. We generate a rectangular
shape for each module according to resources it needs.
By doing this, we can start from a relatively lower
temperature, so that we can save runtime.

COMPACTION AND POSTPROCESSING
Rectangular realizations may waste resources. A rectangular
realization may contain more resources than needed, so a
solvable floorplanning problem may not be solved if we only
allow rectangular realizations. Assume we want to place
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Figure 10. An example for irregular realizations

two modules on the small chip in Fig. 10. The resource
requirement vectors of these modules are θ1 = (2, 1, 1) and
θ2 = (6, 1, 1). These two modules can only be placed on the
chip if we allow irregular realizations. In this section, we will
describe how to assign a rectilinear realization to a module.
The way we deal with it is compaction and postprocessing.

Compaction
After evaluating a slicing tree, we check every realization
r ∈ L(root, 0, 0). If w(r) ≤ W ∧ h(r) ≤ H , we find a
feasible solution. If only w(r) ≤ W , we compact r vertically
using the following algorithm.

1. Compute the lower left coordinate of every module on
the chip according to r.

2. Sort modules according to y value of the lower left coor-
dinate from low to high. Let module list (θ1, θ2, . . . , θm)
be the sorted result.

3. Set contour line C1 to be the lower boundary of the
chip.

4. for i = 1 to m do

1. Place module θi on the contour line Ci without
changing the x-coordinate of θi.

2. Let Ci+1 be the upper contour line after we place
θi on Ci (see Fig. 11).

Fig. 11 shows that θi is pushed into a concave part of Ci. In
our implementation, we can control how deep a module can
be pushed into such a concave.

Postprocessing
There are several disadvantages of compaction. After com-
paction, some modules are placed in bad shapes, and there
exists large amount of white space on the top of the chip.
We use a postprocessing technique to fix these problems.
Let’s revisit our compaction algorithm. Just before we com-
pact module θm, all other modules are placed between the
contour line Cm and the lower boundary of the chip, so we
can place the last module freely between Cm and the upper
boundary of the chip. We call the upper boundary of the chip
the upper contour line C ′. We use some heuristic method
to find a good place between Cm and C ′ for module θm near
the upper contour line, and update the upper contour line
C ′ according to the placement of θm. Then we place module
θm−1 between Cm−1 and the new upper contour line C ′.
Generalizing this process, we have the following algorithm:

1. Set the upper contour lineC ′ to be the upper boundary
of the chip.

C
i

C
i+1

Compaction 

Figure 11. Update of a contour line

2. for i = m downto 1 do

a. Use a heuristic method to find a good place for
module θi near C ′ between C ′ and Ci.

b. Adjust the upper contour line C ′ according to
the placement of the module.

We only invoke this postprocessing when the placement after
compaction can fit into the chip. It is easy to see that if the
placement after compaction can fit into the chip, then the
placement after postprocessing can fit into the chip. Experi-
ments show that this postprocessing really improves module
shapes. Of course, this postprocessing does not eliminate
unoccupied space, but it helps to distribute the unoccupied
space evenly on the chip, which is helpful for routing and
heat dissipation. We use the following heuristic to find a
good place for module θi between two contour lines C ′ and
Ci. Let Si be the area of θi, Si = n1s1 + n2s2 + n3s3,
where (n1, n2, n3) is the resource requirement vector of θi,
and s1, s2, s3 are the areas of one CLB, RAM, multi-
plier respectively. Let di =

√
Si. Let C[i] denote y value

of the coordinate on C with x value equaling to i. Given
1 ≤ j ≤ k ≤ W , let ρ(C, j, k) = min{C[t] | j ≤ t ≤ k}.
Our heuristic will try to find 1 ≤ j ≤ k ≤ W such that
|k− j −di| is minimized and the resources in region R(j, k)
satisfying the resource requirement of θi, R(j, k) = {(x̂, ŷ) |
j ≤ x̂ ≤ k, ŷ ≥ Ci[x̂], ŷ ≤ C ′[x̂], ŷ ≤ ρ(C ′, j, k) + λdi}.
λ is used to control the irregularity of the placement. The
larger the λ, the more the irregularity. Then we place module
θi on the top of region R(j, k).

EXPERIMENTAL RESULTS
Our experiments are carried out on a desktop with a 2.4GHz
Intel(R) Xeon(TM) CPU. The OS is Red Hat Linux 8.0, and
we use g++ to compile our programs. We test our program on
Xilinx XC3S5000 FPGA, which is the largest FPGA in the
Spartan-3 family. XC3S5000 has 8320 CLBs, 104 RAMs,
and 104 multipliers. Parameter values of this FPGA are 104
and 352 for l, p respectively.
The first experiment we do is to divide the XC3S5000 almost
evenly into 20 blocks. So we have 20 modules. 16 modules
need 400 CBLs, 5 RAMs and 5 multipliers each, and the
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Table 1. Testing data

Name #modules CLB RAM Multiplier Runtime(s)
percentage(%) percentage(%) percentage(%) Slicing With compaction

FPGA1 21 72% 88% 86% 59 1
FPGA2 23 72% 84% 84% 27 2
FPGA3 21 80% 75% 75% 30 1
FPGA4 23 81% 73% 73% 16 1
FPGA5 23 83% 81% 81% 63 4
FPGA6 37 94% 75% 75% Fail 173
FPGA7 50 78% 78% 76% 88 28
FPGA8 100 78% 79% 77% 242 40
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Figure 12. Result of a 20-module problem obtained in 88
s

other four modules need 480 CBLs, 6 RAMs, and 6 multi-
pliers each. We run our program on these 20 modules, and
get the result shown by Fig. 12 in 88 seconds. This is a very
tight problem and our floorplanner is able to reconstruct the
floorplan.
We also run our algorithm on 32 testing data. Resource
utilizations of these data range from 70% to 95%. With
slicing alone, we can solve 24 of them. With compaction
and postprocessing, we can solve all of them. Some of our
test results are shown in Table 1. The failure of FPGA6 by
slicing alone is due to the large requirement of CLBs. Fig. 13
is the floorplan result for 21 modules using slicing alone. The
total resources needed by these 21 modules are 6000 CLBs
(72.12% of total CBLs), 91 RAMs (87.5% of total RAMs),
and 89 multipliers (85.58% of total multipliers). It takes
59 seconds to get the result. Fig. 14 shows a floorplan with
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Figure 13. Floorplan result of FPGA1 obtained in 59 s

compaction and postprocessing, the unnumbered areas in this
figure are empty spaces. There are no empty spaces shown
in Fig. 13 because we have distributed them into realizations.

Even though compaction and postprocessing need additional
time to evaluate a particular slicing tree, the runtime of our
algorithm with compaction and postprocessing is much less
than that without compaction. The reason is that simulated
annealing experiences a lot of neighborhood permutations
(i.e., slicing tree changes) before the algorithm finds a fea-
sible solution, and the compaction can greatly decrease the
number of such neighborhood movements because many un-
feasible slicing trees (a slicing tree does not correspond to
any feasible solution) may produce a feasible solution after
compaction.

To the best of our knowledge, there are no FPGA floorplan-
ning tools available for the heterogeneous resources, even
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Figure 14. Floorplan result for FPGA2 with compaction

though there are many FPGA placement tools. So we can’t
compare our method with others. The experimental results
show that our algorithm is both efficient and effective, and it
can produce a feasible solution in a few minutes for an input
data with reasonable resource requirements. The experimen-
tal results also indicate that our algorithm works very well
on large data. (In a floorplanning problem, the number of
modules is far less than 100 in most cases.) Actually, the
scalability of our algorithm is guaranteed by Theorem 3,
since the runtime is linear to the number of modules.

CONCLUDING REMARKS
In this paper, we present the first FPGA floorplanning algo-
rithm targeted for FPGAs with heterogeneous resources. We
use slicing representation, and compute irreducible realiza-
tion lists for every node of the slicing tree on a pattern of
the chip. There is no redundance inside each IRL, but there
may exist redundances between different IRLs of a mod-
ule. These redundances are important for our fast algorithm.
Without these redundances, lemma 2 (which is the basis of
our algorithm) will not be true. If lemma 2 is not true, we
will have to combine every realization of the left child with
every realization of the right child to get the realization set
of a node, and it is really time consuming to do so. In this
paper, slicing is used because it works very well with the pat-
tern property of an FPGA chip, and we have no idea whether
other floorplan representations can make such good use of
this property.
Slicing alone does not always guarantee a feasible solution,
so we introduce compaction and postprocessing. Intuitively,

compaction pushes every realization down on the chip, and a
feasible solution may be found after this process. With com-
paction, the runtime of our algorithm is greatly shortened.
Postprocessing technique is used to improve the placement
shapes of modules (i.e., make them more squarish), and it’s
also helpful to distribute white space more evenly onto the
chip. Experimental results show that our algorithm is effi-
cient and effective.
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