
Comments?
Send comments on the documentation by going
to http://solvnet.synopsys.com, then clicking
“Enter a Call to the Support Center.”

Formality®

User Guide
Version X-2005.12, December 2005

ii

Copyright Notice and Proprietary Information
Copyright © 2006 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, Cadabra, Calaveras Algorithm, CATS, CRITIC,
CSim, Design Compiler, DesignPower, DesignWare, EPIC, Formality, HSIM, HSPICE, Hypermodel, iN-Phase, in-Sync,
Leda, MAST, Meta, Meta-Software, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler, PowerMill,
PrimeTime, RailMill, RapidScript, Saber, SiVL, SNUG, SolvNet, Superlog, System Compiler, TetraMAX, TimeMill, TMA,
VCS, Vera, and Virtual Stepper are registered trademarks of Synopsys, Inc.

Trademarks (™)
Active Parasitics, AFGen, Apollo, Apollo II, Apollo-DPII, Apollo-GA, ApolloGAII, Astro, Astro-Rail, Astro-Xtalk, Aurora,
AvanTestchip, AvanWaves, BCView, Behavioral Compiler, BOA, BRT, Cedar, ChipPlanner, Circuit Analysis, Columbia,
Columbia-CE, Comet 3D, Cosmos, CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE, Cyclelink, Davinci, DC
Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design Vision,
DesignerHDL, DesignTime, DFM-Workbench, Direct RTL, Direct Silicon Access, Discovery, DW8051, DWPCI, Dynamic
Model Switcher, Dynamic-Macromodeling, ECL Compiler, ECO Compiler, EDAnavigator, Encore, Encore PQ, Evaccess,
ExpressModel, Floorplan Manager, Formal Model Checker, FoundryModel, FPGA Compiler II, FPGA Express, Frame
Compiler, Galaxy, Gatran, HANEX, HDL Advisor, HDL Compiler, Hercules, Hercules-Explorer, Hercules-II, Hierarchical

Optimization Technology, High Performance Option, HotPlace, HSIM
plus

, HSPICE-Link, i-Virtual Stepper, iN-Tandem,
Integrator, Interactive Waveform Viewer, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, JVXtreme, Liberty,
Libra-Passport, Libra-Visa, Library Compiler, Magellan, Mars, Mars-Rail, Mars-Xtalk, Medici, Metacapture, Metacircuit,
Metamanager, Metamixsim, Milkyway, ModelSource, Module Compiler, MS-3200, MS-3400, Nova Product Family,
Nova-ExploreRTL, Nova-Trans, Nova-VeriLint, Nova-VHDLlint, Optimum Silicon, Orion_ec, Parasitic View, Passport,
Planet, Planet-PL, Planet-RTL, Polaris, Polaris-CBS, Polaris-MT, Power Compiler, PowerCODE, PowerGate, ProFPGA,
ProGen, Prospector, Protocol Compiler, PSMGen, Raphael, Raphael-NES, RoadRunner, RTL Analyzer, Saturn,
ScanBand, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger, Silicon Blueprint, Silicon Early Access,
SinglePass-SoC, Smart Extraction, SmartLicense, SmartModel Library, Softwire, Source-Level Design, Star, Star-DC,
Star-MS, Star-MTB, Star-Power, Star-Rail, Star-RC, Star-RCXT, Star-Sim, Star-SimXT, Star-Time, Star-XP, SWIFT,
Taurus, TimeSlice, TimeTracker, Timing Annotator, TopoPlace, TopoRoute, Trace-On-Demand, True-Hspice,
TSUPREM-4, TymeWare, VCS Express, VCSi, Venus, Verification Portal, VFormal, VHDL Compiler, VHDL System
Simulator, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
All other product or company names may be trademarks of their respective owners.

Printed in the U.S.A.

Formality User Guide, version X-2005.12

Contents

About This User Guide . xviii

Customer Support . xxi

1. Introduction to Formality

What Is Formality? . 1-2

How Does Formality Fit Into My Design Methodology?. 1-4

What Designs Can I Verify?. 1-7

Design Requirements . 1-7

Design Types . 1-7
Verification of Two RTL Designs. 1-8
Verification of an RTL Design and a Gate-Level Design . . . 1-8
Verification of Two Gate-Level Designs 1-9

What Pieces Make Up Formality? . 1-10

General Process Flow . 1-12

Input and Output File Types . 1-14

Input . 1-14
Libraries . 1-18
iii

Output . 1-20

Controlling Formality-Generated File Names. 1-22

Synopsys Setup File . 1-23

Concepts . 1-24

Compare Points . 1-24

Compare Rules . 1-27

Containers . 1-28

Design Equivalence . 1-30

Logic Cones. 1-32

Reference and Implementation Designs 1-33

Solvers . 1-34

2. A Quick Start With Formality

Before You Start . 2-2

Creating Tutorial Directories . 2-2

Tutorial Directory Contents . 2-3

Invoking the Formality Shell and GUI . 2-3

The Graphical User Interface . 2-4

Verifying fifo.vg Against fifo.v . 2-6

Specifying the Reference. 2-6

Specifying the Implementation. 2-8

Setting Up the Design . 2-10

Compare Point Matching . 2-10

Verifying the Designs . 2-12

Debugging . 2-12
iv

Verifying fifo_with_scan.v Against fifo_mod.vg 2-17

Verifying fifo_jtag.v Against fifo_with_scan.v 2-21

Debugging Using Diagnosis . 2-25

For More Information . 2-27

3. Starting Formality

Invoking Formality . 3-3

Starting the Shell Interface . 3-3

Invoking the GUI . 3-5

The Formality Shell Environment . 3-5

Entering Commands . 3-6

Supplying Lists of Arguments . 3-7

Editing from the Command Line . 3-9

Listing Previously Entered Commands 3-10

Recalling Commands. 3-12

Redirecting Output . 3-13

Using Command Aliases . 3-14
Using the alias Command . 3-15
Using the unalias Command . 3-15

Listing Design Objects . 3-16

The Formality GUI Environment . 3-17

Managing Formality Windows . 3-17

Using the Formality Prompt . 3-18

Saving the Transcript . 3-19

Copying Text From the Transcript Area 3-19
v

Copying Text to the Formality Prompt . 3-20

General Formality Usage Options . 3-20

Getting Help . 3-21

Interrupting Formality . 3-23

Understanding and Controlling Messages. 3-24
Setting Message Thresholds . 3-25

Working With Script Files. 3-26

Using the Command Log File . 3-28

Controlling the File Search Path . 3-28
The Tcl Source Command . 3-29
Examining the File Search Path . 3-29

4. Setting Basic Elements for Design Verification

Reading in Libraries and Designs . 4-3

Technology Libraries . 4-4

Designs . 4-5
Changing Bus Naming and Dimension Separator Styles. . . 4-6
Supporting DesignWare Components 4-7
Setting Variables for VHDL and Verilog Directives 4-8
Setting EDIF Variables for Power and Ground 4-10

Top-Level Design . 4-11

Loading the Reference Design . 4-11

Reading Technology Libraries . 4-12
Synopsys (.db) Format . 4-12
Verilog and VHDL RTL Format. 4-13
Verilog Simulation Data . 4-15

Reading Design Libraries. 4-17
vi

Reading Milkyway and DDC Databases 4-19
Milkyway Databases. 4-20
DDC Databases . 4-21

Setting the Top-level Design . 4-21

Loading the Implementation Design . 4-25

Setting Up and Managing Containers . 4-27

5. Preparing the Design for Verification

Using Don’t-Care Cells . 5-3

Setting Up Designs . 5-4

Supporting Multibit Library Cells . 5-5

Resolving Nets With Multiple Drivers. 5-6

Eliminating Asynchronous State-Holding Loops 5-10
Working With Cutpoints . 5-11

Working With Black Boxes . 5-14
Loading Design Interfaces Only . 5-16
Marking a Design as Black Box for Verification 5-18
Reporting Black Boxes . 5-19
Performing Identity Checks . 5-20
Setting Pin and Port Directions for Unresolved Black Boxes 5-21

Working With Constants . 5-22
Defining Constants . 5-23
Removing User-Defined Constants 5-24
Listing User-Defined Constants . 5-24

Working With Equivalences . 5-25
Defining an Equivalence. 5-26
Removing User-Defined Equivalences. 5-26
vii

Listing User-Defined Equivalences 5-27

Working With External Constraints . 5-30
Defining an External Constraint . 5-32
Creating a Constraint Type. 5-33
Removing an External Constraint. 5-34
Removing a Constraint Type . 5-34
Reporting Constraint Information . 5-35
Reporting Information on Constraint Types 5-35

Working With Hierarchical Designs . 5-35
Setting the Flattened Hierarchy Separator Character 5-36
Propagating Constants. 5-37

Working With Combinational Design Changes 5-38
Disabling Scan Logic . 5-38
Disabling Boundary-Scan in Your Designs. 5-39
Managing Clock Tree Buffering . 5-41

Working With Sequential Design Changes 5-42
Managing Asynchronous Bypass Logic 5-43
Setting Clock Gating. 5-45
Enabling Inversion Push. 5-49
Instance-Based Inversion Push . 5-51
Environmental Inversion Push . 5-52
Working with Retention Registers . 5-53

Working With Re-Encoded Finite State Machines 5-54
Using the Automated Setup File for FSM Re-Encoding 5-55
Reading a User-Supplied FSM State File 5-55
Defining FSM States Individually . 5-56
Multiple Re-encoded FSMs In a Single Module 5-57
Listing State Encoding Information. 5-58
Working With FSMs Re-encoded Using Design Compiler . . 5-58
viii

Working With Retimed Designs . 5-59

Working With Single-State Holding Elements 5-60

Working With Multiplier Architectures . 5-61
Reading the Automated Setup File 5-62
Setting the Multiplier Architecture. 5-62
Reporting Your Multiplier Architecture 5-65

Working With Arithmetic Blocks . 5-66
Datapath Support . 5-67
Producing SVF Data with Design Compiler 5-68
Reading the SVF Data Into Formality. 5-68
Transformation Messages . 5-69
svf_datapath Example . 5-71

Working With the Automated Setup File 5-73
Creating an Automated Setup File . 5-73
Reading an Automated Setup File Into Formality. 5-74
Writing a Text Version of the Automated Setup File 5-75
Reading in Multiple Automated Setup Files 5-75
Automated Setup File Commands . 5-77
Using the Automated Setup File to Verify Multipliers 5-78

Automated Setup File Diagnostic Messages 5-79

SVF Conversion to Text . 5-80

Removing Information . 5-81

Removing Designs. 5-81

Removing Design Libraries . 5-82

Removing Technology Libraries. 5-82

Removing Containers . 5-83

Black Boxing Objects . 5-84
ix

Saving Information. 5-84

Saving Containers . 5-85

Saving the Entire Formality Session . 5-85

Restoring Information . 5-87

Restoring Containers . 5-87

Restoring a Session. 5-88

6. Compare Point Matching and Verification

Matching Compare Points . 6-3

Performing Compare Point Matching . 6-5

Reporting Unmatched Points . 6-6

Undoing Matched Points . 6-7

Debugging Unmatched Points . 6-8

How Formality Matches Compare Points. 6-9
Exact-Name Matching . 6-11
Name Filtering . 6-13
Topological Equivalence. 6-14
Signature Analysis . 6-14
Compare Point Matching Based on Net Names. 6-16

Performing Verification. 6-17

Verifying a Design . 6-17

Verifying a Single Compare Point . 6-19

Removing Compare Points from the Verification Set 6-20

Controlling Verification Runtimes . 6-22

Distributing Verification Processes. 6-23
Setting Up the Distributed Environment 6-23
x

Verifying Your Environment . 6-26

Interrupting Verification . 6-27

Performing Hierarchical Verification . 6-27

Using Batch Jobs. 6-30
Starting Verification . 6-30
Controlling Verification . 6-31
Interrupting Verification. 6-32
Verification Progress Reporting . 6-32

Reporting and Interpreting Results . 6-33

7. Debugging Failed Design Verifications

Debugging Process Flow. 7-3

Gathering Information . 7-4

Handling Designs That Don’t Complete Verification 7-4

Determining Failure Causes . 7-7

Debugging Using Diagnosis . 7-9

Debugging Using Logic Cones . 7-11

Eliminating Setup Possibilities. 7-13

Black Boxes . 7-14

Unmatched Points . 7-14
Matching With User-Supplied Names 7-14
Matching With Compare Rules. 7-18
Matching With Name Subset . 7-23
Renaming User-Supplied Names or Mapping File 7-25

Design Transformations . 7-27
xi

Working With Schematics . 7-28

Viewing Schematics. 7-28

Traversing Design Hierarchy . 7-32

Finding a Particular Object. 7-32

Generating a List of Objects . 7-33

Zooming In and Out of a View . 7-34

Viewing RTL Source Code. 7-35

Working With Logic Cones . 7-36

Pruning Logic. 7-40

Working With Failing Patterns . 7-41

Saving Failing Patterns . 7-44

Running Previously Saved Failing Patterns 7-45

8. Cell Library Verification

Overview . 8-3

Initializing Library Verification . 8-4

Loading the Reference Library . 8-5

Loading the Implementation Library . 8-6

Listing the Cells . 8-7

Specifying a Customized Cell List . 8-8

Elaborating Library Cells . 8-9

Performing Library Verification . 8-9

Reporting and Interpreting Verification Results. 8-13
xii

Debugging Failed Library Cells . 8-14

Appendix A. Tcl Syntax As Applied to Formality Shell Commands

Using Application Commands . A-3

Understanding the Command Syntax . A-4

Using Special Characters . A-5

Using Return Types . A-5

Quoting Values . A-6

Using Built-In Commands . A-6

Using Procedures . A-7

Using Lists. A-8

Using Other Tcl Utilities. A-10

Using Environment Variables . A-10

Nesting Commands. A-11

Evaluating Expressions . A-12

Using Control Flow Commands. A-12

Using the if Command. A-13

Using while and for Loops . A-13

Using while Loops . A-14

Using for Loops . A-14

Iterating Over a List: foreach . A-15

Terminating a Loop: break and continue . A-15

Using the switch Command. A-16
xiii

Creating Procedures . A-16

Programming Default Values for Arguments A-17

Specifying a Varying Number of Arguments A-17

Appendix B. Formality Library Support

Overview . B-2

Supported Library Formats . B-3

Synopsys Synthesis Libraries . B-3

Verilog Simulation Libraries . B-3

Synthesizable RTL. B-4

Gate-Level Netlists. B-4

Updating Synthesis Libraries. B-4

Library Enhancement/Generation Process B-8

Using Synthesis Libraries . B-9

Using Verilog Libraries . B-9

Library Loading Order . B-12

Single-Source Packaging. B-12

Multiple-Source Packaging . B-12
Augmenting a Synthesis (.db) Library B-13
Augmenting a Simulation (.v) Library B-13

Appendix C. Reference Lists

Shell Variables. C-2

Shell Commands . C-10

Index
xiv

About This Manual FIX ME!

This preface includes the following sections:

• About This User Guide

• Customer Support
xvii

About This User Guide

The Formality User Guide provides information about Formality
concepts, procedures, file types, menu items, and methodologies
with a hands-on tutorial to get you started with the tool.

Audience

This manual is written for engineers who use the Formality product
on a UNIX workstation to perform equivalence checking.
Additionally, you need to understand the following concepts:

• Logic design and timing principles

• Logic simulation tools

• The UNIX operating system

Related Publications

For additional information about Formality, see

• Documentation on the Web, which is available through SolvNet
at https://solvnet.synopsys.com/DocsOnWeb

• The documentation installed with the Formality software and
available through the Formality Help menu

• Synopsys Online Documentation (SOLD), which is included with
the software for CD users or is available to download through the
Synopsys Electronic Software Transfer (EST) system

• The Synopsys MediaDocs Shop, from which you can order
printed copies of Synopsys documents, at
http://mediadocs.synopsys.com
xviii

About This Manual

http://solvnet.synopsys.com
http://mediadocs.synopsys.com

You might also want to refer to the documentation for the following
related Synopsys products:

• ESP (for the FM-ESP User Guide)

• Design Compiler

• HDL Compiler

• PrimeTime
xix

About This User Guide

Conventions

The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates command syntax.

Courier italic Indicates a user-defined value in Synopsys syntax, such as
object_name.

Regular italic A user-defined value that is not Synopsys syntax, such as
a user-defined value in a Verilog statement.

Courier bold Indicates user input—text you type verbatim—in Synopsys
syntax and examples.

Regular bold User input that is not Synopsys syntax, such as a user
name or password you enter in a GUI.

[] Denotes optional parameters, such as

pin1 [pin2 ... pinN]

... Indicates that a parameter can be repeated as many times
as necessary

| Indicates a choice among alternatives, such as

low | medium | high

(This example indicates that you can enter one of three
possible values for an option: low, medium, or high.)

_ Connects terms that are read as a single term by the
system, such as set_annotated_delay

Control-c Indicates a keyboard combination, such as holding down
the Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit>Copy Indicates a path to a menu command, such as opening the
Edit menu and choosing Copy.
xx

About This Manual

Customer Support

Customer support is available through SolvNet online customer
support and through contacting the Synopsys Technical Support
Center.

Accessing SolvNet

SolvNet includes an electronic knowledge base of technical articles
and answers to frequently asked questions about Synopsys tools.
SolvNet also gives you access to a wide range of Synopsys online
services including software downloads, documentation on the Web,
and “Enter a Call to the Support Center.”

To access SolvNet,

1. Go to the SolvNet Web page at http://solvnet.synopsys.com.

2. If prompted, enter your user name and password. (If you do not
have a Synopsys user name and password, follow the
instructions to register with SolvNet.)

If you need help using SolvNet, click HELP in the top-right menu bar
or in the footer.
xxi

Customer Support

http://solvnet.synopsys.com

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the
Synopsys Technical Support Center in the following ways:

• Open a call to your local support center from the Web by going to
http://solvnet.synopsys.com (Synopsys user name and
password required), then clicking “Enter a Call to the Support
Center.”

• Send an e-mail message to your local support center.

- E-mail support_center@synopsys.com from within North
America.

- Find other local support center e-mail addresses at
http://www.synopsys.com/support/support_ctr.

• Telephone your local support center.

- Call (800) 245-8005 from within the continental United States.

- Call (650) 584-4200 from Canada.

- Find other local support center telephone numbers at
http://www.synopsys.com/support/support_ctr.
xxii

About This Manual

http://solvnet.synopsys.com
http://www.synopsys.com/support/support_ctr
http://www.synopsys.com/support/support_ctr

1
Introduction to Formality 1

In this chapter you are introduced to the Formality application.

This chapter contains the following sections:

• What Is Formality?

• How Does Formality Fit Into My Design Methodology?

• What Designs Can I Verify?

• What Pieces Make Up Formality?

• General Process Flow

• Input and Output File Types

• Concepts
1-1

What Is Formality?

Formality is an application that uses formal techniques to prove or
disprove the functional equivalence of two designs or two cell
libraries. For example, you can use Formality to compare a gate-level
netlist to its register transfer level (RTL) source or to a modified
version of that gate-level netlist. After the comparison, Formality
reports whether the two designs or cell libraries are functionally
equivalent. The Formality tool can significantly reduce your design
cycle by providing an alternative to simulation for regression testing.

The techniques Formality uses are static and do not require
simulation vectors. Consequently, for design verification you only
need to provide a functionally correct, or “golden” design (called the
reference design), and a modified version of the design (called the
implementation). By comparing the implementation against the
reference design, you can determine whether the implementation is
functionally equivalent to the reference design. Cell library
verification is similar except that each cell in the implementation
library is compared against each cell in the reference library one cell
at a time.

Today’s design methodology requires regression testing at several
points in the design process. Currently, traditional simulation tools,
such as event-driven and cycle-based simulators, handle this
regression testing. However, as designs become larger and more
complex and require more simulation vectors, regression testing with
traditional simulation tools becomes a bottleneck in the design flow.
The bottleneck is caused by these factors:

• Large numbers of simulation vectors are needed to provide
confidence that the design meets the required specifications.
1-2

Chapter 1: Introduction to Formality

• Logic simulators must process more events for each stimulus
vector because of increased design size and complexity.

• More vectors and larger design sizes cause increased memory
swapping, slowing down performance.

Formality fits well within established electronic design automation
(EDA) methodologies used to create large-scale designs, because it
can replace the traditional simulation tools used for regression
testing. This replacement, combined with the continued use of static
timing analysis tools, gives you two distinct advantages: significantly
reduced verification times and complete verification.

Reduced verification times occur because Formality requires no
input vectors. Reducing gate-level simulation time means you can
spend more time verifying the initial golden RTL design to get better
functional coverage. Formality maintains that coverage through all
subsequent regressions.

Complete verification, the second advantage, means 100 percent
equivalence over the entire vector space. Complete verification is
significant because you no longer have to compromise the subset of
vectors for gate-level simulation.

The following list summarizes the Formality features:

• Proves two designs or cell libraries are functionally equivalent,
faster than verification using event-driven simulators.

• Provides complete verification (not vector-dependent).

• Performs RTL-to-RTL, RTL-to-gate, and gate-to-gate design
verifications.

• Performs Verilog-to-DB, Verilog-to-Verilog, DB-to-DB, Verilog-to-
SPICE, and DB-to-SPICE cell library verifications.
1-3

What Is Formality?

• Offers diagnostic capabilities to help you locate and correct
functional discrepancies between designs.

• Reads synthesizable VHDL, Verilog, Synopsys internal .db
format, and EDIF netlists.

• Performs automatic hierarchical verification.

• Uses existing Synopsys Design Compiler technology libraries.

• Saves and restores designs and verification sessions.

• Offers a graphical user interface (GUI) and a shell command-line
interface (fm_shell).

• Verifies a wide range of design transforms or modifications,
including pipeline retiming and reencoded finite state machines.

• Offers schematic views and isolated “cone of logic” views that
support location of design discrepancies.

How Does Formality Fit Into My Design Methodology?

For design verification, Formality fits into a design process exactly
the same way a logic simulator fits when it is used for regression
testing. Specifically, any time you make a nonfunctional change to a
design, you can use Formality to prove that the implementation is still
functionally equivalent to the reference.

After proving the implementation is equivalent to the reference
design, you can use the implementation as the reference design for
the next regression test. By establishing the most recent design as
the reference design throughout your design process, you minimize
1-4

Chapter 1: Introduction to Formality

the overall verification time. A reduction in time occurs because
structurally similar designs can be compared faster than structurally
dissimilar designs.

Figure 1-1 shows the incremental usage model that best suits the
design flow using Formality. The box with the bold border represents
Formality.

Figure 1-1 Formality Usage Model

Figure 1-2 shows how Formality fits into a typical ASIC verification
methodology. In Figure 1-2, ovals represent data and boxes
represent processes. Boxes with bold borders represent verification
using Formality.

Establish
reference

Make nonfunctional
design change

Verify implementation
against reference

Locate problems
Are

designs
equivalent?

YES

NO

Save changed
design as

implementation

ENTER

EXIT

using interactive
debugging methods

Fix designTo next
design step
1-5

How Does Formality Fit Into My Design Methodology?

Figure 1-2 ASIC Verification Flow Using Formality

RTL
Verilog or VHDL

RTL
Verilog or VHDL

RTL functional
simulation

Formal Reference
design

Timing
constraints

Static timing
analysis

Netlist

Static timing
analysis

Netlist

Static timing
analysis

Netlist

Architectural
refinement

Synthesis and
optimization

Physical
design

Scan-chain
stitching

verification

Formal
verification

Formal
verification

Formal
verification

Formality

Formality

Formality

Formality

Design Compiler

DFT Compiler

PrimeTime

PrimeTime

PrimeTime

Reference
design

Reference
design

Reference
design

TestBench

TestBench
VCS

VERA
1-6

Chapter 1: Introduction to Formality

What Designs Can I Verify?

This section presents fundamental design requirements and
describes situations in which Formality works particularly well.

Design Requirements

The reference design and implementation design that you use with
Formality must meet these fundamental requirements:

• Design files must be in the Synopsys internal database format
(.db) or must use only synthesizable VHDL or Verilog constructs
accepted by HDL Compiler and VHDL Compiler. Formality can
also read designs in EDIF netlist format.

• Designs should use a synchronous design style; they should not
contain state-holding loops implemented as combinational logic.

• Top-level I/O ports, sequential components, and black box
components in both the reference design and implementation
must be aligned structurally. Formality automatically matches as
many ports and components as possible between the
implementation and reference design during verification. You can
use Formality commands to create matches where Formality
cannot automatically determine them.

Design Types

This section presents examples of situations in which Formality
offers a good solution for regression testing.
1-7

What Designs Can I Verify?

Verification of Two RTL Designs

When you make an architectural change to an RTL design, use
Formality to verify that you did not change how the design functions.
In this situation, you are verifying an RTL implementation against an
original RTL reference design.

Situations where this type of regression testing becomes necessary
include

• Adding clock gating circuitry for power reduction

• Restructuring critical paths

• Reorganizing logic for area reduction

Verification of an RTL Design and a Gate-Level Design

Verification of an RTL design against a gate-level design can occur
at several points in the design methodology. For example, it is
important to verify the gate-level implementation that results from
synthesis against the golden RTL design for functional equivalence.
This gate-level design becomes the golden design used in verifying
subsequent implementations.

Another example is when you make minor functional changes in the
gate-level netlist and you simultaneously update the RTL source
without using synthesis. In this case, you can use Formality to verify
that the changes made in the RTL source match the current
implementation.

Verification becomes important in situations such as these:

• You maintain the RTL design as the source design for future
design revisions.
1-8

Chapter 1: Introduction to Formality

• You use the RTL design in system-level simulations.

• You use the RTL design as the official “documentation” of design
functions.

• You synthesize the RTL design.

Note:
Formality does not support PLA (.pla), state tables (.st), or
equation tables (.e). Therefore, do not write your RTL to these
formats when using Formality.

Verification of Two Gate-Level Designs

Any time you produce a new gate-level implementation of the design
by making nonfunctional changes, you can use Formality to verify
the functional equivalence of the design.

These are typical changes that result in a new implementation but do
not affect functionality:

• Adding test logic (scan circuitry) to a design

• Reordering a scan chain in a design

• Inserting a clock tree into a design

• Adding I/O pads to the netlist

• Performing design layout

• Performing flattening and cell sizing

• Creating a netlist for hardware acceleration or emulation
1-9

What Designs Can I Verify?

What Pieces Make Up Formality?

Formality consists of four functional areas surrounded by a
command-line interface (fm_shell) and a graphical user interface
(GUI). Figure 1-3 illustrates these areas.

Figure 1-3 Functional Areas Within Formality

This list describes the user-visible areas shown in Figure 1-3.

GUI

The GUI offers a windows-based, menu-driven interface that lets
you access most Formality functions. Through the GUI, you can
perform design management, verify designs, generate reports,
and diagnose and debug designs.

For more information about the GUI, see section “The Formality GUI
Environment” on page 3-17.

Diagnosis

Verification

GUI

fm_shell

Report
generation

Design
management
1-10

Chapter 1: Introduction to Formality

fm_shell

The fm_shell is a command-line interface that offers the same
commands as the GUI as well as functions unique to the
fm_shell. From the fm_shell, you can do everything that you can
with the GUI except view schematic representations of designs
and view logic cones.

For more information on shell commands, see the online man pages.

Design management

The design management functions let you set up and control the
verification process. For example, you can load designs,
establish environmental parameters, save and restore
verification sessions, and help Formality match points in the
designs.

For more information on design management, see Chapter 5,
“Preparing the Design for Verification,” and Chapter 7, “Debugging
Failed Design Verifications.”

Verification

Verification is the primary function of Formality. By default,
Formality checks for design consistency when you verify a design
or cell library. An implementation is consistent with a reference
design when it is functionally equivalent, given that a don’t-care
state (X) in the reference design can be represented by either a
0 or 1 state in the implementation.

You can also test for design or cell library equality. An
implementation is equal to a reference design when it meets both
these requirements:

• It is consistent with the reference design.
1-11

What Pieces Make Up Formality?

• The set of don’t-care vectors matches that of the reference
design set.

See section “Working With Equivalences” on page 5-25 for more
information. For procedures that describe how to perform
verification, see Chapter 6, “Compare Point Matching and
Verification.”

Report generation

Formality allows you to generate several types of reports. These
reports provide information about the most recent verification,
the most recent diagnosis, environment parameters, or
parameters that affect a particular design.

Diagnosis

You use the diagnosis function when design verification fails.
Diagnosis produces information that helps you isolate areas in
the design that could be responsible for the failed verification. For
more information, see Chapter 7, “Debugging Failed Design
Verifications.”

General Process Flow

The flow chart in Figure 1-4 provides an overall guide to the
Formality design verification process. Starting with Chapter 3,
“Starting Formality,” each chapter describes one or more steps in
detail. This chart appears in the beginning of each applicable
chapter to remind you where you are in the process.
1-12

Chapter 1: Introduction to Formality

Figure 1-4 Design Verification Process Flow Overview

Note:
You generally use the application commands from the fm_shell
up to the “Run Verify” step. Thereafter, you will generally use the
GUI. Unless otherwise noted, this manual presents instructions
for both the fm_shell and the GUI.

Cell library verification is a self-contained process that is described
in Chapter 8, “Cell Library Verification.”

Start

Interpret
results

Perform
setup

Run
verify

Success?
No

Yes

Done

Start
Formality Match

compare points

Load
reference

Load
implementation

Debug
1-13

General Process Flow

Input and Output File Types

This section describes the types of files the Formality tool accepts
and generates for design verification. It includes the following
sections:

• Input

• Output

• Synopsys setup file

Input

Formality accepts several types of files as input. File formats consist
of design formats and Formality-specific files. Figure 1-5 illustrates
Formality input.

Figure 1-5 Supported Input

Design

Formality

Synopsys internal

Saved
Verilog

VHDL

ASIC

Failing patterns

Batch script

Name mapping file

Saved session

containers

Database files

Design
formats

library

Formality-specific
files

FSM state information
EDIF

Compiler

Verilog simulation library
Automated Setup Files
1-14

Chapter 1: Introduction to Formality

ASIC library

Groups of cell-sized designs in the Synopsys internal database
format. Libraries are described in detail in “Libraries” on
page 1-18.

Automated Setup Files

Setup information in the form of guidance (.svf) files to help
Formality understand and verify the transformations between
designs. SVF files are described in detail in “Working With the
Automated Setup File” on page 5-73.

Batch script

A file that contains Formality shell commands. Because
Formality supports batch mode operation, you can supply a file
that contains valid Formality shell commands to direct the
verification process. For information about how to prepare a
batch script, see “Using Batch Jobs” on page 6-30.

EDIF

EDIF language design files. For information about how to read
EDIF files into Formality, see “Reading in Libraries and Designs”
on page 4-3.

Failing patterns

This file contains failing input vectors of the most recent failed
verification or diagnosis, or the most recent application of a set of
previously saved failing patterns. Formality uses this file as input
when simulating previously failing patterns. For information about
how to simulate previously failing patterns, see “Running
Previously Saved Failing Patterns” on page 7-45.
1-15

Input and Output File Types

FSM state information

A file that contains flip-flop names and their encoding for FSMs.
This file defines FSMs so that Formality can create compare
points necessary for verification. For information about reading
these types of files, see “Working With Re-Encoded Finite State
Machines” on page 5-54.

Name mapping file

A file that contains one-to-one name mappings that Formality
applies to specific designs. Formality performs verification based
on compare points composed of comparable design objects.
Sometimes the naming scheme for design objects in an
implementation deviates measurably from that of the reference
design. In such cases, a mapping file might be used to make the
match. For information about how to map names between
designs, see “Unmatched Points” on page 7-14.

Saved containers

The Formality internal representation of a container and its
contents. You supply this file when you want to restore a
previously saved container. For information about saving
containers, see section “Saving the Entire Formality Session” on
page 5-85.

Saved session

A file that contains the state of the verification session. You
supply this file when you want to restore a previously saved
Formality session. For information about how to restore a
Formality session, see section “Restoring a Session” on
page 5-88.
1-16

Chapter 1: Introduction to Formality

Synopsys internal database files

Files formatted in the Synopsys internal database design format
(.ddc and .db files). The database format is the default output
format used for the Synopsys Design Compiler tool. For
information about how to read Synopsys database files into
Formality, see “Reading in Libraries and Designs” on page 4-3.

Verilog

Verilog hardware description language design files. This design
format specifies digital systems at a wide range of levels of
abstraction. Formality supports the same synthesizable subset of
Verilog as does the Synopsys Design Compiler tool. For
information about how to read Verilog files into Formality, see
“Reading in Libraries and Designs” on page 4-3.

Verilog Simulation Library

Verilog simulation library files. You can read the cell definition
information into a technology library. The library reader extracts
the pertinent information to determine the gate-level behavior of
the design, and generates a netlist that represents the
functionality of the Verilog library cells. Libraries are described in
detail in “Libraries” on page 1-18.

VHDL

VHDL design files. This design format specifies digital systems at
a high level of abstraction. For information about how to read
VHDL files into Formality, see “Reading in Libraries and Designs”
on page 4-3.
1-17

Input and Output File Types

Libraries

Libraries are collections of designs. When you read design data into
Formality, it is grouped into libraries. Formality supports two types of
libraries: design libraries and technology libraries.

Design library

A collection of designs usually associated with a single design
effort. For example, a design library might contain individual
designs that represent the parts of a hierarchical design: core,
control_block, mux_out, mux_in, and so on. Depending on the
size and complexity of the top-level design, it might be better to
use more than one design library to organize the design data.

Technology library

A collection of cells usually associated with a particular vendor
and design technology. For example, when you create a new
container in Formality, it automatically loads in the generic
technology (GTECH) library. There are two types of technology
libraries: shared and nonshared. Shared technology libraries are
visible in every container and are automatically loaded into every
container subsequently created during the Formality session.
Nonshared technology libraries are loaded into a particular
container.

Figure 1-6 illustrates the library concept in the Formality
environment. The figure shows one technology library and one
design library in the container. Each container can have any number
of such libraries.
1-18

Chapter 1: Introduction to Formality

Figure 1-6 Libraries

In the fm_shell, you use the Formality “read” type commands to load
libraries. In some cases, a command option determines whether the
data is read in as a technology library or as a design library.

When specifying libraries in the fm_shell, you provide a libraryID.
A libraryID is like a path name that specifies the container in
which the library resides and the name of the library. See section
“Conventions” on page 2-xx for more information about libraryID.

In the GUI, you view libraries directly in container windows. You can
expand and collapse libraries to view individual designs and cells.

Cells

Technology library

Container

Designs

Design library
1-19

Input and Output File Types

Output

Formality generates several types of output files as illustrated in
Figure 1-7.

Figure 1-7 Generated Output

Failing patterns

This file contains failing input vectors of the most recent failed
verification or diagnosis, or the most recent application of a set of
previously saved failing patterns. For information about how to
simulate previously failing patterns, see “Running Previously
Saved Failing Patterns” on page 7-45.

Formality log files

Formality maintains two log files: formality.log and
fm_shell_command.log. The formality.log file contains verbose
information not printed to the transcript. For example, during
verification the transcript might print an informational message
indicating that constants were propagated in the reference
design and to see the formality.log file for details. The
fm_shell_command.log file contains a history of Formality shell
commands run during the session.

Formality

Saved containers

Saved session

Formality reports
Failing patterns

Formality work directory

Formality log files
1-20

Chapter 1: Introduction to Formality

If multiple sessions of Formality are running, the working directory
and log files are named using the following scheme, where n is an
integer value:

FM_WORKn
formalityn.log
fm_shell_commandn.log

Note:
Exiting abnormally from Formality can clutter your file system
with locked files associated with Formality logs and with the
Formality working directory. You can safely delete these files
when the Formality session associated with them is no longer
running.

Formality reports

ASCII files you produce by redirecting output from the Formality
reporting feature. These reports contain information about all
aspects of the verification and diagnosis.

Formality work directory

The Formality work directory named FM_WORK. Formality
creates this directory upon invocation. It contains containers and
shared technology libraries.

Saved containers

The Formality internal representation of a container. You create
these files by saving individual containers. For information about
saving containers, see “Saving Containers” on page 5-85.
1-21

Input and Output File Types

Saved session

A file that contains the state of the verification session. You create
this file by saving the Formality session. For information about
how to save a Formality session, see “Saving the Entire Formality
Session” on page 5-85.

Controlling Formality-Generated File Names

Formality allows you to control the naming of its files and directory
names. These names can be appended with a unique suffix for each
verification run.

Specifying a unique name can be useful for correlating the Formality
transcript with the Formality log file when you run multiple
verifications within the same directory.

Use the fm_shell -name_suffix suffix command to specify
unique file names. Formality constructs the file names and
directories as follows:

• formality_suffix.log

• fm_shell_command_suffix.log

• FM_WORK_suffix

In addition, the option -overwrite allows you to overwrite existing
files. If you use the -name_suffix option, and a file with the same
suffix already exists, Formality generates an error message. If you
want to overwrite any existing files, use the -overwrite option with
the fm_shell command.
1-22

Chapter 1: Introduction to Formality

You can access (read only) the following two Tcl variables to see the
new file names for the formality.log file and the
fm_shell_command.log file:

• formality_log_name

• sh_command_log_file

Synopsys Setup File

Every time you invoke Formality, it executes the commands in the
Formality setup files, all named .synopsys_fm.setup. These setup
files can reside in three directories, which Formality reads in a
specific order. You can use these files to automatically set variables
to your preferred settings. The following list shows the order in which
Formality reads the files:

1. Synopsys root directory. For example, if the release tree root is
/usr/synopsys, the setup file is:

/usr/synopsys/admin/setup/.synopsys_fm.setup

2. Your home directory. You create this .synopsys_fm.setup file, and
it applies to all sessions started by you.

3. The directory from which Formality is invoked (the current
working directory). You create this .synopsys_fm.setup file and
customize it for a particular design.

If a particular variable is set in more than one file, the last file read
overwrites the previous setting.
1-23

Input and Output File Types

Concepts

This section presents key concepts that help you effectively use
Formality. It includes the following sections:

• Compare Points

• Compare Rules

• Containers

• Design Equivalence

• Logic Cones

• Reference and Implementation Designs

Compare Points

A compare point is a design object used as a combinational logic
endpoint during verification. A compare point can be an output port,
register, latch, black box input pin, or net driven by multiple drivers.

Formality uses the following design objects to automatically create
compare points:

• Primary outputs

• Sequential elements

• Black box input pins

• Nets driven by multiple drivers, where at least one driver is a port
or black box
1-24

Chapter 1: Introduction to Formality

Formality verifies a compare point by comparing the logic cone from
an implementation compare point against a logic cone for a matching
compare point from the reference design.

Figure 1-8 Cone of Logic

When functions defining the cones of logic for a matched pair of
compare points (one from the reference design and one from the
implementation design) are proved by Formality to be functionally
equivalent, the result is that both the reference and the
implementation compare points have passing status. If all compare
points in the reference design pass verification, the final verification
result for the entire design is a successful verification.

Prior to design verification, Formality tries to match each primary
output, sequential element, black box input pin, and qualified net in
the implementation with a comparable design object in the reference
design. For more information on how compare points are matched,
see “How Formality Matches Compare Points” on page 6-9.

For Formality to perform a complete verification, all compare points
must be verifiable. There must be a one-to-one correspondence
between the design objects in the reference and implementation
designs, except for two cases where you can still attain complete
verification when you are testing for design consistency:

• The implementation design contains extra primary outputs.

D Q
G

D Q
G

D Q
G

1-25

Concepts

• Either the implementation or the reference design contains extra
registers, and no compare points fail during verification.

Compare points are primarily matched by object names in the
designs. If the object names in the designs are different, Formality
uses various methods to match up these compare points
automatically. You can also match up these names manually when
all automatic methods fail.

Compare point matching techniques in Formality can be broadly
divided into two categories:

• Name-based matching techniques

• Nonname-based matching techniques

For more information, see “Matching Compare Points” on page 6-3.

Unmatched design objects from either the implementation or the
reference design are reported as failing compare points, with a note
indicating that there is no comparable design object in the reference
design.

Sometimes you might have to provide information so Formality can
match all design objects before performing verification. For example,
the implementation and reference design might contain design
objects that differ in name but are otherwise comparable, and
Formality is not able to match them by using its matching algorithms
(including signature analysis). In such cases, you can map design
object names yourself using any of several methods. For details, see
section “Unmatched Points” on page 7-14.

Figure 1-9 shows an example of how the combination of automatic
and user-defined compare points results in complete verification.
Automatically created compare points result when Formality can
1-26

Chapter 1: Introduction to Formality

match the name and type of two design objects by using normal
matching techniques or signature analysis. User-defined compare
points result when you take steps to map names between design
objects.

Figure 1-9 Constructing Compare Points

See “Reporting and Interpreting Results” on page 6-33 for compare
point status messages.

Compare Rules

A compare rule is a name translation rule applied by Formality during
compare point creation. Compare rules are one of many methods
that allow you to map object names between the implementation and
reference designs. For example, suppose that a certain bus in the
reference design has a different name in the implementation, and
Formality cannot match the two objects using structural or signature
analysis. You can define a compare rule to enable Formality to

Implementation Reference

Register

Primary output

a

Register

x_1

y

x

Register

a

Register

Primary output

y_1

Automatically defined compare
points

User-defined compare points

1

2

1

2

2

b

Register

b

Register

1

1-27

Concepts

correctly create compare points. Application of the compare rule
maps the bus names in the reference design to those in the
implementation.

Compare rules have a regular expression syntax identical to that
supported by the test_compare_rules command. Therefore, you
can use the test_compare_rules command to ensure your
compare rules behave as desired.

Containers

A container is a complete, self-contained space into which Formality
reads designs. It is typical for one container to hold the reference
design while another holds the implementation design. In general,
you do not need to concern yourself with containers. You simply load
designs in as either reference or implementation. This is described
in section “Reading in Libraries and Designs” on page 4-3.

A container typically contains a set of related technology libraries
and design libraries that fully describe a design that is to be
compared against another design. A technology library is a
collection of “parts” associated with a particular vendor and design
technology. A design library is a collection of designs associated with
a single design effort. Designs contain design objects such as cells,
ports, nets, and pins. A cell can be a primitive or an instance of
another design.

Figure 1-10 and Figure 1-11 illustrate the concept of containers.
1-28

Chapter 1: Introduction to Formality

Figure 1-10 Containers

In general, to perform a design comparison, you should load all of the
information on one design into a container (the reference), and all the
information on the other design into another container (the
implementation).

You can create, name, reuse, delete, open, and close containers. In
some cases, Formality automatically creates a container when you
read data into the Formality environment.

Each container can hold many design and technology libraries, and
each library can hold many designs and cells. Components of a
hierarchical design must reside in the same container. Figure 1-11
illustrates the concept of containers.

Figure 1-11 Containers

Design objects

Design

Design library

Container

Cells

NetsPorts

Pins

Complete
design

information

Container
Design
FilesDesign

Files

Design
FilesDesign

FilesDesign
libraries

Technology
Technology

Technology
libraries
1-29

Concepts

In Formality, one container is always considered the “current”
container. Unless you specifically set the current container, Formality
uses the last container into which a design is read. That container
remains the current container until you specifically change it or you
create a new container. Many Formality commands operate on the
current container by default (when you do not specify a specific
container).

For details about containers, see “Setting Up and Managing
Containers” on page 4-27.

Design Equivalence

The term “design equivalence” refers to the verification test
objective. Formality can test for two types of design equivalence:
design consistency and design equality.

Design consistency

For every input pattern for which the reference design defines a
1 or 0 response, the implementation design gives the same
response. If there is a don’t-care (X) condition in the reference,
verification still passes if there is a 0 or a 1 at the equivalent point
in the implementation.

Design equality

Includes design consistency with additional requirements. The
functions of the implementation and reference designs must be
defined for exactly the same set of input patterns. If there is a
don’t-care (X) condition in the reference, verification passes only
when there is an X at the equivalent point in the implementation.

See “Using Don’t-Care Cells” on page 5-3 for information about
don’t-care conditions; also see “Working With Equivalences” on
page 5-25.
1-30

Chapter 1: Introduction to Formality

The type of design equivalence is also called the verification mode.
By default, verification mode tests for design consistency, which is
adequate in most cases. For the rare occasion that it is not, you can
test for design equality.

Note:
Sometimes conditions exist where one design (design A) is
consistent with a second design (design B), but design B is not
consistent with design A. For example, design B might have a
don’t care condition that is implemented as a 0 or 1 in design A
as shown in the following example

Here, design A gives an output value of X for the d=2b’11 input
condition.

model A (d, q);
input [1:0] d;
output q;
reg q;

always @ (d)
case (d)
 2’b00: q = 1’b0 ;
 2’b01: q = 1’b1 ;
 2’b10: q = 1’b1 ;
 2’b11: q = 1’bX ;
endcase

endmodule
1-31

Concepts

Here, design B gives an output value of 1 for the d=2’b11 input
condition.

model A (d, q);
input [1:0] d;
output q;
reg q;

always @ (d)
case (d)
 2’b00: q = 1’b0 ;
 2’b01: q = 1’b1 ;
 2’b10: q = 1’b1 ;
 2’b11: q = 1’b1 ;
endcase

endmodule

If you run a verification with design A as the reference and design
B as the implementation, verification passes (X in the reference
versus 1 in the implementation). However, if you run a verification
with design B as the reference and design A as the
implementation, verification fails (1 in the reference versus X in
the implementation).

Logic Cones

A logic cone consists of combinational logic originating from a
particular design object and fanning backward to terminate at certain
design object outputs. The design objects from which logic cones
originate are those used by Formality to create compare points.
These design objects are primary outputs, internal registers, black
box input pins, and nets driven by multiple drivers where at least one
driver is a port or black box. The design objects at which logic cones
terminate are primary inputs and those that Formality uses to create
compare points. Figure 1-12 illustrates the logic cone concept.
1-32

Chapter 1: Introduction to Formality

Figure 1-12 Logic Cones

In Figure 1-12, the design object of concern is a primary output.
Formality compares this design object (compare point) to a
comparable object (compare point) in a second design during
verification. The shaded area of the figure represents the logic cone
for the primary output. The cone begins at the input net of the port
and works back toward the termination points. In this illustration, the
termination points are nets connected to primary inputs.

Reference and Implementation Designs

The reference and implementation designs are the designs
Formality tests for equivalence.

Reference

This design is the “golden” design, the standard against which
Formality tests for equivalence.

Implementation

This design is the changed design. The implementation is the
design whose correctness you want to prove. For example, a
newly synthesized design is an implementation of the source
RTL design.

Primary
output

Primary
inputs
1-33

Concepts

Note:
For cell library verification, the reference and implementation
definitions don’t apply because you always test for equality. In
addition, you are generally specifying different types of libraries
against one another. For example, a synthesis library against a
SPICE library.

After Formality proves an implementation design’s equivalence to a
known reference design, you can establish that implementation as
the new reference design. Using this technique during regression
testing keeps overall verification times at a minimum. Conversely,
working through an entire design methodology and then verifying the
sign-off netlist against the original VHDL can result in difficult
verifications and in longer overall verification times.

In the fm_shell or the GUI, you can designate a design you have read
into the Formality environment as either the implementation or
reference design. There are no special requirements to restrict your
designation, but there can be no more than one implementation and
reference design at any given time in the Formality environment.

Solvers

Formality enlists various solvers during pre-verification and
verification to attempt to prove the equivalence or non-equivalence
of two designs using algorithms particular to that solver. To check for
equivalence, the solvers look for internal equivalences,
redundancies, constants, and so forth.

For example, the datapath solver uses a particular algorithm to solve
multipliers in the pre-verification stage, which can significantly
reduce the entire verification runtime. When the solver successfully
1-34

Chapter 1: Introduction to Formality

pre-verifies a multiplier in your design, Formality black boxes it for the
rest of verification. If the datapath solver is unable to pre-verify your
multiplier, Formality returns an inconclusive result in the transcript.

For suggestions on how to help prepare your designs for successful
verification, see “Handling Designs That Don’t Complete
Verification” on page 7-4.
1-35

Concepts

1-36

Chapter 1: Introduction to Formality

2
A Quick Start With Formality 2

This chapter is intended to get you up and running quickly with
Formality. The quick-start tutorial demonstrates the steps followed
during a typical Formality design verification session.

This chapter contains the following sections:

• Before You Start

• Invoking the Formality Shell and GUI

• The Graphical User Interface

• Verifying fifo.vg Against fifo.v

• Verifying fifo_with_scan.v Against fifo_mod.vg

• Verifying fifo_jtag.v Against fifo_with_scan.v

• Debugging Using Diagnosis
2-1

• For More Information

Before You Start

Before you begin this tutorial, ensure that Formality is properly
installed on your system. Your .cshrc file should set the path to
include the bin directory of the Formality installation. For example, if
your installation directory is /u/admin/formality and your platform
type is sparcOS5, specify the set path statement, where
/u/admin/formality represents the Formality installation location on
your system:

set path = ($path /u/admin/formality/bin)

You do not need a separate executable path for each platform. The
Formality invocation script automatically determines which platform
you are using and calls the correct binary. To do this, however, you
must make sure all platforms needed are installed in one Formality
tree. Install Formality in its own directory tree, separate from other
Synopsys tools such as Design Compiler.

Creating Tutorial Directories

After installation of Formality, the files needed for the example
designs are located in the fm_install_path/doc/fm/tutorial directory.
You must copy the necessary files to your home directory.

To create a tutorial directory with all of its subdirectories, do the
following:

1. Change to your home directory.

% cd $HOME
2-2

Chapter 2: A Quick Start With Formality

2. Use the following command to copy the tutorial data, where
fm_install_path is the location of the Formality software:

% cp -r fm_install_path/doc/fm/tutorial $HOME

3. Change to the new tutorial directory:

% cd tutorial

Tutorial Directory Contents

The tutorial directory contains the following subdirectories:

• GATE: Verilog gate-level netlist.

• GATE_WITH_JTAG: Verilog gate-level netlist with scan and
JTAG insertions.

• GATE_WITH_SCAN: Verilog gate-level netlist with scan
insertion.

• LIB: Technology library required for the gate-level netlists.

• RTL: RTL source code.

Invoking the Formality Shell and GUI

To start Formality, enter the following command at the operating
system prompt:

% fm_shell
...
fm_shell (setup)>
2-3

Invoking the Formality Shell and GUI

The fm_shell command starts the Formality shell environment and
command-line interface. From here, start the GUI as follows:

fm_shell (setup)> start_gui

The word “(setup)” indicates the current mode of operation. When
you invoke Formality, you begin in the setup phase.

Refer to Chapter 3, “Starting Formality,” in the Formality User Guide
for more information about the fm_shell and GUI environments.

The Graphical User Interface

The main GUI session window contains the following window areas,
as shown in Figure 2-1 on page 5:

• Pull-down menu bar: GUI commands, some of which are
duplicated in the toolbar buttons and right-click pop-up menus.

• Toolbar: Easy-access buttons to common GUI commands. The
contents of the toolbar change depending on the view displayed
in the console area.

• Flow-based toolbar: Buttons that indicate the correct flow to
employ to perform formal verification. The buttons highlight to
indicate you where you are in the flow. Each button displays a
new view in the console area. By default, the GUI opens at the
first step, Reference, with the reference work area displayed in
the console area.

When you use the fm_shell to perform steps, and then invoke the
GUI, the GUI opens with the correct button highlighted to indicate
where you are in the flow. This also occurs when you continue a
previously saved Formality session.
2-4

Chapter 2: A Quick Start With Formality

• Console area: The main working area. From here, you perform
the actions necessary to perform verification as well as view
reports.

• Command status area: Transcripts and other information is
displayed here depending on the button selected below the
command status window.

• Formality prompt: Text box that allows you to enter Formality
prompts and environment variables that are not available through
the GUI interface.

• Status area: Current state of the tool.

Figure 2-1 GUI Session Window
Pull-down menu bar Toolbar Flow-based toolbar

Console area Command status area Formality prompt
2-5

The Graphical User Interface

Verifying fifo.vg Against fifo.v

In this portion of the tutorial you will verify a synthesized design
named fifo.vg, which is a pure Verilog gate-level netlist, against a
RTL reference design named fifo.v.

Specifying the Reference

As Figure 2-1 on page 5 shows, the first step as indicated by the
flow-based toolbar is to specify the reference. The tabbed selections
below the flow-based toolbar indicate that to do this you:

1. Read Design Files.

2. Read DB (technology) Libraries (optional).

3. Set Top Design.

The reference design is the design against which you compare the
transformed (implementation) design. The reference design in this
case is the RTL source file named fifo.v.

Refer to the Formality User Guide for conceptual information.

To specify the reference design, do the following:

1. Click the Reference button if its work area is not already
displayed in the console area.

The Read Design File tab and Verilog tab are active by default.

2. Click the Verilog button.

The Add Verilog Files dialog box appears.
2-6

Chapter 2: A Quick Start With Formality

3. Navigate to the RTL subdirectory where you copied the tutorial
directory, then select the fifo.v file. Click Open.

4. Click the Options button, and in the DesignWare root directory
(hdlin_dwroot) area, browse to or specify the path name to the
Synopsys software root directory.

This step is necessary because fifo.v contains a DesignWare
instantiated RAM block. As needed, enter echo $SYNOPSYS at
the Formality prompt to obtain the root directory’s path name.

5. In the Options dialog box, click the VCS Style Options tab.

6. In the Options pane, select Library Directory (-y) and in the Enter
Directory Name text box browse to or specify the RTL
subdirectory. Click Add.

7. In the Options pane, select Library Extension (+libext) and in the
Enter File Extension text box, enter “.v”. Click Add.

The -y and +libext options you selected are Verilog simulator
(VCS) options, where -y specifies to look in the current directory
for any unresolved modules and +libext specifies to look in files
with the specified extension (“.v” in this case).

8. Click OK to exit the dialog box, then click Load Files.

The fifo.v file appears as the loaded reference design file.

9. Click the Set Top Design tab.

In this case, you skip the Read DB Libraries tab because the fifo.v
design does not require a technology library. Technology libraries
contain cells to which the netlist must be mapped; fifo.v does not
require mapping.
2-7

Verifying fifo.vg Against fifo.v

10. In the choose-a-library pane, select the WORK library.

Notice that this pane lists all the loaded libraries, which includes
DesignWare (DW*) libraries and the GTECH library, which
contains the GTECH components required to map RTL.

11. In the choose-a-design pane, select “fifo”, the name of the top-
level design.

12. Click the Set Top button.

Setting the top-level design starts the linking and elaboration
process on all files and reports if there are any missing files.
Formality searches for the DesignWare RAM automatically.

Before you click Set Top, only the top-level design (“fifo”) is listed
and the lower-level modules are not listed. The reason for this is
that during linking, the netlist reader searches for the unresolved
modules under the directory specified using the VCS -y option.

After you click Set Top, the choose-a-design pane lists the entire
design hierarchy.

A green check-mark appears on the Reference button located on the
flow-based toolbar, indicating that you successfully specified the
reference. You can move on to specifying the implementation.

Specifying the Implementation

The procedure for specifying the implementation is identical to that
for specifying the reference:

1. Read Design Files.

2. Read DB (technology) Libraries (optional).
2-8

Chapter 2: A Quick Start With Formality

3. Set Top Design.

To specify the implementation, do the following:

1. Click the Implementation button on the flow-based toolbar.

The Read Design Files and Verilog tabs are selected by default.
That is, their work areas are displayed when you click the
Implementation button.

2. Click the Verilog button.

The Add Verilog Files dialog box appears.

3. Navigate from the RTL directory to the GATE directory, then
select the fifo.vg file. Click Open.

4. Click the Load Files button.

The fifo.vg file appears as the loaded implementation design.

5. Click the Read DB Libraries tab, then the DB button.

The Add DB Files dialog box appears. Unlike the fifo.v reference
design, fifo.vg requires a technology library for mapping.

6. Navigate to the LIB directory, then select the technology library
named lsi_10k.db. Click Open.

7. Click the Load Files button.

8. Click the Set Top Design tab.

9. In the choose-a-library pane, select WORK, then the top-level
design, fifo, from the choose-a-design pane.

10. Click the Set Top button.
2-9

Verifying fifo.vg Against fifo.v

Formality links and elaborates all the files and reports if there are
any missing files. Because this tutorial uses a DesignWare RAM,
the tool searches for technology-dependent modules from the
lsi_10k technology library.

A green check-mark appears on the Implementation button located
on the flow-based toolbar, indicating that you successfully specified
the implementation. You can move on to the setup stage, as
necessary.

Setting Up the Design

You often need to specify additional setup information to account for
designer knowledge not contained in the design netlist or to achieve
optimal performance.

This step involves supplying information to Formality. For example,
you may need to set constants if the design underwent
transformations such as scan or JTAG insertion. In this case, only
fifo.vg was synthesized; therefore, you can move on to the next step,
Match.

For detailed information about setup possibilities, refer to Chapter 5,
“Preparing the Design for Verification,” in the Formality User Guide.

Compare Point Matching

Note:
Refer to the Formality User Guide for conceptual information
about compare points.
2-10

Chapter 2: A Quick Start With Formality

Compare point matching is the process by which Formality
segments the reference and implementation designs into logical
units, called logic cones. Each logic cone feeds a compare point, and
each compare point in the implementation must match each
compare point in the reference or verification will fail. Matching
ensures that there are no mismatched logic cones and allows
Formality to proceed with verifying the implementation for
functionality.

Refer to the Formality User Guide for detailed information on how
Formality matches compare points.

To match compare points between fifo.v and fifo.vg, do the following:

1. Click the Match button on the flow-based toolbar.

2. Click the Run Matching button.

When matching is completed, the results appear in the command
status area. You can also click the Summary tab to view the
results. In this case, there are no unmatched compare points to
debug.

If the summary indicated unmatched compare points, you would
click the Unmatched Compare Points tab to view them. For
example, unmatched compare points in the reference might
indicate extra registers that were optimized away during
synthesis. If you expect such optimizations, then you can ignore
the extra (unmatched) compare points in the reference.

3. Click OK to close the Information dialog box.

Refer to the Formality User Guide for detailed information about
compare point matching, including how to debug unmatched
compare points.
2-11

Verifying fifo.vg Against fifo.v

Verifying the Designs

You are now ready to verify the functionality of fifo.vg against its
reference, fifo.v.

To verify fifo.vg against fifo.v, do the following:

1. Click the Verify button on the flow-based toolbar.

2. Click the Verify All button.

Verification begins, as shown by the scrolling transcript in the
command status area. Verification fails, which means fifo.vg
underwent some transformations during synthesis that render it
unequivalent to fifo.v.

3. Click OK to close the dialog box notifying you of the failed
verification.

In this case verification will fail. This testcase includes a deliberate
design error to introduce you to the debug capabilities of Formality.

Debugging

The challenge for most users is debugging failed verifications. That
is, you must find the exact points in the designs that exhibit the
difference in functionality and then fix them.
2-12

Chapter 2: A Quick Start With Formality

To debug fifo.vg, do the following:

1. Click the Debug button on the flow-based toolbar if it is not
already selected.

The console area displays the Failing Points report. You will
notice groups of failing points with similar names except for the
last elements, which might then be *_[reg0], *_[reg1], *_[reg2],
and *_[reg3], for example. Typically a group of failing points are
caused by a single error.

2. Click the Diagnose button to run diagnosis on the failing points.
Diagnosis is the process by which Formality analyzes a set of
compare points and finds the error candidates. When Formality
completes the diagnosis run, it brings up the Error Candidates
tab, which displays the error candidates found in your design.

Note:

Although this is not shown in this tutorial, if while debugging
you get an error stating there was a diagnosis failure due to too
many errors (and you know the error is not caused by setup
problems), select a group of failing points with similar names
and click the Diagnose Selected Points button. This might help
to direct diagnosis down to a specific section of the design.

3. From the Error Candidates Window, right-click on the error U81
and choose View Logic Cones. You will see a list of related failing
points for that error, from which you select one of those points (for
this example use push_logic/pop_count_svd_reg[0]), and
double-click to bring up the logic cone.

A new window appears, called the Cone Schematics, which
displays reference (top screen) and implementation (bottom
screen) schematics for the logic cone. It highlights and zooms to
the error candidate inverter, U81, in the implementation cone.
2-13

Verifying fifo.vg Against fifo.v

The reference schematic highlights the matching region
corresponding to the error candidate in the implementation
design.

The error candidate is highlighted in orange. The corresponding
matching region in the reference design is highlighted in yellow.
To view the error region in isolation, click the Isolate Error
Candidate Pruning Mode button in the cone view. This prunes
away all the logic and shows the error inverter.

Colors in the schematics window have different meanings
depending on the color mode selected. The color modes are
none (the default), constants, simulation values, and error
candidates.

- None—The default color mode.

- Constants—Nets with a constant logic value 0 are blue, nets
with logic 1 are orange, and the remaining nets are gray.
Remaining objects are colored in the default color mode.

- Simulation values—Nets with simulation logic 0 are blue, nets
with simulation logic 1 are orange, and the remaining objects
are colored in the default color mode.

- Error candidates—Error drivers corresponding to the error
candidates are highlighted orange. The corresponding
matching region is highlighted in yellow.

4. Observe the patterns annotated on the CLK net. The reference
shows logic 0, while the implementation shows logic 1.

To discover the cause for this functional difference, do the
following:

- Select the net in the implementation design.
2-14

Chapter 2: A Quick Start With Formality

- Right-click and select Isolate Subcone.

- Select the net in the reference design.

- Right-click and select Isolate Subcone.

The screens change to display just the net in question. Notice
that the logic driving the implementation CLK pin includes an
inverter. During synthesis an inverter may have been inserted to
fix hold-time problems.

You can zoom in by clicking the Zoom In Tool toolbar button then
clicking in the schematic. Deselect the button to return to the
pointer.

You can copy selected objects in design and cone schematics
using Copy Name, Copy Reference Name, and Copy
Implementation Name. You can paste these names into the
console (or any other editable text field) using Ctrl+V or your
middle mouse button.

5. Fix the error by editing the netlist or resynthesizing the design to
generate a new netlist free of errors in clock-tree manipulations.

The fifo_mod.vg file in the GATE directory contains the corrected
netlist. Execute the following command at the UNIX prompt to
view the difference:

%> diff fifo.v fifo.mod.vg

You can see that the modified netlist removes the inverter.

6. After closing the Logic Cone View, verify the corrected
implementation, fifo_mod.vg, against the reference. First re-
specify fifo_mod.vg as the new implementation design as follows:

- Click the Implementation button on the flow-based toolbar.
2-15

Verifying fifo.vg Against fifo.v

- Click the Read Design Files tab.

- Click the Verilog button.

- Click Yes to remove the current implementation design data.

Note:

Clicking Yes permanently removes the current
implementation data. In practice, be sure to save the data
prior to specifying a new implementation (or reference)
design.

- Navigate to the GATE subdirectory, and select fifo_mod.vg.
Click Open.

- Click Load Files.

- Skip the Read DB Libraries tab because the technology library
is shared, and click the Set Top Design tab.

- Be sure WORK and fifo are selected, and click the Set Top
button.

7. As before skip the Setup step. In this case, you can also skip the
Match step because you did not change the setup (which could
alter compare points) and you did not appreciably change the
implementation by removing the inverter. In addition, you know
that all the compare points matched previously.

8. Click the Verify button on the flow-based toolbar, then the Verify
All button.

Formality performs automatic compare point matching prior to
verification when you do not perform the Match step beforehand.
Verification is successful.
2-16

Chapter 2: A Quick Start With Formality

Now that you have completed this section of the tutorial, prepare the
GUI as follows for the next section:

1. Click the Remove Reference toolbar button, then click Yes.

2. Click the Remove Implementation toolbar button, then click Yes.

Note:

Clicking Yes permanently removes the current

reference and implementation data. In practice, be sure to
save (as necessary) prior to removing design data.

3. At the Formality prompt, enter the following command:

remove_library -all

Notice that the transcript says “Removed shared technology
library ‘LSI_10K’.

You now have the equivalent of a fresh session with which to
execute the next section of the tutorial.

Verifying fifo_with_scan.v Against fifo_mod.vg

Note:
At any point during a Formality session you can exit and save the
current state by selecting File > Save Session. When you invoke
a new session later, select File > Restore Session to continue
where you ended previously.
2-17

Verifying fifo_with_scan.v Against fifo_mod.vg

In this portion of the tutorial you will specify the successfully verified
netlist, fifo_mod.vg, as the reference, design. You will then verify a
design that went through a design transformation against it. The
fifo_with_scan.v implementation design, as the name suggests, had
scan logic inserted.

The following procedure takes you through the six verification steps
(Reference, Implementation, Setup, Match, Verify, and Debug) in
one continuous flow.

Do the following:

1. Click the Reference button on the flow-based toolbar.

2. Click the Verilog button, navigate to the fifo_mod.vg file in the
GATE directory, click Open, and finally, click Load Files.

3. Click the Read DB Libraries tab and ensure the Read as a shared
library check button is selected.

Because this is a gate-to-gate verification, the technology library
needs to be available for both fifo_mod.vg and fifo_with_scan.v.
By default, DB technology libraries are shared.

If you use a Verilog or VHDL technology library, you must specify
the read_verilog -tech or read_vhdl -tech command at
the Formality prompt, because they are not shared libraries.

4. Click the DB button, then navigate to the technology library
named lsi_10k.db in the LIB directory. Click Open.

5. Click Load Files.

6. Click the Set Top Design tab and ensure that the fifo design
inside the WORK library is selected as the top-level design. Click
the Set Top button.
2-18

Chapter 2: A Quick Start With Formality

Now move on to specifying the implementation design, which is
much the same process as described in section “Specifying the
Implementation” on page 2-8.

7. Click the Implementation button on the flow-based toolbar and
then the Verilog button.

8. In the Add Verilog Files dialog box, navigate to the
fifo_with_scan.v design file located in the GATE_WITH_SCAN
directory. Click Open.

9. Click the Load Files button.

10. Click the Set Top Design tab and ensure that fifo design inside
the WORK library is selected as the top-level design. Click the
Set Top button.

You skipped the Read DB Libraries step because you had
previously specified lsi_10k.db as a shared technology library.

11. Click the Setup tab.

Unlike the verification you performed between fifo.vg and fifo.v, in
which you skipped the setup phase, the implementation design
you just specified must have its inserted scan disabled prior to
verification.

12. Click the Constants tab, then the Set button.

The Set Constant dialog box appears. It lists all the input, output,
and bidirectional ports within fifo_with_scan.v. You can use the
Search text box to easily find the signal you want to change.

13. Click the Implementation tab and ensure that fifo is selected and
that Ports appears in the choice text box near the top of the
display area.
2-19

Verifying fifo_with_scan.v Against fifo_mod.vg

14. Scroll or search for the port named test_se and select it.

15. In the Constant Value choice area at the bottom of the dialog box,
click “0”. Click OK.

Setting the test signal, test_se, to a constant zero state disables
the scan logic in fifo_with_scan.v. Notice that test_se now
appears in the Constants report area.

16. Click the Match button on the flow-based toolbar, then Run
Matching. Matching yields one unmatched compare point, which
you need to analyze and fix, if necessary.

17. Click OK to remove the Information dialog box, then click the
Unmatched Points tab.

You see a report on the unmatched point, test_se. It is an extra
compare point in the implementation, related to the inserted
scan, which you previously disabled. In this case, extra compare
points are expected in the implementation; therefore, you can
ignore them and move on to verification.

Note:

Extra compare points in the reference would not have been
expected and would require you to debug them as outlined in
the Formality User Guide.

18. Click the Verify button on the flow-based toolbar, then the Verify
All button.

The verification is successful; the scan insertion did not alter the
functionality of the implementation design. Note that if you had
not disabled the test signal test_se in step 15, verification would
have failed.
2-20

Chapter 2: A Quick Start With Formality

Now that you have completed this section of the tutorial, prepare the
GUI as follows for the next section:

1. Click the Remove Reference toolbar button, then click Yes.

2. Click the Remove Implementation toolbar button, then click Yes.

Note:

Clicking Yes permanently removes the current reference and
implementation data. In practice, be sure to save (as necessary)
prior to removing design data.

3. At the Formality prompt, enter the remove_library -all
command.

The transcript says “Removed shared technology library
‘LSI_10K’.

You now have the equivalent of a fresh session with which to
execute the next section of the tutorial.

Verifying fifo_jtag.v Against fifo_with_scan.v

In this portion of the tutorial you will specify the successfully verified
scan-inserted netlist, fifo_with_scan.v, as the reference, design. You
will then verify a design that went through another type of design
transformation against it. The fifo_jtag.v implementation design, as
the name suggests, includes a JTAG insertion as well as a scan
insertion.

The procedure that follows leads you through the six verification
steps (Reference, Implementation, Setup, Match, Verify, and Debug)
in one continuous flow.
2-21

Verifying fifo_jtag.v Against fifo_with_scan.v

Do the following:

1. Click the Reference button on the flow-based toolbar.

2. Click the Verilog button, navigate to the fifo_with_scan.v file in the
GATE_WITH_SCAN directory, click Open, and finally, click Load
Files.

3. Click the Read DB Libraries tab and ensure the Read as a shared
library check button is selected.

Because this is a gate-to-gate verification, the technology library
needs to be available for both fifo_with_scan.v and fifo_jtag.v.

4. Click the DB button, then navigate to the technology library
named lsi_10k.db in the LIB directory. Click Open.

5. Click Load Files.

6. Click the Set Top Design tab and ensure that the fifo design
inside the WORK library is selected as the top-level design. Click
the Set Top button.

7. Click the Implementation button on the flow-based toolbar then
the Verilog button.

8. In the Add Verilog Files dialog box, navigate to the fifo_jtag.v
design file located in the GATE_WITH_JTAG directory. Click
Open.

9. Click the Load Files button.

10. Click the Set Top Design tab and ensure that the fifo design
inside the WORK library is selected as the top-level design. Click
the Set Top button.
2-22

Chapter 2: A Quick Start With Formality

Notice that because of the inserted JTAG modules listed at the
top of the choose-a-design pane, you need to scroll down to find
the fifo design.

Note:

If you accidentally set the wrong design as the top-level design,
you must redefine the implementation (or reference) by first
clicking the Remove Reference or Remove Implementation
toolbar button, then starting again.

You skipped the Read DB Libraries step because you had
previously specified lsi_10k.db as a shared technology library.

11. Click the Setup tab.

For this verification you must disable the scan in fifo_with_scan.v
just as you performed in the previous section of the tutorial.
Remember that this design is now the reference design. You
must also disable JTAG signals in the implementation design.

12. Click the Constants tab, then the Set button.

The Set Constant dialog box appears with the Reference tab
selected.

13. Ensure that fifo is selected and that Ports appears in the choice
text box near the top of the display area.

14. Scroll or search for the port named test_se and select it.

15. In the Constant Value choice area at the bottom of the dialog box,
click “0”. Click Apply.

16. Click the Implementation tab and ensure that fifo is selected and
that Ports appears in the choice text box near the top of the
display area.
2-23

Verifying fifo_jtag.v Against fifo_with_scan.v

17. Repeat steps 14 and 15 to disable the test_se test signal for the
implementation.

18. In a similar process, disable the JTAG signals, jtag_trst, and
jtag_tms, by setting them to constant 0. Click OK to exit the dialog
box.

The Constants report lists the four disabled signals, one for the
reference and three for the implementation.

19. Click the Match button on the flow-based toolbar, then Run
Matching.

Matching yields 171 unmatched compare points, which you need
to analyze and fix, if necessary.

20. Click OK to remove the Information dialog box, then click the
Unmatched Points tab if it is not already selected.

You see that the extra compare points are located in the
implementation and related to the inserted JTAG, which you
previously disabled. Specifically, JTAG insertion results in the
addition of a large logic block called a tap controller; therefore,
extra compare points are expected in the implementation. You
can ignore them and move on to verification.

21. Click the Verify button on the flow-based toolbar, then click the
Verify All button.

The verification is successful; the JTAG insertion did not alter the
functionality of the implementation design.
2-24

Chapter 2: A Quick Start With Formality

Debugging Using Diagnosis

In some designs, you can reach a point where you have fixed all
setup problems in your design or determined that no setup problems
exist. Therefore, the failure must have occurred because Formality
found functional differences between the implementation and
reference designs.

Use the following steps to isolate the problem (this section assumes
you are working in the GUI).

1. In the Debug screen, click the Failing Points tab to view the failing
points.

During verification, Formality creates a set of failing patterns for
each failing point. These patterns show the differences between
the implementation and reference design. Diagnosis is the
process of analyzing these patterns and identifying error
candidates that might be responsible for the failure. Sometimes
the design can have multiple errors and, therefore, an error
candidate can have multiple locations.

2. Run diagnosis on all of the failing points listed in this window by
clicking the Diagnose button.

Note:

On occasion, after clicking the Diagnose button, you might get
a warning (FM-417) stating too many error locations caused
diagnosis to fail (if the error locations exceed 5). If this occurs,
and you have already verified no setup problems exist, try
selecting a group of failing points (such as, a group of buses
with common names), and click the Diagnose Selected Points
button. This can help diagnosis by paring down the failing
2-25

Debugging Using Diagnosis

points to a specific section in the design. Finally, if the group
diagnosis fails, select one of the failing points and run
diagnosis.

3. Click the Errors Candidates tab to view the error candidates. You
will see a list of error candidate in this window.

Sometimes an error candidate can have multiple errors
associated with it. For each of the errors, the number of related
failing points are also reported in this window.

Sometimes there can be alternate error candidates apart form
the recommended ones shown in this window. You can inspect
the alternate candidates using the Next and Previous buttons
available in this tab. You can reissue the error candidate report
anytime after running diagnosis by using the
report_error_candidates command.

4. Choose an error with the maximum number of failing points.
Right click on that error, then choose View Logic Cones.

If there are multiple failing points, a list will appear, from which
you can choose a particular failing point to view.

A logic cone view of the failing compare point appears. The logic
cone zooms in to the error candidate and highlights it in orange.
The associated matching region in the reference design is
highlighted in yellow.

Error candidates can consist of multiple errors. Errors are the
drivers in the design whose function can be changed to fix the
failing compare point.

Note:

Changing the function of an error location sometimes can
cause previously passing input patterns to fail.
2-26

Chapter 2: A Quick Start With Formality

Examine the logic cone for the instance causing the failure. The
problem instance is highlighted in orange. You can click isolate
error candidates pruning mode button to view the error region in
isolation. You can undo this pruning mode by choosing the Undo
option from the Edit menu.

For More Information

For detailed information about each stage of the formal verification
process demonstrated in the tutorial, refer to the following chapters
in the Formality User Guide:

• Chapter 3, “Starting Formality,” describes the user interfaces and
describes how to invoke the tool.

• Chapter 4, “Setting Basic Elements for Design Verification,”
describes how to read in designs and libraries, and define the
reference and implementation designs.

• Chapter 5, “Preparing the Design for Verification,” describes how
to set design-specific parameters to help Formality perform
verification and to optimize your design for verification.

• Chapter 6, “Compare Point Matching and Verification,” describes
how to match compare points and perform verification.

• Chapter 7, “Debugging Failed Design Verifications,” describes
diagnostic procedures that can help you locate areas in the
design that caused failure.

• Chapter 8, “Cell Library Verification,” describes how to compare
two technology libraries.
2-27

For More Information

• Appendix A, “Tcl Syntax As Applied to Formality Shell
Commands,” describes Tcl syntax as it relates to more advanced
tasks run from the fm_shell. Topics include application
commands, built-in commands, procedures, control flow
commands, and variables.

• Appendix B, “Formality Library Support,” describes how to verify
and modify cell libraries to make them suitable for Formality to
perform equivalence checking.

• Appendix C, “Reference Lists,” provides reference tables listing
Formality application commands and environment variables.
2-28

Chapter 2: A Quick Start With Formality

3
Starting Formality 3

Formality offers two working environments: the Formality shell (a
command-line based user interface) and the Formality GUI (a
graphical windows-based interface). This chapter describes how to
invoke them, as well as how to use interface elements such as the
command log file and the help facility.

The following sections are contained in this chapter:

• Invoking Formality

• The Formality Shell Environment

• The Formality GUI Environment

• General Formality Usage Options

This chapter’s subject matter pertains to the box outlined in
Figure 3-1.
3-1

Figure 3-1 Design Verification Process Flow Overview

Start

Interpret
results

Perform
setup

Run
verify

Success?
No

Yes

Done

Start
Formality Match

compare points

Load
reference

Load
implementation

Debug
3-2

Chapter 3: Starting Formality

Invoking Formality

The Formality fm_shell is the command-line interface. Formality
fm_shell commands are made up of command names, arguments,
and variable assignments. Commands use the tool command
language (Tcl), which is used in many applications in the EDA
industry.

The Formality GUI is the graphical, menu-driven interface. It allows
you to perform verification as well as provides schematic and logic
cone views to help you debug failed verifications.

Starting the Shell Interface

To start the fm_shell, type the following command at the operating
system prompt (%):

% fm_shell
fm_shell (setup)>

The Formality copyright or license notice, program header, and
fm_shell prompt appear in the window from which you started
Formality.

You can use the following command-line options when starting the
fm_shell.

-file filename

Invokes Formality in a shell and runs a batch script. For example,

% fm_shell -file my_init_script.fms
3-3

Invoking Formality

-no_init

Prevents setup files from being automatically read upon
invocation. This is useful when you have a command log or other
script file you want to use to reproduce a previous Formality
session. For example,

% fm_shell -no_init -f fm_shell_command.log.copy

-64bit | -32bit

Invoke formality using the 64-bit binary executable on platforms
that support it. The default value is 32 bits. Use 64 bits only when
Formality runs out of memory running with the default 32-bit
executable.

-overwrite

Overwrite existing FM_WORK, formality.log and
fm_shell_command.log files.

-name_suffix filename_suffix

Append the suffix to the log files created by Formality. For
example,

% fm_shell -name_suffix tmp

generates files named FM_WORK_tmp, formality_tmp.log, and
fm_shell_command_tmp.log.

-version

Prints the version of Formality, then exits.

-session session_file_name

Specifies a previously saved Formality session.

-gui

Starts the Formality graphical user interface (GUI).
3-4

Chapter 3: Starting Formality

Invoking the GUI

To invoke the GUI, enter the following command after you have
invoked the fm_shell:

fm_shell (verify)> start_gui

You can also start the GUI by specifying fm_shell -gui.

You can choose to display or hide primary sections of the GUI
session window. For example, to hide or display the toolbar or status
bar, use the View menu bar item. In the menu, select an option to
display or hide the corresponding area of the session window. A
check mark is shown next to the menu item if the corresponding
section is currently being displayed in the window.

The lower pane is called the console window. Use the Log, Errors,
Warnings, History, and Last command executed buttons above it to
display different types information in the pane.

You can exit the GUI without exiting from the Formality session.

The Formality Shell Environment

This section presents the following topics related to using the
Formality fm_shell:

• Entering Commands

• Supplying Lists of Arguments

• Listing Previously Entered Commands

• Recalling Commands
3-5

The Formality Shell Environment

• Redirecting Output

• Using Command Aliases

• Listing Design Objects

For more information on the Tcl syntax, see Appendix A, “Tcl Syntax
As Applied to Formality Shell Commands.” If you want more detailed
information about the Tcl language, consult books on Tcl in the
engineering section of your local bookstore or library.

Entering Commands

Formality considers case when it processes fm_shell commands. All
command names, option names, and arguments are case-sensitive.
For example, the following two commands are equivalent but refer to
two different containers, named r and R:

fm_shell (setup)> read_verilog -r top.v
fm_shell (setup)> read_verilog -R top.v

Each Formality command returns a result, which is always a string.
The result can be passed directly to another command, or it can be
used in a conditional expression. For example, the following
command uses an expression to derive the right side of the resulting
equation:

fm_shell (setup)> echo 3+4=[expr 3+4]
3+4=7

When you enter a long command with many options and arguments,
you can extend the command across more than one line by using the
backslash (\) continuation character. During a continuing command
3-6

Chapter 3: Starting Formality

input (or in other incomplete input situations), Formality displays a
secondary prompt, the question mark (?). Here is an example:

fm_shell (setup)> read_verilog -r “top.v \
? bottom.v”
Loading verilog file...
Current container set to ‘r’
1
fm_shell (setup)>

Supplying Lists of Arguments

When supplying more than one argument for a given Formality
command, adhere to Tcl rules. Most publications about Tcl contain
extensive discussions about specifying lists of arguments with
commands. This section highlights some important concepts.

• Because command arguments and results are represented as
strings, lists are also represented as strings, but with a specific
structure.

• Lists are typically entered by enclosing a string in braces, as
follows:

{file_1 file_2 file_3 file_4}

In this example, however, the string inside the braces is equivalent to
the following list:

[list file_1 file_2 file_3 file_4]

Note:
Do not use commas to separate list items.
3-7

The Formality Shell Environment

If you are attempting to perform command or variable substitution,
the form with braces does not work. For example, the following
command reads a single file that contains designs in the Synopsys
internal .db format. The file is located in a directory defined by the
variable DESIGNS.

fm_shell (setup)> read_db $DESIGNS/my_file.db
Loading db file '/u/project/designs/my_file.db'
No target library specified, default is WORK
1
fm_shell (setup)>

Attempting to read two files using the following command fails
because the variable is not expanded within the braces.

fm_shell (setup)> read_db {$DESIGNS/f1.db $DESIGNS/f2.db}
Error: Can't open file $DESIGNS/f1.db.
0
fm_shell (setup)>

Using the list command expands the variables.

fm_shell (setup)> read_db [list $DESIGNS/f1.db $DESIGNS/
f2.db]
Loading db file '/u/designs/f1.db'
No target library specified, default is WORK
Loading db file '/u/designs/f2.db'
No target library specified, default is WORK
1
fm_shell (setup)>

You can also enclose the design list in double quotation marks to
expand the variables.
3-8

Chapter 3: Starting Formality

fm_shell (setup)> read_db "$DESIGNS/f1.db $DESIGNS/f2.db"
Loading db file '/u/designs/f1.db'
No target library specified, default is WORK
Loading db file '/u/designs/f2.db'
No target library specified, default is WORK
1
fm_shell (setup)>

Editing from the Command Line

You can use the command-line editing capabilities in Formality to
complete commands, options, variables, and files that have a unique
abbreviation.This line editing capability is useful by allowing you to
use the shortcuts and options available in the emacs or vi editor.

Use the list_key_bindings command to display current key
bindings and the current edit mode. To change the edit mode, set the
sh_line_editing_mode variable to either the
.synopsys_fm.setup file or directly in the shell. To disable this feature
you must set the sh_enable_line_editing variable to false in
your .synopsys_fm.setup file. It is set to true by default.

By typing part of a command, variable, etc. then clicking the tab key,
the editor will complete the word(s) or file for you. A space is added
to the end, if there isn’t already one there, to speed typing and
provide a visual indicator of successful completion. Completed text
pushes the rest of the line to the right. If there are multiple matches,
all matching commands, variables, and so on are auto listed. If no
match is found (for example, if the partial command name you’ve
typed is not unique), the terminal bell rings.
3-9

The Formality Shell Environment

Listing Previously Entered Commands

The history command with no arguments lists the last n
commands that you entered. The most recent 20 commands are
listed by default.

The syntax is

history [keep number_of_lines] [info number_of_entries]
[-h] [-r]

keep number_of_lines

Changes the length of the history buffer to the number of lines
you specify.

info number_of_entries

Limits the number of lines displayed to the specified number.

-h

Shows the list of commands without loading numbers.

-r

Shows the history of command in reverse order.
3-10

Chapter 3: Starting Formality

For example, use the following command to review the 20 most
recent commands entered:

fm_shell (setup)> history
 1 alias warning_only "set message_level_mode warning"
 2 include commands.pt
 3 warnings_only
 4 help set
 5 history -help
 6 alias warnings_only "set message_level_mode warning"
 7 warnings_only
 8 ls -al
 9 unalias warning_only
 10 unalias warnings_only
 11 history
fm_shell (setup)>

You can use the keep argument to change the length of the history
buffer. To specify a buffer length of 50 commands, enter the following
command:

fm_shell (setup)> history keep 50

You can limit the number of entries displayed, regardless of the buffer
length, by using the info argument. For example, enter:

fm_shell (setup)> history info 3
 10 unalias warnings_only
 11 history
 12 history info 3
fm_shell (setup)>

You can also redirect the output of the history command to create a
file to use as the basis for a command script. For example, the
following command saves a history of commands to the file
my_script:

fm_shell (setup)> redirect my_script { history }
3-11

The Formality Shell Environment

Recalling Commands

Use these UNIX-style shortcuts to recall and execute previously
entered commands:

!!

Recalls the last command.

!-n

Recalls the nth command from the last.

!n

Recalls the command numbered n (from a history list).

!text

Recalls the most recent command that started with text; text can
begin with a letter or underscore (_) and can contain numbers.

The following example recalls and runs the most recent verification
command:

fm_shell (verify)> !ver
verify ref:/WORK/CORE impl:/WORK/CORE

.

.

.

fm_shell (verify)>

This example recalls and starts the most recently run command:

fm_shell (setup)> !!
 1 unalias warnings_only
 2 read_verilog -r top.v
fm_shell (setup)>
3-12

Chapter 3: Starting Formality

Redirecting Output

You can cause Formality to redirect the output of a command or a
script to a specified file by using the Tcl redirect command or
using the > and >> operators.

Use a command in the following form to redirect output to a file using
the redirect command:

fm_shell(setup)> redirect file_name "command_string"

For more information on the redirect command, see the online
man pages.

Use a command in the following form to redirect output to a file using
the > operator:

fm_shell(setup)> command > file

If the file does not exist, Formality creates it. If the file does exist,
Formality overwrites it with new output.

Use a command in the following form to append output to a file:

fm_shell (setup)> command >> file

If the file does not exist, Formality creates it. If the file does exist,
Formality adds the output to the end of the file.
3-13

The Formality Shell Environment

Unlike UNIX, Formality treats the > and >> operators as arguments
to a command. Consequently, you must use spaces to separate the
operator from the command and from the target file. In the following
example, the first line is incorrect.

fm_shell (setup)> echo $my_variable>>file.out
fm_shell (setup)> echo $my_variable >> file.out

Note:
The Tcl built-in command puts does not redirect output.
Formality provides a similar command, echo, that allows output
redirection.

Using Command Aliases

You can use aliases to create short forms for the commands you
commonly use. For example, the following command creates an
alias called err_only that invokes the set command:

fm_shell (setup)> alias err_only "set message_level_mode
error"

After creating the alias, you can use it by typing err_only at the
fm_shell prompt.

The following applies to alias behavior and use:

• Aliases are recognized only when they are the first word of a
command.

• An alias definition takes effect immediately and lasts only until
you exit the Formality session.

• Because Formality reads the .synopsys_fm.setup file when you
invoke it, define commonly used aliases in the setup file.
3-14

Chapter 3: Starting Formality

• You cannot use an existing command name as an alias name;
however, aliases can refer to other aliases.

• You can supply arguments when defining an alias by surrounding
the entire definition for the alias in quotation marks.

Using the alias Command

The syntax of the alias command is

alias [name [definition]]

name

Represents the name (short form) of the alias you are creating (if
a definition is supplied) or listing (if no definition is supplied). The
name can contain letters, digits, and the underscore character
(_). If no name is given, all aliases are listed.

definition

Represents the command and list of options for which you are
creating an alias. If an alias is already defined, definition
overwrites the existing definition. If no definition is defined, the
definition of the named alias is displayed.

When you create an alias for a command containing dash options,
enclose the whole command in quotation marks.

Using the unalias Command

The unalias command removes alias definitions.
3-15

The Formality Shell Environment

The syntax of the unalias command is

unalias [pattern...]

pattern

Lists one or more patterns that match existing aliases whose
definitions you want removed.

For example, use the following command to remove the
set_identity_check alias:

fm_shell (setup)> unalias set_identity_check

Listing Design Objects

In the fm_shell, you can create lists of pins, ports, cells, nets, and
references by using a variety of fm_shell commands that begin with
find_ (such as find_cells and find_nets). Here are some
examples using the find_ commands.

The following command lists all the input ports that start with SCAN:

find_ports -input container:/library/design/SCAN*

The following command returns a list of all pins (across hierarchy)
that are connected to net123 in the specified design:

find_pins -hierarchy -of_object container:/library/design/
net123

The following command returns the name of the design that is
referenced by cell123:

find_references -of_object container:/library/design/
cell123
3-16

Chapter 3: Starting Formality

For more information on these commands, see the online man
pages.

The Formality GUI Environment

This section presents the following topics related to using the
Formality GUI:

• Managing Formality Windows

• Using the Formality Prompt

• Saving the Transcript

• Copying Text From the Transcript Area

• Copying Text to the Formality Prompt

Managing Formality Windows

The Formality GUI uses multiple windows to display different types
of information, such as schematics and logic cones. These windows
are opened by certain menu commands in the GUI.

The Window menu bar item lists the GUI windows that are present
and lets you manage those windows. It lists up to nine Formality
windows. Selecting any window in the list “activates” that window
(restores the window from icon form, if necessary, and moves it to the
front).

Refer to the following sections for detailed information about the
various windows available to you:

• “Working With Schematics” on page 7-28.
3-17

The Formality GUI Environment

• “Working With Logic Cones” on page 7-36.

• “Working With Failing Patterns” on page 7-41.

Using the Formality Prompt

The Formality prompt allows you to run fm_shell commands without
leaving the GUI.

To run an fm_shell command from within the GUI, follow these
steps:

1. Enter the desired command in the text area at the Formality
prompt. You can use any of these methods:

- Type the command directly.

- Click the History button, then copy and paste commands into
the text box.

2. Press the Enter key to execute the command.

After performing these steps, Formality runs the command and adds
it to the command history list. The transcript area displays the
command results.

You can use multiple lines at the prompt by pressing Shift-Enter to
move to the next line. Specify a “\” at the end of each line to indicate
that the text continues on the next line.

Press the Shift-Up Arrow or Shift-Down Arrow key to cycle through
the command history.
3-18

Chapter 3: Starting Formality

Saving the Transcript

To save the transcript area, follow these steps:

1. Choose the File > Save Transcript menu item to open the Save
Transcript File dialog box.

2. Enter a file name or use the browser to select the file in which to
save the transcript text.

3. Click the Save button.

Copying Text From the Transcript Area

You can copy text to another application window by following these
steps:

1. Click the Log button to display the transcript.

2. Select the text in the transcript area you want to copy.

3. Right-click and select Copy.

4. Move the pointer to a shell window outside the Formality tool, or
another open application, and execute the Paste command.

In addition, you can use the UNIX-style method of selecting with the
left-mouse button and pasting with middle-mouse button to transfer
text into a shell window.
3-19

The Formality GUI Environment

Copying Text to the Formality Prompt

You can copy text from an application window to the Formality
prompt by following these steps:

1. Select the text you want to copy.

2. Use the Copy command to place the highlighted text on the
clipboard.

3. Locate the pointer in the command bar where you want the text
to appear, and execute the Paste command.

In addition, you can use the UNIX-style method of selecting with the
left-mouse button and pasting with middle-mouse button to transfer
text from a shell window to the prompt line.

General Formality Usage Options

Whether you work in the fm_shell or the GUI, Formality provides
certain facilities that can increase your productivity and tool’s overall
ease-of-use. This section contains the following sections:

• Getting Help

• Interrupting Formality

• Understanding and Controlling Messages

• Working With Script Files

• Using the Command Log File

• Controlling the File Search Path
3-20

Chapter 3: Starting Formality

Getting Help

Formality provides various forms of online help, such as the help
and man commands.

You can use a wildcard pattern as the argument for the help
command. The available wildcards are

*

Matches any number of characters.

?

Matches exactly one character.

Use the help command to list all commands alphabetically:

fm_shell (setup)> help

The following command uses a wildcard character to display all
commands that start with the word “find”:

fm_shell > help find*
find_cells #Find the specified cells
find_nets #Find the specified nets
find_pins #Find the specified pins
find_ports #Find the specified ports
find_references #Find design references of the

specified design

You can use the -help option to display syntax information for any
command:

fm_shell (setup)> current_container -help
Usage: current_container # Set or get the current (default)
container
 [container_name] (Container name)
fm_shell (setup)>
3-21

General Formality Usage Options

Man pages are supplied for each Formality shell command. The man
command allows you to get detailed help for a specific command:

fm_shell (setup)> man command_name

To display the man page for an environment variable, use the
printvar command followed by the variable name:

fm_shell (setup)> printvar verification_auto_loop_break

The following command displays a detailed description of the
Formality shell command cputime:

fm_shell (setup)> man cputime

NAME
cputime

Returns the CPU time used by the Formality shell.

SYNTAX
cputime

DESCRIPTION
Use this command to return cputime used by the
Formality shell. The time is rounded to the nearest
hundredth of a second.

RETURN VALUES
The cputime command returns the following:

* 0 for failure
* The CPU time rounded to the nearest hundredth of
 a second for success

EXAMPLES
This example shows the output produced by the cputime
command:

fm_shell (setup)> cputime
3.73
fm_shell (setup)>
3-22

Chapter 3: Starting Formality

Interrupting Formality

In fm_shell, you can interrupt Formality by pressing Control-c. The
response depends on what Formality is doing currently.

• If Formality is processing a script, script processing stops.

• If Formality is in the middle of a process, the following message
appears:

Interrupt detected: Stopping current operation

Depending on the design, it can take Formality one or two
minutes to respond to Control-c.

• If Formality is waiting for a command (not in the middle of a
process), the following message appears:

Interrupt detected: Application exits after three ^C
interrupts

In this case, you can exit Formality and return to the UNIX shell
by pressing Control-c two more times within 20 seconds, no more
than 10 seconds between each press.

In the GUI, when you run a verification, a progress bar appears in the
status bar. You can interrupt the process by clicking the Stop button.
Processing may not stop immediately.
3-23

General Formality Usage Options

Understanding and Controlling Messages

Formality issues messages using certain formats and during certain
situations. You can control the types of messages Formality displays.

Formality generates messages using one of two formats:

severity: message (code)
severity: message

severity

Represents the level of severity (note, warning, or error) as
described in Table 3-1.

message

The text of the message.

code

Helps identify the source of the message. The code is separated
into a prefix and a number. The prefix is two, three, or four letters,
such as INT-2. For information on a particular message code, use
the man command (for example, “man INT-2”).

The Formality-specific message prefixes are FM-, FMR-, and
FML-. The prefix indicates the type of Formality function involved:
a general Formality function, the Verilog RTL reader, or the
Verilog library reader, respectively.

In the following example, Formality displays an error-level message
as a result of an incorrectly entered read_db command.

fm_shell (setup)> read_db -foo
Error: unknown option '-foo' (CMD-010)
Error: Required argument 'file_names' was not found (CMD-007)
fm_shell (setup)>
3-24

Chapter 3: Starting Formality

Table 3-1 describes the different error message levels.

Each message is identified by a code such as “CMD-010”. To obtain
more information on a message, look at the man page for the code.
For example, if Formality reports “Error: Can’t open file xxxx (FM-
016),” you can obtain more information by entering the command
man FM-016.

Setting Message Thresholds

You can establish a message-reporting threshold that remains
effective during the Formality session. This threshold can cause
Formality to display error messages only, warnings and errors only,
or notes, warnings, and errors.

Table 3-1 Message Severities

Severity Description Example

Note Notifies you of an item of general
interest. No action is necessary.

^C Interrupt detected: Stopping current
operation

Warning Appears when Formality
encounters an unexpected, but not
necessarily serious, condition.

Warning: License for “DW-IP-
Consultant” has expired. (SEC-6)

Error Appears when Formality
encounters an unexpected
condition that is more serious than
a warning. Commands in progress
are not completed when an error is
detected. An error can cause a
script to terminate.

Error: Required argument “file_names”
was not found (CMD-007).
3-25

General Formality Usage Options

By default, Formality issues the three levels of messages described
in Table 3-1. A fourth message type, fatal error, occurs when
Formality encounters a situation that causes the tool to exit.
Regardless of the threshold setting, Formality always issues a fatal
error message before it exits the tool and returns control to the shell.

To set the message threshold, do one of the following:

Specify “error”, “warning”, “info”, or “none” for threshold.

Working With Script Files

You can use the source command to run scripts in Formality. A script
file, also called a command script, is a sequence of fm_shell
commands in a text file. The syntax of the source command is

fm_shell (setup)> source [-echo] [-verbose] script_file_name

-echo

Displays each command in the script as it is run.

-verbose

Displays the result of each command in the script.

fm_shell GUI

Specify:

set message_level_mode threshold

Click the Modify Formality Shell Variable
toolbar button.

Choose the Setup tab and select
message_level_mode.

In the Value text box, select error, warning,
info, or none.

Click OK.
3-26

Chapter 3: Starting Formality

script_file_name

Represents the name of the script file to be run.

Table 3-2 lists some of the tasks that you can perform using script
files.

Table 3-2 Script File Actions

Task Description Example

Add comments Add block comments by beginning
comment lines with the pound sign
(#).

Add in-line comments by using a
semicolon to end a command, and
then using a pound sign to begin
the comment.

#
Set the new string
#
set newstr "New"; # comment

Continue
processing
after an error

If an error occurs during the script
execution, by default, Formality
discontinues processing the script.
To force Formality to continue
processing in this situation, set the
sh_continue_on_error variable
to true. (This is generally not
recommended because the results
might be invalid if an error has
occurred.)

set sh_continue_on_error
true

Find scripts
using the
search_path
variable

Set the variable
sh_source_uses_search_path to
true. (See “The Tcl Source
Command” on page 3-29.)

set
sh_source_uses_search_path
true
3-27

General Formality Usage Options

Using the Command Log File

The Formality command log file is called fm_shell_commandn.log
(where n is an integer indicating more than one invocation of
Formality from the same directory). This log file records the fm_shell
commands in a Formality session, including setup file commands
and variable assignments.

You can use the log file in the following situations:

• After a Formality session to keep a record of the design analysis.

• By sourcing it as a script to duplicate a Formality session.

If you have problems using Formality, save this log file for reference
when you contact Synopsys. Move the log file to another file name
to prevent it from being overwritten by the next fm_shell session.

Controlling the File Search Path

You can define the search path Formality uses for reading data by
setting the search_path Tcl environment variable. If you do not set
this variable, Formality only searches for files in the current directory.

Use a command in the following form to set the search_path
variable:

set search_path "path_1 path_2 path_3 ... "

By surrounding the path list with double quotation marks, you expand
any environment variables listed as part of a path. Be sure to
separate individual paths with a space character.
3-28

Chapter 3: Starting Formality

The following example instructs Formality to search in the current
directory, in the expanded $TEST directory, and in the /proj/files
directory (in that order) when reading data.

fm_shell (setup)> set search_path ". $TEST/files /proj/
files"

The Tcl Source Command

An exception to search path control described in the previous section
occurs when you use the Tcl source command, which ignores the
Tcl environment variable search_path. However, you can direct
Formality to use the path as defined by the search_path variable
by setting another Tcl environment variable,
sh_source_uses_search_path, to true. Use the following
command to set the variable:

fm_shell (setup)> set sh_source_uses_search_path true

Examining the File Search Path

You can examine the current file search path that Formality is using
by entering the following command:

fm_shell (setup)> echo $search_path
3-29

General Formality Usage Options

3-30

Chapter 3: Starting Formality

4
Setting Basic Elements for Design
Verification 4

Prior to design verification you must have a few basic elements in
place, such as your libraries and designs. This chapter describes the
read-design flow, in which you specify your libraries, designs, and
top-level cells.

This chapter assumes that you have invoked Formality as described
in
Chapter 3.

This chapter contains the following sections:

• Reading in Libraries and Designs

• Loading the Reference Design

• Loading the Implementation Design
4-1

• Setting Up and Managing Containers

This chapter’s subject matter pertains to the boxes outlined in
Figure 4-1.

Figure 4-1 Design Verification Process Flow Overview

Load
reference

Start

Load

Interpret
results

Perform
setup

Run
verify

Success?
No

Yes

Done

Start
Formality Match

compare points

implementation

Debug
4-2

Chapter 4: Setting Basic Elements for Design Verification

Reading in Libraries and Designs

This section describes the process you use to read in your libraries
and designs. Specific commands are described in the sections that
follow.

Figure 4-2 outlines the Formality tool’s read-design process flow.

Figure 4-2 Formality Read-Design Process Flow

To run Formality, you must read in both a reference and an
implementation design and any related technology libraries. As
shown in Figure 4-2, you read in only the libraries and designs
needed for the reference, then immediately specify its top-level
design. Next, read in only the files you need for the implementation,
then immediately specify its top-level design. You must set the top-
level design for the reference before proceeding to the
implementation.

Read

Load reference design Load implementation design

technology
libraries

Read
technology

libraries

Read
reference
designs

Read
implementation

designs

Set
top-level
design

Set
top-level
design
4-3

Reading in Libraries and Designs

Technology Libraries

For proper design verification, you generally need to read in
technology libraries, which contain descriptions of the lowest-level,
or primitive, cells used in the design. Technology libraries are also
referred to as cell libraries in this guide. Refer to Chapter 8, “Cell
Library Verification,” to learn how to verify two cell libraries.

Formality often needs primitive cell information to determine the
behavior of each cell so that it can perform a gate-level comparison
between the reference and implementation designs.

Formality can read the following types of cell libraries:

• Synopsys internal database (.db) files

• Synthesizable Verilog RTL files

• Synthesizable VHDL RTL files

• Verilog simulation library files

Formality reads one or more cell description files in the specified
format and puts the cell definition information into a technology
library. Formality uses this information when it performs a
comparison between different designs.

For a purely RTL design description, reading a technology library is
not necessary.
4-4

Chapter 4: Setting Basic Elements for Design Verification

Designs

Designs are collections of design objects. A design library provides
the same functionality as a technology library except that the details
of a design library are visible to the user. Use a design library when
you want the data to be restricted to a single design, such as RTL or
gate-level netlists.

You can read designs into the Formality environment in four formats:

Synopsys internal database (.db or .ddc) designs

Files compiled by Design Compiler or files that represent
technology libraries. Reading a Synopsys internal database file
into a container results in a design library that can consist of one
or more designs.

VHDL designs

Files consisting of VHDL entity and architecture pairs that, when
read into a container, represent a design library that can consist
of one or more designs.

Verilog files

Files consisting of Verilog modules that, when read into a
container, represent a design library that can consist of one or
more designs.

EDIF netlists

Files consisting of EDIF netlists, when read into a container,
represent design that can consist of one or more designs.

The following sections describe environment variables you might
need to set prior to reading in your designs.
4-5

Reading in Libraries and Designs

Changing Bus Naming and Dimension Separator Styles

When you read Verilog or VHDL designs into the Formality
environment, Formality uses a default bus naming style and a default
bus dimension separator to support bus names. Formality uses
%s[%d] as the bus naming style and a pair of square-bracket
characters (] [) as the bus dimension separator.

For example:

BUSA[1]
BUSA[2]
BUSB[1][1]
BUSC[1][2]

Your design might not follow this default bus naming scheme. If it
does not, you can change the default bus naming scheme for both
the bus naming style and the bus dimension separator by setting
environment variables.

Changing the Bus Naming Style. To change the bus naming style,
do one of the following:

For bus_name_style, supply the string %sx[%dx], where x is any
character or character string. For an explanation of this variable, see
the online man pages.

fm_shell GUI

Specify:

set bus_naming_style
value

Click the Modify Formality Shell Variable
toolbar button.

Choose the Setup tab and select
bus_naming_style.

Under the Value prompt, enter the text
string you desire.

Click OK.
4-6

Chapter 4: Setting Basic Elements for Design Verification

Changing the Bus Dimension Separator. To change the bus
dimension separator style, do one of the following:

For style, supply any character string. For more information about
this variable, see the online man pages.

Supporting DesignWare Components

DesignWare is a library of functions that you can instantiate in a
netlist or infer in RTL code. Following is an example of instantiated
DesignWare:

module mult8 (Y, A, B);

parameter width=8;
parameter A_width=8, B=width=8;
output [width*2-1:0] Y;
input [width-1:0] A, B;

//instantiation of DesignWare multiplier
DWO2_mult #(A_width,B_width) mil (A, B, 1’b0, Y);
endmodule

fm_shell GUI

Specify:

set bus_dimension_separator_style style

Click the Modify Formality Shell Variable
toolbar button.

Choose the Setup tab and select
bus_dimension_separator_style.

Under the Value prompt, enter the character
string you desire.

Click OK.
4-7

Reading in Libraries and Designs

To read in a VHDL or Verilog design that has DesignWare
components instantiated directly, do one of the following:

Set the hdlin_dwroot variable to the location of your Design
Compiler software tree. For example:

fm_shell (setup)> set hdlin_dwroot “/synopsys/2002.09”

This variable is only required for instantiated DesignWare. It applies
to both Verilog and VHDL RTL code. Do not create separate
libraries, such as DWARE, DW01, or DW02 for VHDL RTL code.
Creating separate libraries causes linking errors.

When your design is elaborated in the linking phase, all your
instantiated DesignWare components are generated automatically.

Setting Variables for VHDL and Verilog Directives

Before you read in a VHDL or Verilog design file, you might need to
specify how Formality should treat VHDL or Verilog Design Compiler
directives that are defined by Synopsys. Formality either ignores or
does not ignore each directive in order to get a simulation
interpretation of the RTL. You can override the Formality tool’s
default behavior regarding these directives with the variables
described in Table 4-1.

fm_shell GUI

Specify:

set hdlin_dwroot “root_path”

Click the Modify Formality Shell Variable
toolbar button.

Choose the Reference and Implementation
tab and select hdlin_dwroot.

Under the Value prompt, enter the Design
Compiler software tree location.

Click OK.
4-8

Chapter 4: Setting Basic Elements for Design Verification

Formality directly supports the Verilog preprocessor directives
‘define, ‘ifdef, ‘else, ‘endif, ‘ifndif, and
‘undefineall. Therefore, you do not need to set a variable before
reading a Verilog design containing these directives.

Although the default variable settings provide a good starting point
for verification, there might be cases where overriding the default
behavior toward a specific directive can help you accurately verify
your design.

Note:
Overriding the default variable settings can cause Formality to
overlook simulation or synthesis mismatches. The default
settings minimize this risk.

Table 4-1 lists the common Formality variables used to control VHDL
and Verilog Design Compiler directives defined by Synopsys. If a
variable is set to “true”, the corresponding directive is ignored. If the
variable is set to “false”, the corresponding directive is not
ignored.

Table 4-1 Variables for Design Compiler Directives

Variable Description

hdlin_ignore_full_case Used to ignore or not ignore the Verilog or VHDL full_case
directive. For more information on this directive, see the HDL
Compiler for Verilog Reference Manual.

hdlin_ignore_parallel_case Used to ignore or not ignore the Verilog or VHDL parallel_case
directive. For more information on this directive, see the HDL
Compiler for Verilog Reference Manual.

hdlin_ignore_synthesis Used to ignore or not ignore the Verilog or VHDL synthesis
directive. For more information on this directive, see the VHDL
Compiler Reference Manual.

hdlin_ignore_translate Used to ignore or not ignore the Verilog or VHDL translate
directive. For more information on this directive, see the HDL
Compiler for Verilog Reference Manual.
4-9

Reading in Libraries and Designs

For information on how to change these variables, see “Using
Environment Variables” on page A-10.

Setting EDIF Variables for Power and Ground

Before you read in an EDIF design file, you might need to change the
default settings for power and ground specification. Power and
ground connection is controlled by EDIF variable settings in
Formality. By default, Formality connects nets named VDD to power
and nets named GND to ground.

As described in Table 4-2, the variable called
edifin_power_and_ground_representationspecifies power
and ground to be represented by either nets or cells. If you specify
“net”, the edifin_ground_net_name variable supplies the net
name, and the edifin_power_net_name variable supplies the
power name. If you specify “cell”, the edifin_ground_cell_name
variable supplies the cell name, and the
edifin_power_cell_name variable supplies the power name.

For information on how to change these variables, see “Using
Environment Variables” on page A-10.

Table 4-2 EDIF Variable for Setting Power and Ground

Edif variables Description

edifin_power_and_ground
_representation

Specifies the power and ground representation as either net or
cell. The default is net.

edifin_ground_net_name Specifies the name of the ground net. The default name is
GND. This variable is used if the
edifin_power_ground_representation variable is set to net.

edifin_power_net_name Specifies the name of the power net. The default name is VDD.
This variable is used if the
edifin_power_ground_representation variable is set to net.
4-10

Chapter 4: Setting Basic Elements for Design Verification

Top-Level Design

Specifying the top-level design causes Formality to resolve named
references, which is crucial for proper verification. This linking
process appears in the transcript window. If Formality cannot resolve
references, the link errors by default. When Formality resolves all
references, linking is completed successfully. If the design is an RTL
(VHDL or Verilog) design, Formality then performs elaboration.

You can use the hdlin_unresolved_modules environment
variable to cause Formality to create black boxes when it encounters
unresolved or empty designs during linking. Refer to the online man
page for information about this variable.

Loading the Reference Design

This section describes in detail the three steps required for loading
the reference design as shown in Figure 4-2 on page 4-3.

edifin_ground_cell_name Specifies the name of the ground cell. The default name is
logic_0. This variable is used if the
edifin_power_ground_representation variable is set to cell.

edifin_power_cell_name Specifies the name of the power cell. The default name is
logic_1. This variable is used if the
edifin_power_ground_representation variable is set to cell.

Table 4-2 EDIF Variable for Setting Power and Ground (Continued)

Edif variables Description
4-11

Loading the Reference Design

Reading Technology Libraries

As needed, read in the technology libraries that support your
reference design. If you do not specify a technology library name
with the commands described in the following section, Formality
uses the default name, TECH_WORK.

Synopsys (.db) Format

Note:
This is a shared library by default. If you read in a Synopsys
internal database file without specifying whether it applies to the
reference or implementation, it will apply to both.

To read cell definition information contained in Synopsys database
(.db) files, do one of the following:

The fm_shell commands are not listed with all their options; see the
online man pages for details. The options listed in this table pertain
to reading in technology library data only.

fm_shell GUI

Specify:

 read_db file_list
[-libname library_name]
[-merge]
[-replace_black_box]

Click the Reference > Read DB Libraries
tab.

(Optional) Specify a Target Library other
than the default WORK as desired.

(Optional) Check Read as a shared library if
necessary.

Click the DB button.

Navigate to file(s) and click Open.

Click the Load Files button.
4-12

Chapter 4: Setting Basic Elements for Design Verification

You use the read_db command to read both designs and
technology library information into Formality. The command
automatically determines the type of data being read and puts that
information into the appropriate type of Formality library, either a
design library or a technology library. For option descriptions, see the
online man pages.

Verilog and VHDL RTL Format

Verilog and VHDL cell definition information must be in the form of
synthesizable RTL or a structural netlist. In general, Formality cannot
use behavioral constructs or simulation models such as VHDL VITAL
models.

When reading libraries in Formality, you use the ‘celldefine
Verilog attribute to indicate a logic description is a library cell. This
might be necessary in order to take advantage of extra processing
needed to build the correct logical behavior (you would use the
hdlin_library_enhanced_analysis variable to run this extra
processing). However, because ‘celldefine is not required by
Verilog, many libraries don’t include it in the source file. This would
require modifications to your source file, which is not always
possible. The hdlin_library_files and
hdlin_library_directory variables provide you with an easier
mechanism for defining a library to Formality.

Note:
Unlike Synopsys database (.db) files, Verilog and VHDL
technology files are not shared. You must read them in for the
reference, then for the implementation by including the -r and -i
options, respectively.
4-13

Loading the Reference Design

To read cell definition information contained in Verilog or VHDL RTL
files, do one of the following:

The hdlin_library_files variable designates all designs
contained within a file or set of files as technology libraries. The value
you set for this variable is a space-delimited list of files.

The hdlin_library_directory variable designates all designs
contained within directories as technology libraries. The value you
set for this variable is a space delimited list of directories. After you
mark a design for library processing, any subdesign would also go
through that processing.

fm_shell GUI

Specify:
set hdlin_library_file <file>

At the Formality prompt, specify:
set hdlin_library_file <file>

set hdlin_library_directory <directory> set hdlin_library_directory <directory>

read_verilog
[-r | -i | -con containerID]
[-technology_library]
[-libname library_name]
[-01] [-95] file_list

read_verilog
[-r | -i | -con containerID]
[-technology_library]
[-libname library_name]
[-01] [-95] file_list

or or

set hdlin_library_file <file> set hdlin_library_file <file>

set hdlin_library_directory <directory> set hdlin_library_directory <directory>

read_vhdl
[-r | -i | -con containerID]
[-technology_library]
[-libname library_name]
[-87 | -93]
file_list

At the Formality prompt, specify:
read_vhdl
[-r | -i | -con containerID]
[-technology_library]
[-libname library_name]
[-87 | -93]
file_list
4-14

Chapter 4: Setting Basic Elements for Design Verification

The fm_shell commands are not listed with all their options; see the
online man pages for details. The options listed in this table pertain
to reading in technology library data only.

Use the -technology_library option to specify that the data
goes into a technology library rather than a design library. This option
does not support mixed Verilog and VHDL technology libraries, nor
does it support Verilog technology library cells with mixed user-
defined primitives and synthesizable constructs. When you specify
the -technology_library option, you must also specify -r, -i,
or -c.

Verilog Simulation Data

You generally read in Verilog simulation data by specifying the -y
option with the read_verilog command when you read in designs,
as discussed in the next section, “Reading Design Libraries” on
page 4-17.

However, certain users, such as ASIC vendors, use the
read_simulation_library or read_verilog -vcs -y
command to read in the Verilog simulation data. This allows you to
explore the library in detail for validation because it loads all data into
Formality and displays all warnings. This command is not necessary
for most users.
4-15

Loading the Reference Design

To read cell definition information contained in Verilog simulation
library files, do one of the following:

This command specifies to build non-black-box models for cells that
use user-defined primitives and Verilog primitives as the leaf objects.
The library reader extracts the pertinent information from the Verilog
library to determine the gate-level behavior of the design, and
generates a netlist that represents the functionality of the Verilog
library cells. For option descriptions, see the online man page.

The read_simulation_library command supports cells that
contain user-defined primitives and structural constructs. It does not
support cells that use synthesizable behavioral and structural
constructs.

To generate the gate-level models, the library reader parses the
structural Verilog modules and table-based descriptions. Using this
information, it creates efficient gate-level models that can be used for
verification.

fm_shell GUI

Specify:

 read_simulation_library
[-r | -i | -con containerID]
[-libname library_name]
[-work_library libname]
[-skip_unused_udps]
[-write_verilog] [-verbose]
[-save_binary] [-merge]
[-replace_black_box]
[-halt_on_error] file_list

Or

read_verilog -vcs -y

At the Formality prompt, specify:

read_simulation_library
[-r | -i | -con containerID]
[-libname library_name]
[-work_library libname]
[-skip_unused_udps]
[-write_verilog] [-verbose]
[-save_binary] [-merge]
[-replace_black_box]
[-halt_on_error] file_list

Or

read_verilog -vcs -y
4-16

Chapter 4: Setting Basic Elements for Design Verification

A Verilog simulation library is intended for simulation, not synthesis.
Therefore, the library reader might make certain assumptions about
the intended gate-level functions of the user-defined primitives in the
simulation model. The library reader generates comprehensive
warning messages about these primitives to help you eliminate
errors and write a more accurate model.

Each warning message is identified by a code. To obtain more
information, look at the man page for the code. For example, if
Formality reports “Error: Can’t open file xxxx (FM-016),” you can
obtain more information by entering the command man FM-016.

The library reader supports the following features:

• Sequential cells (each master-slave element pair is merged into
a single sequential element)

• User-defined strengths (assign statements, user-defined
primitive instantiations, and built-in primitives)

• Advanced net types: wand, wor, tri0, tri1, and trireg

• Unidirectional transistor primitives: pmos, nmos, cmos, rpmos,
rnmos, and rcmos

• Pull primitives (a pull-up or pull-down element is modeled as an
assign statement with a value of 1 or 0)

Reading Design Libraries

Note:
Review the section “Designs” on page 4-5. It describes
environment variables you may need to set prior to reading in
your design.
4-17

Loading the Reference Design

To read the reference design into the current session, do one of the
following, where the -r option indicates the reference design:

The fm_shell commands are not listed with all their options; see the
online man pages for details.

In the Formality shell, you represent the design hierarchy by using a
designID argument. The designID argument is a path name
whose elements indicate the container (by default, “r” or “i”), library,
and design name.

When specifying more than one VHDL file to be read with a single
read_vhdl command, Formality will attempts to read your files in
the correct automatically. If there are VHDL configurations in the list
of files, this feature will not work. Disable it by setting the variable
hdlin_vhdl_strict_libs to false before using the read_vhdl
command. If using multiple read_vhdl commands, you’ll need to
issue your read_vhdl commands in the correct compilation order.

fm_shell GUI

Specify one of the following, depending
on your design type:

read_db -r file(s)

read_edif -r file(s)

read_verilog -r file(s)

 [-vcs “-v lib_file”]

 [-vcs “-y lib_dir”]

read_VHDL -r file(s)

Click the Reference > Read Design Files
tab.

Choose the Verilog, VHDL, EDIF, or DB tab.

(Optional) For Verilog designs, click the
Options button and choose one of the option
tabs (such as -v or -y) as needed. When
finished, click OK.

Click applicable the Verilog..., VHDL...,
EDIF..., or DB... button to open the file
navigator.

Navigate to files and click Open.

Click the Load Files button.
4-18

Chapter 4: Setting Basic Elements for Design Verification

When reading in Verilog designs, you can use the
hdlin_auto_netlist variable to specify that Formality
automatically use the Verilog netlist reader. The default is to use the
netlist reader. This can decrease loading times. If the Verilog netlist
reader is unsuccessful, Formality uses the default Verilog reader.

Use the VCS options -v and -y if you have Verilog simulation
libraries or design modules you want to link to the reference or
implementation designs. These options tell Formality to search in the
specified library or file for unresolved module references. These
options do not support Verilog technology library cells with mixed
user-defined primitives and synthesizable constructs.

Reading in design libraries with one of the commands listed creates
a design library with the default name r:/WORK (or i:/WORK for the
implementation).

Reading Milkyway and DDC Databases

To read design netlists and cell libraries from Milkyway and DDC
databases, you use the read_mdb and read_ddc commands,
respectively. These commands allow Formality to read design
information including netlists and cell libraries from Milkyway
databases produced by Astro and DDC databases produced by
Design Compiler in XG mode.

You must set the hdlin_synroot variable to point to an installation
tree of Design Compiler before using the read_mdb or read_ddc
commands. This variable allows you to read mdb and ddc files that
were created by multiple versions of Design Compiler.
4-19

Loading the Reference Design

Milkyway Databases

To read designs from a Milkyway database, do one of the following:

Formality reads in designs from a Milkyway design database
(created using Physical Compiler and updated using Jupiter or
Astro) using the external reader program (fmxr). The fmxr reader
reads the logic view netlist description from the Milkyway database,
sets current_design to the design you define, links the design, and
eco updates the logical information from the CEL view to the design
in memory. Make certain you set the search_path in Formality prior
to running read_mdb as fmxr uses the information to locate the
designs.

Use the variables mw_logic0_net and mw_logic1_net to specify
the name of the Milkyway ground and power net, respectively.

Note:
Although linking is done inside fmxr inorder to update design
changes, you still must run set_top in Formality to link the
entire design.

fm_shell GUI

Specify:

 read_mdb
[-r | -i | -container containerID]
[-libname library_name]
[-technology_library]
-cell_name cell_name
[-design design_name]
mdb_path_name

At the Formality prompt, specify:

read_mdb
[-r | -i | -container containerID]
[[-libname library_name]
[-technology_library]
-cell_name cell_name
[-design design_name] mdb_path_name
4-20

Chapter 4: Setting Basic Elements for Design Verification

DDC Databases

To read designs from a DDC database into a container, do one of the
following:

Formality reads in files formatted as Synopsys DDC database
designs. Formality returns a 1 when the design is successfully read,
or 0 if the design isn’t successfully read into the destination
container. In situations where existing designs are present in the
destination container, Formality overwrites them with the designs
being read. For additional information, see the online man page.

Setting the Top-level Design

To set the top-level design for the reference, do the one of the
following:

fm_shell GUI

Specify:

 read_ddc
[-r | -i | -container containerID]
[-libname library_name]
[-technology_library] file_list

At the Formality prompt, specify:

read_ddc
[-r | -i | -container containerID]
[-libname library_name]
[-technology_library] file_list

fm_shell GUI

Specify:

 set_top

[-vhdl_arch name]

[moduleName | designID |

-auto] [-parameter value]

Click the Reference > Set Top Design tab.

Select the library that contains the top-level
design, and then a design.

Click the Set Top button.
4-21

Loading the Reference Design

If you are elaborating VHDL and you have more than one
architecture, use the -vhdl_architecture option. For option
descriptions, see the online man page.

The set_top command tells Formality to set and link the top-level
design. If you’re using the default “r” and “i” containers, this
command also sets the top-level design as the reference or
implementation. Be aware of the following:

• Once you start reading in a reference or implementation design,
you must finish before specifying the set_top command. In
addition, you cannot start reading in the implementation until you
have specified set_top for the reference.

• The set_top command always applies to the design data just
previously read into Formality (whether implementation or
reference). You receive an error if you specify a design that you
have not loaded.

• You cannot save, restore, or verify a design until you have
specified the set_top command.

• Be sure that the module or design you specify is your top design.
If not, you must remove the reference design and start over. This
holds true when you are loading the implementation design also.

• Use the -auto option if the top-level design is unambiguous. You
generally specify a module or design by name in cases where
you don’t want the actual top-level design to be considered the
top for the current session or when you have multiple modules
that could be considered at the top-level.

• Set the top-level design to the highest level you plan to work with
in the current session.
4-22

Chapter 4: Setting Basic Elements for Design Verification

• Once you set the top-level design you cannot change it, whereas
you can change the reference or implementation designs to be
verified with the set_reference_design,
set_implementation_design, or verify commands. The
design you specify must reside within the top-level design.

To set parameters in your top-level design, use the -parameters
option to the set_top command. Use this option to specify a new
value for your design parameters. You can set the parameter only on
the top-level design. Parameters must be Verilog parameters or
VHDL generics on the design you are setting them on. The
parameter values can either be integers or specified in the format
<param_name> <hex value format> <base>’h<value>. For
VHDL designs, the generics may have the following data types for
the parameter value:

• integer

• bit

• bit_vector

• std_ulogic

• std_ulogic_vector

• std_logic

• std_logic_vector

• signed (std_logic_arith and numeric_std)

• unsigned (std_logic_arith and numeric_std)

For additional information on setting parameters, see the set_top
man page.
4-23

Loading the Reference Design

You can generate a report on any simulation/synthesis mismatches
in your design after setting the top level of your design. Formality
automatically generates an RTL report summary describing any
simulation/synthesis mismatches when you run set_top (or
read_container). Running the command
report_hdlin_mismatches after set_top (or
read_container) generates a verbose report detailing the various
constructs encountered and their state. For additional information on
reporting simulation/synthesis mismatches, see the
report_hdlin_mismatches man page.

If you have straightforward designs, such as Verilog designs, you can
use the hdlin_auto_top environment variable rather than the
set_top command to specify and link the top-level module, but only
when you specify one and only one read_verilog command for
the container.

To set the top-level design with the hdlin_auto_top variable, do
one of the following:

This variable causes Formality to determine the top-level module
and automatically link to it. This command only applies when you are
reading in a Verilog design. If you are reading in technology libraries,
Formality ignores this variable.

fm_shell GUI

Specify:

set hdlin_auto_top true

Click the Modify Formality Shell Variable
toolbar button.

Choose the Reference and Implementation
tab and select hdlin_auto_top.

Under the Value prompt, click set top design
automatically.

Click OK.
4-24

Chapter 4: Setting Basic Elements for Design Verification

Formality issues an error if it cannot determine the top-level design.
In this case, you must explicitly specify the top design with the
set_top command.

If there are multiple VHDL configurations or architectures that could
be considered the top level, Formality issues a warning and sets the
top-level design to the default architecture.

The hdlin_auto_top variable requires you to use a single read
command to load the design. You cannot use it for mixed language
designs or for designs that use multiple design libraries or
architectures/configurations.

Loading the Implementation Design

The process for loading the implementation design is nearly identical
to that described in the section “Loading the Reference Design” on
page 4-11. This section provides an overview of the read-design
process flow for the implementation. Refer to the aforementioned
section for details.

Note:
If you already specified a Synopsys internal database (.db)
library for the reference, it is automatically shared with the
implementation.
4-25

Loading the Implementation Design

To specify the implementation, do one of the following, where the -i
option signifies the implementation:

The fm_shell commands are not listed with all their options; see the
online man pages for details. Refer to section “Verilog Simulation
Data” on page 4-15 for special Verilog considerations, otherwise use
the VCS -y option on the read_verilog command if you have
Verilog simulation data.

fm_shell GUI

As needed, specify one of the following
to read the technology files, depending
on the file format:
read_db file_list
 [-technology_library]
 read_verilog
 [-r | -i | -con containerID]
 [-technology_library]
 file_list
read_vhdl
 [-r | -i | -con containerID]
 [-technology_library]
 file_list

Specify one of the following to
read the design files, depending on
your design type:
read_db -i file(s)
read_edif -i file(s)
read_verilog -i file(s)
 [-vcs “-v lib_file”]
 [-vcs “-y lib_dir”]
read_VHDL -i file(s)

 set_top [moduleName |
 designID | -auto]

Click the Implementation button.
(Optional) Click the Read DB Libraries tab
or specify read_verilog or read_vhdl at the
Formality prompt, depending on the
technology file format.

When finished reading technology files,
choose the Read Design Files tab.

Choose the Verilog, VHDL, EDIF, or DB tab.
Specify Options for Verilog designs as
needed.

Click applicable the Verilog..., VHDL...,
EDIF..., or DB... button to open the file
navigator.

Navigate to file(s) and click Open.

Click the Load Files button.

Choose the Set Top Design tab.

Select the library that contains the top-level
design, and then select the design.

Click the Set Top button.
Note: For VHDL, file order matters. Arrange
the design files in proper order with the
Order up and down buttons prior to clicking
the Load Files button.
4-26

Chapter 4: Setting Basic Elements for Design Verification

Setting Up and Managing Containers

As described in section “Containers” on page 1-28, a container is a
complete, self-contained space into which Formality reads designs.
Each design to be verified must be stored in its own container. If you
follow the steps described in section “Reading in Libraries and
Designs” on page 4-3, Formality uses default containers named “r”
and “i.”

You generally don’t need to work directly with containers. However,
Formality allows you the option, if, for example:

• You want to read your reference and implementation designs into
names you specify rather than the default “r” and “i.”

• You require backwards compatibility with existing Formality
scripts.

• You need to load intermediate states of the design in the current
session to investigate a failed verification.

• You apply user-defined external constraints on your designs.

Note:
The r and i containers exist by default, even if empty. When you
specify them as the containerID with the create_containers
command, Formality issues a warning that the container already
exists.
4-27

Setting Up and Managing Containers

To create a container, do one of the following:

Formality uses the containerID string as the name of the new
container. For more information on this command, see the online
man page. If using this command, you must do so before reading in
your libraries and designs.

Alternatively, you can specify a container with the -con
containerID option to the read_db, read_verilog,
read_vhdl, and read_edif commands. If you specify a
containerID in which to place a technology library, the library can be
seen only in that container. This is called a “nonshared” technology
library. If you do not specify a container, the technology library can
be seen in all current and future containers. This is called a “shared”
technology library. Only the read_db command can be used to
read shared technology libraries.

When you create a new container, Formality automatically puts the
generic technology library, GTECH, into the container. The GTECH
library contains the cell primitives that Formality uses internally to
represent RTL designs.

In fm_shell, Formality considers one design the “current” design.
When you create or read into a container, it becomes the “current
container.”

fm_shell GUI

Specify:

create_container
 [containerID]

At the Formality prompt, specify:

create_container
 [containerID]
4-28

Chapter 4: Setting Basic Elements for Design Verification

Once the current container is set, you cannot operate on any other
container until you either:

• specify set_top for the current container, or

• specify remove_container to remove the container and its
contents. For the default r and i containers, this command merely
removes the contents.

In the GUI, the concept of a current container does not apply directly.
You simply work on the reference and implementation designs. You
can still execute Formality shell commands that rely on the current
container concept; however the GUI recognizes only the containers
that store the reference and implementation designs. To view a third
design in the GUI, you must choose it as a reference or
implementation design.

Note:
When you create a new container, Formality automatically adds
any shared technology libraries. If you do not want a particular
shared technology library in the new container, you must
specifically remove it.

The write_container and save_session commands do not
execute if you have not linked the top-level design using the
set_top command.

In the GUI, you can view the reference and implementation
containers by choosing Designs > Show Reference and Designs >
Show Implementation. Choose File > Save to save the design.
4-29

Setting Up and Managing Containers

4-30

Chapter 4: Setting Basic Elements for Design Verification

5
Preparing the Design for Verification 5

After reading designs into the Formality environment and linking
them, you generally need to set design-specific options to help
Formality perform verification. For example, if you are aware of
certain areas in a design that Formality cannot verify, you might want
to prevent the tool from attempting to verify those areas. Or, if you
want to speed up verification, you might declare blocks in two
separate designs black boxes.

This chapter describes the things you should consider to optimize
your design for verification. For example, you will find discussions
about black boxes, equivalences, external constraints, and don’t-
care cells. The chapter includes the following sections:

• Using Don’t-Care Cells

• Setting Up Designs

• Removing Information
5-1

• Saving Information

• Restoring Information

This chapter’s subject matter pertains to the box outlined in
Figure 5-1.

Figure 5-1 Design Verification Process Flow Overview

Start

Interpret
results

Perform
setup

Run
verify

Success?
No

Yes

Done

Start
Formality Match

compare points

Load
reference

Load
implementation

Debug
5-2

Chapter 5: Preparing the Design for Verification

Using Don’t-Care Cells

Don’t-care conditions are input patterns for which the function of a
design or block is not defined. Prior to verification you must define
don’t-care conditions, as necessary.

There are three ways to create don’t-care conditions:

• Explicitly in the design. For input patterns that you do not expect
to occur, you can specify the output values as X (don’t care)
rather than 0 or 1 in the HDL description of the design.

• Implicitly in the design. In the HDL description, you might specify
the output values for certain combinations of input values, and
not for others. The output values for the unspecified
combinations of input values are don’t care.

• User-specified in Formality. In Formality, you can insert user-
defined don’t-care values into the verification by applying
external constraints to the design. For example, you can
constrain an input bus so that Formality only considers “one-hot”
values for that bus during verification. “One-hot” means that
exactly one bit is 1 and all others are 0 on the bus. See section
“Working With External Constraints” on page 5-30 for details.

When Formality encounters a don’t-care condition, it models the
logic using an extra cell called a don’t-care cell. This cell has two
inputs, dc (don’t care) and f (function), and a single output. When the
dc input is 0, the f input is passed through to the output unchanged.
When the dc input is 1, the f input is ignored and the output value is
X (don’t care).
5-3

Using Don’t-Care Cells

In the consistency verification mode (the default mode), the value X
is the don’t-care parameter in the reference design and unknown in
the implementation design. Therefore, the value 0, 1, or X in the
implementation design is considered equivalent to an X in the
reference design.

If it is important for the implementation to have the same don’t-care
set as the reference design, use the equality (rather than
consistency) verification mode. In the equality mode, all don’t-care
conditions must match exactly between the reference and
implementation designs in order to pass verification. Doing this is
appropriate only when both the implementation and reference
designs are RTL designs, because gate-level designs do not have
don’t-care information.

Setting Up Designs

This section describes how to set up your designs for verification.
You might not perform all of the operations described in this section,
depending on your design. This section discusses the following
topics:

• Supporting Multibit Library Cells

• Resolving Nets With Multiple Drivers

• Eliminating Asynchronous State-Holding Loops

• Working With Black Boxes

• Working With Constants

• Working With Equivalences

• Working With External Constraints
5-4

Chapter 5: Preparing the Design for Verification

• Working With Hierarchical Designs

• Working With Combinational Design Changes

• Working With Sequential Design Changes

• Working With Re-Encoded Finite State Machines

• Working With Retimed Designs

• Working With Single-State Holding Elements

• Working With Multiplier Architectures

• Working With Arithmetic Blocks

• Working With the Automated Setup File

Supporting Multibit Library Cells

Formality supports the use of multibit library cells. You can control
multibit component inference in Design Compiler by using the
hdlin_infer_multibit variable. For more information, see the
man page on the hdlin_infer_multibit variable in Design
Compiler. If you choose not to use this capability in Design Compiler,
and you manually group register bits into library cells instead, then
you need to follow certain naming rules. Otherwise, Formality might
encounter difficulties in matching compare points where the multibit
components are used.

These are the naming rules for manually grouping register bits into
library cells:

• When you group registers into multibit cells, use the syntax
name_number to number to name the grouped cell. For
example, the name my_reg_7to0 maps to the eight registers
named my_reg_0, my_reg_1, ... my_reg_7 in the other design.
5-5

Setting Up Designs

• If the grouped register contains multiple elements that are not in
sequential order, you can use syntax in the form of
name_number to number,number,number... For
example, the name treg_6to4,2 maps to the four registers named
treg_6, treg_5, treg_4, and treg_2 in the other design. In this
syntax, a comma separates the individual elements of the multibit
cell.

Resolving Nets With Multiple Drivers

During verification, Formality ensures that each net with more than
one driver is resolved to the correct function. At the design level, you
can instruct Formality to use resolution functions to resolve these
types of nets.

To define net resolution, do one of the following:

The -resolution function option defines the behavior of nets
that have more than one driver. Formality provides a choice of four
resolution functions: consensus, black box, AND, and OR. Not all
options are shown; see the online man page for more details about
this command.

fm_shell GUI

Specify:
set_parameters
[-resolution function]
designID

Choose the Setup > Design Parameters tab.

Select the Reference or Implementation tab.

Select a library, then a design.

Click the Consensus, Treat Drivers as Black
Boxes, Wired AND, or Wired OR radio
button.
5-6

Chapter 5: Preparing the Design for Verification

With the consensus resolution function, Formality resolves each net
in the same manner as a four-state simulator. Each driver can have
any of four output values: 0, 1, X (unknown), or Z (high-impedance
state). Formality uses this function by default.

Table 5-1 shows the net resolution results for a net with two drivers.
The top row and left column show the possible driver values, and the
table entries show the resulting net resolution results.

The consensus resolution function works similarly for nets with more
than two drivers. If all drivers on the net have the same output value,
the result is that common value. If any two active (non-Z) drivers are
in conflict, the result is X.

With the AND resolution function, the result is the logical AND of all
active (non-Z) drivers on the net. Similarly, with the OR resolution
function, the result is the logical OR of all active drivers on the net.

Note:
If you want to use AND or OR resolution types, your designs must
support wired-AND and wired-OR functionality. Do not use these
resolution types with CMOS technology.

Table 5-1 Consensus Resolution for a Net With Two Drivers

0 1 X Z

0 0 X X 0

1 X 1 X 1

X X X X X

Z 0 1 X Z
5-7

Setting Up Designs

With the black box resolution function, Formality creates a black box
for each net with multiple drivers. It connects the net to the output of
the black box, connects the net drivers to the inputs of the black box,
and makes the net a compare point. The inputs to the black box are
treated just like the inputs to any other compare point. In other words,
to pass verification, the inputs need to be matched between the two
designs and the logic cones feeding these inputs need to be
equivalent.

If you do not specify how to resolve nets having more than one driver,
Formality looks at the types of drivers on the net. If none of the
drivers are primary input ports or black box outputs, Formality uses
the consensus resolution function. However, if any driver is a primary
input port or the output of a black box, Formality cannot determine
the value of that driver. In that case, Formality inserts a black box
function at that point, driven by the primary input port or by the
existing black box, and combines the output of the inserted black box
function with any other drivers on the net using the consensus
resolution function.

Using the consensus function causes Formality to resolve the value
of the net according to a set of consensus rules. For information on
these rules, see set_parameters in the online man pages.

In Figure 5-2, a single net is driven by two three-state devices, an
inverter, and a black box component. By default, Formality attempts
to use the consensus resolution function to resolve the net at the
shaded area. In this case, one of the drivers comes from a black box
component. Because Formality cannot determine the state of a
driver that originates from a black box component or an input port, it
cannot use the consensus resolution.
5-8

Chapter 5: Preparing the Design for Verification

Figure 5-2 Default Resolution Function: Part One

Figure 5-3 shows how Formality resolves the net in this case. The
three drivers at the bottom of the circuit can be resolved by the
consensus function. That function in turn drives a black box
resolution function that ultimately drives the register.

Figure 5-3 Default Resolution Function: Part Two

Black box
component Net with multiple

drivers
Register

Black box
component

Register

Black box
resolution

Consensus
resolution

Net with multiple
drivers
5-9

Setting Up Designs

Eliminating Asynchronous State-Holding Loops

Formality is used to verify synchronous designs. This means your
design should not contain asynchronous state-holding loops
implemented as combinational logic. Asynchronous state-holding
loops can cause some compare points to be aborted, thus giving
inconclusive results.

Asynchronous state-holding loops affect Formality in the following
ways:

• If Formality establishes that an asynchronous state-holding loop
affects a compare point, it aborts that compare point, and that
point is not proven equivalent or nonequivalent.

• If Formality establishes that an asynchronous state-holding loop
has a path that does not affect a compare point, it proves that
point equivalent or nonequivalent.

• If Formality cannot establish that an asynchronous state-holding
loop has a path that does not affect a compare point, it aborts that
compare point, and that point is not proven equivalent or
nonequivalent.

Formality automatically breaks loops during verification if they are
identical. To change this behavior, set the
verification_auto_loop_break variable to false. For
information about the verification_auto_loop_break
variable, see the online man pages.

Note:
You can also specify the report_loops command after
verification. In this case, Formality reports the original loops even
if they were automatically broken during verification.
5-10

Chapter 5: Preparing the Design for Verification

To report asynchronous state-holding loops, do one of the following:

By default, the report_loops command returns a list of nets and
pins for loops in both the reference and implementation designs. It
reports 10 loops per design and 100 design objects per loop unless
you specify otherwise with the -limit option. Objects are reported
using instance-based path names.

The -unfold option specifies to report subloops embedded within
a loop individually. Otherwise, they are reported together. Refer to
the online man page for more information about this command.

If a loop is completely contained in a technology library cell, this
command lists all the nets and pins associated with it. If only part of
a loop belongs to a technology library cell, the cell name will not
appear in the list. In addition, the report displays the hierarchical
structure if a loop crosses boundaries.

After you determine the locations of any asynchronous state-holding
loops, ensure Formality successfully verifies the loop circuit by
inserting cutpoints, as described in the next section.

Working With Cutpoints

As previously mentioned, Formality uses black box input pins as
compare points. You also can manually insert compare points at a
specific net or hierarchical block pin. Inserting a cutpoint at a specific
net or hierarchical block pin in a design has the effect of creating a

fm_shell GUI

Specify:

report_loops [-ref] [-impl]
[-limit N] [-unfold]

At the Formality prompt, specify:

report_loops [-impl] [-ref]
[-limit N] [-unfold]
5-11

Setting Up Designs

new primary output and a new primary input to the downstream
logic. This is called a cutpoint because it effectively cuts the net on
which it is inserted.

You can use cutpoints to create specific compare points to verify
designs that contain asynchronous state-holding loops. Setting
cutpoints on hierarchical block pins and internal nets allows
Formality to verify these points independently and use them as a free
variable for verification of downstream compare points.

When the design you want to verify has asynchronous state-holding
loops, you can manually break each loop by specifying a net or
hierarchical block pin of a cell in the loop, then inserting a cutpoint.
Likewise, when you encounter a design that is difficult to verify, you
can simplify the cones under verification by inserting cutpoints at
specific nets or hierarchical block pins, thereby creating new
compare points and reducing the size of the logic cones to be
verified.

There are several ways to determine a point in the design that is
causing (or is likely to cause) a verification problem:

• Your prior knowledge of loops in the circuit design. If you properly
insert cutpoints from the start, you can avoid the time spent on
generating an inconclusive verification.

• The occurrence of inconclusive verification results. Following the
verification run, use the report_loop -ref and report_loop
-impl commands to locate the loops.

• Timing loop reports generated by other tools such as PrimeTime
and Design Compiler.
5-12

Chapter 5: Preparing the Design for Verification

After you determine the location of a loop in the design, you can
insert cutpoints anywhere in the loop without risk of harming the
verification setup. Adding a cutpoint merely introduces a new
compare point that will be verified by Formality. Be sure to place
cutpoints in exactly the same locations in the reference and
implementation designs. Use the set_user_match command to
match the corresponding cutpoints.

Creating a Cutpoint. To insert a cutpoint in a design, do one of the
following:

Specify the name of the net or pin along with the design object where
Formality should insert the cutpoint. If the name of the specified
design object is associated with more than one type of design object,
you must specify the type (either pin or net), using the -type option.
For more information about this command, see the online man
pages.

Reporting Information on Cutpoints. To report the cutpoints
inserted with the set_cutpoint command, do one of the following:

fm_shell GUI

Specify:

set_cutpoint objectID
[-type objectID_type]

At the Formality prompt, specify:

set_cutpoint objectID
[-type objectID_type]

fm_shell GUI

Specify:

report_cutpoints

At the Formality prompt, specify:

report_cutpoints
5-13

Setting Up Designs

For more information about this command, see the online man
pages.

Removing a Cutpoint. To remove cutpoints added with the
set_cutpoint command, do one of the following:

Working With Black Boxes

A black box represents logic whose function is unknown. Black boxes
can cause verification failures because input pins become compare
points in the design. If black boxes found in the reference design do
not match those found in the implementation design, failing compare
points result.

In addition, compare point mismatches can occur when black box
buses are not normalized in the same manner. When Formality
encounters a missing design, it normalizes the bus on the black box
to the form WIDTH-1:0. However, when it encounters an empty
design, it does not normalize black box buses and bus indexes are
preserved. Therefore, you must either not include a design or use an
empty design for both the implementation and reference so that
buses are normalized in like manner.

When Formality verifies a design, its default action is to consider a
black box in the implementation equivalent to its counterpart in the
reference design. This behavior can be misleading in cases where

fm_shell GUI

Specify:

remove_cutpoint object_list
-type | -all

At the Formality prompt, specify:

remove_cutpoint object_list
-type | -all
5-14

Chapter 5: Preparing the Design for Verification

designs contain many unintentional black boxes, such as an
implementation that uses black boxes as bus holders to capture the
last state placed on a bus. Figure 5-4 shows an example.

Figure 5-4 Black Boxes

The example in Figure 5-4 uses a bidirectional pin to connect to the
bus. Because this pin is bidirectional, the bus has an extraneous
driver. If the reference design doesn’t use similar bus holders, the
implementation fails verification. To solve this problem, you can
declare the direction “in.” Assigning the pin a single direction
removes the extraneous driver.

By default, Formality stops processing with an error if it encounters
unresolved designs (those that can’t be found during the linking
process) and empty designs (those with an interface only). For
example, suppose a VHDL design has three instances of designs
whose logic is defined through associated architectures. If the
architectures are not in the container, Formality halts.

You can use the hdlin_unresolved_modules environment
variable to cause Formality to create black boxes when it encounters
unresolved or empty designs during linking. Refer to the online man
page for information about this variable.

Bus holder

Bidirectional pin

Black
box
5-15

Setting Up Designs

Note:
Setting the hdlin_unresolved_modules variable to black
box can cause verification problems.

You can use the verification_ignore_unmatched_
implementation_blackbox_input variable to cause Formality
to allow successful verification of unmatched input pins on matched
black boxes in the implementation design. Refer to the online man
page for information on this variable.

Because of the uncertainty that black boxes introduce to verification,
Formality allows you some control over how the tool handles them.
You can:

• Load only the design interface (ports and directions) even though
the model exists.

• Mark a design as a black box for verification even though its
model exists and the design is linked.

• Report a list of black boxes.

• Perform an identity check between comparable black boxes.

• Set the port and pin directions.

See the subsections that follow this discussion for details.

Loading Design Interfaces Only

Note:
Specify the environment variable described below before reading
in your designs.
5-16

Chapter 5: Preparing the Design for Verification

If you know that you want an object to be a black box, specify the
hdlin_interface_only variable rather than loading nothing into
Formality. Formality benefits from having the pin names and
directions supplied by this variable.

To load only the pin names and directions for designs, do one of the
following:

This environment variable allows you to load the specified designs
as black boxes, even when their models exist, which can be helpful
when loading in RAM, IP, and other special models. When you
specify report_black_boxes, these designs are attributed with
an “I” (interface only) to indicate that you specified this variable.

This variable supports wildcards. It ignores syntax violations within
specified designs. However, if Formality cannot create an interface-
only model due to syntax violations in the pin declarations, it treats
the specified design as missing.

Modules names must be simple design names. For example, to mark
all RAMS in a library as black boxes, where they are named
SRAM01, SRAM02...:

fm_shell (setup)> set hdlin_interface_only “SRAM*”

fm_shell GUI

Specify:

set hdlin_interface_only “design(s)”

Click Reference or Implementation.

Click Options.

Choose the Variables tab.

Under Read interface only for these designs
prompt, enter list of designs.

Click OK.
5-17

Setting Up Designs

This variable is not cumulative. Subsequent specifications cause
Formality to override prior specifications. Therefore, if you want to
mark all RAMS with names starting with DRAM* and SRAM* as
black boxes, for example, specify both on one line.

fm_shell (setup)> set hdlin_interface_only “DRAM* SRAM*”

Marking a Design as Black Box for Verification

To mark a design as a black box for verification, do one of the
following:

You specify this command for a loaded design. When you specify
report_black_boxes, these designs are attributed with an “S” to
indicate that you specified this command. To remove this attribute,
specify the remove_black_box command.

This command allows you to work in black-box mode or not (by
removing the attribute as stated previously) as desired. Designs you
specify with the hdlin_interface_only variable on unresolved
references always retain their black box attribute.

fm_shell GUI

Specify:

set_black_box designID

At the Formality prompt, specify:

set_black_box designID
5-18

Chapter 5: Preparing the Design for Verification

Reporting Black Boxes

To report black boxes, do one of the following:

By default, this command lists the black boxes for both the reference
and implementation designs. Formality issues an error if these are
not set. You can specify to restrict the report to only the
implementation or reference designs, or a container or design that
you specify.

In addition, the report lists a reason, or attribute, code for each black
box, as follows:

• U: Unresolved design.

• E: Empty design. An asterisk (*) next to this code indicates that
the design is not linked by the set_top command. Once linked,
the design make show up as a black box if it’s not really empty.

• I: Interface only, as specified by the hdlin_interface_only
variable.

• S: Set with the set_black_box command.

fm_shell GUI

Specify:

report_black_boxes

 [design_list | -r | -i |
 -con containerID] [-all]

 [-unresolved] [-empty]

 [-interface_only]

 [-set_black_box]

At the Formality prompt, specify:

report_black_boxes

 [design_list | -r | -i |
 -con containerID] [-all]

 [-unresolved] [-empty]

 [-interface_only]

 [-set_black_box]
5-19

Setting Up Designs

You can specify to report only black boxes of a certain attribute with
the -unresolved, -empty, -interface_only, and
-set_black_box options. The default -all option specifies to
report all four black box types.

The report output during set_top processing also lists black boxes.

Note:
Formality places black boxes created due to unresolved designs
in the FM_BBOX library.

Performing Identity Checks

To perform an identity check between two comparable black boxes,
do one of the following:

This variable causes Formality to perform an identity check between
each set of two comparable black boxes, ensuring that both black
boxes have the same library and design names. For more
information on this variable, see the online man pages.

fm_shell GUI

Specify:
set verification_blackbox_match_
mode identity

Click the Modify Formality Shell Variable
toolbar button.

Choose the Match tab and select
verification_blackbox_match_mode.

Click the identity radio button.

Click OK.
5-20

Chapter 5: Preparing the Design for Verification

Setting Pin and Port Directions for Unresolved Black
Boxes

By definition, you don’t know the function of a black box. For
unresolved black boxes, Formality attempts to define pin direction
from the connectivity and local geometries. If the tool cannot
determine the direction, it assumes that the pin is bidirectional. This
could result in an extra driver on a net in one design that does not
exist in the other.

To circumvent this failure, you can create a wrapper for the block with
the pin directions defined. You can use a Verilog module or VHDL
entity declaration. This takes the guesswork out of determining pin
direction. You can also use the set_direction command to define
pin direction.

To redefine a black box’s pin or port direction, do one of the following:

For objectID, supply the object ID for an unlinked port or pin. (You
cannot set the direction of a linked port or pin.) For direction, specify
either in, out, or inout. See the online man pages for more details.

Working With Constants

Formality recognizes two types of constants: design and user-
defined. Design constants are nets in your design that are tied to a
logical 1 or 0 value. User-defined constants are ports or nets to
which you attach a logical 1 or 0 value using Formality commands.

fm_shell GUI

Specify:

set_direction
objectID direction

At the Formality prompt, specify:

set_direction
objectID direction
5-21

Setting Up Designs

User-defined constants are especially helpful when several problem
areas exist in a circuit and you want to isolate a particular trouble
spot by disabling an area of logic. For example, suppose your
implementation has scan logic and you don’t want to consider it in
the verification process. You can assign a constant to the scan-
enable input port to disable the scan logic and to take it out of the
verification process.

You can apply a user-defined constant to a port or net. However, if
you assign a constant to a net with a driver, Formality displays a
warning message.

Formality tracks all user-defined constants and enables you to
generate reports on them. You can specify how Formality
propagates constants through different levels of the design
hierarchy.

You can define constant states on ports or nets within a design to
restrict the scope of a verification. This technique is useful when you
have designs that contain scan logic and you want to disable that
logic during verification. For example, you can define a constant to
disable a scan enable line and thus verify the design in mission
mode.

You can manage user-defined constants by performing the tasks in
the following sections.
5-22

Chapter 5: Preparing the Design for Verification

Defining Constants

To set a net, port, cell, or pin to a constant state of 0 or 1, do one of
the following:

For constant_value, specify either 0 or 1. If more than one design
object shares the same name as that of the specified object, use the
-type option and specify the object type (either port or net). You can
specify an ObjectID or instance-based path name for
instance_path. Use the latter if you want to apply a constant to a
single instance of an object instead of all instances. In addition, you
can use wildcards to specify objects to be set constant. For
information about the set_constant command, see the online
man pages.

fm_shell GUI

Specify:

set_constant [-type type]
instance_path constant_value

Choose the Setup > Constants tab.

Click Add then choose the Reference or
Implementation tab.

In the left-hand pane, navigate through tree-
view to the instance and select it.

In right-hand pane, select the object.

Click the “0” or “1” radio button.

Click OK.
5-23

Setting Up Designs

Removing User-Defined Constants

To remove a user-defined constant, do one of the following:

If more than one design object shares the same name as that of the
specified object, use the -type option and specify port or net
(whichever applies) for the type. You can specify an ObjectID or
instance-based path name for file_path. Use the latter if you want
to remove a constant on a single instance of an object instead of all
instances. For more information about this command, see the online
man pages.

Listing User-Defined Constants

To list user-defined constants, do one of the following:

If you omit instance_path, Formality returns a list of all user-
defined constants. You can specify an ObjectID or instance-based
path name for instance_path. Each line of the report shows the
constant value, design object type, and design object name. For
information about this command, see the online man pages.

fm_shell GUI

Specify:

remove_constant -all

or

remove_constant

[-type type] instance_path ...

Choose the Setup > Constants tab.

Select a constant.

Click Remove.

fm_shell GUI

Specify:

report_constants
[instance_path ...]

Choose the Setup > Constants tab.
5-24

Chapter 5: Preparing the Design for Verification

Working With Equivalences

You might want to declare two design objects as equivalent. You can
use the set_user_match command to match one object in the
reference to many objects in the implementation. For example,
suppose the reference design has a single clock port, and the
implementation design has several clock ports, use
set_user_match to match all of the implementation ports to the
reference port.

To make an equivalence declaration, use the set_equivalence
command. The set_equivalence command declares a pair of
nets or ports to be equivalent in the reference and implementation
designs. You can also declare a pair of ports, pins, or nets in the
same design are equivalent; therefore, when two pins are set as
equivalent, the second pin will use the value of the first pin. In the
case of a net, Formality disconnects the net from the driver in the
implementation design and then reconnects that net to the
corresponding driver in the reference design. The net in the
implementation design will now be driven by the equivalent net in the
reference design. Most importantly this means that any logic driving
the net in the implementation will not be verified. The same is true for
two input ports declared to be equivalent.
5-25

Setting Up Designs

Defining an Equivalence

To make two design objects equivalent, do one of the following:

If more than one design object shares the same name with either
specified design object, use the -type option and specify port or net
(whichever applies) for the object type. For information about this
command, see the online man page.

Removing User-Defined Equivalences

To remove a single user-defined equivalence, do one of the
following:

fm_shell GUI

Specify:

set_equivalence
[-type type] [-propagate]
[-inverted] objectID_1
objectID_2

Choose the Setup > Equivalences tab.

Click Add, and then select Ports or Nets for
the object type.

In the Reference section, select a library,
design, and object.

In the Implementation section, select a
library, design, and object.

(optional) Click the Propagate or Invert
option.

Click OK.

fm_shell GUI

Specify:

remove_equivalence
[-all] [-type type]
objectID_1 objectID_2

Choose the Setup > Equivalences tab.

Select a user-defined equivalence from the
list.

Click Remove.
5-26

Chapter 5: Preparing the Design for Verification

If more than one design object shares the same name as a specified
item, use the -type option and specify port or net (whichever
applies) for the type. For more information about this command, see
the online man page.

Listing User-Defined Equivalences

To list user-defined equivalences, do one of the following:

Formality produces a list of user-defined equivalences for designs,
ports, and nets. For more information about this command, see the
online man page.

Using Verilog 2001 Constructs. You can perform equivalency
checking on designs that incorporate commonly used Verilog 2001
constructs. These constructs include, but are not limited to:

• Indexed vector part

• Signed arithmetic extensions

• Power operator

• Combinational logic sensitivity token

• Automatic width extensions

• Combined port and data type declarations

• ANSI style input and output declarations

fm_shell GUI

Specify:

report_equivalences

Choose the Setup > Equivalences tab.
5-27

Setting Up Designs

The following sections describe and provide examples for each of the
supported Verilog 2001 constructs.

Indexed Vector Part

Indexed vector part selects are supported. Formality allows indexed
part select, a base expression, and an offset direction. For instance,
the following is allowed:

[base_expr +: width_expr]
[base_expr -: width_expr]
wire [7:0] byteN = word[byte_num*8 +: 8]

Signed Arithmetic Extensions

Formality will accept signed arithmetic extensions: data type, system
function ($signed, $unsigned), and arithmetic shift operators (>>>
and <<<). Data type support includes register and net data types and
ports and functions to be declared as signed types. System function
support includes $signed and $unsigned, which are used to convert
signed values to unsigned and vice versa. Arithmetic shift operator
support will maintain the sign of a value by filling in the signed-bit
value as it shifts.

This example shows a signed data type.

reg signed [63a:0] data;
wire signed [7:0] vector;
input signed [31:0] a;
function signed [128:0] alu;

This example shows a system function.

reg [63:0] a; //unsigned data type
always @(a) begin
 result1 = a + 2; //unsigned
 result2 = $signed(a) +2; //signed
end
5-28

Chapter 5: Preparing the Design for Verification

This example shows arithmetic shift operators.

D >> 3 //logical shift yields 8’b00010100
D >>> 3 //arithmetic shift yields 8;b11110100

Power Operator

Formality accepts a power operator, which is similar to the C pow ()
function. This is useful when you need the power operator to
calculate values such as a2. An example of a power operator is

always @(posedge clock)
result = base ** exponent;

Combinational Logic Sensitivity Token

The combinational logic sensitivity token is now accepted by
Formality. This token (@*) represents a logic sensitivity list,
indicating that statement groups should automatically be sensitive to
changes on any values read in that group. An example of this is

always @* //combinational logic
if (sel)
 y = a;
else
 y = b;

Automatic Width Extensions

Formality can handle automatic width extensions beyond 32 bits.
Therefore, an un-sized value of Z or X will automatically expand to fill
the full width of the vector on the left-hand side of the argument. An
example showing how Formality handles automatic width extensions
is

parameter WIDTH = 64;
reg [WIDTH-1:0] data;
data = ‘bz; //fills with ‘hzzzzzzzzzzzzzzzzzz
5-29

Setting Up Designs

Combined Port and Data Type Declarations

Formality will accept declarations that combine the direction of the
port and data type of that signal into one statement. The following
shows an example of this

module mux8 (y, a, b, en);
output reg [7:0] y;
input wire [7:0] a, b;
input wire en;

ANSI C Style Module Input and Output Declarations

 Formality supports ANSI C style port declarations for modules. An
example of this is

module mux8 (output reg [7:0) y,
output reg [7:0] a,
input wire [7:0] b,
input wire en);

Working With External Constraints

Sometimes you might want to restrict the inputs used for verification
by setting an external constraint. By setting an external constraint,
you can limit the potential differences between two designs by
eliminating unused combinations of input values from consideration,
thereby reducing verification time and eliminating potential false
failures that might result from verification with the unconstrained
values.

By defining the allowed values of (and relationships between)
primary inputs, registers, and black box outputs, and allowing the
verification engine to use this information, the resulting verification is
restricted to identify only those differences between the reference
and the implementation designs that result from the allowed states.
5-30

Chapter 5: Preparing the Design for Verification

Typical constraint types you can set are

• One-hot: one control point at logic 1; others at logic 0.

• One-cold: one control point at logic 0; others at logic 1.

• Coupled: related control points always at the same state.

• Mutually exclusive: two control points always at opposite states.

• User-defined: you define the legal state of the control points.

The following paragraphs describe three cases where setting
external constraints within verification is important.

The most common case is when your designs are part of a larger
design, and the larger design defines the operating environment for
the designs under verification. You only want to verify the
equivalence of the two designs within the context of this operating
environment. By limiting the verification to the restricted operating
conditions using external constraints, you can eliminate the false
negatives that might arise out of the unexercised functions.

The second case is when one of the designs you want to verify was
optimized under the assumption that some control point conditions
cannot occur. The states outside the assumed legal values might be
true don’t-care conditions during optimization. If the equivalent
behavior doesn’t occur under these invalid stimulus conditions, false
negatives might arise during verification. Setting the external
constraints prevents Formality from marking these control points as
false negatives under these conditions.
5-31

Setting Up Designs

The third case is when you want to constrain the allowed output
states for a black box component within the designs being verified.
Using external constraints eliminates the false negatives that might
arise if the black box component is not constrained to a subset of
output state combinations.

You can set and remove external constraints, create and remove
constraint types, and report information about the constraints you
have set.

Defining an External Constraint

To define an external constraint, do one of the following:

For type_name, supply the type of external constraint you want to
use. For control_point_list, specify the list of control points
(primary inputs, registers, and black box outputs) to which the
constraint applies. Use designID to specify a particular design;
otherwise, the default is the current design. For more information
about this command, see the online man page.

fm_shell GUI

Specify:

set_constraint
[-name constraint1 constraint2]
[-map map_list1 map_list2]
constraint_type
control_point_list
[designID]

At the Formality prompt, specify
:
set_constraint
[-name constraint1 constraint2]
[-map map_list1 map_list2]
constraint_type
control_point_list
[designID]
5-32

Chapter 5: Preparing the Design for Verification

Creating a Constraint Type

To create a user-defined (arbitrary) constraint type and establish the
mapping between the ports of a design that define the constraint and
control points in the constrained design, do one of the following:

For type_name, specify the type of constraint. For designID, specify
a particular design; otherwise, the default is the current design. For
more information about this command, see the online man page.

User-defined constraints allow you to define the allowable states of
the control points by specifying a constraint module. The constraint
module is a design you create that determines whether the inputs
are legal (care) or illegal (don’t-care) states. When the output of the
constraint module evaluates to 1, the inputs are in a legal state. For
information about don’t-care cells, see “Using Don’t-Care Cells” on
page 5-3.

When you later reference the user-defined constraint from the
set_constraint command, Formality automatically hooks the
constraint module design into the target of the set_constraint
command and uses the output of the module to force the verification
to consider only the legal states for control points.

The characteristics of a constraint module are that it has:

• One or more inputs and exactly one output

• Outputs must be in logic 1 for a legal state; otherwise logic 0

fm_shell GUI

Specify:

create_constraint_type
type_name
[designID]

At the Formality prompt, specify:

create_constraint_type
type_name
[designID]
5-33

Setting Up Designs

• No inouts (bidirectional ports)

• No sequential logic

• No three-state logic

• No black boxes

Removing an External Constraint

To remove an external constraint from the control points of a design,
do one of the following:

For constraint_name, specify the name of the constraint to
remove. For more information about this command, see the online
man page.

Removing a Constraint Type

To remove external constraint types, do one of the following:

For type_name, specify the type of user-defined constraint to
remove. For more information about this command, see the online
man page.

fm_shell GUI

Specify:

remove_constraint
constraint_name

At the Formality prompt, specify:

remove_constraint
constraint_name

fm_shell GUI

Specify:

remove_constraint_type type_name

At the Formality prompt, specify:

remove_constraint_type type_name
5-34

Chapter 5: Preparing the Design for Verification

Reporting Constraint Information

To report information about the constraints set in your design, do one
of the following:

For constraint_name, specify the name of the constraint for
which you want to obtain a report. For more information about this
command, see the online man page.

Reporting Information on Constraint Types

To report information on constraint types set in your design, do one
of the following:

For more information about reporting information on constraint
types, see the online man pages.

Working With Hierarchical Designs

You can control the following features of hierarchical design
verification: the separator character used to create flattened path
names, operating mode for propagating constants throughout

fm_shell GUI

Specify:

report_constraint
[-long] constraint_name

At the Formality prompt, specify:

report_constraint
[-long] constraint_name

fm_shell GUI

Specify:

report_constraint_type
[-long] type_name

At the Formality prompt, specify:

report_constraint_type
[-long] type_name
5-35

Setting Up Designs

hierarchical levels, and whether or not Formality disregards
hierarchical boundaries. The following sections describe these
features.

Setting the Flattened Hierarchy Separator Character

Formality uses hierarchical information to simplify the verification
process, but it verifies designs in a flat context. By default, Formality
uses the slash (/) character as the separator in flattened design path
names. If this separator character is not consistent with your naming
scheme, you can change it.

To establish a character as the flattened path name separator, do
one of the following:

This variable reads in the design hierarchy, and the character
separator allows Formality to understand where the hierarchical
boundaries are. For more information about this variable, see the
online man page.

fm_shell GUI

Specify:

set name_match_flattened_
hierarchy_separator_style
character

Click the Modify Formality Shell Variable
toolbar button.

Choose the Setup tab and select
name_match_flattened_hierarchy_
separator_style.

In the Value text box, enter the required
separator character.

Click OK.
5-36

Chapter 5: Preparing the Design for Verification

Propagating Constants

When Formality verifies a design that contains hierarchy, the default
behavior is to propagate all constants throughout the hierarchy. For
a description of constant types as they apply to Formality, see
“Working With Constants” on page 5-22.

In some cases, you might not want to propagate all constants during
hierarchical verification. To determine how Formality propagates
constants, do one of the following:

You can use this variable to specify where Formality is to start
propagation during verification. In automode, the default, Formality
traverses up the reference and implementation hierarchy in lock-step
to automatically identify the top design from which to propagate
constants. Therefore, correspondence between the hierarchy of the
two designs impacts this mode. Specify top to tell Formality to
propagate from the design you set as top using the set_top
command. Specify target to instruct Formality to propagate
constants from the currently set ref and impl designs.

Note:
Setverification_constant_prop_mode totop ortarget
only if your reference and implementation designs do not have
matching hierarchy. Setting the mode to auto when you have
different levels of hierarchy can cause Formality to propagate
from an incorrect top-level design.

For more information about this variable, see the online man page.

fm_shell GUI

Specify:

set
verification_constant_prop_mode mode

At the Formality prompt, specify:

set
verification_constant_prop_mode mode
5-37

Setting Up Designs

Working With Combinational Design Changes

This section describes how to prepare designs that have undergone
a combinational transformation. Special attention is required if your
design contains combinational design changes, such as:

• Internal scan insertions

• Boundary scan insertions

• Clock tree buffers

Your design might also include sequential transformations. For more
information, see “Working With Sequential Design Changes” on
page 5-42.

Disabling Scan Logic

Internal scan insertion is a technique used to make it easier to set
and observe the state of registers internal to a design. During scan
insertion, scan flops replace flip-flops. The scan flops are then
connected into a long shift register. The additional logic added during
scan insertion means that the combinational function has changed,
as shown in Figure 5-5.
5-38

Chapter 5: Preparing the Design for Verification

Figure 5-5 Internal Scan Insertion

After determining which pins disable the scan circuitry, disable the
inserted scan logic by specifying “0” for the set_constant
command. See the procedure described in section “Defining
Constants” on page 5-23.

Disabling Boundary-Scan in Your Designs

Boundary scan is similar to internal scan in that it involves the
addition of logic to a design. This added logic makes it possible to set
and observe the logic values at the primary inputs and outputs (the
boundaries) of a chip, as shown in Figure 5-6. Boundary scan is also
referred to as the IEEE 1149.1 Std. specification.

data_in

clk

DD D QQ Q data_out

data_in

clk

DD D QQ Q data_out

scan_in

scan_en

scan_outsi

se

sosi siso so

se se

Pre-Scan

Post-Scan
5-39

Setting Up Designs

Figure 5-6 Boundary Scan Insertion

Designs with boundary-scan registers inserted requires setup
attention because:

• The logic cones at the primary outputs differ.

• The boundary-scan design has extra state holding elements.

Boundary scan must be disabled in your design in the following
cases:

• If the design contains an optional asynchronous TAP reset pin
(such as TRSTZ or TRSTN), use set_constant on the pin to
disable to scan cells.

• If the design contains only the four mandatory TAP inputs (TAS,
TCK, TDI and TDO), force an internal net of the design with the
set_constant command. For example:

fm_shell (setup)> set_constant gates:/WORK/TSRTS 0
fm_shell (setup)> set_constant gates:/WORK/alu/somenet 0

Specify “0” for the set_constant command as described in the
procedure described in section “Defining Constants” on page 5-23.

data 1

data 2

data 3

out1

out2

out3

data 1

data 2

data 3

out1

out2

out3
Tap
Controller

Pre-Boundary Scan Post-Boundary Scan

D Q

D Q

D Q
5-40

Chapter 5: Preparing the Design for Verification

Managing Clock Tree Buffering

Clock tree buffering is the addition of buffers in the clock path to allow
the clock signal to drive large loads, as shown in Figure 5-7.

Figure 5-7 Clock Tree Buffer

Without setup intervention, verification of blocka fails. As shown in
the figure, the clock pin of ff3 is clk in the pre-buffer design, while in
the post-buffer design the clock pin of ff3 is clk3. The logic cones for
ff3 are different, which results in a failing point.

To counteract clock tree buffering, you must use the
set_user_match command to specify that the buffered clock pins
are equivalent. With set_user_match you can match one object in
the reference to multiple objects in the implementation (1-to-n
matching). For example, if you want to match a clock port, clk, in the
reference to three clock ports in your implementation, clk, clk1, and
clk2, you can use

set_user_match r: /WORK/design/clk i:/WORK/design/clk i:/
WORK/
design/clk1 i:/WORK/design/clk2

clk

clk

clk

clk

ff1

ff2

ff3

QD

QD

QD

blocka

top
Pre-Buffering Post-Buffering

clk1

clk3

clk2

ff1

ff2

ff3

QD

QD

QD

blocka
clk

clk_buf

top
5-41

Setting Up Designs

Alternately, you can issue multiple commands for each port in the
implementation:

set_user_match r: /WORK/design/clk i:/WORK/design/clk
set_user_match r: /WORK/design/clk i:/WORK/design/clk1
set_user_match r: /WORK/design/clk i:/WORK/design/clk2

If you know a clock port is inverted, use the -inverted option to the
set_user_match command. Therefore, if your reference had a clock
port, clk, and your implementation had a clk port and an inverted
clock port, clk_inv, you would use the following command:

set_user_match r:/WORK/design/clk i:/WORK/design/clk
set_user_match -inverted r:/WORK/design/clk i:/WORK/design/
clk_inv

For more information about the set_user_match command, see
the online man page.

Working With Sequential Design Changes

Like the combinational design changes described in section
“Working With Combinational Design Changes” on page 5-38,
sequential design changes also require setup prior to verification.
Sequential design changes include:

• Adding asynchronous bypass circuitry to registers

• Clock gating

• Pushing inversions across registers

FSM re-encoding and module retiming are also considered
sequential design changes. For more information, see “Working With
Re-Encoded Finite State Machines” on page 5-54 and “Working
With Retimed Designs” on page 5-59.
5-42

Chapter 5: Preparing the Design for Verification

Managing Asynchronous Bypass Logic

A sequential cell where some of the asynchronous inputs have
combinational paths to the outputs (bypassing the SEQGEN) is said
to have an asynchronous bypass, as shown in Figure 5-8.

Figure 5-8 Asynchronous Bypass Logic

Asynchronous bypass logic can result from:

• Mapping from one technology library to another.

• Verilog simulation libraries. The Verilog module instantiates logic
creating a combinational path that directly affects the output of a
sequential user defined primitive (UDP).

• Modeling a flip-flop with RTL code. The RTL has an explicit
asynchronous path defined or the RTL specifies that both Q and
QN have the same value when Clear and Preset are both active.

Asynchronous bypass logic cannot come from a .lib file that was
converted to a .db file. Library Compiler uses a SEQGEN's capability
to model asynchronous behavior to avoid creating explicit bypass
paths around a sequential element.

Asynchronous bypass logic results in a failing point, as shown in
Figure 5-9.

D Q Q

rst

D

5-43

Setting Up Designs

Figure 5-9 Asynchronous Bypass Failing Point

To prevent an aborted verification due to the downstream failing
point, do one of the following:

This creates asynchronous bypass logic around every register in the
design. Setting verification_asynch_bypass to true can
cause the following:

• Longer verification runtimes

• Introduction of loops into the design

• Aborted verification due to design complexity

fm_shell GUI

Specify:

set
verification_asynch_bypass true

Click the Modify Formality Shell Variable
toolbar button.

Choose the Verify tab and select
verification_asynch_bypass.

Click the true radio button.

Click OK.

D Q Q

rst

D

D Q Q

rst

D

Downstream Failing
Point

Passing Point
5-44

Chapter 5: Preparing the Design for Verification

Asynchronous bypass affects the entire design and cannot be
placed on a single instance. In addition, asynchronous bypass is
automatically enabled when you verify cells in a technology library;
because of the relative simplicity of library cells no negative effects
occur.

Setting Clock Gating

Clock gating can be used to implement load enable signals in
synchronous registers. It results in more power-efficient circuits than
multiplexer-based solutions. In its simplest form, clock gating is the
addition of logic in a register's clock path that disables the clock when
the register output is not changing, as shown in Figure 5-10. You use
clock gating to save power by not clocking register cells
unnecessarily.

Figure 5-10 Clock Gating

D Q Data_out
Data In

0
1

CLK Register Bank

Before clock gating

D Q Data_out

CLK

Register bank

D Q
clken

Data In

GN

After clock gating
5-45

Setting Up Designs

The correct operation of such a circuit imposes timing restrictions,
which can be relaxed if clock gating uses latches or flip-flops to
eliminate hazards.

There are two clock-gating styles that are widely used in designs:
combinational clock gating and latch-based clock gating. They are
described later in this section. Both techniques often use a single
AND or a single OR gate to eliminate unwanted transitions on the
clock signal.

The Formality clock-gating support covers Power Compiler inserted
clock gating. Formality can also verify clock gating inserted by other
tools or manually. In general, verification of a design with no gating
against a design with inserted gating can result in a failure because
of extra logic (latches) in the gated design. This works for both
RTL2gate and Gate2Gate verifications.

Clock gating results in the following two failing points:

• A compare point is created for the clock-gating latch. This
compare point does not have a matching point in the other
design, causing it to fail.

• The logic feeding the clock input of the register bank changes.
Thus, the compare points created at the register bank fail.
5-46

Chapter 5: Preparing the Design for Verification

To instruct Formality to account for clock-gating logic, do one of the
following:

In this command:

• None is the default (off).

• Low allows clock gating that holds the clock low when inactive.

• High allows clock gating that holds the clock high when inactive.

• Any considers both high and low styles of clock gating within the
same design.

The verification_clock_gate_hold_mode command affects
the entire design. It cannot be placed on a single instance, and
enabling it causes slower runtimes.

When you use combinational logic to gate a clock, Formality does
not detect glitches. You must use a static timing tool such as
PrimeTime to detect glitches.

Combinational Gate Clocking. Assume the reference design in
Figure 5-11.

fm_shell GUI

Specify:

set
verification_clock_gate_hold_mode
[none | low | high | any]

Click the Modify Formality Shell Variable
toolbar button.

Choose the Verify tab and select
verification_clock_gate_hold_mode.

Click the level desired from the menu.

Click OK.
5-47

Setting Up Designs

Figure 5-11 Reference Design

The typical combinational clock-gating circuitry is presented in
Figure 5-12. The gate has two inputs, en and clk, the output of which
feeds a register clock. To the right, you see the corresponding
waveforms.

Figure 5-12 Combinational Clock Gating Using AND Gate

You see that if glitches occur on the signal load_en, invalid data can
be loaded into the register. Hence, this circuit is functionally
nonequivalent to that in Figure 5-11. In default mode, Formality
considers this glitch a possible input pattern and produces a failing
point. Formality disregards such a non equivalence if you set the
verification_clock_gate_hold_mode variable to low.

q

data

load_en

clk

D Qdata

clk

gated
clkload_en

load_en

clk

gated clk

data glitch
5-48

Chapter 5: Preparing the Design for Verification

Latch-Based Clock Gating. The typical latch-based clock-gating
circuitry, such as that used by Power Compiler, is presented in
Figure 5-13. The latch has two inputs, en and clk, and one output, q.
The clock (clk) is gated with the output of the latch and then feeds
the register clock. You can also see the corresponding waveforms.

Figure 5-13 Latched-Based Clock Gating Using AND Gate

During verification, when the
verification_clock_gate_hold_mode variable is set,
Formality recognizes clock-gating latches and takes into account
their role in the design under verification.

You can see that whenever load_en goes low, gated clk also goes
low. Data coming out of the register transforms at the same instant
and continues to remain there until load_en goes up again. If you set
the verification_clock_gate_hold_mode variable to low,
Formality determines that this setup is the same as that of a design
that has no clock gating (Figure 5-11).

Enabling Inversion Push

Inversion push means moving an inversion across register
boundaries, as shown in Figure 5-14.

clk

D Q

load_en d q

en

data

gated
clk

clk

load_en

gated clk

data glitch
5-49

Setting Up Designs

Figure 5-14 Inversion Push

Inversion pushing causes two failing points, as shown in Figure 5-15.

Figure 5-15 Inversion Push Failing Points

There two techniques for handling of inversion pushes in Formality:
instance-based and environmental. The manner in which you solve
the resulting failing points differs depending on the type of inversion
push.

D Q D Q

QNQN

In Out

D Q D Q

QNQN

In

Out

D Q D Q

QNQN

In Out

D Q D Q

QNQN

In

Out

Failing PointFailing Point
5-50

Chapter 5: Preparing the Design for Verification

Instance-Based Inversion Push

Instance-based inversion pushing specifies that a specific register
had an inversion pushed across it. Formality must push an inversion
across the register, which can be useful when you know which
register had an inverter pushed across it. This method can be
applied to library cells. You apply instance-based inversion pushing
before verification begins. Next state and Q/QN pins are inverted.

To remedy the resulting failing points, do one of the following:

For example:

fm_shell (setup)> set_inv_push ref:/WORK/alu/z_reg

To indicate inversion push, you might prefer to use
set_user_match with the options of -inverted or -
noninverted. This command with either option handles inverted
polarity. Polarity conflicts between set_inv_push and
set_user_match applied to the same point are resolved by using
the polarity specified by set_user_match.

For more information on set_inv_push and set_user_match,
see their respective online man pages.

fm_shell GUI

Specify:

set_inv_push
[-shared_lib]
objectID_list

At the Formality prompt, specify:

set_inv_push
[-shared_lib]
objectID_list
5-51

Setting Up Designs

Environmental Inversion Push

Every compare point matched pair has a compare polarity, which is
either inverted or non-inverted. Inverted polarities can occur due to
the style of vendor libraries, design optimizations by synthesis, or
manually generated designs. If environmental inversion push is not
enabled Formality matches all compare points with a non-inverted
compare polarity, unless you specify otherwise using
set_user_match -inverted.

Environmental inversion pushing allows Formality to automatically
match all state points with the correct compare polarity during
matching. Environmental inversion pushing is off by default. Enable
it only after you resolve all setup issues and assure differences in the
designs are due to inverted state points. If there are failing compare
points, environmental inversion push may spend a long time
attempting to find a set of inverted matches to solve the verification,
but this may be impossible because the compare points are not
equivalent. Only use this variable if you know an inversion push was
used during creation of the implementation design.

To instruct Formality to automatically use environmental inversion
pushing to match state points with the correct polarity, do one of the
following:

fm_shell GUI

Specify:

set verification_inversion_push true

Click the Modify Formality Shell Variable
toolbar button.

Choose the Verify tab and select
verification_inversion_push.

Click the true radio button.

Click OK.
5-52

Chapter 5: Preparing the Design for Verification

In the GUI, compare polarity is indicated by “+” for non-inverted, “-”
for inverted, and “?” for unspecified. In addition, match-related
reports now have a column to indicate polarity. The “-” indicates
inverted polarity, a space, “ “, indicates non-inverted polarity. For user
match reports a “?” indicates unspecified polarity.

Working with Retention Registers

Formality supports the verification of designs with retention
registers. You will find information on retention registers in the Power
Compiler User Guide. To verify a netlist with retention registers
against the RTL without retention registers requires you to disable all
retention registers sleep mode. To disable their sleep mode, set a
constant on the sleep pins on the retention registers.

Formality reads design information describing retention registers
from RTL, cell libraries, and implementation netlists produced by
Power Compiler. During compare point matching, Formality checks
retention registers in the reference against matching registers in the
implementation for the power_gating_style attribute. Set the
enable_power_gating variable to true to enable Formality to
check retention registers. The default is false.

You can define the power of the gating style using the
set_power_gating_style command. To apply different retention
registers to different HDL blocks, use the command
set_power_gate_style
-hdl_blocks <block_label> -type <type_name>. The -
hdl_blocks is a required option for this command. The block_label
should match the Verilog name always blocks or VHDL processes.
The type_name should name the power_gating_cell attribute
value.
5-53

Setting Up Designs

To have Formality issue the retention register check report, use the
report_power_gating command. This report summarizes
matching register pairs without power gating attributes, with
compatible power gating attributes, and with incompatible power
gating attributes.

Working With Re-Encoded Finite State Machines

The architecture for a finite state machine (FSM) consists of a set of
flip-flops for holding the state vector, and a combinational logic
network that produces the next state vector and the output vector.
For detailed information about FSMs, see the Synopsys Design
Compiler documentation.

Before verifying a re-encoded FSM in the implementation against its
counterpart in the reference design, you must take steps that allow
Formality to make verification possible. These steps define the FSM
state vectors and establish state names with their respective
encoding.

Without your intervention, Formality is unable to verify two FSMs that
have different encoding, even if they have the same sequence of
states and output vectors.

Formality provides several methods by which you can name flip-flops
and define encoding. User-defined encoding is not verified by
Formality so take care to specify the encoding correctly. The easiest
method is to use the automated setup file generated by design
compiler. You can also use a single fm_shell command to read a
user-supplied file that contains all the information at once, or you can
use two commands to first name state vector flip-flops and then
define the state names and their encoding. These methods are
described in the following sections.
5-54

Chapter 5: Preparing the Design for Verification

Using the Automated Setup File for FSM Re-Encoding

The automated setup file generated by Design Compiler contains
FSM state vector encoding. These are in the form of
guide_fsm_reencoding commands. Use the following variable to tell
Formality to use the FSM guidance in the SVF file:

set svf_ignore_unqualified_fsm_information false

Set this variable before reading the automated setup file. For more
information see “Working With the Automated Setup File” on
page 5-73. The guide_fsm_reencoding commands may also be
performed manually as described in the man pages.

Reading a User-Supplied FSM State File

To simultaneously name the FSM state vector flip-flops and provide
state names with their encoding, do one of the following:

This is the recommended method when your FSM has many states.
If your FSM has only a few states, consider the method described in
the next section. For more information about this command, see the
online man page.

Note:
You must supply FSM information for both the reference and
implementation designs for verification to succeed.

fm_shell GUI

Specify:
:
read_fsm_states filename
[designID]

Click the View Reference or View
Implementation toolbar button.

Choose File > Read FSM States.

Navigate to and select the FSM state file.

Click OK.
5-55

Setting Up Designs

The file you supply must conform to certain syntax rules. You can
generate a suitable file by using the report_fsm command in
Design Compiler and redirecting the report output to a file. For
information about the file format and the read_fsm_states
command, see the online man pages.

Defining FSM States Individually

To first name an FSM state vector flip-flop and then define the state
name and its respective encoding, do one of the following:

Using these commands might be convenient when you have just a
few flip-flops in the FSMs that store states. If you use these
commands, you must use them in the order shown.

Note:
You must supply FSM information for both the reference and
implementation designs for verification to succeed.

The first command names the flip-flops, and the second command
defines the state names with their encoding. For more information
about the set_fsm_state_vector command, and the
set_fsm_encoding command, see the online man pages.

fm_shell GUI

Specify:

set_fsm_state_vector flip-flop_list
[designID]

then specify:

set_fsm_encoding encoding_list
[designID]

At the Formality prompt, specify:

set_fsm_state_vector
flip-flop_list [designID]

then specify:

set_fsm_encoding encoding_list
[designID]
5-56

Chapter 5: Preparing the Design for Verification

Multiple Re-encoded FSMs In a Single Module

Formality supports multiple re-encoded FSMs in a single module.
FSM re-encoding might occur during synthesis, resulting in the
reference and implementation design having different state registers
due to differing state-encoded machines. Formality will support
these re-encoded FSMs if you provide both the FSM state vector and
the state encoding using -name option with the
set_fsm_state_vector and set_fsm_encoding commands,
or by using the read_fsm command with the FSM information
provided in a file you specified.

For example:

set_fsm_state_vector {ff1 ff2} -name fsm1
set_fsm_encoding {s1=2#01 s2=2#10} -name fsm1
set_fsm_state_vector {ff3 ff4} -name fsm2
set_fsm_encoding {s1=2#01 s2=2#10 s3=2#11} -name fsm2

Formality uses this information to verify FSM re-encoded designs by
first modifying the reference design by replacing the original state
registers with the new state registers. Then Formality synthesizes
the logic around the new state registers to keep the new reference
design functionally equivalent to its original. Finally, Formality can
verify the FSM re-encoded designs because the new reference and
implementation have the same state registers.
5-57

Setting Up Designs

Listing State Encoding Information

To list FSM state information for a particular design, do one of the
following:

Formality produces a list of FSM state vector flip-flops and their
encoding. For more information about this command, see the online
man page.

Working With FSMs Re-encoded Using Design
Compiler

If you are verifying a design with an FSM that has been re-encoded
with Design Compiler, you need to supply the state register mapping
and state encoding to Formality first, before matching. If FSMs are
present, but the encoding has not been changed, no setup
information is required.

There are several methods for addressing FSM setup in Formality, if
you used Design Compiler to do the re-encoding. These methods
are listed in order of preference.

The first, and preferred method, is to write out an automated setup
file (.svf extension) from Design Compiler, then read the .svf back
into Formality.

fm_shell GUI

Specify:

report_fsm [designID]

At the Formality prompt, specify:

report_fsm [design_ID]
5-58

Chapter 5: Preparing the Design for Verification

The second option is to use the
fsm_export_formality_state_info command in Design
Compiler to write out the <module_name>.ref and
<module_name>.impl files, then read these files back into Formality
using the read_fsm_states command.

The third option is to use the report_fsm command in Design
Compiler for both the reference and implementation designs, then
read these reports back into Formality using the
read_fsm_states command.

Alternately, if you manually re-encoded your design, or the re-
encoding was done by a tool other than Design Compiler, you can
use the following two commands in Formality to specify the state
encoding and register state mapping.

set_fsm_encoding
set_fsm_state_vector

You will need to use these two commands for both the reference and
implementation designs.

Working With Retimed Designs

Retiming designs moves registers across combinational logic in an
effort to meet timing or area requirements. Retiming can occur
during synthesis or can be a result of “hand editing” a design.
Retiming can change the number of registers in a design and the
logic driving the registers.

Situations can arise when one design (the implementation) has been
retimed and the other (the reference design) has not. At the design
level, you can set a parameter that tells Formality that a particular
5-59

Setting Up Designs

design has been retimed. Doing so instructs Formality to take steps
during compare point creation that account for the design changes
caused by retiming.

To specify that a design has been retimed, do one of the following:

For information about this command, see the online man page.

Using set_parameters -retimed is recommended for designs
that have been retimed manually (for example, using the
optimize_registers command in Design Compiler). For other
types of sequential optimizations, it might be more appropriate to use
one of the following features:
verification_merge_duplicated_registers,
verification_inversion_push, or set_user_match
-inverted. For additional information about these commands, see
their online man pages.

Working With Single-State Holding Elements

A level-sensitive scan design (LSSD) cell is a single-state holding
element that consists of two latches arranged in a master-slave
configuration. LSSD cells occur frequently when you use IBM
libraries.

fm_shell GUI

Specify:

set_parameters -retimed designID

Choose the Setup > Design Parameters tab.

Choose the Reference or Implementation
tab.

Select a library and a design.

Check the Design has been retimed box.
5-60

Chapter 5: Preparing the Design for Verification

LSSD cells result in two compare points in the gate-level design, as
shown in Figure 5-16. The RTL design contains a SEQGEN that
results in one compare point.

Figure 5-16 LSSD Cells

Two criteria must be met in order for Formality to determine that a
latch is part of an LSSD cell:

• The latch pair must reside within a single technology library cell.

• The latches must be matched to a flip-flop using a name-based
solution, such as the exact name, fuzzy name match,
rename_object, or compare rule. Signature analysis cannot be
used.

The two latches can be verified against a single sequential element
if they meet the LSSD cell criteria.

Working With Multiplier Architectures

Formality uses the arithmetic generator functionality automatically to
improve the performance and ability to solve designs where
multipliers have been flattened into gate-level netlists. Use of the

D Q D Qdata Q

Load Loadclk2clk1

D Qdata

CLKclk

Q
RTL Design

Gate design using LSSD cell
5-61

Setting Up Designs

arithmetic generator in Formality creates multipliers of a specific type
so the synthesized representation of the reference RTL will more
closely match the gate implementation; therefore, assisting in the
verification of hard datapath problems.

The arithmetic generator can create the following multiplier
architectures:

• Carry save array (csa)

• Non-Booth Wallace tree (nbw)

• Booth-encoded Wallace tree (wall)

Refer to the section, “Working With the Automated Setup File” on
page 5-73, for details on the mechanism for transferring details of
csmult and mcarch multipliers.

Reading the Automated Setup File

Prior to setting your multiplier architecture, read in any automated
setup files you have using the set_svf command. The automated
setup file can contain your multiplier architecture information, which
will be used in the verification to improve performance and
verification success. For more information on automated setup file,
see “Working With the Automated Setup File” on page 5-73.

Setting the Multiplier Architecture

You can set the multiplier architecture for your entire design or on
particular instances of cells in your design. The following sections
describe both methods for setting the multiplier architecture.
5-62

Chapter 5: Preparing the Design for Verification

Set the Multiplier Architecture On Entire Design. Manually
instruct Formality to use a specific multiplier architecture for your
entire design file using your RTL source and the TCL variables
hdlin_multiplier_architecture and
enable_multiplier_architecture.

To instruct Formality to use a specific multiplier architecture for a
specific design file, do one of the following:

The default value for hdlin_multiplier_architecture is
none. The arithmetic generator will attempt to duplicate the
architecture Design Compiler used in determining which architecture
is appropriate. Formality uses the value defined in the Tcl variable
dw_foundation_threshold to help select the architecture. If you
don’t want Formality to determine the architecture, set the value of
the hdlin_multiplier_architecture variable to your
preferred architecture.

For more information on thehdlin_multiplier_architecture
or dw_foundation_threshold variables, see their online man
pages.

fm_shell GUI

Specify:

set hdlin_multiplier_architecture csa
set enable_multiplier_generation true

read_verilog foo.v

At the Formality prompt, specify:

set hdlin_multiplier_architecture csa

set enable_multiplier_generation true

read_verilog foo.v
5-63

Setting Up Designs

Note:
You also have the choice of setting the multiplier architecture
using the Tcl variable
architecture_selection_precedence. With this variable
you can define which mechanism takes precedence.

Set the Multiplier Architecture On Specific Cell Instance. You
can replace the architecture for a specific multiplier instance. While
you are in setup mode and after elaboration, use the
enable_multiplier_generation variable and the
set_architecture command with the specific cell instance name
and specific architecture to set the multiplier architecture as desired.

To instruct Formality to use a specific multiplier architecture for a
specific instance, do one of the following:

For more information on the enable_multiplier_generation
variable or the set_architecture command, see their respective
online man pages.

Alternatively to setting the multiplier architecture while in setup
mode, you can set a pragma in your VHDL or Verilog source code
that will set the multiplier architecture for a specific cell instance. To
do this, you would set the pragma with the syntax formality
multiplier [csa | nbw | wall] immediately before the
intended multiplier instance in your source code.

fm_shell GUI

Specify:

set enable_multiplier_generation true

set_architecture instance_name [csa |
nbw | wall]

At the Formality prompt, specify:

set enable_multiplier_generation true

set_architecture instance_name [csa | nbw
| wall]
5-64

Chapter 5: Preparing the Design for Verification

Set the Multiplier Architecture Using Pragmas. You can use a
pragma to set the multiplier architecture by annotating your RTL
source code with the architecture desired for a given instance. This
pragma is a constant in the RTL source that appears immediately
before the multiplier instance using formality multiplier
[csa | nbw | wall].

When present in a comment, the pragma causes Formality to
synthesize the next multiplier instance in the RTL source using the
specified architecture. If multiple pragmas are present before a
single multiplier instance, the arithmetic generator will build the
architecture with the pragma preceding it.

The pragma can be in Verilog or VHDL source. The following shows
an example of each.

Verilog:

// formality multiplier nbw
z <= a*b;

VHDL:

-- formality multiplier nbw
z <= a*b;

In both instances, this pragma informs the arithmetic generator to
use an nbw architecture for the “a * b” multiplier instance.

Reporting Your Multiplier Architecture

To report the architecture used to implement a certain instance, as
well as what caused that instance to be selected, you can use the
report_architecture command.
5-65

Setting Up Designs

To instruct Formality to report on the multiplier architecture used in
your design, do one of the following:

For more information on the report_architecture command
and its options, see the online man page.

Working With Arithmetic Blocks

When attempting to verify RTL-to-gates you might encounter long,
and in some cases inconclusive, verifications for circuits that contain
significant arithmetic datapath logic. These hard verifications can
occur in both Design Compiler Expert and Design Compiler Ultra
flows. To reduce the number of difficult verifications, use the
Formality automated setup file (SVF) produced by Design Compiler
and set the following variable:

set svf_datapath true

This directs Formality to process datapath transformation directives
found in the active SVF file.

This variable controls whether Formality processs all guide-
transformation commands found in the user-specified SVF file. A
value of true indicates that guide-transformation commands are
accepted. A value of false indicates that guide-transformation
commands are not processed. No guide commands other than
guide-transformation commands are affected.

fm_shell GUI

Specify:

report_architecture -all

At the Formality prompt, specify:

report_architecture
5-66

Chapter 5: Preparing the Design for Verification

The Presto reader in Design Compiler must be used in order for this
enhanced datapath flow to work properly. For Verilog, the Presto
reader is enabled by default. For VHDL, the following two variables
must be set to true to ensure compatibility with Presto:

set hdlin_vhdl_presto_naming true
set hdlin_vhdl_presto_shift_div true

These variables allow Formality to build operator names that match
those of Design Compiler.

This capability addresses arithmetic datapaths that involve:

• Tree rebalancing

• Resource sharing

• Operator merging

Datapath Support

Formality uses an automated setup file to convey information about
datapath transformations due to tree rebalancing or re-ordering,
resource sharing, and operator merging. Multiplier architecture
information is a key component of this overall datapath capability.
Any datapath information from the automated setup file is completely
validated before it is taken into consideration for the verification.

Design Compiler produces an automated setup file referred to as the
SVF file with a .svf suffix. Formality then reads in the SVF file and
performs verification. During the match and verify stages the
appropriate datapath solvers are called to perform the task.
5-67

Setting Up Designs

The enhanced datapath flow consists of the following steps:

1. Produce SVF data with Design Compiler.

2. Read SVF data into Formality.

3. Perform verification with Formality.

Producing SVF Data with Design Compiler

The variables required to produce SVF data for datapath support are
active by default. This includes the creation of the SVF file itself.
Even if nothing is specified, a file named “default.svf” is created.

Design Compiler produces the SVF file that contains descriptions of
datapath transformations, specifically in regards to tree rebalancing
and resource sharing. These datapath descriptions are in addition to
the other guide information Design Compiler normally generates,
such as for constants or change_names.

If either complex multipliers or merge operations due to ultra-
optimizations are present, Design Compiler also creates a netlist
representing the multipliers or merged block. Formality validates that
the netlist successfully compares to the RTL then loads the netlist
into the reference as part of the overall verification.

Reading the SVF Data Into Formality

To use the SVF file, include the following commands in your
Formality script:

set svf_datapath true
set_svf filename.svf
5-68

Chapter 5: Preparing the Design for Verification

Insert set_svf prior to the read commands in your Formality script.
Otherwise, Formality will not properly use the automated setup file
contents for datapath. For more information on the SVF file, see
“Working With the Automated Setup File” on page 5-73.

For VHDL designs, add the following to enable Formality to use
Presto names:

set hdlin_vhdl_presto_naming true

This variable allows Formality to build operator names that match
those of Design Compiler.

Any DesignWare SVF netlist directory created by Design Compiler
must be in the same directory as the SVF file that refers to it.

Transformation Messages

During verification, Formality reports the status on its ability to utilize
all of the transformations presented to it in the SVF file. The
transformations are as follows:

• Map: Mapping a single operation to a resource

• Tree: Reordering or rebalancing resources

• Share: Sharing two or more operations on a single resource

• Merge: Merging operators into a single datapath resource
5-69

Setting Up Designs

The output report looks as follows:

Status Map Tree Share Merge Total
 --

Accepted : 27 2 3 2 34 (97%)
Rejected : 0 0 1 0 1 (2%)
Unsupported : 0 0 0 0 0 (0%)
Unprocessed : 0 0 0 0 0 (0%)

 --
Total : 27 2 4 2 35

 Transformation Type Status

 FM_1 TREE Accepted
 FM_2 TREE Accepted
 FM_3 MAP Accepted
 FM_4 MAP Accepted
.
.
.
 FM_31 MAP Accepted
 FM_32 MAP Accepted
 FM_33 SHARE Rejected
 FM_34 MERGE Accepted
 FM_35 MERGE Accepted

You can generate this report at any time by specifying the
report_guidance –datapath –long command, but it will only
have meaningful data relating to transformations after the matching
process has completed. For detailed information for this command,
run man report_guidance.

The results of the status fields are:

Accepted

Formality validated and applied this transformation to the
reference.
5-70

Chapter 5: Preparing the Design for Verification

Rejected

Formality either could not validate or could not apply this
transformation to the reference.

Unsupported

Formality does not currently support this transformation.

Unprocessed

Formality has not processed this transformation.

For the status results, Formality only uses the datapath information
provided in the guidance file for those transformations marked
“Accepted” by first validating them, then applying them to the
reference design.

All transformations are not necessarily required to complete a
successful verification. Guidance for a single transformation might
be enough to enable Formality to come to a conclusive verification.
Conversely, there might be some cases in which all transformations
are accepted, yet some aspects of the design can result in a hard
verification.

svf_datapath Example

The following example illustrates the setup required for Design
Compiler synthesis verified using the datapath transformation
guidance found in the SVF file.

For the synthesis run, instruct Design Compiler to write out SVF file
datapath information by adding the set_svf command to the
beginning of your Design Compiler Tcl script. This is optional as
Design Compiler creates a SVF file, by default.
5-71

Setting Up Designs

After the Design Compiler run is complete, you have a file named
test.svf and might have a directory randomly named dwsvf-xxxx
(where xxxx is a random machine generated suffix) that contains a
netlist representing the architectures of any multipliers or merged
operators (for ultra-compilations only).

In the Formality script, reference the generated SVF file, as follows:

set svf_datapath true
set_svf test.svf

These commands allow Formality to use enhanced datapath
verification. All other verification setups are done as if you didn’t use
this flow.

You can use the report_guidance command to indicate which
transformations were used in the verification. If you execute the
command prior to the matching step, all transformations are marked
as “Unprocessed.”

In the following example, there were merged blocks due to a DC-
Ultra compilation. Therefore, the files output by Design Compiler are
gates.v, test.svf, and dwsvf_29355-0/dwarchs-0.e.

report_guidance -datapat -long

Status Map Tree Share Merge Total
--
Accepted : 12 1 0 2 15 (100%)
Rejected : 0 0 0 0 0 (0%)
Unsupported : 0 0 0 0 0 (0%)
Unprocessed : 0 0 0 0 0 (0%)
--
Total : 12 1 0 2 15
5-72

Chapter 5: Preparing the Design for Verification

Working With the Automated Setup File

The automated setup file (.svf extension) provides a conduit for
automatically conveying setup information to Formality. It enables
Formality to correctly set up the verification with no intervention on
your part. To use an automated setup file, you first enable the
creation of the file in the implementation tool. Alternately, you can
manually create an automated setup file. Then, you instruct
Formality to read the file at the start of the verification process.

The benefit of this setup file is that it alleviates the need to enter
setup information manually, a task that can be time-consuming and
error prone. For example, during synthesis, a register might be
duplicated to improve drive strength. This register duplication is
recorded in the automated setup file. When Formality reads the .svf,
it can account for the extra register during compare point matching
and verification. For additional information on the automated setup
file, refer to the SVF User Guide.

Creating an Automated Setup File

In Design Compiler you can write out an automated setup file that
describes the design changes. The commands that comprise an
automated setup file script consist of an operation followed by the
several options. The options can span several lines immediately
following the operation. The operations are Tcl commands, and
alternatively to including them in the .svf file, you can use them on
the Formality command line as well.
5-73

Setting Up Designs

This list shows the automated setup file operations that are written in
Design Compiler and fully understood by Formality when you use the
set_svf command.

• Name Change Operations

- change_names

- group

- ungroup

- uniquify

• Register Optimization Operations

- fsm_reencoding

- reg_constant

To create an automated setup file in Design Compiler, use the
set_svf command. For example, to invoke the setup file use

dc_shell> set_svf myfile.svf

If you want to append the setup information to an existing .svf, use
the following syntax.

dc_shell> set_svf -append myfile2.svf

Reading an Automated Setup File Into Formality

To read a .svf into Formality, use the set_svf command. Because
Formality uses the setup information in the setup file during matching
as well as verification, the set_svf command must occur before the
match command in your Formality script.
5-74

Chapter 5: Preparing the Design for Verification

The following example reads in the setup file, myfile.svf.

fm_shell> set_svf myfile.svf
SVF set to ‘myfile.svf’.
1
fm_shell>

Writing a Text Version of the Automated Setup File

You can instruct Formality to write a text file containing the
information in the setup file you’ve set using the report_guidance
command. The report_guidance command reports the name,
and optionally the contents, of setup files you’ve set.

Use the following example to write out the automated setup file data
to an unencrypted text file.

fm_shell > report_guidance
SVF hasn’t been set.
1

fm_shell> set_svf myfile.svf
SVF set to ‘myfile.svf’.
1

fm_shell> report_guidance -to myfile_unencrypted.txt
SVF set to ‘myfile.svf’.
1

Reading in Multiple Automated Setup Files

The commands in the .svf files describe transformations in an
incremental fashion. The transformation occurs in the order in which
the commands were applied as the RTL design was processed
through design implementation or optimization. Therefore, the ability
to read in multiple automated setup files is important as no command
5-75

Setting Up Designs

in the file can be viewed completely independently because it
describes the incremental transformation and is reliant on the
context in which it is applied.

You can read multiple automated setup files into Formality using the
set_svf command. To order or instruct Formality to look for
extensions other than .svf, use the
-ordered or -extension options to the set_svf command,
respectively. The ability to read in multiple setup files is useful when
you have run bottom-up synthesis on your designs, generating
multiple setup files.

You use the -ordered option to indicate that the list of the
automated setup files you specify are already ordered and should
not be reordered by timestamp. If you use -ordered and list a
directory or directories where the setup files are located, Formality
might order the directory files in any order. The following example
sets the order of two automated setup files, bot.svf and top.svf, for
Formality to process:

set_svf -ordered bot.svf top.svf

The -extension option will load and automatically order all
matching files in the directory you define, based the extension you
define. For example, Formality automatically looks for files with the
.svf extension. If you have automated setup files in a directory with
extensions other than .svf, you use this option to instruct Formality to
read and order those files with that extension. The ordering of the
files is done using timestamp information typically found in the setup
file header information. Formality doesn’t require the timestamp
information to be in the header, and can use specific guide
commands for passing timestamp information directly. See the
following section for information on the guide commands.
5-76

Chapter 5: Preparing the Design for Verification

The following example instructs Formality to load and order setup
files ending in fm in the fmdir directory:

set_svf -extenstion fm fmdir

Automated Setup File Commands

You can use the automated setup file Tcl guide commands on the
Formality command line. You need to enter the guide mode (using
the guide command) as the first step in Formality before you can
manually enter the guide commands. The guide commands are

• guide_architecture_db

• guide_architecture_netlist

• guide_change_names

• guide_datapath

• guide_fsm_reencoding

• guide_group

• guide_mc

• guide_multiplier

• guide_reg_constant

• guide_reg_duplication

• guide_reg_merging

• guide_transformation

• guide_ungroup
5-77

Setting Up Designs

• guide_uniquify

• guide_ununiquify

See the individual command’s online man page for specific
information on each command. For detailed information on the guide
mode and examples using it, see the SVF User Guide.

Using the Automated Setup File to Verify Multipliers

The arithmetic generator in Formality can create specific types of
multipliers so the synthesized representation of your reference RTL
more closely matches your gate implementation; thereby assisting
with hard verification problems. This technique is particularly useful
for the flat netlists where Formality cannot use the Data Path Solver
(DPS) because it cannot identify the multipliers in the
implementation.

For the traditional multiplier architectures supported by Design
Compiler (CSA, NBW, and Wallace), the arithmetic generator can
generate the appropriate multiplier architectures without any
additional information. However, the more advanced multiplier
architectures from Design Compiler (mcarch and csmult) are so
customized for each instance that the arithmetic generator needs
additional information from it.

Using the automated setup file flow, you can instruct Design
Compiler to automatically create netlist Verilog files for each
multiplier in the design when performing synthesis. Design Compiler
will produce a Verilog file containing the netlist for all multipliers as
well as generate the setup file. Formality will verify each of these
multipliers with the DPS; if the multipliers pass verification, Formality
will load them into the reference design.
5-78

Chapter 5: Preparing the Design for Verification

To instruct Design Compiler to generate the appropriate netlist files,
append your script with the following information.

1. Set the enable_dw_multiplier_in_svf variable to true

2. Use the set_svf command.

Along with the automated setup file, Design Compiler will produce a
directory (which begins with +_) containing a Verilog netlist. You
must make both the setup file and the dwsvf directory available for
the arithmetic generator to perform a successful verification.

See “Working With Multiplier Architectures” on page 5-61 for
instructions on using the arithmetic generator in Formality.

You can view the contents of the Verilog netlist passed from Design
Compiler to Formality with the report_guidance command. Using
the -to filename option causes architecture netlists found in the
current automated setup file to be unencrypted. Formality copies the
encrypted netlist files to filename.orig files and the unencrypted files
overwrite the original netlists.

Automated Setup File Diagnostic Messages

In order to assist expert users in debugging SVF file issues, a set of
SVF diagnostic messages is written out to the transcript and the
formality.log file.

Sometimes Formality may be unable to completely process the SVF
information passed to it from Design Compiler. Since the SVF is an
evolving format, at times specified transformations can have syntax
issues (that are rejected by Formality) or can be superfluous.
5-79

Setting Up Designs

Inaccurate or incomplete information is rejected, which may result in
an inconclusive verification. Correcting the SVF information may
help change an inconclusive verification to a successful verification.

The following items are reported in the SVF file:

• The SVF operation that had a problem.

• The line number in the SVF for this particular operation.

• The name of the missing design if the problem is due to the
design not being found.

• The name of the missing cell name if the name cannot be found.

• Any transformations that cannot be applied for the
change_names or unquify commands.

Any unfound dwsvf directories referenced in the SVF file.

The following examples demonstrate SVF log messages:

SVF Operation 3 (line 36) - transformation (map) succeeded
SVF Operation 4 (line 47) - fsm
Info: Cannot find reference cell 'in_cur_reg[3]'. failed
SVF Operation 6 (line 93) - merging succeeded

Formality places the SVF diagnostic messages in the formality.log
file.

SVF Conversion to Text

Formality automatically converts the encrypted SVF information into
ASCII text during the execution of the set_svf command. The
decrypted SVF file has the suffix .txt appended to the original file
name.
5-80

Chapter 5: Preparing the Design for Verification

Removing Information

Situations can arise that call for removing information from the
Formality session prior to verification. This section describes how to
remove designs, design libraries, technology libraries, and
containers.

Removing Designs

Note:
Before removing a design, be sure that its removal does not
affect the verification of surrounding logic. Surrounding logic can
depend on states generated inside the removed design.

To remove one or more designs from the Formality environment, do
one of the following:

Note:
The remove_design command is enabled during “setup”
mode. After you have executed the set_top command during
the read-design flow as described in Chapter 4, Formality calls
the set_black_box command when you specify
remove_design. The design is treated as a black box for
verification.

fm_shell GUI

Specify:

remove_design [-hierarchy]
design_list

Choose the Reference or Implementation
tab, and then the Read Design Files tab.

Choose the Verilog, VHDL, Edif, or DB tab
as applicable to your design.

Select the design you want to remove.

Click Remove.
5-81

Removing Information

Removing Design Libraries

Note:
You cannot specify the remove_design_library command
after you have executed set_top during the read-design flow as
described in Chapter 4. Formality issues an error.

To remove one or more design libraries from the Formality
environment, do one of the following:

Removing Technology Libraries

Note:
You cannot specify the remove_library command after you
have executed set_top during the read-design flow as
described in Chapter 4. Formality issues an error.

To remove one or more technology libraries from the Formality
environment, do one of the following:

fm_shell GUI

Specify:

remove_design_library
library_list

At the Formality prompt, specify:

remove_design_library
library_list

fm_shell GUI

Specify:

remove_library [-all]
library_list

At the Formality prompt, specify:

remove_library [-all]
library_list
5-82

Chapter 5: Preparing the Design for Verification

To remove a technology library from a specific container, specify the
container name, as in the following example:

fm_shell (setup)> remove_library container1:/CBA_CORE

To remove a shared technology library from all containers, specify
the technology library name without a container name, as follows:

fm_shell (setup)> remove_library CBA_CORE

Removing Containers

To remove one or more containers from the Formality environment,
do one of the following:

From the fm_shell, you can use the remove_container to remove
any container. The GUI only recognizes the default reference and
implementation containers, named “r” and “i”, respectively.
Removing non-default containers does not affect what you see in the
GUI.

You generally remove containers when you want to reset the
reference or implementation and start over.

The GUI allows you to import data stored within non-default
containers into the “r” or “i” containers. Refer to the section
“Restoring Containers” on page 5-87.

fm_shell GUI

Specify:

remove_container [-all]
container_list

Choose Designs > Remove Reference or
Designs > Remove Implementation.

Click Yes.
5-83

Removing Information

Black Boxing Objects

Black boxing designs can be beneficial when you are using a bottom-
up verification style for hierarchical designs. For example, during the
course of verification, some large blocks in the lower levels of the
design hierarchy might be successfully verified. Once verified, you
might not want to spend time reverifying these subdesigns as you
move up the hierarchy.

You can black box a design in one of three ways.

• After you have issued set_top on your design, use the
set_black_box command on the individual design blocks or
technology cells from the design library that you want black
boxed.

• Use the hdlin_interface_only variable before you begin to
read in your design objects. Upon reading in the design, those
objects you specified when setting the variable will be black
boxed.

• Read in your design, then issue set_top. If there are design
references that can’t be found, the default is to error out. If you
set the hdlin_unresolved_modules variable to black_box,
Formality will black box those missing references.

Saving Information

Situations can arise that call for saving information in the Formality
session. This section describes how to save individual containers as
well as how to save the entire Formality session.
5-84

Chapter 5: Preparing the Design for Verification

Saving Containers

Note:
You must execute the set_top command on the designs within
a container before you can save the container.

Occasionally, the time required to read a design into the Formality
environment and link it can be great enough that you might not want
to repeat the process. In such cases, you can save the container that
holds the loaded design.

To save the current container to a file, do one of the following:

Issuing the write_container command causes Formality to save
the container to a file whose extension is .fsc. Formality does not
save any environment or design parameters. For more information
about this command, see the online man page.

Saving the Entire Formality Session

Note:
You must execute the set_top command on the designs within
a session before you can save the session.

fm_shell GUI

Specify:

write_container
[-r | -i | -container container]
[-replace]
[-quiet] filename

Choose Designs > Save Reference or
Designs > Save Implementation.

Navigate to the file or specify it in the File
name text box.

Click OK.
5-85

Saving Information

Sometimes you might find it necessary to save the entire Formality
session. When you save a Formality session, you save all design
data, environment parameter settings, and verification results in a
single file.

To save a Formality session, do one of the following:

Formality appends an .fss file name extension to the specified file
name. If you do not supply directory information as part of the file
name, Formality uses the current working directory.

Saving a session is useful when you read, set up, and verify the
design by running Formality in batch mode and you want to use the
GUI to interactively debug a failed verification. In such a case, you
can save the session during the batch run and read it in later after
invoking the GUI version of Formality. See section “Restoring
Information” on page 5-87.

Saving the session is also useful for long debugging sessions. You
can save the session and continue later when it is convenient to do
so.

Note:
Only containers can be used between different Formality
versions; sessions cannot. For archival purposes, or for sending
protected information, use containers with the appropriate
Formality run scripts.

fm_shell GUI

Specify:

save_session filename

Choose File > Save Session.

Navigate to the file or specify it in the File
name text box.

Click OK.
5-86

Chapter 5: Preparing the Design for Verification

Restoring Information

Formality allows you to restore information by reading previously
saved containers or by reading in a previously saved Formality
session. This section describes how to restore both types of data.

Restoring Containers

Note:
Containers saved from releases prior to Formality version
2002.03 must have been linked or verification will fail. In addition,
you must execute set_top on the designs within the pre-
2002.03 containers before performing verification.

To restore a saved container, do one of the following:

Issuing this command causes Formality to read the file and restore
libraries to a container having the same name as the original saved
container. For more information about this command, see the online
man page.

In the GUI, you can only restore data saved within the default “r” and
“i” containers. If you want to restore data located in non-default
containers for viewing within the GUI, you must first import the data
into the “r” or “i” container. Ensure that data currently located in the
“r” or “i” container has been saved.

fm_shell GUI

Specify:

read_container
[-r | -i | -container container_name]
[-replace] file_name

Choose Designs > Restore Reference or
Designs > Restore Implementation.

Navigate to the file or specify it in the File
name text box.

Click OK.
5-87

Restoring Information

To import design data into the “r” or “i” container for viewing in the
GUI, do the following:

1. Choose Designs > Choose New Reference or Designs > Choose
New Implementation.

2. Select the design you want to import into “r” or “i.”

3. Click OK.

Restoring a Session

To restore a previously saved Formality session, do one of the
following:

Issuing this command causes Formality to discard all information in
the current session then restore all containers, design data, setup
parameters, and verification results from the specified file. For more
information about this command, see the online man page.

fm_shell GUI

Specify:

restore_session file_name

Choose File > Restore Session.

Navigate to the file or specify it in the File
name text box.

Click OK.
5-88

Chapter 5: Preparing the Design for Verification

6
Compare Point Matching and Verification 6

After you have prepared your verification environment and set up
your design, you are ready to match compare points and then verify
the design. This chapter describes how to match compare points and
verify one design against another. It also offers some tips for batch
verifications, interpreting results, and saving data.

This chapter includes the following sections:

• Matching Compare Points

• Performing Verification

• Reporting and Interpreting Results

This chapter’s subject matter pertains to the boxes outlined in
Figure 6-1.
6-1

Figure 6-1 Design Verification Process Flow Overview

Start

Interpret
results

Perform
setup

Run
verify

Success?
No

Yes

Done

Start
Formality Match

compare points

Load
reference

Load
implementation

Debug
6-2

Chapter 6: Compare Point Matching and Verification

Matching Compare Points

Prior to verification, Formality must match compare points in the
designs as described in section “Compare Points” on page 1-24.
This occurs automatically when you specify the verify command.
If automatic matching results in unmatched points, you must then
view and troubleshoot the results. Unmatched compare points may
result in non-equivalence of the two designs.

Formality allows you to match compare points in a separate step
prior to specifying the verify command. This allows you to
iteratively debug unmatched compare points, as follows:

• Perform compare point matching.

• Report unmatched points.

• Modify or undo results of the match, as needed.

• Debug the unmatched compare points.

• Repeat these steps incrementally, as needed, until all compare
points are matched.
6-3

Matching Compare Points

Performing compare point matching changes the operational mode
from “setup” to “match” even if matching was incomplete. Ensure that
you have properly set up your design as specified in Chapter 5,
“Preparing the Design for Verification,” because the following
commands and variables cannot be changed in the matched state:

set_cutpoint
remove_black_box
remove_constant
remove_cutpoint
remove_design
remove_inv_push
remove_object
remove_parameters -resolution -retimed -all_parameters
remove_resistive_drivers
rename_object
set_black_box
set_constant
set_direction
set_equivalence
set_fsm_encoding
set_fsm_state_vector
set_inv_push
set_parameters -resolution -retimed
ungroup
uniquify
verification_assume_reg_init
verification_auto_loop_break
verification_clock_gate_hold_mode
verification_constant_prop_mode
verification_inversion_push
verification_merge_duplicated_registers
verification_set_undriven_signals
verification_use_partial_modeled_cells

You can return to setup mode using the setup command, but all
points matched during match mode will no longer be matched.
6-4

Chapter 6: Compare Point Matching and Verification

Performing Compare Point Matching

To match compare points, do one of the following:

This command attempts to match only unmatched points. Previously
matched points are not processed again. Prior to compare point
matching, you can create compare rules; refer to section “Matching
With Compare Rules” on page 7-18.

The matching results from incremental matching can differ from
those you receive when you run the match command once after
fixing all setup problems. For example, suppose your last setup
change implements a compare rule that helps match the last
remaining unmatched points. This same rule might force incorrect
matches or prevent matches if you had implemented it at the
beginning of the matching process.

Also, you can instruct Formality to match datapath blocks or all
hierarchical blocks during compare point matching by using the
-datapath or -hierarchy option, respectively. By default, if you
don’t set these options, no datapath or hierarchical blocks will be
matched during compare point matching.

You can interrupt matching by pressing Control-c. All matched points
from the interrupted run remain matched.

To return to “setup” mode, specify the setup command in the
fm_shell or at the GUI’s Formality prompt. This allows you to use
commands and variables disabled in the matched state. This

fm_shell GUI

Specify:

match -datapath -hierarchy

Click the Match button.

Click the Run Matching button.
6-5

Matching Compare Points

command does not remove any compare rules or user matches. Use
the remove_compare_rules command and the
remove_user_match command to get rid of those previously set
values. Existing compare rules and user matches will be used again
during the next match.

Reporting Unmatched Points

An unmatched point is a compare point in one design that was not
matched to a corresponding point in the other design. You must
match all compare points before a verification will succeed unless
the unmatched compare points do not affect downstream logic.

After each match iteration, examine the results to see which
compare points remain unmatched.

To report unmatched points, do one of the following:

This command reports compare points, input points, and higher-level
matchable objects that are unmatched. Use the options to filter the
report as desired. Refer to the online man page for more information.

To view a list of matched points, specify the
report_matched_points command or view the Match >
Matched window in the GUI. This report shows matched design

fm_shell GUI

Specify:
report_unmatched_points
[-compare_rules] [-datapath]
[-substring string]
[-point_type point_type]
[-status status] [-except_status status]
[-method matching_method] [-last]
[[-type ID_type] compare_point...]

Choose the Match > Unmatched tab.
6-6

Chapter 6: Compare Point Matching and Verification

objects (such as inputs) as well as matched compare points. You can
specify a filter to report only the matched compare points, or view the
Match > Summary window. Refer to the online man page for details.

Undoing Matched Points

To undo the results of the match command, do one of the following:

This command returns all points matched during the most recent
match command back to their unmatched state. It returns you to the
matched state achieved by the next previously specified match
command. The -all option specifies to undo all matches.

You remain in the matched state even if you undo the first match or
specify the -all option. To return to the setup state, specify the
setup command in fm_shell or at the GUI’s Formality prompt.

This command is especially useful when you have made changes
that did not achieve the results you desired for compare point
matching.

Debugging Unmatched Points

After you report the unmatched compare points, you can use any or
all of the following user-specified techniques to match them:

• Renaming user-supplied names or mapping file

fm_shell GUI

Specify:

undo_match [-all]

At the Formality prompt, specify:

undo_match [-all]
6-7

Matching Compare Points

• Matching with user-supplied names

• Matching with compare rules

• Matching with name subset

Each matching technique is described in detail in section
“Unmatched Points” on page 7-14.

Note:
In Verilog and VHDL files, unmatched compare points can be
caused by a difference between the bus naming scheme and the
default naming conventions. See “Changing Bus Naming and
Dimension Separator Styles” on page 4-6.

If the number of unmatched points in the reference and
implementation designs is the same, the likely cause is an object
name change.

If the number of unmatched points in the reference and
implementation designs is different, you might need to perform
additional setup steps. For example:

• You might have a black box in one design but not in the other.

• An extra compare point in the implementation design might be
caused by a design transformation that created extra logic.

• An extra compare point in the reference design may be a result
of ignoring a full_case directive in the RTL code.
6-8

Chapter 6: Compare Point Matching and Verification

Table 6-1 shows that actions you can take for unmatched compare
points.

How Formality Matches Compare Points

As described in section “Compare Points” on page 1-24, compare
point matching is either named-based or non-name-based. The
following matching techniques occur by default when you match
compare points.

Name-based matching:

Table 6-1 Unmatched Compare Points Action

Symptom Possible cause Action

Same number of
unmatched points in
reference and
implementation

-Names have undergone
a transformation

set_user_match command.

Write and test compare rule.

Modify name match variables.

Turn on signature analysis.

For all, see section “Unmatched
Points” on page 7-14.

More unmatched points in
reference than in
implementation

-Unused cells No action necessary.

-Ignoring a full_case
directive in RTL code

Set hdlin_ignore_full_case to false.

-Black box was created
for missing cells

Reread reference design including
the missing cells.

Make black box in implementation.

More unmatched points in
implementation than in
reference

-Design transformation
created extra logic

Account for design transformation.
See section “Design
Transformations” on page 7-27.

-Black box was created
for missing cells

Reread reference design including
the missing cells.

Make black box in reference.
6-9

Matching Compare Points

• Exact-name matching

• Compare point matching based on net names

• Name filtering

Non-name-based matching:

• Topological equivalence

• Signature and topological analysis

These matching techniques are executed in the following order:

• Exact-name matching

• Name filtering

• Topological equivalence

• Signature analysis

• Compare point matching based on net names

Note:
Four other user-specified matching techniques are also
available, but you normally use them to debug unmatched points.
For more information, see “Unmatched Points” on page 7-14.

Once a technique succeeds in matching a compare point in one
design to a compare point in the other design, that compare point
becomes exempt from processing by other matching techniques.

All name matching in Formality is case-insensitive. The following
sections describe each default compare point matching technique.
6-10

Chapter 6: Compare Point Matching and Verification

Table 6-2 lists variables that control matching. Some are described
in the following sections. Refer to the online man pages for details.

Exact-Name Matching

Formality matches unmatched compare points by exact case-
sensitive name matching, then by exact case-insensitive name
matching. The exact-name matching technique is used by default in
every verification. Using this algorithm, Formality matches all
compare points that have the same name both in reference and
implementation designs.

For example, the following design objects are matched automatically
by the Formality exact-name matching technique:

Reference: /WORK/top/memreg(56)
Implementation: /WORK/top/MemReg(56)

Table 6-2 Variables for Compare Point Matching

Variable name Default

name_match all

name_match_allow_subset_match strict

name_match_based_on_nets true

name_match_filter_chars ‘~!@#$%^&*()_+=
|\{}[]”:;<>?,./

name_match_flattened_hierarchy_
separator_style

/

name_match_multibit_register_reverse_order false

name_match_use_filter true

signature_analysis_match_primary_input true

signature_analysis_match_primary_output false

signature_analysis_match_compare_points true

verification_blackbox_match_mode any
6-11

Matching Compare Points

To control whether compare point matching uses object names or
relies solely on function and topology to match compare points,
specify the name_match variable, as follows:

The default value “all” enables all name-based matching. You can
also specify “none,” “port,” and “cell.” The value “none” ensures that
all name-based matching is disabled, except for the primary inputs.
The value "port" enables name-based matching of top-level output
ports. The value "cell" enables name-based matching of registers
and other cells, including black box input and output pins.

The name_match_multibit_register_reverse_order
variable reverses the bit order of the bits of multibit registers during
compare point matching. The default is false, meaning that the order
of the bits of multibit registers is not reversed. Formality
automatically matches multibit registers to their corresponding
single-bit counterparts based on their name and bit order. If the bit
order has been changed after synthesis, you must set this variable
to true. The value true means that the order of the bits of multibit
registers is reversed. For more information about Formality multibit
support, see section “Supporting Multibit Library Cells” on page 5-5.
In the GUI, you access this variable from the same window that
appears in step 2 for name_match previously described.

fm_shell GUI

Specify:

set name_match
[all | none | port | cell]

Click the Match button

Click the Modify Formality Shell Variable
toolbar button.

Select name_match.

Under the Value prompt, choose all, none,
port, or cell.

Click OK.
6-12

Chapter 6: Compare Point Matching and Verification

Name Filtering

After exact-name matching, Formality attempts filtered case-
insensitive name matching. Compare points are matched by filtering
out some characters in the object names.

To turn off the default filtered-name matching behavior, do one of the
following:

The name_match_use_filter variable is supported by the
name_match_filter_chars variable, which lists all the
characters that are to be replaced by an underscore (_) character
during the name-matching process.

Filtered name matching requires that any nonterminating sequence
of one or more filtered characters in a name must be matched by a
sequence of one or more filtered characters in the matched name.

For example, the following design object pairs are matched
automatically by the Formality name-filtering algorithms:

Reference: /WORK/top/memreg__[56][1]
Implementation: /WORK/top/MemReg_56_1

Reference: /WORK/top/BUS/A[0]
Implementation: /WORK/top/bus__a_0

fm_shell GUI

Specify:

set name_match_use_filter false

Click the Match button.

Click the Modify Formality Shell Variable
toolbar button.

Select name_match_use_filter.

Under the Value prompt, check false.

Click OK.
6-13

Matching Compare Points

The following design objects are not matched by the Formality name-
filtering algorithms:

Reference: /WORK/top/BUS/A[0]
Implementation: /WORK/top/busa_0

You can remove or append characters in the
name_match_filter_chars variable. The default character list is
 `~!@#$%^&*()_-+=|\[]{}"':;<>?,./

For example, the following command resets the filter characters list
to include “V”:

fm_shell (match)> set name_match_filter_chars \
{~!@#$%^&*()_-+=|\[]{}"':;<>?,./V}

Topological Equivalence

Formality attempts to match the remaining unmatched compare
points by topological equivalence. In other words, if the cones of
logic driving two unmatched compare points are topologically
equivalent, those compare points are matched.

Signature Analysis

Signature analysis is an iterative analysis of the compare points’
functional and topological signatures. Functional signatures are
derived from random pattern simulation; topological signatures are
derived from fanin cone topology.

The signature analysis algorithm uses simulation to produce output
data patterns, or signatures, of output values at registers. The
simulation process in signature analysis is used to uniquely identify
a controlled node.
6-14

Chapter 6: Compare Point Matching and Verification

For example, if a particular vector makes a certain register pair go to
a 1 and all other controlled registers go to a 0 in both designs, then
signature analysis has completed one match.

For signature analysis to work, the primary input ports from both
designs must have matching names or you must have manually
matched them by using the set_user_match,
set_compare_rule, or rename_object command.

During signature analysis Formality will also automatically attempt to
match previously unmatched datapath and hierarchical blocks and
their pins. To turn off automatic matching of datapath or hierarchical
blocks and pins, set the
signature_analysis_match_datapath or
signature_analysis_match_hierarchy variable to false,
respectively. If you notice a performance decrease when running
hierarchical verification, you can change the setting of
signature_analysis_match_hierarchy to false.

Signature analysis in Formality works well if the number of
unmatched objects is limited, but the algorithm is less likely to work
if there are thousands of compare point mismatches. To save time in
such a case, you can turn off the algorithm by doing one of the
following:

fm_shell GUI

 Specify:

set signature_analysis_matching false

Click the Match button.

Click the Modify Formality Shell Variable
toolbar button.

Select signature_analysis_matching.

Click the false choice button.

Click OK.
6-15

Matching Compare Points

By default, signature analysis does not try to match primary output
ports. However, you can specify the matching of primary outputs by
setting the signature_analysis_match_primary_output
variable to true. In addition, signature analysis does try to match
primary input ports. Set the
signature_analysis_match_primary_input variable to false
to disable this matching. In the GUI, these variables are located in
the window that appears in step two for the
signature_analysis_match_compare_points variable
described earlier.

You might be able to reduce matching runtimes by writing a compare
rule rather than disabling signature analysis. Compare rules, for
example, work well if there are extra registers in both the reference
and implementation designs. See section “Matching With Compare
Rules” on page 7-18.

Compare Point Matching Based on Net Names

Formality matches any remaining unmatched compare points by
exact and filtered matching on their attached nets. Matches can be
made through either directly attached driven or driving nets.

To turn off net name-based compare point matching, do one of the
following:

fm_shell GUI

 Specify:

set name_match_based_on_nets false

Click the Match button.

Click the Modify Formality Shell Variable
toolbar button.

Select name_match_based_on_nets.

Unclick Use net names.

Click OK.
6-16

Chapter 6: Compare Point Matching and Verification

For example, the following design objects have different names:

Reference: /WORK/top/memreg(56)
Implementation: /WORK/top/MR(56)

Formality cannot match them by using the exact-name matching
technique. If nets driven by output of these registers have the same
name, Formality will match the registers successfully.

Performing Verification

When you issue the verify command Formality attempts to prove
design equivalence between an implementation design and a
reference design. This section describes how to verify a design or a
single compare point, as well as how to perform traditional
hierarchical verification and batch verifications.

Verifying a Design

To verify the implementation against the reference, do one of the
following:

If you omit the reference and implementation design IDs from the
command, Formality uses the reference and implementation designs
you specified when you read in your designs. See section “Reading
in Libraries and Designs” on page 4-3 for more information.

fm_shell GUI

Specify:
verify
[reference_designID]
[implementation_designID]

Click the Verify button.

Click the Verify All button.
6-17

Performing Verification

If you did not match compare points prior to verification as described
in section “Matching Compare Points” on page 6-3, the verify
command first matches compare points then checks equivalence. If
all compare points are matched and no setup changes have been
made, verification moves directly to equivalence checking without re-
matching.

If matching was performed but there are still unmatched points or the
setup was altered, Formality attempts to match remaining
unmatched points prior to equivalence checking. The verify
command does not re-match already matched compare points.

To force the verify command to rematch everything, specify the
undo_match -all command beforehand.

Formality makes an initial super-low-effort verification attempt on all
compare points before proceeding onto the remaining compare
points with matching hierarchy by signature analysis and high-effort
verification. This can significantly improve performance by quickly
verifying the easy-to-solve compare points located throughout your
designs. The
verification_super_low_effort_first_pass variable set
to true (the default) controls the default behavior of the verify
command to run this super-low-effort verification first. Afterwards,
Formality proceeds with verifying all the remaining compare points.

Verification automatically runs in incremental mode, controlled by the
verification_incremental_mode variable (true by default).
Each verify command attempts to verify only compare points in
the unverified state. This means after the verification is completed
or has stopped, upon reissue of verify, the status of previously
passing and failing points is retained and verification continues for
unverified points. If matching setup has changed through use of
set_user_match or set_compare_rule, Formality determines
6-18

Chapter 6: Compare Point Matching and Verification

which compare points are affected, moves them to the unverified
state, and reverifies them. In addition, if the verification_effort_level
has increased, points that were aborted due to complexity will also
be reverified. To force verify to re-verify all compare points, use
the command’s -restart option.

If you don’t want Formality to independently verify blocks under a
certain level, use the -level option. This causes Formality to ignore
hierarchical boundaries underneath the level you set. You should use
this option only if you have a reason to know that certain hierarchical
boundaries below the level you specified have not been preserved.
Use this option with caution because if you use it incorrectly, it can
negatively impact verification performance.

For more information on the verify command, see the online man
page. For information on how to interpret results, see “Reporting and
Interpreting Results” on page 6-33.

Verifying a Single Compare Point

Single compare point verification is useful when you have trouble
verifying a complete design and you have isolated problem areas in
the implementation.

To verify a single compare point, do one of the following:

fm_shell GUI

Specify:

verify [-type type]
objectID_1 objectID_2
-inverted
[-constant0 | -constant1]

Click the Verify button.

Select a compare point in the list.

Click Verify Selected Point.
6-19

Performing Verification

Sometimes design objects of different type share the same name. If
this is the case, change the -type option to the unique object type.
For more information about this command, see the online man page.

Besides verifying single compare points between two designs, you
also can verify two points in the same design, or verify an inverted
relationship between two points. To verify that a certain output port
has the same value as a certain input port in the same design, use
the command

verify $impl/input_port $impl/output_port

To verify an inverted relationship between two given points, use the
-inverted switch to the verify command.

You also can verify a single compare point with a constant 1 or 0.
Using either the -constant0 or -constant1 option to the verify
command causes Formality to treat a point that evaluates to a
constant as a special single compare point during verification. You
can access this functionality through the GUI when you are in the
Match or Verify steps buy using the Run pull-down menu from the
main window menu bar. For more information on -constant, see
the verify command online man page.

To verify a subset of compare points, refer to section “Removing
Compare Points from the Verification Set” on page 6-20. For
information on how to interpret results, see “Reporting and
Interpreting Results” on page 6-33.

Removing Compare Points from the Verification Set

You can elect to remove any matched compare points from the
verification set. This is useful when you need to pinpoint problems in
a failed verification.
6-20

Chapter 6: Compare Point Matching and Verification

To prevent Formality from checking for design equivalence between
two objects that constitute a matched compare point, do one of the
following:

When you specify an object belonging to a matched compare point
set, the second object is automatically disabled. Sometimes design
objects of different types share the same name. If this is the case,
change the -type option to the unique object type. See the online
man page for details.

Specify instance-based path names or objectIDs for compare points
in the reference and implementation. Black boxes and hierarchical
blocks are not compare points, but black box input pins are compare
points.

Specify the remove_dont_verify_point command to undo the
effect of the set_dont_verify_point on specified objects; that
is, to add them to the verification set again.

Specify report_dont_verify_points to view a list of points
disabled by the set_dont_verify_point command. These
commands accept instance-based path names or objectIDs. Refer to
the online man pages for more information about these commands.

fm_shell GUI

Specify:

set_dont_verify_point
[-type ID_type]
[object_1 [object_2] ...]

At the Formality prompt, specify:

set_dont_verify_point
[-type ID_type]
[object_1 [object_2] ...]
6-21

Performing Verification

Controlling Verification Runtimes

In addition to the
signature_analysis_match_compare_points variable
described in section “Signature Analysis” on page 6-14, an
environment variable exists that you can use to limit verification
runtimes.

To control the verification time limit, do one of the following:

The verification_timeout_limit variable sets a maximum
wall-clock time (not CPU time) limit on the verification run. Be careful
when using this variable, because Formality halts the verification
when it reaches the limit regardless of the state of the verification.

In addition, you can also lessen runtimes by using the
verification_failing_point_limit variable in the fm_shell
or Verify > Modify Formality Shell Variable window. This variable
specifies the maximum number of failing compare points allowed
before Formality halts the verification process.

For more information on these environment variables, see the online
man pages.

fm_shell GUI

Specify:
set verification_timeout_limit value

Click the Verify button.

Click the Modify Formality Shell Variable
toolbar button.

Under the Value prompt, type the time
value.

Click OK.
6-22

Chapter 6: Compare Point Matching and Verification

Distributing Verification Processes

You can execute Formality verification processes in parallel across
several CPUs to increase performance. The following sections
describe a typical user flow when working with parallel verification.

Setting Up the Distributed Environment

You must set the default working directory to FM_WORK/server, as
this is the storage area for all the files required for exchanging data
and information between the various machines. Make sure that the
directory is accessible to each machine involved in the distributed
process and that each machine is able to read from and write to this
directory. If this directory is not accessible from any one of the
servers, or you want to use another directory as a working directory,
you must change the working directory with the
distributed_work_directory TCL variable. For example:

fm_shell (setup)> set distributed_work_directory /home/
myname/
dist/work

You specify the working directory using an absolute path name
starting from the root of the system. Relative paths are not
supported.

After you set the working directory, you have two options for
specifying distribution. First, you can populate the distributed servers
list. For example:

fm_shell (setup)> add_distributed_processors {pandora
hermes}
6-23

Performing Verification

After defining the distributed servers list, you will receive messages
from Formality similar to the following:

Arch: sparc 64, Users: 22, Load: 2.18 2.14 2.17
Arch: sparc 64, Users: 1, Load: 1.45 1.41 1.40

For each machine, Formality checks that fm_shell can be started on
the remote machine; that the release version matches the master;
and that the distributed_work_directory is accessible. Formality
prints the type of platform (architecture), the number of users
currently logged on that machine, and the load average. There is a
limit to the number of servers that you can add; you can have one
master, with four additional CPUs during verification. To avoid
starting more distributed servers than the number of available
processors, determine the number of processors on that machine.

A second option for specifying distribution is to specify an LSF
executable along with the number of servers. For example:

add_distributed_processors -lsf bsub_exec -nservers d -
toptions
“optionslist”

If using the -lsf option, you need to specify the path to the LSF
submission executable.

You can use the report_distributed_processors command
to report the list of servers. For example:

fm_shell (setup)> report_distributed_processors
Working directory ==> ``/remote/dtg654/fm/dfs'' (32bit)

MACHINE: pandora [ARCH: sparc 64]
MACHINE: hermes [ARCH: sparc 64]

6-24

Chapter 6: Compare Point Matching and Verification

Formality lists the name of the machine and its architecture; one line
per server. It also displays the working directory in the report along
with the type of executable in use (32 bit or 64 bit). The master
machine automatically determines the executable type, subject to
the setting of the distributed_64bit_mode TCL variable. This
variable is false by default; therefore, spawned servers will run a 32-
bit executable by default.

On occasion you might want to remove a server from the server list,
for instance if you have an overloaded machine. In this situation, you
use the remove_distributed_processors command to
remove servers from the server list. For example:

fm_shell (setup)> remove_distributed_processors pandora
fm_shell (setup)> report_distributed_processors
Working directory ==> ``/remote/dtg654/fm/dfs'' (32bit)

MACHINE: hermes [ARCH: sparc 64]

2.3.2 Starting Distributed Equivalence Checking

When you add servers and set the Tcl variable
distributed_verification_mode to enable (the default), the
verify command will execute in distributed mode:

fm_shell (setup)> verify ref:/WORK/test imp:/WORK/test

At the end of the verification, Formality reports verification results in
the same format as in serial process mode.

If unexpectedly one server process dies (for example, due to an
internal error or system problem), the entire verify command is
immediately terminated.
6-25

Performing Verification

Verifying Your Environment

Whenever Formality starts a distributed server, it executes fm_shell.
Your $PATH environment variable must be able to find fm_shell on
each distributed host.

Remote Shell Considerations. Formality relies on the rsh (remsh
for HP platforms) UNIX command to start a process on a remote
machine. This command runs the login shell on the remote host and
executes your shell initialization file. Interactive commands, run-time
errors, and environment settings can cause remote execution to fail.
The following notes can help diagnose such problems.

You need to have special privileges to start a distributed process with
an rsh (or remsh) command. In many UNIX installations, those
privileges are given by default; however, the system administrator
might have changed them. If you experience a problem starting
servers and suspect it is due to a problem with rsh, you can test
remote execution from the Unix shell command prompt using the
following command:

UNIX> rsh <distributed_server_machine> fm_shell

If you get an error message, its cause might be either commands or
environment settings in your shell initialization file or privilege
settings that prevent you from executing a remote shell.
6-26

Chapter 6: Compare Point Matching and Verification

Tuning Shell Resource File. Be aware of what is in your shell
initialization file (.cshrc, .profile, and so on) to avoid having shell
commands that have the following behavior:

• Interacts with the user (that is, the shell asking you to enter
something from the keyboard). Because you won’t have the
ability to answer (distributed processes are not interactive), it is
possible that the process will hang waiting for an answer to a
question it won’t see.

• Requires some GUI display. The DISPLAY environment variable
will not be set on the servers. X Windows clients will fail.

If you have any trouble using add_distributed_processors,
you might want to have a dedicated shell initialization file for running
distributed tasks.

Interrupting Verification

To interrupt verification, press Control-c. Formality preserves the
state of the verification at the point you interrupted processing, and
you can report the results. You also can interrupt Formality during
automatic compare point matching.

Performing Hierarchical Verification

By default, Formality incorporates a hybrid verification methodology
that combines the easy setup associated with flat verification with the
benefits of traditional hierarchical performance capacities. From a
user perspective, Formality appears to be performing a flat
verification, regardless of the design hierarchy, and all results are
presented in the context of the flat top-level design.
6-27

Performing Verification

Formality allows you to perform a traditional hierarchical verification,
which can be helpful when you want to view explicit, block-by-block
hierarchical results.

To perform traditional hierarchical verification, do one of the
following:

This command generates an editable Tcl script that you can source
to perform traditional hierarchical verification. You can customize this
script to verify specific blocks, as well as specify constraining context
information on instantiated blocks. Refer to the man page for more
information on this command.

The Tcl script specifies to initially attempt verification on comparable
lower hierarchical blocks in their isolated context. Verification starts
at the lowest levels of hierarchy and works upward. Explicit setup
commands are generated to capture top-level context.

The script specifies to verify each block once, regardless of the
number of instantiations. It reports the verification result for each
block in a text file, which is concatenated to the transcript.

fm_shell GUI

Specify:

write_hierarchical_verification_script
[-replace] [-noconstant]
[-noequivalence]
[-match type]
[-save_directory pathname]
[-save_file_limit integer]
[-level integer] filename

Specify:

write_hierarchical_verification_script
[-replace] [-noconstant]
[-noequivalence]
[-match type]
[-save_directory pathname]
[-save_file_limit integer]
[-level integer] filename
6-28

Chapter 6: Compare Point Matching and Verification

By default, for each matched block for the current top-level
implementation and reference designs, the Tcl script:

• Generates black boxes for matched subdesigns.

• Removes unused compare points.

• Sets port matches for ports matched by means other than their
names.

• Sets input port constants. Override this behavior by specifying
the -noconstant option.

• Sets input port equivalences for unmatched input ports known to
be equivalent to other matched ports. Override this behavior by
specifying the -noequivalence option.

• Verifies the target block as a top-level design.

• Saves the Formality session if the verification fails. Override this
behavior by specifying the -save_file_limit option.

The script ignores inconsistent setup information for port matches,
constants, and equivalencies, and a comment appears in the
generated script.

The script produced by
write_hierarchical_verification_script is designed to
run in the same session that it is created. If you run the hierarchical
verification script separately, you must manually insert commands
that read and link the reference and implementation designs.
6-29

Performing Verification

Using Batch Jobs

Running Formality shell commands in a batch job can save you time
in situations where you have to verify the same design more than
once. You can assemble a stream of commands, or script, that sets
up the environment, loads the appropriate designs and libraries,
performs the verification, and tests for a successful verification. Any
time you want to control verification through automatic processing,
you can run a batch job.

Starting Verification

Given a sequence of fm_shell commands, you can start the batch
job several different ways.

• Enter fm_shell commands one at a time as redirected input. For
example, from the shell, use commands in the following form:

% fm_shell << !
? shell_command
? shell_command
? shell_command

.

.

.
? shell_command
? !

• Store the sequence of commands in a file and source the file
using the Tcl source command. For example, from the shell, use
a command in the following form and supply a .csh file that
contains your sequence of fm_shell commands:

% source file
6-30

Chapter 6: Compare Point Matching and Verification

Note:

Be sure that your .csh file starts by invoking Formality and
includes the appropriate controls to redirect input.

• Submit the file as an argument to the -f option when you invoke
Formality from the shell. For example, from the shell, use a
command in the following form and supply a text file that contains
your sequence of fm_shell commands:

% fm_shell -f my_commands.fms

The output Formality produces during a batch job is identical to that
of a verification performed from the shell or GUI. For information on
how to interpret results, see “Reporting and Interpreting Results” on
page 6-33.

Controlling Verification

In your script, you can provide control statements that are useful in
concluding verification. In particular, you can take advantage of the
fact that fm_shell commands return a 1 for success and a 0 for
failure. Given this, the following set of commands at the end of your
script can direct Formality to perform diagnosis, report the failing
compare points, and save the session, should verification fail.

if {[verify]!=1} {
diagnose
report_failing_points
cd ..
save_session ./saved_state

}

6-31

Performing Verification

Interrupting Verification

To interrupt the batch job, press Control-c from the shell. Doing so
causes script processing to stop. Any Formality process interrupted
is immediately stopped, and no intermediate results are retained.
Note that it is not possible to have Formality continue verification
from the point of interruption.

Verification Progress Reporting

You can specify how much time you want to elapse between each
progress report using the
verification_progress_report_interval variable. During
long verifications, Formality issues a progress report every 30
minutes. For updates more or less frequently, you can the value of
this variable in minutes to the desired interval.
6-32

Chapter 6: Compare Point Matching and Verification

Reporting and Interpreting Results

As part of your troubleshooting efforts, Formality allows you to report
on passing, failing, unverified, and aborted compare points. Do one
of the following:

Use the -point_type option to filter the reports for specific object
types, such as ports and black box cells. Refer to the online man
page for a complete list of objects you can specify.

From the fm_shell, Formality displays information to standard output.
This information is updated as the verification proceeds. From the
transcript, you can see which design is being processed and observe
the results of the verification. In the GUI, the transcript is displayed
in the transcript area.

fm_shell GUI

Specify any of the following commands:

report_passing_points
[-point_type point_type]

report_failing_points
[-point_type point_type]

report_failing_unverified
[-point_type point_type]

report_aborted_points
[-point_type point_type]

Choose the Debug button.

Choose the Passing Points, Failing Points,
Aborted Points , or Unverified Points tab.
6-33

Reporting and Interpreting Results

During verification, Formality assigns one of three types of status
messages for each compare point it identifies:

Passing

A passing point represents a compare point match that passes
verification. Passing verification means that Formality
determined that the functions that define the values of the two
compare point design objects are functionally equivalent.

Failing

A failing point represents a compare point match that does not
pass verification or does not consist of two design objects. Failing
verification means that Formality determined that the two design
objects that constitute the compare point are not functionally
equivalent.

Unverified

A compare point that has not yet been verified. Unverified points
occur during the verification process when the failing point limit
has been reached or a wall-clock time limit is exceeded.
Formality normally stops verification once 20 failing points have
been found.

Aborted

An aborted point represents a compare point that Formality did
not determine as either passing or failing due to a combinational
loop that Formality cannot break automatically, or when the
compare point is too difficult to verify.
6-34

Chapter 6: Compare Point Matching and Verification

Based on the preceding categories, Formality classifies final
verification results in one of the following ways:

Succeeded

The implementation was determined functionally equivalent to
the reference design. All compare points passed verification.

Failed

The implementation was determined not functionally equivalent
to the reference design. Formality could not successfully match
all design objects in the reference design with comparable
objects in the implementation, or at least one design object in the
reference design was determined nonequivalent to its
comparable object in the implementation (a compare point
failure).

If verification is interrupted, either because you press Control-c
or a user-defined time-out occurs (such as the CPU time limit),
and if at least one failing point was detected prior to the
interruption, it is still reported as a verification failure.

Inconclusive

Formality could not determine whether the reference design and
implementation are equivalent. This situation occurs in the
following cases:

- A matched pair of compare points was too difficult to verify,
causing an “aborted” compare point, and no failing points were
found elsewhere in the design.

- The verification was interrupted, either because you pressed
Control-c or a user-defined time-out occurred, and no failing
compare points were detected prior to the interruption.
6-35

Reporting and Interpreting Results

For information on what to look for when you have an inconclusive
verification due to an aborted compare point, see “Handling Designs
That Don’t Complete Verification” on page 7-4.

If a verification is inconclusive because it was interrupted, partial
verification results might still be available. You can create reports on
the partial verification results.
6-36

Chapter 6: Compare Point Matching and Verification

7
Debugging Failed Design Verifications 7

This chapter describes procedures that help you find problem areas
in a design that fails verification.

It contains the following sections:

• Debugging Process Flow

• Gathering Information

• Handling Designs That Don’t Complete Verification

• Determining Failure Causes

• Debugging Using Diagnosis

• Debugging Using Logic Cones

• Eliminating Setup Possibilities

• Working With Schematics
7-1

• Working With Logic Cones

• Working With Failing Patterns

This chapter’s subject matter pertains to the box outlined in
Figure 7-1.

Figure 7-1 Design Verification Process Flow Overview

Start

Interpret
results

Perform
setup

Run
verify

Success?
No

Yes

Debug

Done

Start
Formality Match

compare points

Load
reference

Load
implementation
7-2

Chapter 7: Debugging Failed Design Verifications

Debugging Process Flow

Figure 7-2 shows an overview of the debugging process as
described in this chapter. The debugging process for cell library
verification is described in Chapter 8, “Cell Library Verification.”

Figure 7-2 Debugging Process Flow Overview

Match
points

Verify

Gather
information

Determine

Resolve
black

Apply
failing patterns

Account For
design

Run
Diagnosis

Display
logic cone

Unmatched No

Yes

Change

Setup No

Yes

issue?

Verify

boxes

transformations

schematics

inputs?

Prune
logic

Isolate
difference

Clues in

No

Yes
pattern?

Verify

design

A

Afailure cause

Report
failing points

Examine
 error

 candidates
7-3

Debugging Process Flow

Gathering Information

When a verification run reports that the designs are not equivalent,
failure is due either to an incorrect setup or to a logical design
difference between the two designs. Formality provides information
that can help you determine the cause of the verification failure. The
information sources are the following:

• The transcript window provides information on verification status,
black box creation, and simulation/synthesis mismatches.

• The formality.log file provides a complete list of black boxes in the
design, assumptions made about directions of black box pins,
and a list of multiply driven nets.

• Reports contain data on every compare point that affects the
verification output. These reports are named report_failing,
report_passing, and report_aborted.

This chapter describes when and how to use the various information
sources during the debugging process.

Handling Designs That Don’t Complete Verification

Occasionally, Formality encounters a design that cannot be verified
because it is particularly complex. For example, asynchronous state-
holding loops can cause Formality to abort verification if you did not
check for their existence prior to executing the verify command.
(Refer to section “Eliminating Asynchronous State-Holding Loops”
on page 5-10.)
7-4

Chapter 7: Debugging Failed Design Verifications

The following steps provide a strategy to apply when verification
won’t finish due to a design difficulty. Note that these steps are
different from those presented in section “Determining Failure
Causes” on page 7-7, which describes what to do when verification
finishes, but fails.

Note:
Incomplete verifications can occur when Formality reaches a pre-
specified number of failing compare points, which causes
Formality to stop processing. Use the
verification_failing_point_limit variable to adjust
the limit, as needed.

1. If you have both aborted points and failing points, locate and fix
the failing compare points. For strategies on debugging failed
compare points, refer to the section “Debugging Unmatched
Points” on page 6-7.

2. Verify the design again. Fixing the failing compare points can
sometimes eliminate the aborted points.

3. After eliminating all failing compare points, isolate the problem in
the design to the smallest possible block.

4. Declare the failing blocks as black boxes. Declare them black
boxes by using the set_black_box command, as described in
the section “Removing Designs” on page 5-81.

Alternatively, you can insert cutpoint black boxes to simplify hard-
to-verify designs, as described in section “Working With
Cutpoints” on page 5-11.

5. Verify the implementation again. This time the verification should
finish. However, the problem block is still unverified.
7-5

Handling Designs That Don’t Complete Verification

6. Use an alternative method to prove the functionality of the
isolated problem block. For example, in a multiplier example, use
a conventional simulation tool to prove that the multiplier having
the different architecture in the implementation is functionally
equivalent to the multiplier in the reference design.

At this point, you have proved the problem block to be equivalent
and you have proved the rest of the implementation equivalent.
One proof is accomplished through a conventional simulation
tool, and the other is accomplished through Formality. Both
proofs combined are sufficient to verify the designs as equal.

Establish the existing implementation design as the new
reference design. This substitution follows the recommended
incremental verification technique described in Figure 1-1 on
page 1-5.

7. Prior to running verification a second time, match any equivalent
multipliers that Formality hasn’t automatically matched in the
reference and implementation design by hand. Manually
matching the multipliers will aid the solver in successfully
matching remaining multipliers. Use the
report_unmatched_points -datapath command to
identify those unmatched multipliers.

8. Pre-verification might have timed out due to the effort level set in
the verification_datapath_effort_level variable. You
can set this limit to a higher effort level to allow Formality more
time to successfully pre-verify and black box equivalent datapath
blocks. See the man page for additional information.
7-6

Chapter 7: Debugging Failed Design Verifications

Determining Failure Causes

To debug your design, you must first determine if a failing verification
is due to a setup problem or a logical difference between the
designs. If the verification failed due to a setup problem, you should
start the debug process by looking for obvious problems, such as
forgetting to disable scan.

Sometimes you can determine the failure cause by examining the
number of failing, aborted, and unmatched points, as shown in
Table 7-1.

Setup problems that can cause a failed verification include
unmatched primary inputs and compare points, missing library
models and design modules, and incorrect variable settings.

The following steps describe how to make sure design setup did not
cause the verification failure:

1. If you automatically matched compare points with the verify
command, look at the unmatched-points report by specifying the
report_unmatched_points command in the fm_shell or
choosing Match > Unmatched in the GUI. The report shows

Table 7-1 Determining Failure Cause

Number of points in each category:

Unmatched Failing Aborted Possible cause

large - - Compare point matching
problem, or black boxes

very small some small Logical difference

very small some large Setup problem

very small none some Complex circuits, combinational
loops, or limits reached
7-7

Determining Failure Causes

matched design objects (such as inputs) as well as matched
compare points; use the filtering options included with the
command to view only the unmatched compare points.

Use the iterative compare point matching technique described in
section “Matching Compare Points” on page 6-3 to resolve the
unmatched points.

A likely consequence of an unmatched compare point (especially
a register) is that downstream compare points will fail due to their
unmatched inputs.

2. Specify the report_black_boxes command in the fm_shell or
at the GUI’s Formality prompt to check for unmatched black
boxes. During verification, Formality treats comparable black
boxes as equivalent objects. However, to be considered
equivalent, a black box in the implementation must map one-to-
one with a black box in the reference design. In general, use
black box models for large macrocells (such as RAMs and
microprocessor cores) or when you are running a bottom-up
verification.

Note:

Black boxes that don’t match one-to-one will result in
unmatched compare points.

For information on how to handle black boxes in your design, see
“Working With Black Boxes” on page 5-14.

3. Check for incorrect environment variable settings, especially for
the design transformations listed in section “Design
Transformations” on page 7-27. To view a list of current variable
settings, use the printvar command.
7-8

Chapter 7: Debugging Failed Design Verifications

If you determine that your design contains setup errors, skip to
section “Eliminating Setup Possibilities” on page 7-13 to help you fix
them. You must fix setup problems then reverify the implementation
before debugging any problems caused by logical differences
between the designs.

Debugging Using Diagnosis

At this point, you have fixed all setup problems in your design or
determined that no setup problems exist. Consequently, the failure
occurred because Formality found functional differences between
the implementation and reference designs. Use the following steps
to isolate the problem. This section assumes you are working in the
GUI. For a more detailed explanation of the Formality verification and
debugging processes, see Chapter 2, “A Quick Start With Formality.”

After you have run verification and are ready to debug your design:

1. In the Debug screen, click the Failing Points tab to view the failing
points.

2. Run diagnosis on all of the failing points listed in this window by
clicking the Diagnose button.

Note:

On occasion, after clicking the Diagnose button, you might get
a warning (FM-417) stating that too many distinct errors
caused diagnosis to fail (if the number of distinct errors
exceeds five). If this occurs, and you have already verified that
no setup problems exist, try selecting a group of failing points
(such as a group of buses with common names), and click the
Diagnose Selected Points button. This can help diagnosis by
7-9

Debugging Using Diagnosis

paring down the failing points to a specific section in the
design. Finally, if the group diagnosis fails, select a single
failing point and run selected diagnosis.

3. When diagnosis completes, the Error Candidates window
appears.

You will see a list of error candidates in this window. An error
candidate can have multiple distinct errors associated with it. For
each of the errors, the number of related failing points is reported.

There can be alternate error candidates apart from the
recommended ones shown in this window. You can inspect the
alternate candidates using the Next and Previous buttons
available in this tab. You can reissue the error candidate report
anytime after running diagnosis by using the
report_error_candidates Tcl command.

4. Choose an error with the maximum number of failing points.
Right-click on that error, then choose View Logic Cones. If there
are multiple failing points, a list will appear from which you can
choose a particular failing point to view. Errors are the drivers in
the design whose function can be changed to fix the failing
compare point.

The schematic shows the error highlighted in the implementation
design along with the associated matching region of the
reference design.

Examine the logic cone for the driver causing the failure. The
problem driver is highlighted in orange. You can click the Isolate
Error Candidates Pruning Mode button to view the error region in
isolation. You can also prune the associated matching region of
the reference design. You can undo this pruning mode by
choosing the Undo option from the Edit menu.
7-10

Chapter 7: Debugging Failed Design Verifications

Note:
You can employ the previous diagnosis method by setting the
diagnosis_enable_error_isolation variable to false and
then rerunning verification.

Debugging Using Logic Cones

In general, you want to debug the failing point that shows the design
difference as quickly and easily as possible. Start with primary
outputs. You know that the designs are equivalent at primary outputs,
whereas internal points could have different logic cones due to
changes such as boundary optimization or retiming. Pick the
smallest cone to debug. Look for a point that is not part of a vector.

You can open a logic cone view of a failing compare point to help you
debug design nonequivalencies. The following steps provide
information on how to debug failing points in your design from the
logic cone view.

• To show the entire set of failing input patterns, click the Show
Patterns toolbar button in the logic cone window.

A pattern view window appears. Click the number above a
column to view the pattern in the logic cone view. For each
pattern applied to the inputs, Formality displays logic values on
each pin of every instance in the logic cone.

Check the logic cone for unmatched inputs. Look for unmatched
inputs in both the reference and implementation columns.For
example, two adjacent unmatched cone inputs (one in the
references and one in the implementation) that have opposite
values on all patterns indicates these unmatched cone inputs
should probably be matched.
7-11

Debugging Using Logic Cones

Alternatively, you can also specify the command
report_unmatched_points compare_point at the
Formality prompt, or check the pattern view window for inputs
that appear in one design, but not the other.

There are two types of unmatched inputs:

Unmatched in cone—This input is not matched to any input in the
corresponding cone for the other design. The logic for this cone
might be functionally different. The point might have been
matched incorrectly.

Globally unmatched—This input is not matched to any input
anywhere in the other design. The point might need to be
matched using name-matching techniques. The point might
represent extra logic that is in one design but not in the other.

Unmatched inputs indicate a possible setup problem you didn’t
fix previously. If this is the case, see “Eliminating Setup
Possibilities” on page 7-13. If you change the setup, you must
reverify the implementation before continuing the debugging
process.

For detailed information about failing input patterns and the
pattern view window, see section “Working With Failing Patterns”
on page 7-41.

• Bring up a logic cone view of your design.See the section
“Working With Logic Cones” on page 7-36 for details on having
your design display in a logic cone.

A pattern view window appears. Click the number above a
column to view the pattern in the logic cone view. For each
pattern applied to the inputs, Formality displays logic values on
each pin of every instance in the logic cone.
7-12

Chapter 7: Debugging Failed Design Verifications

• Look for clues in the input patterns. These clues can sometimes
indicate that the implementation design has undergone a
transformation of some kind.For a list of design transformations
that require setup prior to verification, see “Design
Transformations” on page 7-27.

• Prune the logic cones and subcones as needed to better isolate
the problem. See “Pruning Logic” on page 7-40.

After you have isolated the difference between the implementation
and reference designs by using this procedure, change the original
design accordingly and reverify it.

If the problem is in the gate-level design, a one-to-one
correspondence between the symbols in the logic cone and the
instances in the gate netlist should help you pinpoint where to make
changes in the netlist.

To further help you debug designs, you can click the Zoom Full
toolbar button to view a failing point in the context of the entire
design. Return to the previous view by pressing Shift-a.

Eliminating Setup Possibilities

As discussed in section “Determining Failure Causes” on page 7-7,
you must resolve setup problems as part of the debugging process.
This section describes what you should look for if your design has
setup problems. In order of importance, you should check:

• Black Boxes

• Unmatched Points

• Design Transformations
7-13

Eliminating Setup Possibilities

Black Boxes

If the evidence points to a setup problem, check for black boxes. You
can do this by:

• Viewing the transcript.

• Checking the formality.log file.

• Executing report_unmatched -point_type bbox
command.

• Executing the report_black_boxes command in the fm_shell
or Formality prompt. See the online man pages for information
about this command.

See “Working With Black Boxes” on page 5-14 for more information.

Unmatched Points

As described in section “Debugging Unmatched Points” on page 6-7,
you may need to manually match compare points using the
techniques described in this section. Normally, you do this during the
compare point matching process, prior to running verification.

Matching With User-Supplied Names

You can force Formality to verify two design objects by setting two
compare points to match. For example, if your reference and
implementation designs have comparable output ports with different
names, creating a compare point match that consists of the two ports
forces Formality to match the object names.
7-14

Chapter 7: Debugging Failed Design Verifications

Important:
Use caution when adding and removing compare points. Avoid
creating a situation where two design objects not intended to
form a match are used as compare points. Understanding the
design and using the Formality tool’s reporting feature can help
you avoid this situation.

To force an object in the reference to match an object in the
implementation, do one of the following:

Sometimes design objects of different types share the same name.
If this is the case, change the -type option to the unique object type.
Refer to the online man pages for details about this command.

You can set the -inverted or -noninverted option to handle
cases of inverted polarities of state points. Inverted polarities of state
registers can occur due to the style of design libraries, design
optimizations by synthesis, or manually generated designs. The -
inverted option matches the specified objects with inverted
polarity; the -noninverted option matches the specified objects
with noninverted polarity. Polarity is indicated in the GUI with a “+” for
non-inverted, “-” for inverted, and “?” for unspecified.

fm_shell GUI

Specify:

set_user_match
[-type ID_type]
[-inverted] [-noninverted]
object_1 object_2

Choose the Match > Unmatched Points tab.

Select a point in the reference list.

Select a point in the implementation list.

Click the +, -, or ? button.

Click the User Match Setup tab to view the
list of user-specified matches.
7-15

Eliminating Setup Possibilities

This command accepts instance-based path names and objectIDs.
You can match objects such as black box cells and cell instances,
pins on black boxes or cell instances, registers, and latches. The two
objects should be comparable in type and location.

Along with matching individual points in comparable designs, you
can use this command to match multiple implementation objects to
a single reference object (1-to-n matching). You do this by issuing
set_user_match, matching each implementation object to the
reference object. You cannot, however, match multiple reference
objects to one implementation object. Doing so would cause an
error. For example, the following command sets several
implementation objects to one reference object, datain[55].

set_user_match $ref/CORE/RAMBLK/DRAM_64x16/I_TOP/
datain[55] \

$impl/CORE/RAMBLK/DRAM_64x16/I_TOP/
datain[55] \

$impl/CORE/RAMBLK/DRAM_64x16/I_TOP/
datain[55]_0
\

$impl/CORE/RAMBLK/DRAM_64x16/I_TOP/
datain[56]_0
\

$impl/CORE/RAMBLK/DRAM_64x16/I_TOP/
datain[59]_0
\

$impl/CORE/RAMBLK/DRAM_64x16/I_TOP/
datain[60]_0

This command allows you to match an individual point in a design
and is useful if you do not see multiple mismatches of very similar
nature. Note that this command does not change the names in the
database.
7-16

Chapter 7: Debugging Failed Design Verifications

For example, the following design objects will not be matched by the
Formality name-matching algorithms:

reference:/WORK/CORE/carry_in
implementation:/WORK/CORE/cin

You can use the set_user_match command to match these
design objects as follows:

fm_shell (verify)> set_user_match ref:/WORK/CORE/carry_in \
impl:/WORK/CORE/cin

Removing User-Matched Compare Points. To un-match objects
previously matched by the set_user_match command, do one of
the following:

This command accepts instance-based path names and objectIDs.
For more information about the remove_user_match command,
see the online man page.

fm_shell GUI

Specify:

remove_user_match
[-all] [-type type]
instance_path

At the Formality prompt, specify:

remove_user_match
[-all] [-type type]
instance_path
7-17

Eliminating Setup Possibilities

Listing User-Matched Compare Points. You can generate a list of
points matched by the set_user_match command. Do one of the
following:

The -inverted option reports only those user-specified inverted
matches. The -noninverted option reports only those user-
specified noninverted matches. The -unknown option reports those
user matches with unspecified polarity. The GUI displays polarity of
these points using “-” to indicate inverted polarity, “ “ to indicate
positive polarity, and “?” to indicate unspecified polarity.

Matching With Compare Rules

As described in section “Compare Rules” on page 1-27, compare
rules are user-defined regular expressions that Formality uses to
translate the names in one design before applying any name-
matching methods. This is especially useful if names changed in a
predictable way and many compare points are unmatched as a
result.

Important:
Because a single compare rule can map several design object
names between the implementation and reference designs, use
caution when defining compare rules. Regular expressions with
loose matching criteria can affect many design object names.

fm_shell GUI

Specify:

report_user_matches [-inverted |
-noninverted | -unknown]

At the Formality prompt, specify:

report_user_matches [-inverted | -
noninverted | -unknown]
7-18

Chapter 7: Debugging Failed Design Verifications

Defining a compare rule allows you to affect many design objects
during compare point matching. For example, suppose the
implementation uses a register naming scheme where all registers
end in the string "_r_0", while the reference design uses a scheme
where all registers end in "_reg". One compare rule could
successfully map all register names between the two designs.

Compare rules are applied during the compare point matching step
of the verification process.

Defining Compare Rules. To create a compare rule, do one of the
following:

Supply “from” and “to” patterns to define a single compare rule, and
specify the designID to be affected by the compare rule. For the
patterns you can supply any regular expression or arithmetic
operator. You need to use \(and \) as delimiters for arithmetic
expressions and can use +, -, *, /, and % for operators.

fm_shell GUI

Specify:

set_compare_rule
-from search_pattern
-to replace_pattern
designID

Choose the Match > Compare Rule tab.

Click Add, and choose the Reference or
Implementation tab.

Select a library, and a design as needed.

Enter the initial search pattern in the Search
value field, and the replacement search
pattern in the Replace value field.

Select the object Type: Any, Port, Cell or
Net.

Click OK.
7-19

Eliminating Setup Possibilities

This command does not permanently rename objects; it “virtually”
renames compare points for matching purposes. The report
commands are available for use after compare point matching
completes.

Compare rules are additive in nature so they should be written in
such a way that rules do not overlap. Overlap can cause unwanted
changes to object names, which can negatively affect subsequent
compare rules. The rules are applied one at a time throughout the
design.

For example, the following registers are unmatched when two
designs are verified:

reference:/WORK/top_mod/cntr_reg0
.
.
reference:/WORK/top_mod/cntr_reg9

implementation:/WORK/top_mod/cntr0
.
.
implementation:/WORK/top_mod/cntr9

You can use a single set_compare_rule command to match up
all these points, as follows:

fm_shell (verify)> set_compare_rule ref:/WORK/top_mod \
 -from {_reg\([0-9]*\)$} -to {\1}

In this example, the rule is applied on the reference design. Hence,
all “_reg#” format object names in the reference design are
transformed to “#” format during compare point matching.
7-20

Chapter 7: Debugging Failed Design Verifications

In the following example, assume that the registers are unmatched
when two designs are verified:

RTL:/WORK/P_SCHED/MC_CONTROL/FIFO_reg2[0][0]
RTL:/WORK/P_SCHED/MC_CONTROL/FIFO_reg2[0][1]
RTL:/WORK/P_SCHED/MC_CONTROL/FIFO_reg2[1][1]

GATE:/WORK/P_SCHED/MC_CONTROL/FIFO_reg20_0
GATE:/WORK/P_SCHED/MC_CONTROL/FIFO_reg20_1
GATE:/WORK/P_SCHED/MC_CONTROL/FIFO_reg21_1

A single set_compare_rule matches up all these points:

fm_shell (verify)> set_compare_rule $ref \
-from {_reg2\[\([0-1]\)\]\[\([0-1]\)\]$} \
-to {\1_reg2\1_\2}

This rule transforms all objects in the reference design that follow the
format name_reg#[#][#] to name_reg##_#, where # is restricted to
only 0 and 1 values. This rule is applied on the reference design, but
it also can be changed so that it can be applied on the
implementation design.

You can use \(and \) as delimiters for arithmetic expressions, then
use +, -, *, /, and % operators inside the delimiters to unambiguously
determine them to be arithmetic operators. For example, to reverse
a vector from the reference bus [15:0] to the implementation bus
[0:15] using an arithmetic expression, use the following command:

fm_shell (verify)> set_compare_rule ref:/WORK/design_name
-from {bus\[\([0-9]*\)\]} -to {bus\[\(15-\1\)\]}

The “-” operator in the replace pattern means arithmetic minus.
7-21

Eliminating Setup Possibilities

Testing Compare Rules. You can test name translation rules on
unmatched points. Test name translation rules on unmatched points
or arbitrary user-defined names by doing one of the following:

You can test a single compare rule on a specific design or arbitrary
points. You can also use this command to check the syntactic
correctness of your regular and arithmetic expressions. To do so you
supply “from” and “to” patterns, specify the name to be mapped,
indicate the substring and the point type, and specify the designID to
be affected by the proposed compare rule. A string that shows the
results from applying the compare point rule is displayed; 0 for
failure, 1 for success.

fm_shell GUI

Specify:

test_compare_rule
[-designID | -r | -i]
-from search_pattern
-to replace_pattern
[-substring string]
[-type type]

Or

test_compare_rule
-from search_pattern
-to replace_pattern
-name list_of_names

Choose the Match > Compare Rule tab.

Click the Reference or Implementation
button.

Set the object name and enter search
pattern and replace pattern in their
respective fields.

Click the Test button, and choose the Test
With Unmatched Points or Test With
Specified Points tab.

If you choose “Test with Unmatched Points,”
you can optionally enter a substring that
restricts the test to those unmatched points
that contain the inputted substring.

If you choose “Test with Specified Names,”
you must add a name or list of names in the
“Enter a name to test against” field, then
click the Add button.

Click Test.
7-22

Chapter 7: Debugging Failed Design Verifications

Removing Compare Rules. To remove all compare rules from a
design, do one of the following:

There is currently no way to remove a single compare rule. For more
information about the remove_compare_rules command, see the
online man pages.

Listing Compare Rules. To track compare rules, you can generate
reports that list them by doing one of the following:

Each line of output displays the search value followed by the replace
value for the specified design. For information about the
report_compare_rules command, see the online man pages.

Matching With Name Subset

During subset matching, each name is viewed as a series of tokens,
separated by characters in the name_match_filter_chars
variable. Formality performs a best-match analysis to match names
containing shared tokens. If an object in either design has a name
that is a subset of an object name in the other design, Formality can
match those two objects by using subset-matching algorithms. If
multiple potential matches are equally good, no matching occurs.

fm_shell GUI

Specify:

remove_compare_rules [designID]

Choose the Match > Compare Rules tab.

Click the Remove button.

Select a design, and then click OK.

fm_shell GUI

Specify:

report_compare_rules [designID]

Choose the Match > Compare Rules tab.
7-23

Eliminating Setup Possibilities

Digits are special cases, and mismatches involving digits lead to an
immediate string mismatch. An exception is made if there is a
hierarchy difference between the two strings and that hierarchy
name contains digits.

Use the name_match_allow_subset_match variable to specify
whether to use any of the methods, or to specify which particular
name subset (token)-based name matching method to use. By
default, the variable value is set to strict. Strict subset matching
should automatically match many of the uniform name changes that
might otherwise require a compare rule. This is particularly helpful in
designs having extensive, albeit fairly uniform, name changes
resulting in an unreasonably high number of unmatched points for
signature analysis to handle. The strict value ignores delimiter
characters as well as alphabetic tokens appearing in at least 90% of
all names of a given type of object (as long as doing either does not
cause name collision issues).

If the value of the name_match_use_filter variable is false,
subset matching will not be performed regardless of the value of the
name_match_allow_subset_match variable.

For example, the following design object pairs are matched by the
subset-matching algorithms:

reference:/WORK/top/state
implementation:/WORK/top/state_reg

reference:/WORK/a/b/c
implementation:/WORK/a/c

reference:/WORK/cntr/state2/reg
implementation:/WORK/cntr/reg
7-24

Chapter 7: Debugging Failed Design Verifications

The following designs object pairs would not be matched by the
subset-matching algorithms:

reference:/WORK/top/state_2
implementation:/WORK/top/statereg_2

reference:/WORK/cntr/state_2/reg_3
implementation:/WORK/cntr/state/reg[3]

The first pair fails because state is not separated from statereg with
a “/” or “_”. In the second pair, the presence of digit 2 in state2 causes
the mismatch.

Renaming User-Supplied Names or Mapping File

Renaming design objects is generally used for matching primary
input and outputs.

To rename design objects, do one of the following:

This command permanently renames any object in the database.
The new name is used by all subsequent commands and operations,
including all name-matching methods. Supply a file whose format

fm_shell GUI

Specify:

rename_object
-file file_name
[-type object_type]
[-shared_lib]
[-container container_name]
[-reverse] objectID
[new_name]

At the Formality prompt, specify:

rename_object
-file file_name
[-type object_type]
[-shared_lib]
[-container container_name]
[-reverse] objectID
[new_name]
7-25

Eliminating Setup Possibilities

matches that of the report_names command in the Design
Compiler tool. For information about the rename_object
command, see the online man pages.

Note:
To rename multiple design objects from a file, select the -file
option. The file format should match that of the report_names
command in the Synopsys Design Compiler tool.

The rename_object command also allows you to rename design
objects that are not verification compare points. For example, you
can use this command to rename the input ports of a design so that
they match with input ports in the other design. Input ports must be
matched to obtain a successful verification. This command supplies
exact name pairs so you will know the exact change that is going to
take place.

For example, the following rename_object command renames a
port called clk_in to clockin to successfully match the primary inputs:

fm_shell (verify)> rename_object impl:/*/am2910/clk_in
clockin

You can use this command to change the name of a hierarchical cell,
possibly benefiting the automatic compare point matching
algorithms. In addition, you can use it on primary ports to make a
verification succeed where the ports have been renamed (perhaps
inadvertently).

You can also use the change_names command in Design Compiler
to change the names in the gate-level netlist. However, depending on
the complexity of name changes, Formality might or might not be
able to match the compare points successfully when verifying two
designs (pre-change names design to post-change names design).
7-26

Chapter 7: Debugging Failed Design Verifications

To work around this problem, obtain the changed-names report from
Design Compiler then supply it to Formality with the
rename_object command for compare point matching.

For example, the following rename_object command uses a file to
rename objects in a design:

fm_shell (verify)> rename_object -file names.rpt \
-container impl -reverse

Design Transformations

Various combinational and sequential transformations can cause
problems if you don’t perform the proper setup before verification.
Setup requirements are discussed in Chapter 5, “Preparing the
Design for Verification,” for the following common design
transformations:

• Internal scan insertion on page 5-38.

• Boundary scan on page 5-39.

• Clock tree buffering on page 5-41.

• Asynchronous bypass logic on page 5-43.

• Clock gating on page 5-45.

• Inversion push on page 5-49.

• Re-encoded finite state machines on page 5-54.

• Retimed designs on page 5-59.
7-27

Eliminating Setup Possibilities

Working With Schematics

Viewing cells and other design objects in the context of the overall
design can help you locate and understand failing areas of the
design. This section describes how to use schematics to help you
debug failing compare points. It pertains to the GUI only.

Viewing Schematics

Viewing cells and other design objects in the context of the overall
design can help you locate failing areas of the design.

In any type of report window, you can view a schematic for any object
described in the report. This feature lets you quickly find the area in
your design related to an item described in the report.

To generate a schematic view, do the following:

• Right-click in a design in any of the following report windows:

Verify

Match > Unmatched and Match > Unmatched

Debug > Failing Points, Debug > Passing Points, Debug >
Aborted Points

• Choose View Reference Object or View Implementation Object.

After you perform these steps, a schematic view window appears
that shows the selected object in the context of its parent design. The
object is highlighted and centered in the schematic view window.
7-28

Chapter 7: Debugging Failed Design Verifications

From the schematic view window you can zoom in and zoom out of
a view, print schematics, and search for objects. You can also use the
schematic view window menus to move up and down through the
design hierarchy of the design.

To change the text size in a schematic, choose View > Preferences
> Increase Font Size or Decrease Font Size. Increasing or
decreasing the font size changes the menu and window text, but not
the text in the schematic. Schematic text automatically increases or
decreases was you zoom in or out.

Figure 7-3 shows a schematic view window.

Figure 7-3 Schematic View Window
Schematic areaMenu bar

Status bar

Toolbar
7-29

Working With Schematics

Some of the more important areas are:

Toolbar

The toolbar contains tool buttons that act as shortcuts to some
menu selections. The schematic viewer supports the following
tool buttons:

Click to select particular sections of the design.

Click to increase the magnification applied to the schematic area by
approximately 2X.

Click to decease the magnification applied to the schematic area by
approximately 2X.

Click to redraw the displayed schematic sheet so that all logic is viewable.

Click to view the previous view.

Click to view the next view.

Click to find the driver for the selected net.

Click to find the load on the selected net.

Click to find and zoom to the compare point in the schematic.

Click to display the object finder dialog in order to find an object by name
in the schematic.
7-30

Chapter 7: Debugging Failed Design Verifications

Schematic area

The schematic area displays a digital logic schematic of the
design. You can select an object in the design by clicking it. To
select multiple objects, hold down the Shift key. Selected objects
are highlighted in yellow.

Formality displays the wire connections in different colors to
represent the different coverage percentages of the error
candidates. While debugging, concentrate on the nets with the
highest coverage percentage.

For a description of the color-coding scheme, refer to step two in
“Debugging Using Diagnosis” on page 7-9.

Click to set highlighting on the selected objects.

Click to remove highlighting from the selected objects.

Click to clear highlighting from all objects.

Click to display the name visibility dialog with which you can select the
visibility of the objects.

Click to bring up help for the Schematic View window.
7-31

Working With Schematics

Traversing Design Hierarchy

From a schematic view window, you can move freely through a
design’s hierarchy.

You can use either of these methods to traverse a design’s hierarchy:

• To move down the hierarchy, select a cell then click the Push
Design toolbar button. Formality displays the schematic for the
selected instance. This button is dimmed when there is nothing
inside the selected cell.

• To move up the hierarchy, select a cell then click the Pop Design
toolbar button. Formality displays the design containing the
instance of the current design, selects that instance in the new
schematic, and zooms in on it.

Finding a Particular Object

To find an object in the currently displayed design, do the following:

1. In the schematic view window, choose Edit > Find by Name. This
opens the Find By Name dialog box, which lists the objects
contained in the design.

2. In the top text box, select Cells, Ports, or Nets. Objects of the
selected type are displayed in the list box, which you can scroll
through.

3. Select an object from the list.

4. Click OK.

Formality zooms in on the object, putting it at the center of the
view, and the object is selected and highlighted in yellow.
7-32

Chapter 7: Debugging Failed Design Verifications

Generating a List of Objects

Using the object finder, you can interact with a schematic through
dynamic lists of drivers, loads, nets, cells, and ports. Clicking Find
Driver, Find Load, Find X, or Find By Name buttons, or choosing the
correlated item from the drop-down menu in the GUI, brings up the
dialog box that you use to generate your preferred list.

For example, to get a list of loads for a net, follow these steps:

1. Click the desired net in your schematic.

2. Click the Find Load button from the tool bar.

The Object Finder dialog box appears with a list of loads for the
nets you selected.

Note:

If the net has a single load and you click the Find Load button,
the GUI takes you directly to the load without bringing up the
dialog box. This is true when using the Find Driver button.

3. Click one of the loads from the list.

Notice the schematic has centered around and highlighted that
cell.

Also, you can switch to a list of drivers from that cell using the Find
Driver button and select a driver from the list provided. Likewise, you
can switch to a list of all cells, nets, or ports, and select one of those
instead.
7-33

Working With Schematics

Zooming In and Out of a View

The schematic view window provides three tools that allow you to
quickly size the logic in the window: zoom in, zoom out, and zoom
full.

Formality tracks each schematic view window’s display history
beginning with creation of the window. This lets you use the Back to
previous view toolbar button to step back through views, and the
Forward to next view button to return.

To display the entire design, use the zoom full tool. There are four
ways to invoke this tool:

• Choose View > Zoom Full.

• Right-click in the schematic window, and choose Zoom Full.

• Click the Zoom Full toolbar window.

• Press the letter f on the keyboard.

Similarly, to zoom in or zoom out, choose View > Zoom In Tool or
Zoom Out Tool, and click where you want the new view to be
centered.

To repeatedly zoom into a design, do the following:

1. Place the pointer in the schematic area.

2. Press the equal sign key (=) to activate the zoom in tool. The
pointer changes to a magnifying glass icon with a plus symbol as
if you had clicked the Zoom In Tool toolbar button.

3. Place the pointer where you want zoom in and click.

4. Keep clicking as needed, to further zoom in.
7-34

Chapter 7: Debugging Failed Design Verifications

To repeatedly zoom out of a design, follow the same steps used to
zoom into a design, except press the minus (–) key to activate the
zoom out tool.

To quickly zoom in on a small area, invoke the zoom-in tool to display
the magnifying glass pointer. Hold down the left mouse button and
drag a box around the area of interest.

You can print the schematic from a schematic view window or a
report from a report window.

The procedure for printing a report from a report window is the same
as for printing a schematic from a schematic window. The
corresponding pull-down menu command is File > Print.

Viewing RTL Source Code

You can select an object from any schematic view (or logic cone
view) and view its corresponding RTL source data. Source browsing
works with all RTL and netlist source files.

To view RTL source code, do the following:

• In the schematic, select a design object, such as a net.

• Right-click and choose View Source.

A window opens with the RTL source code. The selected object is
highlighted in red. The previous and next toolbar arrows allow you to
cycle through instances of the selected object.

In addition, in any report window, you can right-click on a design then
choose View Reference Source or View Implementation Source.
7-35

Working With Schematics

Working With Logic Cones

As described in step two of section “Debugging Using Logic Cones”
on page 7-11, you can open a logic cone view of a failing compare
point to help you debug design nonequivalencies.

5. Select a design object in a report window (passing points, failing
points, aborted points, or verified points).

6. Right-click and choose View Logic Cones.

A logic cone window appears, as shown in Figure 7-4

Figure 7-4 Logic Cone View Window
Menu bar Toolbar

logic cone view
Reference

Implementation
logic cone view

Status bar
7-36

Chapter 7: Debugging Failed Design Verifications

Some of the more important areas are

Toolbar

The toolbar contains tool buttons that act as shortcuts to some
menu selections. The schematic viewer supports the following
tool buttons:

Click to select particular sections of the design.

Click to increase the magnification applied to the schematic area by
approximately 2X.

Click to decease the magnification applied to the schematic area by
approximately 2X.

Click to redraw the displayed schematic sheet so that all logic is viewable.

Click to view the previous view.

Click to view the next view.

Click to find the driver for the selected net.

Click to find the load on the selected net.

Click to find all net sources of the selected net with logic value X.

Click to find and zoom to the compare point in the schematic.
7-37

Working With Logic Cones

Click to find the corresponding matching point in the opposing window to
the point you’ve selected in a double-cone schematic.

Click to display the object finder dialog in order to find an object by name
in the schematic.

Click to set highlighting on the selected objects.

Click to remove highlighting from the selected objects.

Click to clear highlighting from all objects.

Click to display the name visibility dialog with which you can select the
visibility of the objects.

Click to bring up help for the Schematic View window.

Click to show the next pattern values on the schematic.

Click to show the previous pattern values on the schematic.

Click to bring up patterns viewer window to show all patterns for the
current compare point.

Click to bring up matching analysis tool for this compare point.

Click to find the corresponding matching point in the opposing window to
the point you’ve selected in a double-cone schematic.
7-38

Chapter 7: Debugging Failed Design Verifications

Reference and implementation logic cone views

The two schematics display the logic cones, one for the reference
design and one for the implementation. The logic areas display
object symbols, object names, object connections, applied
states, and port names. To obtain information on an object in the
logic area, place the mouse pointer on it.

Nets and registers highlighted in magenta denote objects set with
user-defined constants. The constant value is annotated next to
the object.

The following annotations display next to failed registers:

- Failure Cause Data: one register loads a “0” while the other
loads a “1”.

- Failure Cause Clock: one clock is triggered by a signal change,
while the other is not.

- Failure Cause Asynch: one asynchronous reset line is high,
while the other is low.

Click to remove the subcones of the selected net.

Click to isolate the subcones of the selected net.

Click to prune logic and isolate error candidate.

Click to undo the last edit cone operation.

Click to revert to the original cone before editing operations.
7-39

Working With Logic Cones

You can view logic cones for unmatched registers from the cone
schematics window. To view the cone schematic for the unmatched
register, do the following:

1. Select the unmatched cone input register you want the schematic
for from the cone schematic window.

2. Right-click to bring up the Context pop-up menu.

3. Select View Logic Cones from this pop-up menu.

Now you will see a single cone schematic window containing the
cone of logic feeding the unmatched register.

Pruning Logic

Logic pruning reduces the complexity of a schematic so that you can
better isolate circuitry pertinent to the failure. You generally prune
logic toward the end of the debugging process, as noted in step 7 in
section “Debugging Using Diagnosis” on page 7-9.

To change the logic cone view to show only the logic that controls the
output results, click the Remove Non-Controlling toolbar button. This
command prunes away logic that does not have an effect on the
output for the current input pattern, thus simplifying the schematic for
analysis.

To better find differences in the full schematic, remove the non-
controlling logic from the reference or implementation schematic and
keep the full view in the other schematic.

To restore the full logic cone view, click the Undo last cone edit or
Revert to original toolbar button, as applicable. The Undo button
undoes the last change, while the Revert button restores the original
logic cone view.
7-40

Chapter 7: Debugging Failed Design Verifications

Sometimes it is useful to look at part of a logic cone. Within Formality,
a part of a cone is called a subcone. When you view logic in the logic
area, you might only be interested in a particular subcone. You can
remove and restore individual subcone in the display area.

To remove a subcone, do the following:

1. Click on the net from which you want the subcone removed. The
selected net is highlighted in yellow.

2. Click the Remove Subcone of selected net or pin toolbar button.

Formality redraws the logic without the subcone leading up to the
selected net. Click the Undo last cone edit toolbar button to
restore the subcone.

To isolate a subcone, do the following:

1. Click on the net whose logic cone you want to isolate. The
selected net is highlighted in yellow.

2. Click the Isolate subcone of selected pin or net toolbar button.

Formality redraws the logic with only the subcone of the selected
net visible.

Working With Failing Patterns

Formality keeps track of the set of input patterns, 0’s and 1’s only,
that cause verification and diagnosis operations to fail. From the
logic cone view window, you can simulate the logic by applying single
vectors from this set. This corresponds to step three in section
“Debugging Using Diagnosis” on page 7-9.
7-41

Working With Failing Patterns

By default, Formality uses up to 256 failing patterns to perform
diagnosis. When more than one failing compare point exists,
Formality selects and uses a set of failing pattern vectors from the
patterns of all failing compare points.

A pattern is automatically applied to a displayed logic cone for both
the implementation and the reference designs. Formality applies the
first pattern to both logic areas and displays the state values
associated with the logic cones. When the displayed pattern is not
helpful for debugging, you can experiment with other failing patterns.

To show a pattern, follow these steps:

1. In the logic cone view, choose View > Show Patterns, or click the
Show Patterns toolbar button.

Inputs are those that normally would not make the compare point
fail.
7-42

Chapter 7: Debugging Failed Design Verifications

Figure 7-5 Failing Pattern View Window

Note:

Names shown in blue indicate a constant 0 has been applied
to those inputs. Names shown in orange indicate a constant 1
has been applied to those inputs. You will see the same color
indicators in the cone schematic when you set the net coloring
mode to view constants.

The toolbar buttons are

Click to sort the failing patterns by most-required inputs to cause failure.

Click to sort the failing patterns by least-required inputs to cause failure.

Click to set all non-required inputs back to 0.

Menu bar Toolbar Failing points Failing patternsPolarity

Status bar
7-43

Working With Failing Patterns

2. To move forward through the current set of previously failing
patterns, choose the Next Pattern toolbar button. To move
backward, use the Previous Pattern toolbar button. Each
command updates the display with a new set of logic values.

Applying a pattern to the logic cone causes the logic area to be
redrawn with the new states marked on each pin of each
instance. The patterns are applied at the inputs.

You can move through patterns only when the failed verification or
completed diagnosis operation has identified more than one failing
pattern for the displayed logic cone. If only one pattern exists, the
Next Pattern and Previous Pattern options in the View menu are
inactive (dimmed).

Saving Failing Patterns

Formality retains the set of failing patterns for the most recently failed
verification. You can save these patterns for use in simulation at a
later time.

Click to set all non-required inputs (black 0) to 1.

Click to set all non-required inputs (black 0) to a dont-care status (X).

Click to find an input in the reference or implementation list.

Click to filter the reference or implementation list.

Click to display the logic cone view for the selected input pair.
7-44

Chapter 7: Debugging Failed Design Verifications

To save the current set of failing patterns, do one of the following:

This command saves failing patterns to an external file (*.fpt). For
more information about this command, see the online man page.

Note:
Be sure that the verification section of the transcript shows that
verification failed.

Running Previously Saved Failing Patterns

To simulate the implementation and reference designs with a set of
previously saved failing patterns, do one of the following:

Note:
The file containing previous failing patterns must be readable by
Formality, not saved as a text file. If you save the failing patterns
in Verilog format, you cannot use the resulting file with the
simulate_patterns command.

fm_shell GUI

Specify:

write_failing_patterns
[-diagnosis_patterns]
[-verilog] [-replace]
file_name

Choose File > Save Failing Patterns.

In the File name text box, enter the file
name.

Click Save Diagnosis Patterns Only (to save
a diagnosis pattern subset) or Save
Patterns in Verilog Format.

Click OK.

fm_shell GUI

Specify:

 simulate_patterns file

At the Formality prompt, specify:

 simulate_patterns file.
7-45

Working With Failing Patterns

You can do two things with previously saved failing patterns:

• Simulate your top-level design by applying the entire set of
patterns.

• Apply single patterns from the set to the design while viewing a
particular logic cone.

When you run a set of previously failing patterns, Formality performs
logic simulation on the implementation and reference designs. Using
failing patterns as input vectors can help determine whether changes
you have made to the implementation have fixed a problem found
during verification.

After applying the patterns, Formality reports the success of the
simulation by refreshing the verification section of the information
bar. A report created at this point reflects the state of the completed
simulation; it does not reflect the state of the most recently failed
verification.

Note:
Passing simulation performed with a set of previously failing
patterns is not sufficient to prove design equivalence. For
functional equivalence to be proved, the implementation must
pass verification.
7-46

Chapter 7: Debugging Failed Design Verifications

8
Cell Library Verification 8

Formality allows you to verify a reference design with an
implementation design in the process described in Chapters 4
through 6. However, you can also compare technology (or cell)
libraries, as described in this chapter.

This chapter assumes that you understand Formality concepts and
the general process for Formality design verification.

This chapter contains the following sections:

• Overview

• Initializing Library Verification

• Loading the Reference Library

• Loading the Implementation Library

• Listing the Cells
8-1

• Specifying a Customized Cell List

• Elaborating Library Cells

• Performing Library Verification

• Reporting and Interpreting Verification Results

• Debugging Failed Library Cells

For additional information on verifying libraries not discussed in this
chapter, refer to the Formality-ESP User Guide in the ESP
documentation suite.
8-2

Chapter 8: Cell Library Verification

Overview

Figure 8-1 shows the general flow for verifying two cell libraries. This
chapter describes all the steps in the library verification process.

Figure 8-1 Library Verification Process Flow Overview

During cell library verification, Formality compares all the cells in a
reference library to all the cells in an implementation library. The
process allows you to compare Verilog simulation and Synopsys
(.db) synthesis libraries.

Library verification is similar to design verification in that you must
load both a reference library and an implementation library. The
principle difference is that since the specified libraries contain
multiple designs (cells), Formality must first match the cells to be

Start

Interpret
results

Run
verify

Success?
No

Yes

Done

Initialize

Select cells

Load
reference

Debug

implementation

library verification

to verify

Load
8-3

Overview

verified from each library. This occurs when you load the reference
and implementation designs. Formality then performs compare point
matching and verification one cell-pair at a time.

The Formality add-on tool, Formality-ESP extends Formality’s
functional equivalence checking. For detailed information on
functional-equivalence for full-custom transistor-level memory
macros, datapath macros and library cells, refer to the Formality-
ESP User Guide.

Initializing Library Verification

To verify two libraries, you must first switch to the “library verification”
mode (as opposed to “setup”, “match”, or “verify”). The GUI closes if
it is running. Library verification is a command-line driven process.
Each time you enter (or leave) library verification mode, Formality
empties the contents of the “r” and “i” containers in readiness for a
new library (or design) verification session.

To enter library verification mode, specify the
library_verification command, as follows:

fm_shell (setup)> library_verification argument

The fm_shell prompt changes to:

fm_shell (library_setup)>

You can specify one of the following options for argument:

• verilog_verilog

• db_db
8-4

Chapter 8: Cell Library Verification

• verilog_db

• db_verilog

• none

The first design type in the preceding examples defines the
reference library and the second, the implementation. If you specify
none, Formality returns to the “setup” mode.

When you set this mode, Formality sets the following variable:

set verification_passing_mode “equality”

When you exit “library verification” mode, Formality sets the variable
back to its default values, “consistency”.

Note:
Unsupported synthesis library formats must be translated by
Library Compiler before reading into Formality.

Loading the Reference Library

As with the design verification process described in Chapter 4, you
must specify the reference library prior to the implementation library.

To specify the reference library, use one of the following “read”
commands, depending on the library format:

fm_shell (library_setup)> read_db -r file_list
fm_shell (library_setup)> read_verilog -r [-tech] file_list
8-5

Loading the Reference Library

As described in the online man pages, the read_db and
read_verilog commands have several options that do not apply
to library verification. Use the read_verilog -tech option if you
have a UDP file.

Formality loads the reference library into the “r” container. You
cannot rename this container.

In the Formality shell, you represent the design hierarchy by using a
designID argument. The designID argument is a path name
whose elements indicate the container (“r” or “i”), library, and design
name.

Unlike the design verification process, you do not specify the
set_top command because there are multiple top cells available.

Loading the Implementation Library

Specify the implementation library in the same manner as described
in the previous section, with the exception of the -r argument.
Instead, use the -i argument as shown here:

fm_shell (library_setup)> read_db -i file_list
fm_shell (library_setup)> read_verilog -i [-tech] file_list

Formality loads the reference library into the “i” container. You cannot
rename this container.

After you read in the implementation library, Formality performs cell
matching to generate the list of cells that will be verified. Cells and
ports must match by name. The cell list is a single cell name and
each cell on it is expected to be found in the reference library. If not,
it is a non-matching cell and remains unverified.
8-6

Chapter 8: Cell Library Verification

Listing the Cells

By default, Formality verifies all library cells that match by name. You
can query the default cell list prior to verification to confirm the
matched and unmatched cells.

Specify the following command to return a list of library cells:

fm_shell (library_setup)> report_cell_list -reference | \
-implementation | -verify | -matched | -unmatched | \
-filter wildcard

You must specify one of the following options:

• -reference: Returns the cells contained in the reference
library.

• -implementation: Returns the cells contained in the
implementation library.

• -verify: Returns the current list of cells to be verified, which
could differ from the default cell list if you specified the
select_cell_list command; refer to section “Specifying a
Customized Cell List” on page 8-8 for details.

• -matched: Returns a list of reference and implementation cells
that match by name.

• -unmatched: Returns the names of cells that did not match in
the reference and implementation containers. This option is
dynamic depending on the select_cell_list command
specification.

• -filter wildcard: Filters the report to include cells that
match the specified wildcard. Always specify this option in
conjunction with one of the preceding options.
8-7

Listing the Cells

In the rare case that the libraries contain no matching cells, do the
following:

1. Return to “setup” mode by specifyinglibrary_verification
none.

2. Edit the cell names so they match.

3. Return to “library verification” mode.

4. Reload the updated library using the applicable “read” command.

Specifying a Customized Cell List

When you load the libraries with the read_ commands, Formality
elaborates all matched cells in preparation for verification. After
reporting the matched cells with the report_cell_list
command, you can refine the default cell list as necessary.

To customize the default cell list, specify the following command:

fm_shell (library_setup)> select_cell_list [-file
filename]\

[-add cell_names] [-clear] [-remove cell_names]
cell_names

You can use the following options as needed:

• -file filename: Specifies a file that contains a list of cells to
be verified.

• -add cell_names: Adds the specified cells to the cell list.

• -clear: Clears the cell list.
8-8

Chapter 8: Cell Library Verification

• -remove cell_names: Removes the specified cells from the
cell list.

This command supports wildcards for cell names. Enclose lists of
cells in “curly” brackets. For example:

fm_shell (library_setup)> select_cell_list {AND5 OR2 JFKLP}
fm_shell (library_setup)> select_cell_list ra*

As part of the debugging process, use this command to specify only
those cells that previously failed verification.

Elaborating Library Cells

Formality automatically elaborates your library cells when running
the verify command. You might want to elaborate your library cells
prior to verification to apply constraints to specific cells. To elaborate
these library cells, run the elaborate_library_cells
command.

If you do not want to apply constraints to individual library cells,
proceed directly to verification. For more information on using the
elaborate_library_cells command, see the online man page.

Performing Library Verification

Proceed to verification after optionally refining your cell list. As with
the design verification process, specify the verify command:

fm_shell (library_setup)> verify
8-9

Elaborating Library Cells

Formality performs compare point matching and verification for each
cell-pair as described in Chapter 6, “Compare Point Matching and
Verification.” However, because Formality assumes that all cell and
ports match by name, compare point matching errors do not occur;
for this reason, the optional match command does not apply to
library verification.

As described in the online man pages, the verify command has
additional options that do not apply to library verification.

After verification, Formality outputs a transcripted summary of the
passing, failing, and aborted cell counts.

The following script performs library verification. This script sets
hdlin_unresolved_modules to “black box” as a precaution;
generally cell libraries shouldn’t contain unresolved modules. These
are not required settings. Remember that
verification_passing_mode and inversion_push are set
automatically.

#---
set the directories where Formality will search for files
#---

set search_path "./db ./verilog/cells ./verilog_udp"
#---
set variables
#---

set hdlin_unresolved_modules black_box
library_verification VERILOG_DB

#---
read into container 'r'
#---
Read UDP using -tech

read_verilog -r -tech {
UDP_encodecod.v
8-10

Chapter 8: Cell Library Verification

UDP_mux2.v
UDP_mux2_1.v
UDP_mux2_1_I.v
UDP_mux2_2.v
}

Read library cells

read_verilog -r {
and2A.v
and2B.v
and2C.v
ao11A.v
ao11C.v
ao12A.v
bufferA.v
bufferAE.v
bufferAF.v
delay1.v
encode3A.v
xor1A.v
xor1B.v
xor1C.v
full_add1AA.v
half_add1A.v
mux21HA.v
mux31HA.v
mux41HA.v
mux61HA.v
mux81HA.v
mux21LA.v
notA.v
notAD.v
notAE.v
nand2A.v
nand2B.v
nand2C.v
nor2A.v
nor2B.v
nor2C.v
nxor3A.v
or_and21A.v
or2A.v
}

8-11

Performing Library Verification

#---
read into container 'i'
#---

read_db -i synth_lib.db

#
Report which library cells will be verified
#

report_cell_list -v
report_cell_list -m
report_cell_list -u

#---
verify libraries
#---

verify

#---
report on passing and full_addiling cells
#---

report_status -p
report_status -f
report_status -a

#---
exit
#---

exit
8-12

Chapter 8: Cell Library Verification

Reporting and Interpreting Verification Results

After verification, use the following command to report the
verification results:

fm_shell (library_setup)> report_status [-passing]
[-failing] \

[-aborting]

If you specify no arguments, Formality reports the passing, failing,
and aborted cell counts. Use the options as follows:

• -passing: Returns a list of all passing cells.

• -failing: Returns a list of all failing cells.

• -aborting: Returns a list of all aborted cells.

During verification, Formality assigns one of three types of status
messages for each library cell-pair it identifies:

Passing

A passing library cell-pair is one in which all its compare points
are functionally equivalent.

Failing

A failing library cell-pair is one in which at least one compare
point is not functionally equivalent.

Aborted

Verification stops. This most often occurs when Formality
reaches a user-defined failing limit. For example, Formality halts
verification on a cell after 20 failing points have been found in the
cell.
8-13

Reporting and Interpreting Verification Results

In addition, any cells that fail elaboration are aborted, and a cell
can be aborted if Formality cannot determine whether one of its
compare points passes or fails. Aborted points can occur when
Formality is interrupted during the verification process.

Debugging Failed Library Cells

Use the following procedure to debug failed library cells:

1. Choose a failing cell from the status report and specify the
following command:

fm_shell (library_setup)> debug_library_cell cell_name

Formality reports the failing cells, but only retains the electrical
data from the last cell verified (which could be a passing cell).
This command repopulates Formality with the verification data
for the specified cell, which then enables you to debug the cell
from within the same session. You can specify the name of only
one unique cell.

2. Specify the following command to view the failed cell’s logic:

fm_shell (library_setup)> report_truth_table signal \
[-fanin signal_list] [-constraint signal_list=[0|1]

] \
[-display_fanin] [-nb_lines number] \
[-max_line length]

This command generates a Boolean logic truth table that you can
use to check the failed cell’s output signals. Often, this is
sufficient information to fix the failed cell. Use the arguments as
follows:

- signal: Specifies the signal you want to check. For example,
specify the path name as follows: r:/lib/NAND/z
8-14

Chapter 8: Cell Library Verification

- -fanin signal_list: Filters the truth table for the specified
fanin signals, where the list is enclosed in “curly” brackets.

- -constraint signal_list=[0|1]: Applies the specified
constraint value (0 or 1) at the input and displays the output
values on the truth table.

- -display_fanin: Returns the fanin signals for the specified
signal.

- -nb_lines number: Specifies the maximum number of lines
allowed for the truth table.

- -max_line length: Specifies the maximum length for each
table line.

After fixing the cell, you can reverify it by customizing the cell list
to include only the fixed cell and then specifying the verify
command.

3. If further investigation is required to fix a failed cell, specify the
following command:

fm_shell (library_setup)> write_library_debug_scripts \
[-dir filename]

This command generates individual Tcl scripts for each failed cell
and places them in the DEBUG directory unless you specify the
-dir option. The DEBUG directory is located in the current
working directory.

If you attempt to view library cells in the Formality GUI, you see
only a black box. As shown in the following example, the Tcl
scripts direct Formality to treat the library cells as designs and
perform traditional verification. You can then investigate the
failure results with the Formality GUI.
8-15

Debugging Failed Library Cells

--This is run script generated by FM-Library
Verification Mode --
set verification_passing_mode Equality
set verification_inversion_push true
set search_path "DEBUG"
read_container -r lib_ref.fsc
read_container -i lib_impl.fsc
set_ref r:/*/mux21
set_impl i:/*/mux21
verify

4. Run one of the Tcl scripts and then specify start_gui to view
the results. When you have fixed the cell, go on to the next script,
and so on, until you are done.

Refer to the following sections for information about how to use
the GUI for debugging:

- “Debugging Using Diagnosis” on page 9

- “Working With Schematics” on page 28

- “Working With Logic Cones” on page 36

- “Working With Failing Patterns” on page 41

5. Reverify cells that you fixed from within the GUI. You must begin
a new session by reinitializing the “library verification” mode and
then reloading the reference and implementation libraries.
8-16

Chapter 8: Cell Library Verification

A
Tcl Syntax As Applied to Formality Shell
Commands A

This appendix describes detailed characteristics of tool command
language (Tcl) syntax as applied to Formality shell (fm_shell)
commands. For basic instruction on using the fm_shell, see section
“The Formality Shell Environment” on page 3-5.

Tcl has a straightforward language syntax. Every Tcl script is a
series of commands separated by a new-line character or
semicolon. Each command consists of a command name and a
series of arguments.

This appendix includes the following sections:

• Using Application Commands

• Quoting Values

• Using Built-In Commands
A-1

• Using Procedures

• Using Lists

• Using Other Tcl Utilities

• Using Environment Variables

• Nesting Commands

• Evaluating Expressions

• Using Control Flow Commands

• Using the if Command

• Using while and for Loops

• Iterating Over a List: foreach

• Terminating a Loop: break and continue

• Using the switch Command

• Creating Procedures

• Programming Default Values for Arguments

• Specifying a Varying Number of Arguments
A-2

Appendix A: Tcl Syntax As Applied to Formality Shell Commands

Using Application Commands

Application commands are specific to Formality. You can abbreviate
all application command names, but you cannot abbreviate most
built-in commands or procedures. Formality commands have the
following syntax:

command_name -option1 arg1 -option2 arg2 parg1 parg2

command_name

Names the application command.

-option1 arg1 -option2 arg2

Specifies options and their respective arguments.

parg1 parg2

Specifies positional arguments.
A-3

Using Application Commands

Understanding the Command Syntax

Table A-1 summarizes the components of the syntax.

Table A-1 Command Components

Component Description

Command name If you enter an ambiguous command, Formality attempts to find the
correct command.

fm_shell> report_p
Error: ambiguous command “report_p” matched two commands:
(report_parameters, report_passing_points) (CMD-006)

Formality lists as many as three of the ambiguous commands in its
warning. To list the commands that match the ambiguous abbreviation,
use the help function with a wildcard pattern.

fm_shell> help report_p*

Options Many Formality commands use options. A hyphen (-) precedes an
option. Some options require a value argument. For example, in the
following command “my_lib” is a value argument of the -libname
option.

fm_shell> read_db -libname my_lib

Other options, such as -help, are Boolean options without arguments.
You can abbreviate an option name to the shortest unambiguous
(unique) string. For example, you can abbreviate -libname to -lib.

Positional arguments Some Formality commands have positional (or unswitched) arguments.
For example, in the set_equivalence command, the object1 and
object2 arguments are positional.

fm_shell> set_equivalence object1 object2
A-4

Appendix A: Tcl Syntax As Applied to Formality Shell Commands: Using Application Commands

Using Special Characters

The characters in Table A-2 have special meaning for Tcl in certain
contexts.

Using Return Types

Formality commands have a single return type, which is a string.
Commands return a result. With nested commands, the result can be
used as any of the following:

• A conditional statement in a control structure

• An argument to a procedure

• A value to which a variable is set

Here is an example of a return type:

if {[verify -nolink]!=1} {
diagnose
report_failing_points
save_session ./failed_run

}

Table A-2 Special Characters

Character Meaning

$ De references a Tcl variable.

() Groups expressions.

[] Denotes a nested command.

\ Indicates escape quoting.

" " Denotes weak quoting. Nested commands and variable
substitutions still occur.

{ } Denotes rigid quoting. There are no substitutions.

; Ends a command.

Begins a comment.
A-5

Using Application Commands

Quoting Values

You can surround values in quotation marks several ways.

• You can escape individual special characters by using the
backslash character (\) so that the characters are interpreted
literally.

• You can group a set of words separated by spaces by using
double quotation marks (“ ”). This syntax is referred to as weak
quoting because variable, command, and backslash
substitutions can still occur.

• You can enclose a set of words that are separated by spaces by
using braces ({ }). This technique is called rigid quoting.
Variable, command, and backslash substitutions do not occur
within rigid quoting.

The following commands are valid but yield different results.
Assuming that variable a is set to 5, Formality yields the following:

fm_shell> set s "temp = data[$a]"
temp = data[5]

fm_shell> set s {temp = data[$a]}
temp = data[$a]

Using Built-In Commands

Most built-in commands are intrinsic to Tcl. Their arguments do not
necessarily conform to the Formality argument syntax. For example,
many Tcl commands have options that do not begin with a hyphen,
yet the commands use a value argument.
A-6

Appendix A: Tcl Syntax As Applied to Formality Shell Commands: Quoting Values

Formality adds semantics to certain Tcl built-in commands and
imposes restrictions on some elements of the language. Generally,
Formality implements all of the Tcl intrinsic commands and is
compatible with them.

The Tcl string command has a compare option that is used like
this:

string compare string1 string2

Using Procedures

Formality comes with several procedures that are created through
the /usr/synopsys/admin/setup/.synopsys_fm.setup file during
installation. You can see what procedures are included with
Formality by entering the following command:

help

The help command returns a list of procedures, built-in commands,
and application commands.

Procedures are user-defined commands that work like built-in
commands. You can create your own procedures for Formality by
following the instructions in “Creating Procedures” on page A-16.

Procedures follow the same general syntax as application
commands:

command_name -option1 arg1 -option2 arg2 parg1 parg2

For a description of the syntax, see “Using Application Commands”
on page A-3.
A-7

Using Procedures

Using Lists

Lists are an important part of Tcl. Lists represent collections of items
and provide a convenient way to distribute the collections. Tcl list
elements can consist of strings or other lists.

The Tcl commands you can use with lists are

• list

• concat

• join

• lappend

• lindex

• linsert

• llength

• lrange

• lreplace

• lsearch

• lsort

• split

While most publications about Tcl contain extensive discussions
about lists and the commands that operate on lists, these Tcl
command highlight two important concepts:
A-8

Appendix A: Tcl Syntax As Applied to Formality Shell Commands: Using Lists

• Because command arguments and results are represented as
strings, lists are also represented as strings, but with a specific
structure.

• Lists are typically entered by enclosing a string in braces, as
follows:

{a b c d}

In this example, however, the string inside the curly braces is
equivalent to the command [list a b c d].

Note:
Do not use commas to separate list items, as you do in Design
Compiler.

If you are attempting to perform command or variable substitution,
the form with braces will not work. For example, this command sets
the variable a to 5.

fm_shell> set a 5
5

These next two commands yield different results because the
command surrounded by curly braces does not expand the variable,
whereas the command surrounded by square brackets does.

fm_shell> set b {c d $a [list $a z]}
c d $a [list $a z]

fm_shell> set b [list c d $a [list $a z]]
c d 5 {5 z}

Lists can be nested, as shown in the previous example. You can use
the concat command (or other Tcl commands) to concatenate lists.
A-9

Using Lists

Using Other Tcl Utilities

Tcl contains several other commands that handle the following:

• Strings and regular expressions (such as format, regexp, regsub,
scan, and string)

• File operations (such as file, open, and close)

• Launching system subprocesses (such as exec)

Using Environment Variables

Formality supports any number of user-defined variables. Variables
are either scalar or arrays. The syntax of an array reference is

array_name (element_name)

Table A-3 summarizes several ways for using variables.

Table A-3 Examples of Using Variables

Task Description

Setting variables Use the set command to set variables. For
compatibility with dc_shell and pt_shell, fm_shell
also supports a limited version of the a = b syntax.
For example,

 set x 27 or x = 27
 set y $x or y = $x

Removing variables Use the unset command to remove variables.

Referencing
variables

Substitute the value of a variable into a command
by dereferencing it with the dollar sign ($), as in
echo $flag. In some cases, however, you must use
the name of a value, such as unset flag, instead
of the dollar sign.
A-10

Appendix A: Tcl Syntax As Applied to Formality Shell Commands: Using Other Tcl Utilities

The following commands show how variables are set and
referenced:

fm_shell> set search_path ". /usr/synopsys/libraries"
. /usr/synopsys/libraries

fm_shell> adir = "/usr/local/lib"
/usr/local/lib

fm_shell> set my_path "$adir $search_path"
/usr/local/lib . /usr/synopsys/libraries

fm_shell> unset adir

fm_shell> unset my_path

Note:
You can also set and unset environment variables in the GUI by
entering them into the command bar or selecting File >
Environment from the console window.

Nesting Commands

You can nest commands within other commands (also known as
command substitution) by enclosing the nested commands within
braces ([]). Tcl imposes a depth limit of 1,000 for command nesting.

The following examples show different ways of nesting a command.

fm_shell> set index [lsearch [set aSort \
[lsort $l1]] $aValue]

fm_shell> set title "Gone With The Wind"
Gone With The Wind

fm_shell> set lc_title [string tolower $title]
gone with the wind
A-11

Nesting Commands

Formality makes one exception to the use of command nesting with
braces so it can recognize netlist objects with bus references.
Formality accepts a string, such as data[63], as a name rather than
as the word data followed by the result of command 63. Without this
exception, data[63] must either be rigidly quoted, as {data[63]}, or
the square braces have to be escaped, as in data\[63\].

Evaluating Expressions

Tcl supports expressions; however, the base Tcl language syntax
does not support arithmetic operators. Instead, the expr command
evaluates expressions.

The following examples show the right and wrong ways to use
expressions:

set a (12 * $p) ;# Wrong.
set a [expr (12*$p)] ;# Right!

The expr command can also evaluate logical and relational
expressions.

Using Control Flow Commands

Control flow commands—if, while, for, foreach, break,
continue, and switch—determine the order of other commands.
You can use fm_shell commands in a control flow command,
including other control flow commands.

The following sections briefly describe the use of the control flow
commands.
A-12

Appendix A: Tcl Syntax As Applied to Formality Shell Commands: Evaluating Expressions

Using the if Command

An if command has a minimum of two arguments:

• An expression to evaluate

• A script to conditionally start based on the result of the
expression

You can extend the if command to contain an unlimited number of
elseif clauses and one else clause. An elseif argument to the
if command requires two additional arguments: an expression and
a script. An else argument requires only a script.

The following example shows the correct way to specify elseif and
else clauses:

if {$x == 0} {
 echo "Equal"
} elseif {$x > 0} {
 echo "Greater"
} else {
 echo "Less"
}

In the previous example, notice that the else and elseif clauses
appear on the same line with the closing brace (}). This syntax is
required because a new line indicates a new command. Thus, if the
elseif clause is on a separate line, it will be treated as a command,
which it is not.

Using while and for Loops

The while and for commands are similar to the same constructs in
the C language.
A-13

Using the if Command

Using while Loops

The while command has two arguments:

• An expression

• A script

The following while command prints squared values from 0 to 10:

set p 0
while {$p <= 10} {
 echo "$p squared is: [expr $p * $p]"
 incr p
}

Using for Loops

The for command uses four arguments:

• An initialization script

• A loop-termination expression

• An iterator script

• An actual working script

The following example shows how the while loop in the previous
section is rewritten as a for loop:

for {set p 0} {$p <= 10} {incr p} {
 echo "$p squared is: [expr $p * $p]"
}

A-14

Appendix A: Tcl Syntax As Applied to Formality Shell Commands: Using while and for Loops

Iterating Over a List: foreach

The foreach command is similar to the same construct in the C
language. This command iterates over the elements in a list. The
foreach command has three arguments:

• An iterator variable

• A list

• A script to start (the script references the iterator’s variable)

To print an array, enter

foreach el [lsort [array names a]] {
 echo "a\($el\) = $a($el)"
}

To search in the search_path for several files then report whether
or not the files are directories, enter

foreach f [which {t1 t2 t3}] {
 echo -n "File $f is "
 if { [file isdirectory $f] == 0 } {
 echo -n "NOT "
 }
 echo "a directory"
}

Terminating a Loop: break and continue

The break and continue commands terminate a loop before the
termination condition has been reached. The break command
causes the innermost loop to terminate. The continue command
causes the current iteration of the innermost loop to terminate.
A-15

Iterating Over a List: foreach

Using the switch Command

The switch command is equivalent to an if tree that compares a
variable with a number of values. One of a number of scripts is run,
based on the value of the variable.

switch $x {
a {incr t1}
b {incr t2}
c {incr t3}
}

The switch command has other forms and several complex
options. Consult your Tcl documentation for more examples of the
switch command.

Creating Procedures

One powerful Formality function is the capability to write reusable Tcl
procedures. With this function, you can extend the command
language. You can write new commands that can use an unlimited
number of arguments. The arguments can contain default values,
and you can also use a varying number of arguments.

For example, the following procedure prints the contents of an array:

proc array_print {arr} {
 upvar $arr a
 foreach el [lsort [array names a]] {
 echo "$arr\($el) = $a($el)"
 }
}

A-16

Appendix A: Tcl Syntax As Applied to Formality Shell Commands: Using the switch Command

Procedures can use any of the commands supported by Formality or
other procedures that you have defined. Procedures can even be
recursive. Procedures can contain local variables and reference
variables outside of their scope. Arguments to procedures can be
passed by value or by reference.

The following sections provide some examples of procedures. Books
on the Tcl language offer additional information about writing
procedures.

Programming Default Values for Arguments

To set up a default value for an argument, you must locate the
argument in a sublist that contains two elements: the name of the
argument and the default value.

For example, the following procedure reads a favorite library by
default, but reads a specific library if given:

proc read_lib { {lname favorite.db} } {
 read_db $lname
}

Specifying a Varying Number of Arguments

You can specify a varying number of arguments by using the args
argument. You can enforce that at least some arguments are passed
into a procedure, then handle the remaining arguments as you see
fit.
A-17

Programming Default Values for Arguments

For example, to report the square of at least one number, use the
following procedure:

proc squares {num args} {
 set nlist $num
 append nlist " "
 append nlist $args
 foreach n $nlist {
 echo "Square of $n is [expr $n*$n]"
 }
A-18

Appendix A: Tcl Syntax As Applied to Formality Shell Commands: Specifying a Varying Number of

B
Formality Library Support B

This appendix provides information on how to verify and modify cell
libraries to make them suitable for Formality to perform equivalence
checking.

This appendix includes the following sections:

• Overview

• Supported Library Formats

• Updating Synthesis Libraries

• Library Enhancement/Generation Process

• Library Loading Order
B-1

Overview

Formality compares two versions of a design for functional
equivalence. For this process to succeed, both versions of the
design must have functional descriptions for all blocks of logic to be
verified. These basic functions are defined by a library. The design
libraries must describe the functions of all cells that are used in a
design during the synthesis, test, and layout stages of the design
flow.

If you are an ASIC vendor, you need to create cell libraries and
provide different representations of these libraries to enable your
customers to use Synopsys tools. At a minimum, you must provide a
library in Synopsys database (.db) format so that customers can
synthesize designs, and a Verilog library so that customers can
simulate designs with VCS.

There are some important library implementation issues to consider
that affect the usability, performance, and capacity of Formality for
the end user. This appendix provides guidelines to ensure that the
basic requirements of functional modeling are met. It describes the
various library formats that Formality supports and tells you how to
determine whether any enhancements are required for the library
and format you choose. It also provides suggestions to help you
enhance your library, guidelines on verifying these enhancements,
and information on packaging your library for proper use by the
customer.
B-2

Appendix B: Formality Library Support: Overview

Supported Library Formats

Formality works with the same libraries and design databases as
Design Compiler. Users of synthesis-based design flows can adopt
Formality with little or no effort. Formality can also accept library
information in the form of Verilog simulation libraries, synthesizable
RTL, and gate-level netlists.

Synopsys Synthesis Libraries

To read cell definition information contained in Synopsys synthesis
libraries (in .db format), use the read_db command. Reading
information in this format is the fastest way to adopt Formality into
your flow. Formality can use the same synthesis libraries that you
deliver to customers. However, some enhancements might be
required, as determined on a case-by-case basis. For information
about such enhancements, see “Updating Synthesis Libraries” on
page B-4.

Verilog Simulation Libraries

To read cell definition information contained in Verilog simulation
library files, use the read_simulation_library or
read_verilog -vcs -y command, also known as the Verilog
library reader. The library reader extracts the pertinent information
from the Verilog library to determine the gate-level behavior of the
design, and generates a netlist that represents the functionality of
the Verilog library cells.
B-3

Supported Library Formats

Synthesizable RTL

To read cell definition information from library cells modeled with a
synthesizable subset Verilog or VHDL, use the read_verilog or
read_vhdl command. Reading information in this form is typically
done for an incremental library. You can model cells using RTL-level
descriptions of the functional behavior and deliver such a collection
of cells to customers either as RTL source code or as .db output from
Design Compiler.

Cells modeled with RTL can be inefficient for Formality to process,
possibly causing a performance or capacity penalty. To avoid these
effects, you can map the RTL to the GTECH technology and save the
optimized .db description.

Gate-Level Netlists

As an ASIC vendor, you have the option to provide the functional
information in the form of one or more gate-level netlists. You can
provide such netlists in .db, .v, .vhd, or .edif format.

Updating Synthesis Libraries

If you choose to use a synthesis library, this section will help you
determine whether any enhancements are required to support
Formality.

Typically, all vendor libraries have some black boxes in their
synthesis libraries. There are two reasons for these black boxes:

• The current modeling capabilities of Library Compiler are
insufficient to capture the functional information.
B-4

Appendix B: Formality Library Support: Updating Synthesis Libraries

• The modeling capability exists, but the library provider did not
model some cells because some Synopsys tools do not use
these models and treat them as black boxes anyway.

These black boxes usually need to be updated for Formality because
Formality needs functional models to perform verification of any cells
or modules that undergo any change in a design flow. However, there
might be some cells for which black box descriptions are acceptable.

To determine whether any additional work is required to support
Formality, use the flowchart shown in Figure B-1. If you determine
that cells need to be updated, use the flowchart shown in Figure B-2
to identify the required enhancements.
B-5

Updating Synthesis Libraries

Figure B-1 Library Verification Flow

All cells modeled
in .lib?

Cells Required?
Change during design

flow?

Enhance your .lib Test using RTL-level or
gate-level netlist

No enhancements
required

Start

No

Yes

No

Yes

See Synthesis
Library Update
Flowchart
(Figure B-2)
B-6

Appendix B: Formality Library Support: Updating Synthesis Libraries

Figure B-2 Synthesis Library Update Flowchart

Black boxes exist?

Library analysis:

Start

Black boxes change
during design

Black boxes

Able to model
behavior using

No need to

Write synthesizable Update library;

read_lib, report_lib

flow?

update libraries

need modeling?

statetable format?RTL models follow project plan

Yes
I/O pads, scan cells, RAMS
macros, analog blocks, PLLs...

Yes
I/O pads, scan cells

No

No

Yes
I/O pads

YesNo
B-7

Updating Synthesis Libraries

In Figure B-2, these are the basic steps to take to update a synthesis
library:

1. Identify cells that do not need to be modeled to support Formality.
A cell that is added by the user during the design flow and
remains unchanged for the duration of the flow does not need a
functional model. Examples of this type of cell include analog
cells such as phase-locked loops, analog I/O port drivers/
receivers, hard macros or cores such as controllers and other
intellectual property, and highly regular structures such as RAMs
and ROMs. Formality can successfully handle these cells as
black boxes.

2. Identify black box cells that need to be modeled. Most existing .db
libraries have all the important cells modeled already. Important
cells to model include registers, latches, scannable versions of
registers and latches, all combinational cells, and I/O pad cells.
The cells most likely to lack the necessary functional description
are the scan elements and I/O pads. Note that Formality handles
soft macro cells like any other piece of the design.

3. Cells that are missing in the synthesis (.db) library. If there are
cells that the tool requires and they are not present in your
synthesis .db library, you must go through your regular library
development flow to add these cells.

Library Enhancement/Generation Process

The library enhancement and verification process depends on
whether you choose to use a synthesis (.db) library or Verilog
simulation libraries. Using a synthesis library is the preferred
B-8

Appendix B: Formality Library Support: Library Enhancement/Generation Process

method. In that case, see the section “Using Synthesis Libraries that
follows. If you choose to use Verilog simulation libraries instead, see
the section “Using Verilog Libraries” on page B-9.

After you generate or update the libraries, you need to verify them for
functional accuracy as described in Chapter 8, “Cell Library
Verification.”

Using Synthesis Libraries

If you use a synthesis library with Formality, it is necessary to define
the functionality for some cells. Most of the missing cells in a typical
synthesis library can be modeled by using Library Compiler, a
Synopsys tool that reads an ASCII description of the cell timing and
functional characteristics, and generates a .db file that can be read
into Design Compiler.

The “statetable” format in Library Compiler is useful for modeling
many kinds of sequential cells because it provides an intuitive way to
describe complex sequential behavior. You can use this format to
convert a state table in a databook into a library cell description. The
Library Compiler tools reads the truth table for a cell and translates
it into a netlist. For more information, see the Library Compiler
documentation.

Using Verilog Libraries

The read_simulation_library and read_verilog -vcs
-y commands in Formality, also known as the Verilog library reader,
provides a way to directly read in Verilog simulation libraries to
support equivalence checking. It supports both gate-level and user-
defined primitive (UDP) Verilog models, but not RTL constructs.
B-9

Library Enhancement/Generation Process

To learn more about the read_simulation_library and
read_verilog -vcs -y commands, use the man command in
Formality. For additional information, see “Verilog Simulation Data”
on page 4-15.

The read_simulation_library command has an option,
-write_verilog, that is useful to silicon vendors and others who
create cell libraries. As part of the library qualification process, the
silicon vendor should verify that Formality can translate the models
correctly. The -write_verilog option provides a way to check the
translation process.

Using the read_simulation_library command with the
-write_verilog option reads in the Verilog simulation library and
writes out a Verilog file containing all the models that were read in.
The ordering of I/O ports in the Verilog output file is compatible with
the original simulation model for all processed modules, allowing the
silicon vendor to use this file in the silicon vendor’s existing test
bench to verify its correctness.

Note is that Verilog written out is not the same as the Verilog read in.
The command reads in the Verilog simulation models and converts
this information into the internal Formality database. Then it converts
this database information into Verilog and writes the results to a file
called lib_name_fm_verilog_out.v, where lib_name is the technology
library name specified in the command (or the default name,
TECH_WORK). Silicon vendor testing of the Verilog output file is the
most complete way to verify that Formality can translate the Verilog
simulation libraries correctly.
B-10

Appendix B: Formality Library Support: Library Enhancement/Generation Process

If you are a silicon vendor using this technique, be aware that the
simulation models generated by Formality are not complete for
simulation purposes. In particular, note the following points:

• The simulation models contain no timing information. Therefore,
the results from simulation test benches should not depend upon
details of the timing in the original, golden Verilog model. For
example, be careful about changing two asynchronous control
pins at the same time.

• The simulation models accurately model the response of the cell
to input conditions of logic 1, logic 0, and logic Z (where
appropriate). This meets the requirements of Formality for
functional static verification. However, the models are not
intended to exactly reproduce the handling of Xs on inputs or
bidirectionals. In some cases, the models can be more
pessimistic that the original, golden Verilog model in handling
such Xs. ASIC Vendors should consider this when selecting a QA
test bench.

These points do not mean that Formality builds incorrect models.
Formality builds models that are accurate for functional static
verification, not necessarily for simulation.

If you are a silicon vendor and you want to provide the customer with
an encrypted version of the Verilog library, use the -save_binary
option in conjunction with the -write_verilog option. Then the
command writes the Verilog information in binary format, using the
file name lib_name_fm_verilog_out.bin. The customer can read in
Verilog files saved in this format using the
read_simulation_library command. However, the
-write_verilog option is disabled for this format.
B-11

Library Enhancement/Generation Process

Library Loading Order

Formality has the ability to load and manage multiple definitions of a
cell, such as synthesis .db files, simulation .db files, and Verilog/
VHDL netlists. The order in which the library files are loaded
determines which library model is used by Formality. If the libraries
are not loaded in the correct sequence, it can lead to inconsistent or
incorrect verification results.

If you are a library provider, it is recommended that you deliver
explicit Formality loading instructions for multiple libraries. One way
to do this is to provide a Formality script that loads the library files
(such as .lib, .db, .v, .vhd, and so on) in the proper order.

Single-Source Packaging

It is better to provide all the required functionality in a single source,
either synthesis (.lib based .db) or simulation (.v based .db). Using a
single source reduces support costs and maintenance
requirements. However, you might choose to use multiple sources of
functional information.

Multiple-Source Packaging

If you are a silicon vendor who wants to use multiple library sources
or augment your synthesis libraries with simulation and/or RTL
descriptions, it is recommended that you specify the order in which
the libraries are to be loaded.
B-12

Appendix B: Formality Library Support: Library Loading Order

Augmenting a Synthesis (.db) Library

If you want to use your current synthesis .db database and you do
not want to update your .lib database, you can use Verilog simulation
libraries to augment the .db library. The recommended flow in this
case is

1. Load the existing synthesis .db files

2. Optionally load the Verilog simulation library .v files to describe
the black boxes after step number 1.

3. Optionally load the netlist or RTL descriptions for the black boxes
after step number 2.

Augmenting a Simulation (.v) Library

If you want to use your Verilog simulation libraries and you do not
want to use your .lib-based .db database, you first need to verify that
the Verilog library reader reads all the cells and Formality interprets
them correctly. You then need to decide whether you want to ship the
translated .db or ship the Verilog simulation libraries. The
recommended flow in this case is

1. Load the Verilog-based .v files.

2. Optionally load synthesis-based .db files to describe the black
boxes after step number 1.

3. Optionally load the netlist or RTL descriptions for black boxes
after step number 2.
B-13

Library Loading Order

B-14

Appendix B: Formality Library Support: Library Loading Order

C
Reference Lists C

This appendix provides reference tables that describe Formality
shell variables and commands.

This appendix includes the following sections:

• Shell Variables

• Shell Commands
C-1

Shell Variables

Table C-1 lists the Tcl variables you can use to condition the
environment from the Formality shell.

Table C-1 Shell Variables

Variable Description

architecture_selection_precedence string Informs the arithmetic generator which
architecture selection method takes precedence.

bus_dimension_separator_style value Sets the VHDL/Verilog read option that controls
the bus dimension separator style used with
multidimensional buses.

bus_extraction_style value Sets the VHDL/Verilog read option that controls
the bus extraction style.

bus_naming_style value Change the characters Formality recognizes as
the enclosing characters.

bus_range_separator_style value Sets the EDIF/VHDL/Verilog read option that
controls the bus range separator style.

diagnosis_enable_error_isolation
true | false

Enables the precise diagnosis engine in Formality,
requiring you to manually instruct Formality to run
diagnosis.

diagnosis_enable_find
_matching_candidates
true | false

Determines if the diagnose command identifies
matching candidates in the other design. .

diagnosis_pattern_limit value Sets the maximum number of failing patterns that
Formality uses during diagnosis.

distributed_64bit_mode true | false Determines which type of server executable to use
on 64-bit capable machines.

distributed_processor_start_timeout
integer

Defines the time allowed for the master to start a
Formality server process and receive
acknowledgement from the server.

distributed_verification_mode string Allows Formality to perform distributed verification
when using the verify command.

distributed_work_directory string Sets the directory that will be used for the
comunication between the master and the servers.
C-2

Appendix C: Reference Lists: Shell Variables

dw_foundation_threshold value Helps select the architecture to build for the
multiplier architecture based on the value of the
dw_foundation.

edifin_blackbox_library_cell true | false Enables Formality to create black boxes for EDIF
library cells that do not contain contents.

edifin_ground_cell_name name Specifies the name of the ground cell.

edifin_ground_net_name name Specifies the name of the ground net.

edifin_power_and_ground_representation
cell | net

Specifies the power and ground representation as
either “cell” or “net.”

edifin_power_cell_name name Specifies the name of the power cell.

edifin_power_net_name name Specifies the name of the power net.

enable_multiplier_generation true | false Enables Forality to generate multiplier
architectures based on user directives.

gui_report_length_limit integer Specifies the gui report size limit.

hdlin_auto_netlist true | false Specifies whether to automatically use a netlist
reader when reading in verilog designs.

hdlin_auto_top true | false Specifies whether to automatically set and link the
top-level design when reading in designs. (Only
when using one Verilog design.)

hdlin_disable_tetramax_define true | false Controls whether the Verilog TetraMAX macro is
automatically defined for all
read_simulation_library commands.

hdlin_do_inout_port_fixup true | false Controls whether DDX-7 error messages will be
generated at link time.

hdlin_dwroot value Lets Formality know where the SYNOPSYS tree is
that contains the DesignWare components
instantiated in any of the hierarchies read in.

hdlin_dyn_array_bnd_check Controls whether logic is added to check the
validity of array indices

hdlin_enable_verilog_assert true | false Controls whether SystemVerilog ASSERT (and
related) statements in Verilog 95 and 2001 source
files are treated as errors (the default) or ignored.

Table C-1 Shell Variables (Continued)

Variable Description
C-3

Shell Variables

hdlin_error_on_mismatch_message
true | false

Works with the hdlin_warn_on_mismatch variable
to control the severity of messages alerting you to
possible mismatches between simulation and
synthesis.

hdlin_ignore_builtin true | false Controls whether to ignore or not ignore the
built_in pragma in VHDL files.

hdlin_ignore_dc_script true | false Controls whether to ignore or not ignore the
dc_script_begin and dc_script_end pragmas in
Verilog/VHDL files.

hdlin_ignore_full_case true | false Controls whether to ignore or not ignore the
full_case pragma in Verilog files.

hdlin_ignore_label true | false Controls whether to ignore or not ignore the label
pragma in VHDL files.

hdlin_ignore_label_applies_to true | false Controls whether to ignore or not ignore the
label_applies_to pregame in Verilog/VHDL files.

hdlin_ignore_map_to_entity true | false Controls whether to ignore or not ignore the
map_to_entity pragma in VHDL files.

hdlin_ignore_map_to_module true | false Controls whether to ignore or not ignore the
map_to_module pragma/attribute in Verilog/VHDL
files.

hdlin_ignore_map_to_operator
true | false

Controls whether to ignore or not ignore the
map_to_operator pragma in Verilog/VHDL files.

hdlin_ignore_parallel_case true | false Controls whether to ignore or not ignore the
parallel_case pragma in Verilog files.

hdlin_ignore_resolution_method
true | false

Controls whether to ignore or not ignore the
resolution_method pragma in VHDL files.

hdlin_ignore_synthesis true | false Controls whether to ignore or not ignore the
synthesis_off pragma in VHDL files.

hdlin_ignore_translate true | false Controls whether to ignore or not ignore the
translate_off and translate_on pragmas in Verilog
files.

hdlin_infer_mux default | none | all Controls MUX_OP inference for your Verilog
description.

hdlin_interface_only design Loads the specified designs as black boxes (pin
names and directions only).

Table C-1 Shell Variables (Continued)

Variable Description
C-4

Appendix C: Reference Lists: Shell Variables

hdlin_library_directory string Designates all designs contained within the
specified directories as TECHNOLOGY designs.

hdlin_library_ enhanced_analysis
true | false

Controls the analysis of Verilog switch primitives.

hdlin_library_ file string Designates all designs contained within the
specified files as TECHNOLOGY files.

hdlin_multiplier_architecture none | csa |
nbw | wall | dw_foundation

Elaborates all multipliers using the multiplier
architecture in the file specified when one of the
read command is run.

hdlin_normalize_blackbox_busses
true | false

Controls how Formality names black box buses
during link operation.

hdlin_synroot name Points to the top-level directory in Design Compiler
version you used to generate a MDB or DDC
database.

hdlin_unresolved_modules
black_box | error

Controls whether Formality errors and stops
during the elaboration/linking process when there
are unresolved references.

hdlin_verilog_95 true | false Controls the default Verilog language
interpretation of the Formality RTL reader.

hdlin_verilog_wired_net_interpretation
string

Specifies whether non-wire nets are resolved
using a simulation or a synthesis interpretation.

hdlin_vhdl_87 true | false Controls the default VHDL language interpretation
of the Formality RTL reader.

hdlin_vhdl_auto_file_order true | false Enables read_vhdl to automatically order the
specified files.

hdlin_vhdl_forgen_inst_naming string Specifies the scheme that should be used to name
component instances within VHDL for -generate
statements.

hdlin_vhdl_fsm_encoding binary | 1hot Specifies the FSM encoding for your VHDL
description.

hdlin_vhdl_integer_range_constraint
true | false

Controls whether Formalilty adds logic to constrain
the value of integer ports and registers to match
the integer range constraint specified in the VHDL.

hdlin_vhdl_others_covers_extra_states
 true | false

Controls if Formality uses others clauses to
determine how unreachable states are handled..

Table C-1 Shell Variables (Continued)

Variable Description
C-5

Shell Variables

hdlin_vhdl_presto_naming true | false Controls the generation of operator names
inferred from VHDL.

hdlin_vhdl_presto_shift_div Controls the implementation of a divide by a
constant power of two.

hdlin_vhdl_strict_libs true | false Controls whether a strict mapping of VHDL
libraries will be used during synthesis.

hdlin_vhdl_use_87_concat true | false Controls whether the IEEE Std 1076-1987 style
concantenations are used in the IEEE Std 1076-
1993 VHDL code.

hdlin_warn_on_mismatch_message
message_id_list

Works with the hdlin_error_on_mismatch variable
to control the severity of messages alerting you to
possible mismatches between simulation and
synthesis.

impl Indicates the current implementation design.

message_level_mode
 error | warning | info

Sets the message severity threshold that
Formality uses during verification.

mw_logic0_net Specifies the name of the Milkyway ground net.

mw_logic1_net Specifies the name of the Milkyway power net.

name_match all | none | port | cell Controls whether compare matching uses object
names or relies solely on function and topology to
match compare points.

name_match_allow_subset_match
 strict | any | none

Specifies whether to use subset (token)-based
name matching, and if so, what method to use.

name_match_based_on_nets true | false Controls whether compare point matching will be
based on net names or not where appropriate.

name_match_filter_chars char_list Specifies the characters that should be ignored
when the name matching filter is used.

name_match_flattened_hierarchy_
separator_style char

Specifies the separator used in path names
Formality creates when it flattens a design during
hierarchical verification.

name_match_multibit_register_
reverse_order true | false

Specifies to reverse the bit order of the bits of a
multibit register.

name_match_net Specifies whether name matching attempts to
reference nets to implementation nets.

Table C-1 Shell Variables (Continued)

Variable Description
C-6

Appendix C: Reference Lists: Shell Variables

name_match_pin_net Specifices whether name matching attempts to
match hierarchical pins to nets

name_match_use_filter true | false Specifies whether the built-in name matching filter
should be used.

ref Indicates the current reference design.

schematic_expand_logic_cone
 true | auto | false

Specifies the schematic view of the logic cone
display the internals of techlib cells and
DesignWare components.

search_path dirlist Specifies directories searched for design and
library files specified without directory names.

sh_arch Indicates the current system architecture of the
machine you are using.

sh_continue_on_error true | false Controls whether processing continues when
errors occur.

sh_enable_page_mode true | false Specifies to display long reports one screen at a
time.

sh_product_version value Specifies the version of the application.

sh_source_uses_search_path
true | false

Causes the source command to use the
search_path variable to search for files.

signature_analysis_allow_net_match Specifies whether signature analysis utilizes net-
based matching methods.

signature_analysis_allow_subset_match Specifies whether signature analysis uses subset
matching methods.

signature_analysis_match_
blackbox_input true | false

Specifies whether signature analysis attempts to
match previously unmatched black box inputs.

signature_analysis_match_
blackbox_output true | false

Specifies whether signature analysis attempts to
match previously unmatched black box outputs.

signature_analysis_match_
compare_points true | false

Specifies whether signature analysis attempts to
match compare points.

signature_analysis_match_datapath
true | false

Controls whether to automatically attempt to
match previously unmatched datapath blocks and
their pins during signature analysis.

signature_analysis_match_hierarchy
true | false

Controls whether to automatically attempt to
match previously unmatched hierarchy blocks and
their pins during signature analysis.

Table C-1 Shell Variables (Continued)

Variable Description
C-7

Shell Variables

signature_analysis_match_net
true | false

Controls whether signature analysis will attempt to
match reference nets to implementation nets.

signature_analysis_match_pin_net
true | false

Controls whether signature analysis will attempt to
match hierarchical pins to nets.

signature_analysis_match_primary_input
true | false

Controls whether signature analysis will attempt to
match previously unmatched primary inputs or not.

signature_analysis_match_primary_
output true | false

Controls whether signature analysis will attempt to
match previously unmatched primary outputs or
not.

signature_analysis_matching
true | false

Controls whether signature analysis will be used to
help match compare points.

svf_datapath true | false Controls whether Formality processes the
transformations found in the SVF file.

synopsys_root pathname Sets the value of the $SYNOPSYS environment
variable.

verification_assume_constant_reg_init
true | false

Controls how Formality propagates constants
through possible constant registers.

verification_assume_reg_init
none | conservative | liberal | liberal0 |
liberal1

Controls the assumptions that Formality makes
about the initial state of registers.

verification_asynch_bypass true | false Controls the verification of registers with
asynchronous controls that operate by creating a
combinational “bypass” around the register
against registers with asynchronous controls that
operate only by setting the register state.

verification_auto_loop_break
true | false

Performs simple loop breaking by cutting the nets.

verification_blackbox_match_mode
any | identity

Defines how Formality matches comparable black
boxes during verification.

verification_clock_gate_hold_mode
none | low | high | any

Specifies whether Formality should allow the next
state of a flip-flop whose clock is gated to be
considered equivalent to that of a flip-flop whose
clock is not gated.

verification_constant_prop_mode
all | user | none

Specifies how Formality propagates constants
during linking from the top level to a lower level
when verifying a lower-level block.

Table C-1 Shell Variables (Continued)

Variable Description
C-8

Appendix C: Reference Lists: Shell Variables

verification_datapath_effort_level
low | medium | high | unlimited |
automatic

Defines the effort level Formality applies during
datapath block verification.

Verification_effort_level Sepcifies the effort level to use when verifying two
designs.

verification_failing_point_limit value Specifies the number of failing compare points
identified before Formality halts the verification
process.

verification_ignore_unmatched_
implementation_blackbox_input
true | false

Defines whether Formality allows unmatched
implementation blackbox input pins in a
succeeding verification.

verification_incremental_mode
true | false

Controls whether the verify command runs
verification incrementally.

verification_inversion_push true | false Defines whether Formality attempts to correct
failing verifications by checking for cases where
data inversion has been moved across register
boundaries.

verification_match_undriven_signals
true | false

Specifies whether Formality should identify and
match undriven signals.

verification_merge_duplicated_registers
true | false

Specifies whether Formality should identify and
merge duplicated registers.

verification_parameter_checking
true | false

Enables parameter checking for technology library
register cells and black box cells.

verification_partition_timeout_limit Causes Formality to terminate processing of any
partition after the timeout limit is reached.

verification_passing_mode
consistency | equality

Sets the verification mode.

verification_progress_report_interval
integer

Specifies the interval between progress reports
during verification, in minutes.

verification_propagate_const_reg_x
true | false

Specifies how Formality propagates don't-care
states through reconvergent-fanout-dependent
constant-disabled registers.

verification_set_undriven_signals
 X | Z | 0 | 1 | PI

Specifies how Formality treats undriven nets and
pins during verification.

verification_status Returns the status of the most recent verification,
if any.

Table C-1 Shell Variables (Continued)

Variable Description
C-9

Shell Variables

Shell Commands

Table C-2 lists the shell commands that you can invoke from within
Formality.

verification_super_low_effort_first_pass
true | false

Controls wheter Formality makes a preliminary
super-low-effort verification attempt on all
compare points.

verification_timeout_limit value Specifies a wall-clock time limit for how long
Formality spends in verification.

verification_use_partial_modeled_cells
true | false

Directs Formality to use the partial modeled cells
behavior as the function of test cells, if no other
function is present.

verification_verify_unread_
compare_points true | false

Controls whether or not Formality verifies unread
compare points.

verification_verify_unread_tech_cell_pins
true | false

Allows individual unread input pins of tech library
cells in the ref. to be matched with the
corresponding cells in the impl design. and treated
as primary outputs for verification.

Table C-2 Shell Commands

Command Description

add_distributed_processors
[machine machine...] [-lsf]
-nservers -options

Sets up a distributed processing environment and
allows distributed equivalence checking verification.

alias [name] [def] Creates a pseudo-command that expands to one or
more words, or lists current alias definitions.

cputime Returns the CPU time used by the Formality shell.

create_constraint_type
type_name designID

Creates a named user-defined (arbitrary) constraint
type.

create_container containerID Creates a new container.

create_cutpoint_blackbox This command is obsolete with the 2004.06 release.
Use set_cutpoint instead.

Table C-1 Shell Variables (Continued)

Variable Description
C-10

Appendix C: Reference Lists: Shell Commands

current_container [containerID] Establishes or reports the current container.

current_design [designID] Establishes or reports the current design.

debug_library_cell
[cell_name]

Runs a diagnosis on the most recent verification.

diagnose [-all | failing_points_list]
[-effort_level low|medium|high]
[-pattern_limit limit] [-r]

Runs a diagnosis on the most recent verification.

echo [-n] [Iargument...] Echoes arguments to standard output.

elaborate_library_cells Resolves cell references before verifying the library.

error_info Prints extended information on errors from last
command.

exit Exits the Formality shell.

find_cells [-of_object objectID]
[-library_cells | -nolibrary_cells]
[-type ID_type]
[cellID_list]

Lists cells in the current design.

find_designs [object_list]
[-passing] [-failing] [-aborted]
[-not_verified]

Returns a list of designs.

find_nets [object_list] [-hierarchy]
find_nets [-of_object objectID]
[-type ID_type]

Returns a list of nets.

find_pins [object_list] [-in] [-out]
[-inout]
find_pins [-of_object objectID] [-in] [-out
] [-inout] [-hierarchy]
[-type ID_type]

Returns a list of pins.

find_ports [object_list] [-in] [-out]
[-inout]
find_ports [-of_object objectID] [-in] [-out
] [-inout] [-type ID_type]

Returns a list of ports.

find_references [design_list]
[-black_box] [-hierarchy]
find_references [-of_object objectID]

Returns a list of designs instantiated within the
specified design(s).

get_unix_variable variable_name Returns the value of a UNIX environment variable.

Table C-2 Shell Commands (Continued)

Command Description
C-11

Shell Commands

group cell_list -design_name name
[-cell_name name]

Creates a new level of hierarchy.

guide Puts Formality into guide mode, supporting
guidance for all the SVF features.

guide_architecture_db
[-file file_name] [libraries]

Guides Formality on the association of a db file with
an architectural implementation.

guide_architecture_netlist
[-file file_name] [libraries]

Guides Formality on the association of a netlist file
with an architectural implementation.

guide_change_names
-design designName
[-instance instanceName]
[changeBlock]

Guides Formality on changes in the naming of
design objects.

guide_datapath
-design designName
[-instance instanceName]
[changeBlock]

Guides Formality in identifying a datapath
subdesign.

guide_fsm_reencoding
-design <design_name>
-previous_state_vector prevList
-current_state_vector currList
-state_reencoding stateList

Guides Formality on the changes in the encoding of
the finite-state machine.

guide_group
-design designName
[-instance instanceName]
[-cells cellList]
-new_design newDesignName
-new_instance newInstanceName
[groupBlock]

Guides Formality on the hierarchy created around
design objects.

guide_multiplier
-design designName
[-instance instanceName]
-arch arch
-body fileName

Guides Formality in identifying a subdesign as a
multiplier with a specific architecture.

guide_reg_constant
[-design designName]
instanceName
constantVal

Guides Formality on the architecture of the SVF
file’s constant register information.

Table C-2 Shell Commands (Continued)

Command Description
C-12

Appendix C: Reference Lists: Shell Commands

guide_reg_duplication
[-design designName]
-from fromReg
-to toList

Guides Formality on the architecture of the SVF
file’s duplicate register information.

guide_reg_merging
[-design designName]
-from fromReg
-to toList

Guides Formality on the architecture of the SVF
file’s merged register information.

guide_transformation
 -design designName
-type type
-input inputList
-output outputList
[-control controlList]
[-virtual virtualList]
[-pre_resource preResourceList]
[-pre-assign preAssignList]
[-post_resource post_ResourceList]
[-post_assign postAssignList]
[-datapath datapathList]

Guides Formality on the nature of datapath
transformations.

guide_ungroup
-design designName
[-instance instanceName]
[-cells cellList] [-all]
[-small] [-flatten]
[-start_level] [ungroupBlock

Guides Formality on removing hierarchy from
design objects.

guide_uniquify
 -design designName
[uniquifyBlock]

Guides Formality creating unique instances for
design objects.

guide_ununiquify
-design designName
[ununiquifyBlock]

Integrates uniquified instances back to their original
designs..

help [command] Returns information about Formality shell
commands.

history [-h] [-r] [args...] Displays or modifies the commands recorded in the
history list.

library_verification mode Transfers Formality from one of the design
verification modes to cell library verification mode.

Table C-2 Shell Commands (Continued)

Command Description
C-13

Shell Commands

list_libraries Lists technology libraries currently loaded.

list_key_bindings Displays all the key bindings and edit mode of the
current shell session.

man [command] Displays man pages for Formality shell commands.

match [-datapath] [-hierarchy] Matches compare points.

memory Reports memory used by the Formality shell.

printenv variable_name Prints the values of environment variables.

printvar pattern Prints the values of one or more variables.

proc_args proc_name Displays the formal parameters of a procedure.

proc_body proc_name Displays the body of a procedure.

quit Exits the Formality shell.

read_container
[-r | -i | -container containerID]
[-replace]
file

Reads a previously written container into the
Formality environment.

read_db
[-r | -i | -container containerID]
 [-libname library_name]
[-technology_library] [-merge]
[-replace_black_box] file_list

Reads Synopsys .db designs or technology (cell)
libraries.

read_ddc
[-r | -i | -container containerID]
[-libname library_name]
[-technology_library] file_list

Reads designs from a .ddc database.

read_edif
[-r | -i | -container containerID]
[-libname library_name]
[-work_library library_name]
[-technology_library] file_list

Reads one or more EDIF files into the Formality
environment.

read_fsm_states file [designID] Reads finite state machine (FSM) states.

read_mdb
[-r | -i | -container containerID]
[-libname library_name]
[-technology_library]
-cell_name cell_name
[-design design_name] mdb_path_name

Reads designs from a Milkyway database.

Table C-2 Shell Commands (Continued)

Command Description
C-14

Appendix C: Reference Lists: Shell Commands

read_simulation_library
[-r | -i | -container containerID]
[-libname library_name]
[-work_library library_name]
[-skip_unused_udps] [-write_verilog]
[-save_binary] [-merge]
[-replace_black_box]
[-halt_on_error] file_list

Reads a Verilog simulation library into the Formality
environment.

read_verilog
[-r | -i | -container containerID]
[-libname library_name]
[-work_library library_name]
[-netlist] [-technology_library]
[-f vcs_option_file] [-define]
[-vcs “VCS options”]
[-01 | -95] file_list

Reads one or more Verilog design files or
technology (cell) libraries into the Formality
environment.

read_vhdl
[-r | -i | -container containerID]
[-libname library_name]
[-work_library library_name]
[-technology_library] [-87 | -93] file_list

Reads one or more VHDL files into the Formality
environment.

redirect
[-append] file_name { command }
string file_name
string command

Redirects the output of a command to a file.

remove_black_box
[design_list] -all

Undoes the set_black_box command.

remove_compare_rules
[designID]

Removes all user-defined compare rules.

remove_constant
-all [-type ID_type] instance_path ...

Removes specified or all user-defined constants.

remove_constraint
constraint_name

Removes external constraints from the control
points of a design.

remove_constraint_type
type_name

Removes named user-defined external constraint
types created using the create_constraint_type
command.

remove_container
container_list -all

Removes one or more containers from the Formality
environment.

Table C-2 Shell Commands (Continued)

Command Description
C-15

Shell Commands

remove_cutpoint
object_list [-type objectID_type] -all

Removes the specified or all user-defined cutpoints.
Formality accepts this command only in setup
mode.

remove_cutpoint_blackbox This command is obsolete with the 2004.06 release.
Use remove_cutpoints instead.

remove_design
[-hierarchy] [-shared_lib] design_list

Removes designs from the Formality environment
and replaces them with a black box.

remove_design_library
library_list -all

Removes one or more design libraries from the
Formality environment.

remove_distributed_processors
 machine machine ... | -all

Removes servers for the distributed processing,
which were added using
add_distributed_processors.

remove_dont_verify_point
[-type ID_type]
[object_1 [object_2] ...] [-all]

Undoes the set_dont_verify_point command for the
specified objects.

remove_equivalence [-type ID_type]
item1 item2 -all

Removes one or all user-defined equivalences.

remove_guidance
[-id <name>] -design <design_name>
{ <cell_name>:<new_design_name> ...}

Removes all SVF information that was previously
entered through guidance commands or through the
set_svf command.

remove_inv_push [-shared_lib]
objectIDlist -all

Removes user-defined inversion push.

remove_library library_list -all Removes one or more technology libraries from the
Formality environment.

remove_object objectID
[-shared_lib] [-type ID_type]

Removes one or more technology libraries from the
Formality environment.

remove_parameters parameter_list
[designID_list ...]
-all_designs

Removes user-defined, design-specific parameters.

remove_resisitive_drivers Removes pull-ups, pulldowns, bus holders, and so
on.

remove_user_match [-all] [-type type]
[instance_path]

Un-matches objects previously matched by the
set_user_match command.

Table C-2 Shell Commands (Continued)

Command Description
C-16

Appendix C: Reference Lists: Shell Commands

rename_object objectID -file filename
[new_name]
[-type ID_type] [-shared_lib]
[-reverse]
[-container containerID]

Renames one or more design objects.

report_aborted_points
[-compare_rule] [-loop] [-hard]
[-unverified] [-substring string]
[-point_type point_type]
[-status status]

Produces information about compare points not
verified.

report_architecture
[-set_architecture |
[-hdlin_multiplier_architecture |
-fm_pragma | -all | instance_path]

Displays the architecture used to implement the
specified instance as well as what caused the
selection of that instance.

report_black_boxes
[design_list | -r | -i | -con containerID]
[-all | -unresolved | -interface_only | -empty
| -set_black_box]

Lists all the black boxes in a design.

report_cell_list [-r | -i] [-matched]
[-unmatched] [-verify]
[-passing] [-failing] [-aborting]
[-filter wildcard_pattern]

Reports library cells depending on the option
specified. This command is available only in the
library verification mode.

report_compare_points This command is obsolete. Use
report_user_matches and
report_dont_verify_points commands instead.

report_compare_rules [designID] Produces information about user-defined compare
rules.

report_constants [objectID ...] Produces information about user-defined constants.

report_constraint [constraint_name]
[-long]

Provides information about constraints.

report_constraint_type [type_name]
[-long]

Provides information about constraint types.

report_containers Produces a list of containers.

report_cutpoints Reports all user-specified cutpoints.

report_design_libraries [item_list] Produces information about design libraries.

report_designs [item_list] Produces information about designs.

Table C-2 Shell Commands (Continued)

Command Description
C-17

Shell Commands

report_distributed_processors Reports all servers currently in the list of distributed
servers and identifies the distributed working
directory.

report_dont_verify_points Reports compare points disabled by the
set_dont_verify_points command.

report_environment Produces information about user-defined
parameters that affect the verification and simulation
environment. This command will be obsolete in a
future release. It is recommended that you use the
printvar Tcl command instead of using this
command.

report_equivalences Produces information about user-defined
equivalences.

report_error_candidates
[-match] [-expand]

Produces information about error candidates for the
most recent verification.

report_failing_points [-compare_rule]
[-matched] [-unmatched]
[-substring string]
[-point_type point_type]
[-status status]

Produces information about compare points that fail
verification.

report_fsm [designID | -name FSM_name] Produces information about state encoding.

report_guidance
[-datapath [-long]] [-to <filename>]

Reports to the transcript, or optionally to a file, all
SVF information that was previously entered
through guidance commands or through the SVF
command.

report_hdlin_mismatches
[-summary | -verbose] [-reference]
[-implementation]
[-container container_name]

Reports and summarizes the RTL simulation/
synthesis mismatches encountered during design
linking.

report_hierarchy [designID] Produces information about the hierarchy of a
design.

report_inv_push [designID] Produces information about user-defined inversion
push.

report_libraries [-short] [library_list] Produces information about technology libraries.

report_loops [-ref | -impl] [-limit N]
[-unfold]

Reports loops or portions of loops in either the
reference or implementation designs from the last
verification run.

Table C-2 Shell Commands (Continued)

Command Description
C-18

Appendix C: Reference Lists: Shell Commands

report_matched_points
[-compare_rule] [-datapath]
[-substring string]
[-point_type point_type]
[-status status] [-except_status status]
[-method matching_method] [-last]
[[-type ID_type] objectID...]

Reports all design objects (including compare
points) matched by the match command.

report_parameters [design_list] Produces information about user-defined
parameters.

report_passing_points
[-compare_rule]
[-substring string]
[-point_type point_type]
[-status status]

Produces information about compare points that
passed the most recent verification.

report_status [-pass] [-fail] [-abort] Reports the current status of verification.

report_svf This command has been replaced with
report_guidance.

report_truth_table
[-display fanin]
[-fanin {list of signals}]
[-constraints {signal=[0/1] }+]
[-nb_lins int]
[-max_line int]
[-max_fanin int]

Generates and prints a truth table for a given signal.

report_unmatched_points
[-compare_rule] [-datapath]
[-substring string]
[-point_type point_type] [-reference]
[-implementation] [-status status]
[-except_status status]
[[-type ID_type] objectID ...]

Reports points that have not been matched.

report_user_matches
[-inverted | -noninverted | -unknown]

Generates a list of points matched by the
set_user_match command.

report_vhdl
[-switches] [-name] [configuration]
[-entity] [-package]

Produces a list of VHDL configurations, entities,
architectures, and associated generics and their
default values.

restore_session file Restores a previously saved Formality session.

Table C-2 Shell Commands (Continued)

Command Description
C-19

Shell Commands

save_session [-replace] filename Saves the current Formality session, including a
design matched state.

select_cell_list
[-cellNames/wildcards]
[-filename]
[-add cellNames/wildcards]
[-remove cellNames/wildcards]
[-clear]

Selects library cells depending on the option
specified.

set_architecture [InstanceName]
[csa | nbw | wall]

Instructs Formality to replace the multiplier
architecture of the specified instance with the
architecture defined in the command.

set_black_box [designID_list] Specifies to treat the specified design object as a
black box for verification.

set_compare_rule [designID]
-from search_pattern
-to replace_pattern [-type ID_type]
-file filename

Adds a name-matching rule that Formality applies to
a design before creating compare points.

set_constant [-type ID_type]
instance_path state

Creates a user-defined constant by setting the logic
state of a design object to 0 or 1.

set_constraint type_name
control_point_list [designID]
[-name constraint_name]
[-map mapping_list]

Creates an external constraint on a design.

set_cutpoint [-type ID_type]
objectID

Specifies that the given hierarchical pin or net is a
hard cutpoint that should be verified independently
and can be used as a free variable for verification of
downstream compare points.

set_direction [-type ID_type]
objectID direction [-shared_lib]

Defines port or pin directions.

set_dont_verify_point
[-type ID_type]
[object_1 [object_2] ...]

Prevents Formality from checking for design
equivalence between two objects that constitute a
compare point.

set_equivalence [-type ID_type]
[-propagate] [-inverted]
objectID_1 objectID_2

Declares that two nets or ports have equivalent
functions.

set_fsm_encoding encoding_list
[designID]

Enumerates FSM state names and their encodings.

Table C-2 Shell Commands (Continued)

Command Description
C-20

Appendix C: Reference Lists: Shell Commands

set_fsm_state_vector flip-flop_list
[designID]

Names state vector flip-flops in an FSM.

set_implementation_design
[designID]

Establishes the implementation design.

set_inv_push [-shared_lib] objectIDlist Adds a sequential object to the list of objects through
which Formality transports inverters for verification.

set_parameters [-flatten]
[-resolution function] [-retimed]
[designID]

Establishes verification parameters for a specific
design.

set_power_gating_style
[-hld_blocks name] -type type

Sets the power_gating_style attribute on designs or
HDL blocks, specifying the kind of retention register
cells expected.

set_reference_design [designID] Establishes the reference design.

set_svf [-append] [-ordered]
[-extenstion name] [filedirnames]

Specifies the name of the SVF (setup verification for
Formality).

set_top
[-vhdl_arch architecture_name]
[designID | -auto] [-parameter value]

Sets and links the top-level reference or
implementation design.

set_unix_variable variable_name
new_value

Sets the value of a UNIX environment variable.

set_user_match [-type ID_type]
[-inverted] [-noninverted]
object_1 object_2

Forces an object in the reference to match an object
in the implementation for compare point matching.

setup Reverts a design from a MATCHED to a SETUP
state.

sh [args] Executes a command in a child process.

simulate_patterns [-no_link] file Simulates the implementation and reference
designs by using previously failing patterns as input
vectors.

source [-echo] [-verbose] file Reads a file and evaluates it as a Tcl script.

start_gui Invokes the Formality GUI.

stop_gui Exits the Formality GUI.

Table C-2 Shell Commands (Continued)

Command Description
C-21

Shell Commands

test_compare_rule
[-designID | -r | -i] -from search_pattern
-to search_pattern
-name name [...]
[-substring string]

Tests a name matching rule on current unmatched
points or user-specified names.

translate_instance_pathname
[-type ID_type] pathname

Translates an instance-based path name to a
Formality designID or objectID.

unalias pattern Removes one or more aliases.

undo_match [-all] Undoes the results of the match command.

ungroup cell_list | -all
[-prefix prefix_name] [-flatten]
[-simple_names]

Removes a level of hierarchy.

uniquify [designID] Creates unique design names for multiply
instantiated designs in hierarchical designs.

verify
[designID_1 designID_2]
[[-inverted] |
[-type ID_type] objectID_1 objectID_2]
[[-constant0 | constant1]
[-type ID_type] objectID]
[-restart | -incremental]
[-level integer]]

Causes Formality to prove or disprove functional
equivalence given two designs or two comparable
design objects.

which filename_list Locates a file and displays its path name.

write_container
[-r | -i | -container container_name]
[-replace] [-quiet] filename

Saves the information in the current or specified
container to a file.

write_failing_patterns
[-diagnosis_patterns] [-verilog]
[-replace] filename

Saves failing patterns from the most recent
diagnosis.

Table C-2 Shell Commands (Continued)

Command Description
C-22

Appendix C: Reference Lists: Shell Commands

write_hierarchical_verification_script
[-replace] [-noconstant]
[-noequivalence] [-match type]
[-save_directory pathname]
[-save_file_limit integer]
[-save_time_limit integer]
[-level integer] filename

Runs traditional hierarchical verification and outputs
a script.

write_library_debug_scripts
[-dir directory_name]

Debugs failing cells from library verification mode in
the standard Formality design format.

Table C-2 Shell Commands (Continued)

Command Description
C-23

Shell Commands

C-24

Appendix C: Reference Lists: Shell Commands

Index

Symbols
*.ddc files 1-17, 4-5
<< operator> 6-30
> operator 3-13
>> operator 3-13

A
aborted compare points

definition of 6-34
during verification 6-35

add_distributed_processors command 6-23
add_distributed_processorscommand C-10
alias command 3-15, C-10
aliases 3-14
AND resolution function 5-6, 5-7
application commands A-3
architecture_selection_precedence variable
C-2
arguments

positional A-4
programming default values A-17
varying the number of A-17

arithmetic blocks 5-66
ASIC libraries 1-15
ASIC verification flow diagram 1-6

asynchronous bypass logic 5-43
asynchronous state-holding loops 5-10
attributes, black box 5-19
automated setup file 5-67
automated setup files 1-15
automatically

creating compare points 1-25
creating containers 1-29

B
batch mode

controlling verification 6-31
interrupting 6-32
overview 6-30
preparing for 6-30
running 6-30
scripts 6-30

batch script 1-15, 3-3
black boxes 7-14

attributes 5-19
controlling 5-16
creating cutpoints 5-13
identity check 3-26, 5-16, 5-20
loading design interfaces only 5-17
locating 7-8
marking a design as black box 5-18
overview 5-14
IN-1

port and pin direction 5-21
redefining port or pin direction 5-21
reporting 5-19
resolution function 5-6, 5-8
verifying 5-14, 7-8

boundary scan 5-39
built-in commands A-6
bus holders 5-15
bus naming

changing the style 4-6
mapping 1-28
VHDL and Verilog design styles 4-6

bus_dimension_separator_style variable 4-7,
C-2
bus_extraction_style variable C-2
bus_naming_style variable 4-6, C-2
bus_range_separator_style variable C-2

C
cells

definition 1-28
listing 3-16

change_names command 7-26
clock gating 5-45
clock tree buffering 5-41
codes for messages 3-24
color-coding

error candidates 7-31
schematic area 7-31

combinational design changes 5-38
boundary scan 5-39
clock tree buffering 5-41
internal scan insertion 5-38

command aliases 3-14
command bar

using 3-18
command log file 3-28
command names, syntax A-4
command results, returning A-5

command shortcuts 3-12
command-line editing 3-9
command-line interface, <Emphasis>see
fm_shell
commands 1-28

add_distributed_processors 6-23, C-10
alias 3-15, C-10
application, using A-3
built-in A-6
case-sensitivity 3-6
change_names 7-26
commenting A-5
cputime 3-22, C-10
create_constraint_type 5-33, C-10
create_container 3-26, 4-28, 5-6, 5-20, 5-21,

C-10
create_cutpoint_blackbox 7-45, C-10
current_container C-11
current_design C-11
debug_library_cell 8-14, C-11
diagnose C-11
echo 3-14, 3-29, C-11
elaborate_library_cells 8-9, C-11
entering commands 3-6
error_info C-11
exit C-10, C-11
find_cells 3-16, C-10, C-11
find_designs C-11
find_nets 3-16, C-11
find_pins 3-16, C-11
find_port 3-16
find_ports 3-16, C-11
find_references 3-16, C-11
flow control, Tcl A-13
fm_shell 1-22, 3-3
formality 3-5
get_unix_variable C-11
getting syntax information 3-21, 3-22
group C-12
guide C-10, C-12
guide_architecture_db C-12
guide_architecture_netlist C-10, C-12
IN-2

guide_change_names C-10, C-12
guide_datapath C-10, C-12
guide_fsm_reencoding C-12
guide_group C-12
guide_multiplier C-12
guide_reg_constant C-12
guide_reg_duplication C-13
guide_reg_merging C-13
guide_transformation C-13
guide_ungroup C-13
guide_uniquify C-13
guide_ununiquify C-13
help 3-21, A-7, C-13
-help option 3-21, 3-22
history 3-10, C-13
interrupting 3-23
library_verification 8-4, C-13
line breaks 3-6
list_key_bindings C-14
list_libraries C-14
man 3-22, C-14
match 6-5, C-14
memory C-14
multiline shell commands 3-6
name_match 6-12
name_match_use_filter 6-13
nesting of A-5
positional arguments A-4
printenv C-14
printvar C-14
proc_args C-14
proc_body C-14
procedures A-7
puts 3-14
quit C-14
read_container 5-87, C-14
read_db 4-12, 4-18, 4-26, 8-5, 8-6, B-3,

C-14
read_ddc 4-21, C-14
read_edif 4-18, 4-26, C-14
read_fsm_states 5-55, C-14
read_mdb 4-20, C-14

read_simulation_library 4-16, B-3, C-15
read_verilog 4-14, 4-18, 4-26, 8-5, 8-6, C-15
read_VHDL 4-18, 4-26
read_vhdl 4-14, C-15
readt_vhdl 4-26
recalling 3-12
redirect 3-13, C-15
remove_black_box C-15
remove_compare_rules 6-6, 7-23, C-15
remove_constant 5-24, C-15
remove_constraint 5-34, C-15
remove_constraint_type 5-34, C-15
remove_container 5-83, C-15
remove_cutpoint 5-14
remove_cutpoint_blackbox C-16
remove_design 5-81, C-16
remove_design_library 5-82, C-16
remove_distributed_processes C-16
remove_distributed_processors 6-25
remove_dont_verify_point 6-21
remove_dont_verify_points C-16
remove_equivalence 5-26, 5-27, C-16
remove_guidance C-16
remove_inv_push C-16
remove_library 5-82, 5-83, C-16
remove_parameters C-16
remove_resisitive_drivers C-16
remove_user_match 6-6, 7-17, C-16
rename_object 7-25, 7-26, C-17
report_aborted_points 6-33, C-17
report_architecture 5-65, C-17
report_black_box 5-19
report_black_boxes C-17
report_cell_list 8-7, C-17
report_compare_points C-17
report_compare_rules 7-23, C-17
report_constants C-17
report_constraint 5-35, C-17
report_constraint_type 5-35, C-17
report_containers C-17
report_cutpoint C-17
report_cutpoints 5-13
IN-3

report_design_libraries C-17
report_designs C-17
report_distributed_processors 6-24, C-18
report_dont_verify_points 6-21, C-18
report_environment C-18
report_equivalences C-18
report_error_candidates C-18
report_failing_points 6-33, C-18
report_fsm 5-58, C-18
report_guidance 5-70, 5-75, C-18
report_hdlin_mismatches C-18
report_hierarchy C-18
report_inv_push C-18
report_libraries C-18
report_loops 5-11, C-18
report_matched_points 6-7
report_parameters C-19
report_passing_points C-19
report_power_gating 5-54
report_status 8-13, C-19
report_svf C-19
report_truth_table 8-14, C-19
report_unmatched_inputs 7-7
report_unmatched_points 6-6, C-19
report_user_matches 7-18, C-19
restore_session 5-88, C-19
returning results 3-6
save_session 5-86, C-20
select_cell_list 8-8, C-20
set 3-28
set_architecture 5-64, C-20
set_black_box 5-18, C-20
set_compare_rule 7-19, C-20
set_constant 5-23, C-20
set_constraint 5-32, C-20
set_cutpoint 5-13, C-20
set_direction C-20
set_dont_verify_point 6-21, C-20
set_equivalence 5-25, 5-26, C-20
set_fsm_encoding 5-56, C-20
set_fsm_state_vector 5-56, C-21
set_implementation_design C-21

set_inv_push 5-51, C-21
set_parameters 5-60, C-21
set_power_gate_style 5-53
set_power_gating_style C-21
set_reference_design C-21
set_svf 5-68, 5-74, C-21
set_svf_datapath 5-68
set_top 4-21, 4-26, C-21
set_unix_variable C-21
set_user_match 5-13, 5-41, 7-15, C-21
setup 6-5, C-21
sh C-21
simulate_patterns C-21
source 3-26, 6-30, C-21
special characters A-5
start_gui C-21
stop_gui C-21
Tcl syntax A-1
test_compare_rule 7-22
translate_instance_pathname C-22
unalias 3-15, C-22
undo_match 6-7, C-22
ungroup C-22
uniquify C-22
verification_inversion_push 5-52
verify 6-17, 6-19, 6-33, 8-9, C-22
which C-22
write_container 5-85, C-22
write_failing_patterns 7-45, C-22
write_hierarchical_verification_script 6-28,

C-23
write_library_debug_scripts 8-15, C-23

commenting commands A-5
compare point matching techniques 1-26
compare points

aborted 6-34, 6-35
automatic creation of 1-25
debugging 7-14
defining your own 1-26
exact-name matching 6-11
example 1-26
failing 6-34
IN-4

listing user-matched points 7-18
mapping names between 1-24, 1-26
MATCHED state 6-4
matching 6-5
matching flow 6-3
matching techniques 6-9
matching, related variables 6-11
name filtering 6-13
name-based matching 6-10
net-name matching 6-16
non-name-based matching 6-10
objects used to create 1-24
overview of 1-24
passing 6-34
removing 7-17
removing from verification set 6-20
restart matching 6-7
signature analysis 6-14
status messages 6-34
topological equivalence 6-14
undoing match command 6-7
unmatched, reporting 6-6
unverified 6-34
verifying

single 6-17
verifying single 6-19

compare rule
testing 7-22

compare rules 7-18
checking syntax with the sed command 1-28
defining 7-19
listing 7-23
mapping object names 1-27
overview of 1-27
removing 7-23

compare_points
debugging unmatched points 6-8
revert to NOT_RUN state 6-7
unmatched, debugging techniques 6-8

complete verification 1-25
concepts

black boxes 5-14

compare points 1-24
compare rules 1-27
constants 5-22
containers 1-28
current container 4-29
cutpoints 5-11
design equivalence 1-30
design libraries 1-18
design objects 1-28
designs 4-5
don’t care information 5-3
external constraints 5-30
FSMs 5-54
implementation design 1-33
libraries 1-18
logic cones 1-32
LSSD cell 5-60
reference design 1-33
resolution functions 5-6
retimed designs 5-59
signature analysis 6-14
verification 6-17

consensus resolution function 5-7
consensus, resolution function 5-6
consistency

defined 1-11
console window

command bar 3-18, 3-20
tool bar 7-30, 7-37
transcript area 3-19

constants
defining 5-22
listing 5-24
overview of 5-22
propagating 5-22, 5-37
removing 5-24
types 5-22
user-defined 5-22

constraint module 5-33
containers

automatic creation of 1-29
IN-5

contents 1-28
creating 1-29, 4-28
current 1-30, 4-28
listing 4-28
managing 4-27
naming 4-28
overview 1-28
reading data into 1-30
removing 5-83
restoring 5-87
saving 1-16, 1-21, 5-85
setting up 4-27

control flow commands, Tcl A-13
control statements 6-31
Control-c interrupt 3-23, 6-27, 6-32
controlling

black boxes 5-16
controlling verification runtimes 6-22
copying text

from shell window 3-20
from the transcript area 3-19

coverage percentage 7-31
cputime command 3-22, C-10
create_constraint_type command 5-33, C-10
create_container command 3-26, 4-28, 5-6,
5-20, 5-21, C-10
create_cutpoint_blackbox command 7-45,
C-10
creating

containers 1-29, 4-28
.cshrc 2-2
current

container 1-30, 4-28
design 4-28

current_container command C-11
current_design command C-11
cutpoint black boxes 5-13

removing 5-14
reporting 5-13

D
data

ASIC libraries 1-15
containers 1-16, 1-21, 1-28
failing patterns 1-15, 1-20, 7-45, 7-46
.fpt files 1-15, 1-20, 7-45
.fsc files 1-16, 1-21, 5-85
.fss files 1-16, 1-22, 5-86
input file types 1-14
output file types 1-20
reading

Synopsys database files (*.db) 4-5
Verilog files 4-5
VHDL files 4-5

removing 5-81
restoring 5-87, 5-88
saving 1-16, 1-21, 1-22, 5-84
SVF files 1-15
Synopsys database files (*.db) 1-17, 4-5
Verilog files 1-15, 1-17, 4-5
Verilog simulation library files 1-17
VHDL files 1-17, 4-5

datapath support 5-67
datapath transformation 5-66
*.db files 1-17
DDC databases, designs from 4-19
DDC design database, reading 4-21
debug_library_cell command 8-14, C-11
debugging

black boxes 7-14
determing failure causes 7-7
eliminating setup possibilities 7-13
gathering information 7-4
library cells 8-14
matching with compare rules 7-18
renaming objects 7-25
schematics, viewing 7-28
setting compare points to match 7-14
subset matching 7-23
unmatched compare points 6-8
using diagnosis 7-9
IN-6

using logic cones 7-11
working with subcones 7-40

debugging compare points 7-14
debugging strategies
debugging, SVF 5-79
defining

compare points 1-26
constants 5-22
FSM states 5-54

deleting
containers 5-83
design libraries 5-82
designs 5-81
technology libraries 5-82

dereferencing variables A-5
design equivalence 5-25

overview 1-30
design flow

methodology 1-3, 1-4
design libraries

default name 4-19
libraryID 1-19
reading 1-19
removing 5-82
restoring 1-16, 5-87, 5-88
saving 5-85
viewing 1-19

design management 1-11
design objects

finding 7-28, 7-32
generating lists 7-33
overview 1-28
renaming 7-25
unmatched 1-26
used in compare point creation 1-24

design read flow 4-3
designID

overview 4-18
designs

black box 5-84
bus naming, VHDL and Verilog 4-6

constants 5-22
current 4-28
designID 4-18
EDIF 4-5
failing patterns, simulating 7-46
flattened 5-36
hierarchy separator style 5-36
implementation 1-33, 1-34
locating problem areas 7-4
overview 4-5
propagating constants 5-22
reading in process 4-3
reference 1-33, 1-34
removing 5-81
restoring 5-87
retimed 5-59
saving 5-85, 5-86
setting the top-level design 4-24
setting up 5-1
Synopsys database (*.db) 1-17, 4-5
Verilog 1-15, 1-17, 4-5
VHDL 1-17, 4-5

DesignWare 4-7
DesignWare component support 4-7
diagnose 7-9
diagnose command C-11
diagnosis

interrupting 3-23
overview 1-12

diagnosis_enable_error_isolation variable C-2
diagnosis_enable_find_matching_candidates
variable C-2
diagnosis_pattern_limit variable C-2
diagnostic messages, SVF 5-79
dimension separator styles 4-6
directives in VHDL and Verilog ignored/used
4-8
directory, work 1-21
distributed verification process 6-23

setting up environment 6-23
verifying environment 6-26
IN-7

distributed_64bit_mode variable C-2
distributed_processor_start_timeout variable
C-2
distributed_verificaiton_mode variable C-2
distributed_work_directory variable C-2
don’t care information

overview 5-3
verification modes 1-30

dw_foundation_threshold variable C-3

E
echo command 3-14, 3-29, C-11
EDIF netlists 4-5
EDIF variables 4-10

edif_ground_cell_name 4-10
edif_ground_net_name 4-10
edif_power_cell_name 4-10
edif_power_net_name 4-10
edifin_power_ground_representation 4-10

edifin_blackbox_library_cells variable C-3
edifin_ground_cell_name variable C-3
edifin_ground_net_name variable 4-10, C-3
edifin_power_and_ground_representation
variable 4-10, C-3
edifin_power_cell_name variable 4-11, C-3
edifin_power_net_name variable 4-10, 4-11,
C-3
editing, from the command line 3-9
elaborate_library_cells command 8-9, C-11
enable_dw_multiplier_in_svf variable 5-79
enable_mulitplier_generation variable C-3
enable_multiplier_generation variable 5-64
enable_power_gating variable 5-53
equality

defined 1-11
equivalences 5-25

defining 5-26
listing user-defined 5-27
removing 5-26

error candidates
color-coding 7-31
coverage percentage 7-31

error messages 3-24, 3-25
error_info command C-11
escape quoting A-5
escaping special characters A-6
exact-name compare point matching 6-11
examples

bus holder 5-15
compare point, creation 1-26
logic cone 1-33
multiply-driven nets 5-8
resolution function 5-8
schematic view window 7-29

exit command C-10, C-11
expressions

evaluation, Tcl A-12
grouping A-5

external constraint
user-defined 5-33

external constraints
creating a constraint type 5-33
overview 5-30
removing 5-34
removing constraint type 5-34
reporting 5-35
reporting constraint types 5-35
setting 5-32
types 5-31

F
failed verification 6-35
failing compare points

definition 6-34
failing patterns

applying in the logic cone view window 7-36
coverage percentage 7-31
default number 7-42
file 1-15, 1-20
IN-8

limiting 7-42
saving 7-44
simulating 7-46

features, Formality 1-3
file search path 3-28
files

*.ddc 4-5
ASIC libraries 1-15
batch script 1-15, 6-30
black boxing 5-84
command log 3-28
failing patterns 1-15, 1-20, 7-45
fm_shell_command log 1-22
format types supported 1-14
.fpt type 1-15, 1-20, 7-45
.fsc type 1-16, 1-21, 5-85
.fss type 1-16, 1-22, 5-86
input 1-14
log 1-22
name mapping 1-16
output 1-20
removing 5-81
session log 3-28
state files for FSMs 1-16, 5-55
SVF 5-69, 5-79
SVF files 1-15
SVF, producing with DC 5-68
Synopsys database (*.db) 1-17, 4-5
.synopsys_fm.setup 1-23
Verilog 1-15, 1-17, 4-5
VHDL 1-17, 4-5

find_cells command 3-16, C-10, C-11
find_designs command C-11
find_nets command 3-16, C-11
find_pins command 3-16, C-11
find_port command 3-16
find_ports command 3-16, C-11
find_references command 3-16, C-11
finding

cells 3-16
design objects 7-32

design problems 7-28
design references 3-16
lists of design objects 7-33
nets 3-16
pins 3-16
ports 3-16
unmatched black boxes 7-8

finite state machines (FSMs)
defining states individually 5-55, 5-56
listing state encoding information 5-58
overview 5-54
preparing for verification 5-54
state files 1-16, 5-55
verification 5-54

flattening designs
constant propagation 5-37
during verification 5-36
separator style 5-36

fm_shell 1-11
getting help 3-21
listing commands 3-21
starting 3-3

fm_shell command 1-22, 3-3
-f option 3-3, 3-4, 6-31
-gui option 3-4
-no_init option 3-4
syntax A-3
-version option 3-4
within GUI 3-18

fm_shell_command.log file 1-20
for loops, Tcl flow control A-14
foreach command, Tcl flow control A-15
Formality

library support B-1
supported library formats B-3

formality command 3-5
Formality introduction 1-2
Formality-generated file names, controlling
1-22
formality.log file 1-20, 7-4
formats, files 1-14
IN-9

.fpt files 1-15, 1-20, 7-45

.fsc files 1-16, 1-21, 5-85
FSM re-encoding 5-55
.fss files 1-16, 1-22, 5-86

G
gate-level netlists B-4
gate-to-gate verification 1-9
get_unix_variable command C-11
golden design 1-2, 1-33
graphical user interface (GUI)

current container 4-29
logic cone view window 7-36
overview 1-10, 3-17
starting 3-5

group command C-12
grouping expressions A-5
grouping words, Tcl commands A-6
gui, displaying during startup 3-4
gui_report_lentgh_limit variable C-3
guide command C-10, C-12
guide_architecture_db command C-12
guide_architecture_netlist command C-10,
C-12
guide_change_names command C-10, C-12
guide_datapath command C-10, C-12
guide_fsm_reencoding command C-12
guide_group command C-12
guide_multiplier command C-12
guide_reg_constant command C-12
guide_reg_duplication command C-13
guide_reg_merging command C-13
guide_transformation command C-13
guide_ungroup command C-13
guide_uniquify command C-13
guide_ununiquify command C-13

H
hdlin_auto_netlist variable 4-19, C-3
hdlin_auto_top variable 4-24, C-3
hdlin_disable_tetramax_define variable C-3
hdlin_do_inout_port_fixup variable C-3
hdlin_dwroot variable 4-8, C-3
hdlin_dyn_array_bnd_check variable C-3
hdlin_enable_presto_for_vhdl variable 5-68
hdlin_enable_verilog_assert variable C-3
hdlin_error_on_mismatch_message variable
C-2, C-4
hdlin_ignore_builtin variable C-2, C-4
hdlin_ignore_dc_script variable C-4
hdlin_ignore_full_case variable 4-9, C-4
hdlin_ignore_label variable C-4
hdlin_ignore_label_applies_to variable C-4
hdlin_ignore_map_to_entity variable C-4
hdlin_ignore_map_to_module variable C-4
hdlin_ignore_map_to_operator variable C-2,
C-4
hdlin_ignore_parallel_case variable 4-9, C-4
hdlin_ignore_resolution_method variable C-4
hdlin_ignore_synthesis variable 4-9, C-4
hdlin_ignore_translate variable 4-9, C-4
hdlin_infer_multibit variable 5-5
hdlin_infer_mux variable C-4
hdlin_interface_only variable C-4
hdlin_interface_only variables 5-17
hdlin_library_directory variable 4-14, C-5
hdlin_library_enhanced_analysis variable C-5
hdlin_library_file variable 4-14, C-5
hdlin_multiplier_architecture variable 5-63,
C-5
hdlin_normalize_blackbox_busses variable
C-2, C-5
hdlin_synroot variable C-5
hdlin_unresolved_modules variable C-5
hdlin_verilog_95 variable C-5
IN-10

hdlin_verilog_wired_net_interpretation
variable C-5
hdlin_vhdl_87 variable C-5
hdlin_vhdl_auto_file_order variable C-5
hdlin_vhdl_forgen_inst_naming variable C-5
hdlin_vhdl_fsm_encoding variable C-5
hdlin_vhdl_integer_range_constraint variable
C-5
hdlin_vhdl_others_covers_extra_states
variable C-5
hdlin_vhdl_presto_naming variable 5-67, 5-69,
C-6
hdlin_vhdl_presto_shift_div variable 5-67, C-6
hdlin_vhdl_strict_libs variable 4-18, C-6
hdlin_vhdl_use_87_concat variable C-6
hdlin_warn_on_mismatch_message variable
C-6
help

command 3-21
fm_shell commands 3-21

help command A-7, C-13
hierarchical designs 5-35

GUI representation 4-18
hierarchy separator style 5-36
propagating constants 5-37
storage of 1-29
traversing 3-16, 7-29, 7-32

hierarchical separator character, defining 5-36
hierarchical verification 6-27
history command 3-10, C-13

I
identity check, black boxes 3-26, 5-16, 5-20
if command, Tcl flow control A-13
impl variable C-6
implementation design 1-2

establishing 1-34
overview 1-33
restoring 5-88

implementation libraries 8-6
inconclusive verification status 6-35
input

file types 1-14
redirecting during batch jobs 6-30

install directory 2-2
installation 2-2
interfaces

GUI 3-17
internal scan insertion 5-38
interpreting verification results 6-31
interrupting

batch mode verification 6-32
diagnosis 3-23
fm_shell commands 3-23
verification 6-27

introduction to Formality 1-1
inversion push 5-49

environmental 5-52
instance-based 5-51

invoking
fm_shell 2-3, 3-1

isolating
design problems 7-1, 7-28
subcones 7-41

L
libraries

DesignWare 4-7
enhancing B-8
generating B-8
loading order B-12
synthesis, updating B-4
synthesis, using B-9
Verilog, using B-9

libraries, see technology libraries and design
libraries
library support B-1
library verification 8-1

debugging process 8-9, 8-14
IN-11

implementation library 8-6
initializing 8-4
process flow 8-3
reference library 8-5
reporting library cells 8-7
reporting status 8-13
sample Tcl script 8-10
specifying the cells to verify 8-8
status messages 8-13
supported formats 8-3
truth tables 8-14
verifying the libraries 8-9
vs. design verification 8-3, 8-6, 8-10

library_verification command 8-4, C-13
libraryID 1-19
limiting

failing patterns 7-42
messages 3-26

linking designs, designs
linking (with set_top) 4-11

list_key_bindings command C-14
list_key_bindings variable 3-9
list_libraries command C-14
listing

constants 5-24
fm_shell commands 3-21
previously entered commands 3-10

lists in Tcl A-8
loading design interfaces, black boxes 5-17
locating

cells 3-16
design references 3-16
nets 3-16
pins 3-16
ports 3-16
unmatched black boxes 7-8

log file 1-20, 3-28
logic cone view window

applying failed patterns 7-36
overview 7-36
removing non-controlling logic 7-40

subcones 7-40
logic cone, diagnose 7-11
logic cones 7-42

originating point 1-32
overview 1-32
termination points 1-32
viewing 7-36

loops, Tcl A-13
LSSD cell, defined 5-60

M
man command 3-22, C-14
man page overview 3-22
managing

black boxes 5-16
mapping names

buses 1-28, 4-6
compare points 1-24, 1-26
compare rules 1-27
design objects 7-25
file used for 1-16

marking a design as black box 5-18
match command 6-5, C-14
MATCHED verification status 6-4
matching compare points 6-5
memory command C-14
message thresholds, setting 3-25
message_level_mode variable C-6
messages

codes 3-24
error 3-24
limiting 3-26
severity 3-24
syntax 3-24
types 3-26

methodology, design flow 1-3, 1-4
Milkyway databases, designs from 4-19
Milkyway design database, reading 4-20
multibit support 5-5
IN-12

mw_logic0_net variable 4-20, C-6
mw_logic1_net variable 4-20, C-6

N
name filtering compare point matching 6-13
name mapping (<Emphasis>see mapping
names
name_match command 6-12
name_match variable 6-11, 6-12, C-6
name_match_allow_subset_match variable
6-11, 7-24, C-6
name_match_based_on_nets variable 6-11,
6-16, C-6
name_match_filter_chars variable 6-11, 6-13,
7-23, C-6
name_match_flattend_hierarchy_separator_st
yle variable C-6
name_match_flattened_hierarchy_separator_
style variable 6-11
name_match_multibit_register_reverse_order
variable 6-11, 6-12, C-6
name_match_net variable C-6
name_match_pin_net variable C-7
name_match_use_filter command 6-13
name_match_use_filter variable 6-11, 6-13,
7-24, C-7
name_matched_flattened_hierarchy_separato
r_style variables 5-36
naming rules, register-bit grouping 5-5
nesting commands A-5, A-11
net-name compare point matching 6-16
nets

constant value 5-22
listing 3-16
setting to a constant 5-23

nets with multiple drivers 5-6

O
options, syntax A-4

OR resolution function 5-6, 5-7
output

file types 1-20
redirecting 3-13

overview
black boxes 5-14
compare points 1-24
compare rules 1-27
constants 5-22
containers 1-28
design equivalence 1-30
design libraries 1-18
design objects 1-28
designs 4-5
don’t care information 5-3
external constraints 5-30
finite state machines (FSMs) 5-54
Formality 1-2
implementation design 1-33
libraries 1-18
library support B-2
library verification 8-3
logic cones 1-32
man pages 3-22
reference design 1-33
reports 1-21
resolution functions 5-6
retimed designs 5-59
technology libraries 1-18
verification 6-17

overwriting file names 1-22

P
parameters

automatic flattening of designs 5-36
bus naming 1-28, 4-6
constant propagation 5-37
design 5-1
hierarchical separator style 5-36
identity check, black boxes 3-26, 5-20
message threshold 3-26
IN-13

multiply-driven net resolution 5-8
restoring 5-88
retimed designs 5-59
saving 5-85, 5-86

passing compare points 6-34
path, setting 2-2
pins

defining direction 5-21
listing 3-16

pins, defining direction 5-21
ports

constant value 5-22
defining direction 5-21
direction, black boxes 5-15, 5-21
listing 3-16
setting to a constant 5-23

ports, defining direction 5-21
positional arguments, commands A-4
power and ground settings 4-10
previous session, sourcing 3-28
printenv command C-14
printing

schematics 7-35
transcript area 3-19

printvar command C-14
problem areas, see troubleshooting
proc_args command C-14
proc_body command C-14
procedures

creating A-16
default A-7

process flow, general 1-12
propagating constants 5-22, 5-37
puts built-in command 3-14

Q
quick-start tutorial 2-1
quit command C-14
quotes, using A-6

R
read_container command 5-87, C-14
read_db command 4-12, 4-18, 4-26, 8-5, 8-6,
B-3, C-14
read_ddc command 4-21, C-14
read_edif command 4-18, 4-26, C-14
read_fsm_states command 5-55, C-14
read_mdb command 4-20, C-14
read_simulation_library command 4-16, B-3,
C-15
read_verilog command 4-14, 4-18, 4-26, 8-5,
8-6, C-15
read_VHDL command 4-18, 4-26
read_vhdl command 4-14, 4-26, C-15
reading

containers 5-87
FSM states 5-55
session data 5-88

reading in designs, process 4-3
redirect command 3-13, C-15
redirecting

input 6-30
output 3-13

ref variable C-7
reference design 1-2

establishing 1-34
overview 1-33

reference libraries 8-5
references, design 3-16
regression testing 1-34
remove_black_box command C-15
remove_compare_rules command 6-6, C-15
remove_constant command 5-24, C-15

-type option 5-24
remove_constraint command 5-34, C-15
remove_constraint_type command 5-34, C-15
remove_container command 5-83, C-15
remove_cutpoint command 5-14
remove_cutpoint_blackbox command C-16
IN-14

remove_design command 5-81, C-16
remove_design_library command 5-82, C-16
remove_distributed_processes command
C-16
remove_distributed_processors command
6-25
remove_dont_verify_point command 6-21
remove_dont_verify_points command C-16
remove_equivalence command 5-26, 5-27,
C-16
remove_guidance command C-16
remove_inv_push command C-16
remove_library command 5-82, 5-83, C-16
remove_parameters command C-16
remove_resisitive_drivers command C-16
remove_user_match command 6-6, 7-17,
C-16
removet_compare_rules command 7-23
removing

containers 5-83
design libraries 5-82
designs 5-81
subcones 7-41
technology libraries 5-82

rename_object command 7-25, 7-26, C-17
renaming design objects 7-25
report_aborted_points command 6-33, C-17
report_architecture command 5-65, C-17
report_black_box command 5-19
report_black_boxes command C-17
report_cell_list command 8-7, C-17
report_compare_points command C-17
report_compare_rules command 7-23, C-17
report_constants command C-17
report_constraint command 5-35, C-17
report_constraint_type command 5-35, C-17
report_containers command C-17
report_cutpoint command C-17
report_cutpoints command 5-13

report_design_libraries command C-17
report_designs command C-17
report_distributed_processors command 6-24,
C-18
report_dont_verify_points command 6-21,
C-18
report_environment command C-18
report_equivalences command C-18
report_error_candidates command C-18
report_failing_points command 6-33, C-18
report_fsm command 5-58, C-18
report_guidance command 5-75
report_guidance commands 5-70
report_guidancee command C-18
report_hdlin_mismatches command C-18
report_hierarchy command C-18
report_inv_push command C-18
report_libraries command C-18
report_loops command 5-11, C-18
report_parameters command C-19
report_passing_points command C-19
report_power_gating command 5-54
report_status command 8-13, C-19
report_svf command C-19
report_truth_table command 8-14, C-19
report_unmatched_inputs command 7-7
report_unmatched_points command 6-6, 6-7,
C-19
report_user_matches command 7-18, C-19
reporting black boxes 5-19
reports 7-4

compare rules 7-23
constants, user-defined 5-24
containers 4-28
equivalences, user-defined 5-27
finite state machine (FSMs) information 5-58
library cells 8-7
library verification results 8-13
overview 1-12, 1-21
IN-15

truth tables 8-14
requirements, Formality 1-7
resolution functions

multiply-driven nets 5-6
overview 5-6

resolving
multiply-driven nets 5-6
nets with multiple drivers 5-6

restore_session command 5-88, C-19
restoring

data 1-16, 5-87, 5-88
parameters 5-88
session 1-16, 5-88

results 6-35
retimed designs

causes for 5-59
marking as 5-59

returning shell command results A-5
rigid quoting A-5
root directory 1-23
RTL B-4
RTL designs 1-8
RTL-to-gates verification 1-8
RTL-to-RTL verification 1-8

S
save_session command 5-86, C-20
saving

containers 1-16, 1-21, 5-85
failing patterns 7-44
parameters 5-85, 5-86
session 1-22, 5-86

saving data 5-84
schematic view window

example 7-29
using to locate problems 7-28
zooming 7-34

schematic_expand_logic_cone variable C-7
schematics

printing 7-35
schematics, viewing 7-28
script file tasks 3-27
script files

batch jobs 6-30
sourcing 3-26, 6-30

search path
examining 3-29

search path, files 3-28
search_path variable 3-28, C-7
cell library verification 8-1
select_cell_list command 8-8, C-20
separating list items, Tcl commands A-9
separator character, bus names 4-7, 4-8
sequential design changes 5-42

asynchronous bypass logic 5-43
clock gating 5-45
inversion push 5-49

session data, restoring 5-88
set command 3-28
set_architecture command 5-64, C-20
set_black_box command 5-18, C-20
set_compare_rule command 7-19, C-20
set_constant command 5-23, C-20

-type option 5-23
set_constraint command 5-32, C-20
set_cutpoint command 5-13, C-20
set_direction command C-20
set_dont_verify_point command 6-21, C-20
set_equivalence command 5-25, 5-26, C-20
set_fsm_encoding command 5-56, C-20
set_fsm_state_vector command 5-56, C-21
set_implementation_design command C-21
set_inv_push command 5-51, C-21
set_parameters command 5-60, C-21
set_power_gate_style command 5-53
set_power_gating_style command C-21
set_reference_design command C-21
set_svf command 5-68, 5-74, C-21
IN-16

set_svf_datapath command 5-68
set_top command 4-21, 4-26, C-21

conditions 4-22
set_unix_variable command C-21
set_user_match command 5-13, 5-41, 7-15,
C-21
setting

implementation design 1-34
message thresholds 3-26
reference design 1-34

setting EDIF variables 4-10
setting the top-level design 4-24
setup command 6-5, C-21
setup files 1-23
setup verification in Formality (SVF) 5-73
severity rating for messages 3-24, 3-26
sh command C-21
sh_arch variable C-7
sh_continue_on_error variable C-7
sh_enable_line_editing variable 3-9
sh_enable_page_mode variable C-7
sh_line_editing_mode variable 3-9
sh_product_version variable C-7
sh_source_uses_search_path variable 3-29,
C-7
shell interface, starting 3-3
shell window

copying text 3-20
signature analysis 6-14
signature_analysis_allow_net_match variable
C-2, C-7
signature_analysis_allow_subset_match
variable C-7
signature_analysis_match_blackbox_input
variable C-7
signature_analysis_match_blackbox_output
variable C-7
signature_analysis_match_compare_point
variable C-7

signature_analysis_match_datapath variable
C-7
signature_analysis_match_hierarchy variable
C-7
signature_analysis_match_net variable C-8
signature_analysis_match_primary_input
variable 6-11, C-2, C-8
signature_analysis_match_primary_output
variable 6-11, 6-16, C-8
signature_analysis_matching variable 6-11,
6-15, C-8
simulate_patterns command C-21
simulating previously failing patterns 7-46
single-state holding elements 5-60
source command 6-30, C-21

batch jobs 6-30
-echo option 3-26
file search exception 3-29
syntax 3-26
-verbose option 3-26

sourcing
previous sessions 3-28
script files 3-26, 6-30

special characters
escaping A-6
Tcl A-5

start_gui command C-21
starting

fm_shell 2-3, 3-1
state files for FSMs 1-16, 5-55
stop_gui command C-21
subcones 7-40, 7-41
succeeded verification 6-35
supported library formats B-3
SVF 5-73

creating 5-73
reading an SVF 5-74
reading multiple SVFs 5-76
unencrypted text file 5-79
verifying multipliers 5-78
writing a text file for 5-75
IN-17

SVF file 5-67
SVF file, diagnostic messages 5-79
SVF file, producing with DC 5-68
SVF files 1-15
SVF, transformation messages 5-69
svf_datapath variable 5-66, C-8
svf_datapath, example 5-71
svf_ignore_unqualified_fsm_information
variable 5-55
switch command, Tcl flow control A-16
Synopsys database files (*.db) 1-17, 4-5
Synopsys synthesis libraries B-3
.synopsys_fm.setup file 1-23
synopsys_root variable C-8
syntax

fm_shell commands A-4
procedures A-7

T
Tcl

arguments, varying the number of A-17
break command A-15
commands that support lists A-8
continue command A-15
control flow commands A-13
expression evaluation A-12
for loops A-14
foreach command A-15
grouping words A-6
lists A-8
nesting commands A-11
overview A-1
quoting values A-6
separating list items 3-7, A-9
special characters A-5
special characters, escaping A-6
switch command A-16
user-defined variables A-10
while command A-13

Tcl variables

distributed_64bit_mode 6-25
distributed_verification_mode 6-25
distributed_work_directory 6-23
sh_source_uses_search_path 3-29

TECH_WORK library 4-12
technology libraries

default name 4-12
libraryID 1-19
nonshared 1-18
reading 1-19, 4-4
removing 5-82
restoring 1-16, 5-87, 5-88
saving 5-85, 5-86
shared 1-18, 4-29
shared and nonshared 4-28
viewing 1-19

terminating loops, Tcl A-15
test_compare_rule command 7-22
test_compare_rules 1-28
test_compare_rules command 1-28
thresholds

message level 3-26
tool bar, console window 7-30, 7-37
top-level design 4-11
topological equivalence 6-14
transcript area

copying text 3-19
printing 3-19

transcript window 7-4
transformation messages 5-69
translate_instance_pathname command C-22
traversing hierarchical designs 7-29, 7-32
troubleshooting

asynchronous state-holding loops 5-10
black boxes 7-8, 7-14
determining failure cause 7-4
determining failure causes 7-7
eliminating setup possibilities 7-13
extraneous bus drivers 5-15
failed verifications 7-1
IN-18

failing patterns, simulating 7-46
gathering information 7-4
locating problems 5-22, 7-28
logic cones, viewing 1-32
natching with compare rules 7-18
problem areas, locating 7-4, 7-28
renaming objects 7-25
retiming issues 5-60
schematics, viewing 7-28
setting compare points to match 7-14
subset matching 7-23
unmatched compare points 6-8
using diagnosis 7-9
using logic cones 7-11
verifications that won’t finish 7-4
working with subcones 7-40

truth table 8-14
tutorial 2-1

directory 2-3

U
unalias command 3-15, C-22
undo_match command 6-7, C-22
ungroup command C-22
uniquify command C-22
unmatched compare points 6-6
unverified compare points

definition 6-34
usage model diagram 1-5
used for A-5
user_defined constants 5-22
user-constants

removing 5-24
user-defined

compare points 1-26
constants 5-22
equivalences 5-25
variables, Tcl A-10

user-defined constants
reporting 5-24

user-defined equivalences
removing 5-26

user-specified file names 1-22
/usr/synopsys root directory 1-23

V
values, quoting A-6
variables

architecture_selection_precedence C-2
bus_dimension_separator_style 4-7, C-2
bus_extraction_style C-2
bus_naming_style 4-6, C-2
bus_range_separator_style C-2
dereferencing A-5
diagnosis_enable_error_isolation C-2
diagnosis_enable_find_matching_candidate

s C-2
diagnosis_pattern_limit C-2
distributed_64bit_mode C-2
distributed_processor_start_timeout C-2
distributed_verification_mode C-2
distributed_work_directory C-2
dw_foundation_threshold C-3
edif_ground_cell_name 4-10
edif_ground_net_name 4-10
edif_power_cell_name 4-10
edif_power_net_name 4-10
edifin_blackbox_library_cells C-3
edifin_ground_cell_name C-3
edifin_ground_net_name C-3
edifin_power_and_ground_representation

4-10, C-3
edifin_power_cell_name C-3
edifin_power_ground_representation 4-10
edifin_power_net_name C-3
enable_dw_multiplier_in_svf 5-79
enable_multiplier_generation 5-64, C-3
enable_power_gating 5-53
gui_report_length_limit C-3
hdlin_auto_netlist 4-19, C-3
hdlin_auto_top 4-24, C-3
IN-19

hdlin_disable_tetramax_define C-3
hdlin_do_inout_port_fixup C-3
hdlin_dwroot 4-8, C-3
hdlin_dyn_array_bnd_check C-3
hdlin_enable_presto_for_vhdl 5-68
hdlin_enable_verilog_assert C-3
hdlin_error_on_mismatch_message C-2,

C-4
hdlin_ignore_builtin C-2, C-4
hdlin_ignore_dc_script C-4
hdlin_ignore_full_case 4-9, C-4
hdlin_ignore_label C-4
hdlin_ignore_label_applies_to C-4
hdlin_ignore_map_to_entity C-4
hdlin_ignore_map_to_module C-4
hdlin_ignore_map_to_operator C-2, C-4
hdlin_ignore_parallel_case 4-9, C-4
hdlin_ignore_resolution_method C-4
hdlin_ignore_synthesis 4-9, C-4
hdlin_ignore_translate 4-9, C-4
hdlin_infer_multibit 5-5
hdlin_infer_mux C-4
hdlin_interface_only 5-17, C-4
hdlin_library_directory 4-14, C-5
hdlin_library_enhanced_analysis C-5
hdlin_library_file 4-14, C-5
hdlin_multiplier architecture 5-63
hdlin_multiplier_architecture C-5
hdlin_normalize_blackbox_busses C-2, C-5
hdlin_synroot C-5
hdlin_unresolved_modules C-5
hdlin_verilog_95 C-5
hdlin_verilog_wired_net_interpretation C-5
hdlin_vhdl_87 C-5
hdlin_vhdl_auto_file_order C-5
hdlin_vhdl_forgen_inst_naming C-5
hdlin_vhdl_fsm_encoding C-5
hdlin_vhdl_integer_range_constraint C-5
hdlin_vhdl_others_covers_extra_states C-5
hdlin_vhdl_presto_naming 5-67, 5-69, C-6
hdlin_vhdl_presto_shift_div 5-67, C-6
hdlin_vhdl_strict_libs 4-18, C-6

hdlin_vhdl_use_87_concat C-6
hdlin_warn_on_mismatch_message C-6
impl C-6
list_key_bindings 3-9
message_level_mode C-6
mw_logic0_net 4-20, C-6
mw_logic1_net 4-20, C-6
name_match 6-11, 6-12, C-6
name_match_allow_subset_match 6-11,

7-24, C-6
name_match_based_on_nets 6-11, 6-16,

C-6
name_match_filter_chars 6-11, 6-13, 7-23,

C-6
name_match_flattened_hierarchy_separator

_style 6-11, C-6
name_match_multibit_register_reverse_ord

er 6-11, 6-12, C-6
name_match_net C-6
name_match_pin_net C-7
name_match_use_filter 6-13, 7-24, C-7
name_match_user_filter 6-11
name_matched_flattened_hierarchy_separa

tor_style 5-36
ref C-7
schematic_expand_logic_cone C-7
search_path 3-28, C-7
sh_arch C-7
sh_continue_on_error C-7
sh_enable_line_editing 3-9
sh_enable_page_mode C-7
sh_line_editing_mode 3-9
sh_product_version C-7
sh_source_uses_search_path 3-29, C-7
signature_analysis_allow_net_match C-2,

C-7
signature_analysis_allow_subset_match

C-7
signature_analysis_match_blackbox_input

C-7
signature_analysis_match_blackbox_output

C-7
IN-20

signature_analysis_match_compare_point
C-7

signature_analysis_match_datapath C-7
signature_analysis_match_hierarchy C-7
signature_analysis_match_net C-8
signature_analysis_match_primary_input

6-11, C-2, C-8
signature_analysis_match_primary_output

6-11, 6-16, C-8
signature_analysis_matching 6-11, 6-15,

C-8
svf_datapath 5-66, C-8
svf_ignore_unqualified_fsm_information

5-55
synopsys_root C-8
verification_assume_constant_register_init

C-8
verification_assume_reg_init C-8
verification_asynch_bypass 5-44, C-8
verification_auto_loop_break C-8
verification_blackbox_match_mode 6-11,

C-8
verification_clock_gate_hold_mode 5-47,

5-49, C-8
verification_constant_prop_mode 5-37, C-8
verification_datapath_effort_level C-9
verification_effort_level C-9
verification_failing_point_limit C-9
verification_ignore_unmatched_implementat

ion_blackbox_input C-9
verification_incremental_mode 6-18, C-9
verification_inversion_push C-9
verification_match_undriven_signals C-9
verification_merge_duplicated_registers C-9
verification_parameter_checking C-9
verification_partition_timeout_limit C-9
verification_passing_mode C-9
verification_progress_report_interval C-9
verification_propagate_const_reg_x C-9
verification_set_undriven_signals C-9
verification_status C-9
verification_super_low_effort_first_pass

6-18, C-10

verification_timeout_limit 6-22, C-10
verification_use_partial_modeled_cells C-10
verification_verify_unread_compare_points

C-10
verification_verify_unread_tech_cells C-10

verification
batch mode 6-30
black box behavior 5-14
boundary scan 5-39
cell libraries 8-1
clock tree buffering 5-41
compare point matching 6-9
complete 1-25
consistency 1-11, 1-30
constant propagation 5-22, 5-37
controlling 6-31
controlling runtimes 6-22
CPU time 1-34
debugging failed 7-1
design equality 1-11, 1-30, 5-4
establishing environment 5-1
failed 7-7
failed status 6-35
finite state machines 5-54
finite state machines (FSMs) 5-54
flattened designs 5-36
gates-to-gates 1-9
getting ready 4-1
hierarchical 6-27
hierarchical designs 5-35, 5-36
inconclusive status 6-35
inserting cutpoints 5-11
internal scan insertion 5-38
interrupting 6-27
LSSD cells 5-60
mode 1-31
overview 1-11, 6-17
performing 6-1
problem areas, locating 7-4
problems 7-4
removing matched compare points 6-20
reporting progress 6-32
IN-21

reporting results 6-33
restoring the state of 5-88
results 6-31
retimed designs 5-59
RTL-to-gate 1-8
RTL-to-RTL 1-8
sequential design changes 5-42
setting external constraints 5-30
single compare point 6-17, 6-19
starting 6-17
status messages 6-34, 6-35
succeeded status 6-35
transformed designs 5-38
using diagnose 7-9
using logic cones 7-11
viewing results 6-34

verification_assume_constant_register_init
variable C-8
verification_assume_reg_init variable C-8
verification_asynch_bypass variable 5-44, C-8
verification_auto_loop_break variable C-8
verification_blackbox_match_mode variable
6-11, C-8
verification_clock_gate_hold_mode variable
5-47, 5-49, C-8
verification_constant_prop_mode variable C-8
verification_constant_prop_mode variables
5-37
verification_datapath_effort_level variable C-9
verification_effort_level variable C-9
verification_failing_point_limit variable C-9
verification_ignore_unmatched_implementatio
n_blackbox_input variable C-9
verification_incremental_mode variable 6-18,
C-9
verification_inversion_push command 5-52
verification_inversion_push variable C-9
verification_match_undriven_signals variable
C-9
verification_merge_duplicated_registers
variable C-9

verification_parameter_checking variable C-9
verification_partition_timeout_limit variable
C-9
verification_passing_mode variable C-9
verification_progress_report_interval variable
C-9
verification_propagate_const_reg_x variable
C-9
verification_set_undriven_signals variable C-9
verification_status variable C-9
verification_super_low_effort_first_pass
variable 6-18, C-10
verification_timeout_limit variable 6-22, C-10
verification_use_partial_modeled_cells
variable C-10
verification_verify_unread_compare_points
variable C-10
verification_verify_unread_tech_cells variable
C-10
verify command 6-17, 6-19, 6-33, 8-9, C-22
verifying a design 6-17
verifying a single compare point 6-19
verifying multipliers with SVF 5-78
Verilog files 1-15, 1-17, 4-5

naming buses 4-6
Verilog simulation libraries B-3
Verilog simulation library 4-16
Verilog simulation library files 1-17
version, displaying during startup 3-4
VHDL files 1-17, 4-5

naming buses 4-6
viewing

libraries 1-19
design 1-19
technology 1-19

schematics 7-28

W
weak quoting A-5
IN-22

which command C-22
wildcard characters 3-21
windows, managing 3-17
WORK design library 4-19
work directory 1-21
write_container command 5-85, C-22
write_failing_patterns command 7-45, C-22

write_hierarchical_verification_script
command 6-28, C-23
write_library_debug_scripts command 8-15,
C-23
writing a container to disk 5-85

Z
zooming in and out 7-34
IN-23

	About This Manual
	Introduction to Formality
	What Is Formality?
	How Does Formality Fit Into My Design Methodology?
	What Designs Can I Verify?
	Design Requirements
	Design Types
	Verification of Two RTL Designs
	Verification of an RTL Design and a Gate-Level Design
	Verification of Two Gate-Level Designs

	What Pieces Make Up Formality?
	General Process Flow
	Input and Output File Types
	Input
	Libraries

	Output
	Controlling Formality-Generated File Names
	Synopsys Setup File

	Concepts
	Compare Points
	Compare Rules
	Containers
	Design Equivalence
	Logic Cones
	Reference and Implementation Designs
	Solvers

	A Quick Start With Formality
	Before You Start
	Creating Tutorial Directories
	Tutorial Directory Contents

	Invoking the Formality Shell and GUI
	The Graphical User Interface
	Verifying fifo.vg Against fifo.v
	Specifying the Reference
	Specifying the Implementation
	Setting Up the Design
	Compare Point Matching
	Verifying the Designs
	Debugging

	Verifying fifo_with_scan.v Against fifo_mod.vg
	Verifying fifo_jtag.v Against fifo_with_scan.v
	Debugging Using Diagnosis
	For More Information

	Starting Formality
	Invoking Formality
	Starting the Shell Interface
	Invoking the GUI

	The Formality Shell Environment
	Entering Commands
	Supplying Lists of Arguments
	Editing from the Command Line
	Listing Previously Entered Commands
	Recalling Commands
	Redirecting Output
	Using Command Aliases
	Using the alias Command
	Using the unalias Command

	Listing Design Objects

	The Formality GUI Environment
	Managing Formality Windows
	Using the Formality Prompt
	Saving the Transcript
	Copying Text From the Transcript Area
	Copying Text to the Formality Prompt

	General Formality Usage Options
	Getting Help
	Interrupting Formality
	Understanding and Controlling Messages
	Setting Message Thresholds

	Working With Script Files
	Using the Command Log File
	Controlling the File Search Path
	The Tcl Source Command
	Examining the File Search Path

	Setting Basic Elements for Design Verification
	Reading in Libraries and Designs
	Technology Libraries
	Designs
	Changing Bus Naming and Dimension Separator Styles
	Supporting DesignWare Components
	Setting Variables for VHDL and Verilog Directives
	Setting EDIF Variables for Power and Ground

	Top-Level Design

	Loading the Reference Design
	Reading Technology Libraries
	Synopsys (.db) Format
	Verilog and VHDL RTL Format
	Verilog Simulation Data

	Reading Design Libraries
	Reading Milkyway and DDC Databases
	Milkyway Databases
	DDC Databases

	Setting the Top-level Design

	Loading the Implementation Design
	Setting Up and Managing Containers

	Preparing the Design for Verification
	Using Don’t-Care Cells
	Setting Up Designs
	Supporting Multibit Library Cells
	Resolving Nets With Multiple Drivers
	Eliminating Asynchronous State-Holding Loops
	Working With Cutpoints

	Working With Black Boxes
	Loading Design Interfaces Only
	Marking a Design as Black Box for Verification
	Reporting Black Boxes
	Performing Identity Checks
	Setting Pin and Port Directions for Unresolved Black Boxes

	Working With Constants
	Defining Constants
	Removing User-Defined Constants
	Listing User-Defined Constants

	Working With Equivalences
	Defining an Equivalence
	Removing User-Defined Equivalences
	Listing User-Defined Equivalences

	Working With External Constraints
	Defining an External Constraint
	Creating a Constraint Type
	Removing an External Constraint
	Removing a Constraint Type
	Reporting Constraint Information
	Reporting Information on Constraint Types

	Working With Hierarchical Designs
	Setting the Flattened Hierarchy Separator Character
	Propagating Constants

	Working With Combinational Design Changes
	Disabling Scan Logic
	Disabling Boundary-Scan in Your Designs
	Managing Clock Tree Buffering

	Working With Sequential Design Changes
	Managing Asynchronous Bypass Logic
	Setting Clock Gating
	Enabling Inversion Push
	Instance-Based Inversion Push
	Environmental Inversion Push
	Working with Retention Registers

	Working With Re-Encoded Finite State Machines
	Using the Automated Setup File for FSM Re-Encoding
	Reading a User-Supplied FSM State File
	Defining FSM States Individually
	Multiple Re-encoded FSMs In a Single Module
	Listing State Encoding Information
	Working With FSMs Re-encoded Using Design Compiler

	Working With Retimed Designs
	Working With Single-State Holding Elements
	Working With Multiplier Architectures
	Reading the Automated Setup File
	Setting the Multiplier Architecture
	Reporting Your Multiplier Architecture

	Working With Arithmetic Blocks
	Datapath Support
	Producing SVF Data with Design Compiler
	Reading the SVF Data Into Formality
	Transformation Messages
	svf_datapath Example

	Working With the Automated Setup File
	Creating an Automated Setup File
	Reading an Automated Setup File Into Formality
	Writing a Text Version of the Automated Setup File
	Reading in Multiple Automated Setup Files
	Automated Setup File Commands
	Using the Automated Setup File to Verify Multipliers

	Automated Setup File Diagnostic Messages
	SVF Conversion to Text

	Removing Information
	Removing Designs
	Removing Design Libraries
	Removing Technology Libraries
	Removing Containers
	Black Boxing Objects

	Saving Information
	Saving Containers
	Saving the Entire Formality Session

	Restoring Information
	Restoring Containers
	Restoring a Session

	Compare Point Matching and Verification
	Matching Compare Points
	Performing Compare Point Matching
	Reporting Unmatched Points
	Undoing Matched Points
	Debugging Unmatched Points
	How Formality Matches Compare Points
	Exact-Name Matching
	Name Filtering
	Topological Equivalence
	Signature Analysis
	Compare Point Matching Based on Net Names

	Performing Verification
	Verifying a Design
	Verifying a Single Compare Point
	Removing Compare Points from the Verification Set
	Controlling Verification Runtimes
	Distributing Verification Processes
	Setting Up the Distributed Environment
	Verifying Your Environment

	Interrupting Verification
	Performing Hierarchical Verification
	Using Batch Jobs
	Starting Verification
	Controlling Verification
	Interrupting Verification
	Verification Progress Reporting

	Reporting and Interpreting Results

	Debugging Failed Design Verifications
	Debugging Process Flow
	Gathering Information
	Handling Designs That Don’t Complete Verification
	Determining Failure Causes
	Debugging Using Diagnosis
	Debugging Using Logic Cones
	Eliminating Setup Possibilities
	Black Boxes
	Unmatched Points
	Matching With User-Supplied Names
	Matching With Compare Rules
	Matching With Name Subset
	Renaming User-Supplied Names or Mapping File

	Design Transformations

	Working With Schematics
	Viewing Schematics
	Traversing Design Hierarchy
	Finding a Particular Object
	Generating a List of Objects
	Zooming In and Out of a View
	Viewing RTL Source Code

	Working With Logic Cones
	Pruning Logic

	Working With Failing Patterns
	Saving Failing Patterns
	Running Previously Saved Failing Patterns

	Cell Library Verification
	Overview
	Initializing Library Verification
	Loading the Reference Library
	Loading the Implementation Library
	Listing the Cells
	Specifying a Customized Cell List
	Elaborating Library Cells
	Performing Library Verification
	Reporting and Interpreting Verification Results
	Debugging Failed Library Cells

	Tcl Syntax As Applied to Formality Shell Commands
	Using Application Commands
	Understanding the Command Syntax
	Using Special Characters
	Using Return Types

	Quoting Values
	Using Built-In Commands
	Using Procedures
	Using Lists
	Using Other Tcl Utilities
	Using Environment Variables
	Nesting Commands
	Evaluating Expressions
	Using Control Flow Commands
	Using the if Command
	Using while and for Loops
	Using while Loops
	Using for Loops

	Iterating Over a List: foreach
	Terminating a Loop: break and continue
	Using the switch Command
	Creating Procedures
	Programming Default Values for Arguments
	Specifying a Varying Number of Arguments

	Formality Library Support
	Overview
	Supported Library Formats
	Synopsys Synthesis Libraries
	Verilog Simulation Libraries
	Synthesizable RTL
	Gate-Level Netlists

	Updating Synthesis Libraries
	Library Enhancement/Generation Process
	Using Synthesis Libraries
	Using Verilog Libraries

	Library Loading Order
	Single-Source Packaging
	Multiple-Source Packaging
	Augmenting a Synthesis (.db) Library
	Augmenting a Simulation (.v) Library

	Reference Lists
	Shell Variables
	Shell Commands

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

