
Comments?
Send comments on the documentation by going
to http://solvnet.synopsys.com, then clicking
“Enter a Call to the Support Center.”

Formality®

Automated Setup File (SVF)
Manual
Version X-2005.12, December 2005

ii

Copyright Notice and Proprietary Information
Copyright © 2006 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, Cadabra, Calaveras Algorithm, CATS, CRITIC,
CSim, Design Compiler, DesignPower, DesignWare, EPIC, Formality, HSIM, HSPICE, Hypermodel, iN-Phase, in-Sync,
Leda, MAST, Meta, Meta-Software, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler, PowerMill,
PrimeTime, RailMill, RapidScript, Saber, SiVL, SNUG, SolvNet, Superlog, System Compiler, TetraMAX, TimeMill, TMA,
VCS, Vera, and Virtual Stepper are registered trademarks of Synopsys, Inc.

Trademarks (™)
Active Parasitics, AFGen, Apollo, Apollo II, Apollo-DPII, Apollo-GA, ApolloGAII, Astro, Astro-Rail, Astro-Xtalk, Aurora,
AvanTestchip, AvanWaves, BCView, Behavioral Compiler, BOA, BRT, Cedar, ChipPlanner, Circuit Analysis, Columbia,
Columbia-CE, Comet 3D, Cosmos, CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE, Cyclelink, Davinci, DC
Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design Vision,
DesignerHDL, DesignTime, DFM-Workbench, Direct RTL, Direct Silicon Access, Discovery, DW8051, DWPCI, Dynamic
Model Switcher, Dynamic-Macromodeling, ECL Compiler, ECO Compiler, EDAnavigator, Encore, Encore PQ, Evaccess,
ExpressModel, Floorplan Manager, Formal Model Checker, FoundryModel, FPGA Compiler II, FPGA Express, Frame
Compiler, Galaxy, Gatran, HANEX, HDL Advisor, HDL Compiler, Hercules, Hercules-Explorer, Hercules-II, Hierarchical

Optimization Technology, High Performance Option, HotPlace, HSIM
plus

, HSPICE-Link, i-Virtual Stepper, iN-Tandem,
Integrator, Interactive Waveform Viewer, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, JVXtreme, Liberty,
Libra-Passport, Libra-Visa, Library Compiler, Magellan, Mars, Mars-Rail, Mars-Xtalk, Medici, Metacapture, Metacircuit,
Metamanager, Metamixsim, Milkyway, ModelSource, Module Compiler, MS-3200, MS-3400, Nova Product Family,
Nova-ExploreRTL, Nova-Trans, Nova-VeriLint, Nova-VHDLlint, Optimum Silicon, Orion_ec, Parasitic View, Passport,
Planet, Planet-PL, Planet-RTL, Polaris, Polaris-CBS, Polaris-MT, Power Compiler, PowerCODE, PowerGate, ProFPGA,
ProGen, Prospector, Protocol Compiler, PSMGen, Raphael, Raphael-NES, RoadRunner, RTL Analyzer, Saturn,
ScanBand, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger, Silicon Blueprint, Silicon Early Access,
SinglePass-SoC, Smart Extraction, SmartLicense, SmartModel Library, Softwire, Source-Level Design, Star, Star-DC,
Star-MS, Star-MTB, Star-Power, Star-Rail, Star-RC, Star-RCXT, Star-Sim, Star-SimXT, Star-Time, Star-XP, SWIFT,
Taurus, TimeSlice, TimeTracker, Timing Annotator, TopoPlace, TopoRoute, Trace-On-Demand, True-Hspice,
TSUPREM-4, TymeWare, VCS Express, VCSi, Venus, Verification Portal, VFormal, VHDL Compiler, VHDL System
Simulator, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
All other product or company names may be trademarks of their respective owners.

Printed in the U.S.A.

Formality Automated Setup File (SVF) Manual, version X-2005.12

Contents

About This Manual . viii

Customer Support . x

1. Introduction to the Automated Setup File

Overview of the Automated Setup File . 1-2

Creating an Automated Setup File . 1-2

Reading an Automated Setup File Into Formality 1-3

Reading in Multiple Automated Setup Files. 1-3

Setup File Commands. 1-5

Writing a Text Version of the Automated Setup File in Formality. . . 1-6

Using the Automated Setup File to Verify Multipliers. 1-7

2. Automated Setup Commands

guide . 2-3

Syntax . 2-3

Example. 2-3
iii

guide_architecture_db. 2-4

Syntax . 2-4

Arguments . 2-4

Example. 2-5

guide_architecture_netlist . 2-6

Syntax . 2-6

Arguments . 2-6

Example. 2-7

guide_change_names . 2-8

Syntax . 2-8

Arguments . 2-8

Example. 2-9

guide_datapath . 2-10

Syntax . 2-10

Arguments . 2-10

Example. 2-11

guide_fsm_reencoding . 2-12

Syntax . 2-12

Arguments . 2-12

Example. 2-13

guide_group . 2-14

Syntax . 2-14

Arguments . 2-14

Example. 2-15
iv

guide_multiplier . 2-16

Syntax . 2-16

Arguments . 2-16

Example. 2-17

guide_reg_constant. 2-18

Syntax . 2-18

Arguments . 2-18

Examples . 2-19

guide_reg_duplication . 2-20

Syntax . 2-20

Arguments . 2-20

Example. 2-21

guide_reg_encoding . 2-22

Syntax . 2-22

Arguments . 2-22

Example. 2-23

guide_reg_merging . 2-24

Syntax . 2-24

Arguments . 2-24

Example. 2-25

guide_transformation. 2-26

Syntax . 2-27

Arguments . 2-27

Example. 2-29
v

guide_ungroup . 2-30

Syntax . 2-30

Arguments . 2-30

Example. 2-31

guide_uniquify . 2-32

Syntax . 2-32

Arguments . 2-33

Example. 2-33

guide_ununiquify . 2-34

Syntax . 2-34

Arguments . 2-35

Example. 2-35
vi

About This Manual FIX ME!

This preface includes the following sections:

• Related Publications

• Conventions

• Customer Support
vii

About This Manual

The Formality Automated Setup File (SVF) Manual provides
information about and procedures for using the .svf file to assist in
your design verification.

Related Publications

For additional information about <Product Name>, see

• Synopsys Online Documentation (SOLD), which is included with
the software for CD users or is available to download through the
Synopsys Electronic Software Transfer (EST) system

• Documentation on the Web, which is available through SolvNet at
https://solvnet.synopsys.com/DocsOnWeb

• The documentation installed with the <Product Name> software
and available through the <Product Name> Help menu

• The Synopsys MediaDocs Shop, from which you can order
printed copies of Synopsys documents, at
http://mediadocs.synopsys.com
viii

About This Manual

http://solvnet.synopsys.com
http://mediadocs.synopsys.com

Conventions

The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates command syntax.

Courier italic Indicates a user-defined value in Synopsys syntax, such as
object_name.

Regular italic A user-defined value that is not Synopsys syntax, such as
a user-defined value in a Verilog statement.

Courier bold Indicates user input—text you type verbatim—in Synopsys
syntax and examples.

Regular bold User input that is not Synopsys syntax, such as a user
name or password you enter in a GUI.

[] Denotes optional parameters, such as

pin1 [pin2 ... pinN]

... Indicates that a parameter can be repeated as many times
as necessary

| Indicates a choice among alternatives, such as

low | medium | high

(This example indicates that you can enter one of three
possible values for an option: low, medium, or high.)

_ Connects terms that are read as a single term by the
system, such as set_annotated_delay

Control-c Indicates a keyboard combination, such as holding down
the Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit>Copy Indicates a path to a menu command, such as opening the
Edit menu and choosing Copy.
ix

Customer Support

Customer support is available through SolvNet online customer
support and through contacting the Synopsys Technical Support
Center.

Accessing SolvNet

SolvNet includes an electronic knowledge base of technical articles
and answers to frequently asked questions about Synopsys tools.
SolvNet also gives you access to a wide range of Synopsys online
services including software downloads, documentation on the Web,
and “Enter a Call to the Support Center.”

To access SolvNet,

1. Go to the SolvNet Web page at http://solvnet.synopsys.com.

2. If prompted, enter your user name and password. (If you do not
have a Synopsys user name and password, follow the
instructions to register with SolvNet.)

If you need help using SolvNet, click SolvNet Help in the Support
Resources section.
x

About This Manual

http://solvnet.synopsys.com

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the
Synopsys Technical Support Center in the following ways:

• Open a call to your local support center from the Web by going to
http://solvnet.synopsys.com (Synopsys user name and
password required), then clicking “Enter a Call to the Support
Center.”

• Send an e-mail message to your local support center.

- E-mail support_center@synopsys.com from within North
America.

- Find other local support center e-mail addresses at
http://www.synopsys.com/support/support_ctr.

• Telephone your local support center.

- Call (800) 245-8005 from within the continental United States.

- Call (650) 584-4200 from Canada.

- Find other local support center telephone numbers at
http://www.synopsys.com/support/support_ctr.
xi

Customer Support

http://solvnet.synopsys.com
http://www.synopsys.com/support/support_ctr
http://www.synopsys.com/support/support_ctr

xii

About This Manual

1
Introduction to the Automated Setup File 1

The automated setup file (.svf) helps Formality understand design
changes caused by other tools used in the design flow. Formality
uses this file to assist the compare point matching and verification
process. This chapter includes the following sections:

• Overview of the Automated Setup File

• Creating an Automated Setup File

• Reading an Automated Setup File Into Formality

• Reading in Multiple Automated Setup Files

• Setup File Commands

• Writing a Text Version of the Automated Setup File in Formality

• Using the Automated Setup File to Verify Multipliers
1-1

Overview of the Automated Setup File

To use an automated setup file (file has the .svf extension), you first
enable the creation of the file in the implementation tool. Alternately,
you can manually create an automated setup file. Then you instruct
Formality to read this file at the start of the verification process.

The benefit of an automated setup file is that it provides setup
information to Formality automatically. It alleviates the need to enter
setup information manually, a task that can be time consuming and
error prone. For example, during synthesis a register might be
duplicated to improve drive strength. This register duplication is
recorded in the automated setup file. When Formality reads the .svf,
it can account for the extra register during compare point matching
and verification.

Creating an Automated Setup File

To create an automated setup file in Design Compiler, use the
set_svf command. For example, use

dc_shell> set_svf myfile.svf

Whenever Design Compiler performs a design transformation of
which Formality needs to be aware, the relevant guide command is
added to the .svf file.

If you want to append the setup information to an existing setup file,
use the following syntax.

dc_shell> set_svf -append myfile2.svf
1-2

Chapter 1: Introduction to the Automated Setup File

Reading an Automated Setup File Into Formality

To read an automated setup file into Formality, use the set_svf
command. You must read in the .svf file before you read in any
design data (other than technology libraries).

The following example reads in the automated setup file, myfile.svf.

fm_shell(setup)> set_svf myfile.svf
SVF set to ‘/home/my/designs/myfile.svf’.
1
fm_shell(setup)>

The set_svf command returns the following:

• 0 for failure

• 1 for success

If you use set_svf without specifying the .svf file to use, Formality
resets the automated setup file. However, the appropriate method for
removing the stored setup data is to use the remove_guidance
command.

Reading in Multiple Automated Setup Files

The automated setup file commands in the setup files describe
transformations in an incremental fashion. The transformation
occurs in the order in which the commands were applied as the RTL
design was processed through design implementation or
optimization. Therefore, the ability to read in multiple .svf files is
important as no command in the file can be viewed completely
independently because it describes the incremental transformation
and is reliant on the context in which it is applied.
1-3

Reading an Automated Setup File Into Formality

You can read multiple automated setup file files into Formality using
the read_svf command. To order or instruct Formality to look for
extensions other than .svf, use the -ordered or -extension
options to the set_svf command, respectively. The ability to read
in multiple setup files is useful when you have run bottom-up
synthesis on your designs, generating multiple setup files.

You use the -ordered option to indicate that the list of setup files
you specify are already ordered and should not be reordered by
timestamp. If you use -ordered and list a directory or directories
where the setup files are located, Formality might order the directory
files in any order. The following example sets the order of two setup
files, bot.svf and top.svf, for Formality to process:

set_svf -ordered bot.svf top.svf

The -extension option will load and automatically order all
matching files in the directory you define, based the extension you
define. For example, Formality automatically looks for files with the
.svf extension. If you have automated setup files in a directory with
extensions other than .svf, you use this option to instruct Formality to
read and order those files with that extension. The ordering of the
files is done using timestamp information typically found in the setup
file header information. Formality doesn’t require the timestamp
information to be in the header, and can use specific guide
commands for passing timestamp information directly. See the
following section for information on the guide commands.

The following example instructs Formality to load and order setup
files in the fmdir directory:

set_svf -extension fm fmdir
1-4

Chapter 1: Introduction to the Automated Setup File

Setup File Commands

The .svf file consists of Tcl commands that start with guide_. The
following is a list of these commands:

• guide

• guide_architecture_db

• guide_architecture_netlist

• guide_change_names

• guide_datapath

• guide_fsm_reencoding

• guide_group

• guide_multiplier

• guide_reg_constant

• guide_reg_duplication

• guide_reg_encoding

• guide_reg_merging

• guide_transformation

• guide_ungroup

• guide_uniquify

• guide_ununiquify
1-5

Setup File Commands

See Chapter 2, “Automated Setup Commands,” or the individual
command’s online man page for specific information on each
command.

You can also enter these commands manually. To do so, you must
first enter guide mode by executing the guidecommand.

The following are the restrictions you need to follow when using the
guide commands:

• None of the guide commands can trigger an immediate change
to your designs when you apply them.

• You must issue the guide commands before you issue any design
read commands. If you read in your design information and then
run the guide command, Formality issues a warning message
instructing you to remove the design information.

You can remove the setup file information that you entered using the
guidance commands or through set_svf with the
remove_guidance command. It is available in all modes of
operation (guide, setup, and so on).

Writing a Text Version of the Automated Setup File in
Formality

You can use the report_guidance command to generate a report
of all automated setup file information that you entered using the
guidance commands. The information is sent to the transcript, or
optionally to a file that you specify using the -to file_name option.
You can use the -datapath option to get a summary of the
transformations in the automated setup file.
1-6

Chapter 1: Introduction to the Automated Setup File

Use the following example to write out the automated setup file data
to an unencrypted text file.

fm_shell > report_guidance
SVF hasn’t been set.
1

fm_shell> set_svf myfile.svf
SVF set to ‘myfile.svf’.
1

fm_shell> report_guidance -to myfile.txt
SVF set to ‘myfile.svf’.
1

If you are using the automated setup file to verify multipliers, the
report_guidance command will also write out an unencrypted
Verilog netlist to the directory ./fmsvf.

Using the Automated Setup File to Verify Multipliers

The arithmetic generator in Formality can create specific types of
multipliers so the synthesized representation of your reference RTL
more closely matches your gate implementation; thereby assisting
with hard verification problems. This technique is particularly useful
for the flat netlists where Formality cannot use the Data Path Solver
(DPS) because it cannot identify the multipliers in the
implementation.

For the traditional multiplier architectures supported by Design
Compiler (CSA, NBW, and Wallace), the arithmetic generator can
generate the appropriate multiplier architectures without any
additional information. However, the more advanced multiplier
1-7

Using the Automated Setup File to Verify Multipliers

architectures from Design Compiler (mcarch and csmult) are so
customized for each instance that the arithmetic generator needs
additional information from it.

Using the automated setup file flow, you can instruct Design
Compiler to automatically create netlist Verilog files for each
multiplier in the design when performing synthesis. Design Compiler
will produce a Verilog file containing the netlist for all multipliers as
well as generate the automated setup file. Formality will verify each
of these multipliers with the DPS; if the multipliers pass verification,
Formality will load them into the reference design.

Along with the setup file, Design Compiler produces a directory
(dwsvf_) containing a Verilog netlist. You must make both the .svf file
and the dwsvf directory available for the arithmetic generator to
perform a successful verification. See “Working With Multiplier
Architectures” in the Formality User Guide for instructions on using
the arithmetic generator in Formality.

You can view the contents of the Verilog netlist passed from Design
Compiler to Formality with the report_guidance command. Using
the -to filename option causes the architecture netlists found in
the current setup file to be unencrypted. Formality copies the
encrypted netlist files to filename.orig files and the unencrypted files
overwrite the original netlists.
1-8

Chapter 1: Introduction to the Automated Setup File

2
Automated Setup Commands 2

This chapter explains each of the commands available for use in the
automated setup file. Examples are provided for each command. As
mentioned in the previous chapter, Formality can use a automated
setup file (.svf extension) to help decipher design changes caused
by other tools used in the design flow. This chapter includes the
following sections:

• guide

• guide_architecture_db

• guide_architecture_netlist

• guide_change_names

• guide_datapath

• guide_fsm_reencoding

• guide_group
2-1

• guide_multiplier

• guide_reg_constant

• guide_reg_duplication

• guide_reg_encoding

• guide_reg_merging

• guide_transformation

• guide_ungroup

• guide_uniquify

• guide_ununiquify
2-2

Chapter 2: Automated Setup Commands

guide

The guide command causes Formality to enter guide mode and
enables all guide commands. Upon invocation, Formality starts in
setup mode. After executing the guide, Formality switches to guide
mode.

SVF commands can be executed only in guide mode. Guide mode
cannot be entered after any design information (other than
technology libraries) has been read. If the design has been read, it
must be removed before guide mode can be entered.

The prompt changes to reflect the current mode, as shown below:

fm_shell (guide)>
fm_shell (setup)>
fm_shell (match)>
fm_shell (verify)>

The guide command returns 1 for success or 0 if the command fails.

Syntax

The syntax is as follows:

guide

Example

The following is an example of the guide command:

fm_shell (setup)> guide
1
fm_shell (guide)>
2-3

guide

guide_architecture_db

The guide_architecture_db command associates a .db file
with an architectural implementation.

You can specify the name of the .db file containing the associated
architecture and the names of the library files referenced in the
architectural implementation.

Syntax

The syntax is as follows:

guide_architecture_db
[-file filename]
[libraries]

Arguments

The arguments for the guide_architecture_db command are
as follows:

file filename

Specifies the name of the .db file containing the associated
architecture.

libraries

The .db files referenced in the architectural implementation.
2-4

Chapter 2: Automated Setup Commands

Example

 The following is an example of the guide_architecture_db
command:

fm_shell (guide)> guide_architecture_db -file arch.db {
gtech }
1

2-5

guide_architecture_db

guide_architecture_netlist

The guide_architecture_netlist command associates a
netlist file with an architectural implementation.

You can specify the name of the netlist file containing the associated
architecture and the names of the library files referenced in the
architectural implementation.

Syntax

 The syntax is as follows:

guide_architecture_netlist
[-file filename]
[libraries]

Arguments

The arguments for the guide_architecture_netlist
command are as follows:

file filename

Specifies the name of the netlist file containing the associated
architecture.

libraries

The .db files referenced in the architectural implementation.
2-6

Chapter 2: Automated Setup Commands

Example

The following is a usage example of the
guide_architecture_netist command:

fm_shell (guide)> guide_architecture_netlist -file arch.net
gtech.db
1

2-7

guide_architecture_netlist

guide_change_names

The guide_change_names operation lists objects that have
undergone a name change. It lists the name as it appears in the
original design and the changed name as it appears in the modified
implementation design.

Syntax

The syntax for the guide_change_names command is as follows:

guide_change_names
-design designName
[-instance instanceName]
[changeBlock]

Arguments

The arguments for the guide_change_names command are as
follows:

-design designName

The design containing the names

-instance instanceName

The instance containing the names

changeBlock

A colon-separated list specifying the object type, the old name,
and the new name
2-8

Chapter 2: Automated Setup Commands

Example

The following is an example of the guide_change_names
command:

guide_change_names \
-design test \
{ cell:U1:mycell3 \
cell:U2:mycell2 \
cell:U3:mycell1 \
 port:data:myd \
port:clock:myck \
port:q:myq }
2-9

guide_change_names

guide_datapath

The guide_datapath command identifies a datapath sub-design.

You can specify the names of the design and instance containing the
datapath and the name of the file containing the datapath description
(db or netlist format).

Syntax

The syntax is as follows:

guide_datapath
-design designName
[-instance instanceName]
-body datapathBody

Arguments

The arguments for the guide_datapath command are as follows:

-design designName

The design containing the datapath

-instance instanceName

The instance containing the datapath

-body filename

The name of the file containing the datapath description (.db or
netlist format)
2-10

Chapter 2: Automated Setup Commands

Example

The following is an example of the guide_datapath command:

fm_shell (guide)> guide_datapath -design test -body dpath.db
1

2-11

guide_datapath

guide_fsm_reencoding

You can use the guide_fsm_reencoding command to convey
information about how a state machine should be re-encoded. The
state machine re-encoding can involve a simple changing of the bit
encoding, or it can involve changing the coding style (binary to
one-hot, for example).

Syntax

The syntax for the guide_fsm_reencoding command is as
follows:

guide_fsm_reencoding
-design designName
-previous_state_vector prevList
-current_state_vector currList
-state_reencoding stateList

Arguments

The arguments for the guide_fsm_reencoding command are as
follows:

-design designName

The design containing the FSM

-previous_state_vector prevList

A list of the pre-reencoding register bits

-current_state_vector currList

A list of the post-reencoding register bits
2-12

Chapter 2: Automated Setup Commands

-state_reencoding stateList

A list of the state reencodings

Example

The following is an example of the guide_fsm_reencoding
command:

guide_fsm_reencoding \
-design myfsm_0 \
-previous_state_vector { out1_reg out0_reg } \
-current_state_vector { Q4 Q3 Q2 Q1 } \
-state_reencoding { begin:2#00:2#0001 \

ok:2#01:2#0010 \
nok:2#10:2#0100 \
end:2#11:2#1000 }
2-13

guide_fsm_reencoding

guide_group

The guide_group command groups a set of instances. This will
create an extra level of hierarchy. Use the guide_group operation to
record the register name changes that result from the creation of the
extra hierarchy. You can specify the current design context, name of
the new design and instance, and old names and new names of
register instances as options to the guide_group operation.

Syntax

The syntax for the guide_group command is as follows:

guide_group
-design designName
[-instance instanceName]
[-cells cellList]
-new_design newDesignName
-new_instance newInstanceName

[groupBlock]

Arguments

The arguments for the guide_group command are as follows:

-design designName

The name of the design containing the objects

-instance instanceName

The name of the instance containing the objects

-cells cellList

A list of the cells being grouped
2-14

Chapter 2: Automated Setup Commands

-new_design newDesignName

The name of the new design being created

-new_instance newInstanceName

The name of the instance of the new design being created

groupBlock

A colon-separated list of old and new cell names

Example

The following is an example of the guide_group command:

guide_group \
-design shift8 \
-cells { shift4_i_1 \

shift4_i_2 \
shift_4_i_2 \
shift_4_i_3 } \

-new_design foo \
-new_instance foo_i_1 \
{ shift4_i_1:foo_i_1/shift4_i_1 \
shift4_i_2:foo_i_1/shift4_i_2 }
2-15

guide_group

guide_multiplier

The guide_multiplier command identifies a sub-design as a
multiplier with a specific architecture.

You can specify the names of the design and instance containing the
multiplier, the architecture of the multiplier (csa, nbw, wall, csmult or
mcarch), and the name of the file containing the multiplier description
(.db or netlist format).

Syntax

The syntax is as follows:

guide_multiplier
-design designName
[-instance instanceName]
-arch arch
-body fileName

Arguments

The arguments for the guide_multiplier command are as
follows:

-design designName

The design containing the multiplier

-instance instanceName

The instance containing the multiplier
2-16

Chapter 2: Automated Setup Commands

-arch arch

The architecture of the multiplier: csa, nbw, wall, csmult or
mcarch

-body filename

The name of the file containing the multiplier description (.db or
netlist format)

Example

The following is an example of the guide_multiplier command:

fm_shell (guide)> guide_multiplier \
-design fei_int \
-instance mul_24/mult/mult \
-arch mcarch \
-body fei_int_DW02_mult_8_8_0

1

2-17

guide_multiplier

guide_reg_constant

The guide_reg_constant command records that a register was
optimized to a constant value by another tool in the design flow. You
specify the constant value as an argument to the
guide_reg_constant operation.

Syntax

The syntax for the guide_reg_constant command is as follows:

guide_reg_constant
[-design designName]
instanceName
constantVal

Arguments

The arguments for the guide_reg_constant command are as
follows:

-design designName

The name of the design containing the constant registers (only
the design name is required; the workspace and container are
not required)

instanceName

The hierarchical path from the specified design to the target
constant register

constantVal

The constant value
2-18

Chapter 2: Automated Setup Commands

Examples

The following are some examples of the guide_reg_constant
command.

To set the instance U1 inside design to 1:

guide_reg_constant -design test U1 1

To set the instance r:WORK/top/mid_inst_0/bot_inst_0/state[0] to
constant 0:

guide_reg_constant -design top mid_inst_0/bot_inst_0/
state[0] 0
2-19

guide_reg_constant

guide_reg_duplication

The guide_reg_duplication command records that a single
register in the reference design was duplicated in the implementation
design. This can occur if the synthesis tool determines that a register
has too many loads. You can duplicate the register so that each of
the resulting registers drives fewer loads.

Syntax

The syntax for the guide_reg_duplication command is as
follows:

guide_reg_duplication
[-design designName]
-from fromReg
-to toList

Arguments

The arguments for the guide_reg_duplication command are
as follows:

-design designName

The name of the design containing the duplicate registers

-from fromReg

The original register

-to toList

A list of the duplicated registers
2-20

Chapter 2: Automated Setup Commands

Example

The following is an example of the guide_reg_duplication
command:

guide_reg_duplication -design test -from U1 -to { U1 U2 U3 }
2-21

guide_reg_duplication

guide_reg_encoding

The guide_reg_encoding command identifies registers whose
encoding has changed (usually from binary to carry-save). For a
binary to carry-save encoding, the first bit on each line represents
the binary value while the remaining bits represent the carry save
encoding.

You can specify the name of the design containing the encoded
register, the original style of the register (binary, CS2, and so on), the
new style of the register (binary, CS2, and so on), and the register
bits that have changed.

Syntax

The syntax is as follows:

guide_reg_encoding
-design designName
-from fromStyle
-to toStyle
{bit:bit:[:bit]*}

Arguments

The arguments for the guide_reg_encoding command are as
follows:

-design designName

The name of the design containing the duplicate registers

-from fromStyle

The original style of the register (binary, CS2, and so on)
2-22

Chapter 2: Automated Setup Commands

-to toStyle

The new style of the register (binary, CS2, and so on)

{bit:bit:[:bit]*}

The register bits that have changed

Example

The following is an example of the guide_reg_encoding
command:

fm_shell (guide)> guide_reg_encoding \
-design test \
-from binary \
-to CS2 \
R[0]:R_sum[0]:R_carry[0] \
R[1]:R_sum[1]:R_carry[1]

1

2-23

guide_reg_encoding

guide_reg_merging

The guide_reg_merging command records that multiple
registers in the reference design were merged into one register in the
implementation design. This can occur if the synthesis tool
determines that two or more registers always have the same state.

Syntax

The syntax for the guide_reg_merging command is as follows:

guide_reg_merging
[-design designName]
-from fromList
-to toReg

Arguments

The arguments for the guide_reg_merging command are as follows:

-design designName

The name of the design containing the merged registers

-from fromList

A list of the merged registers

-to toReg

The final register
2-24

Chapter 2: Automated Setup Commands

Example

The following is an example of the guide_reg_merging
command:

guide_reg_merging \
-design top \
-from { Q2 Q3 } \
-to Q2
2-25

guide_reg_merging

guide_transformation

The guide_transformation command identifies registers which are
duplicates of each other.

You can specify the name of the design containing the duplicate
registers, the type of transformation, (share, tree, map or merge),
and the following lists:

• Transformation inputs

• Transformation outputs

• Transformation control signals

• Transformation virtual signals

• Resources in the transformation pre-graph

• Assignments in the transformation pre-graph

• Resources in the transformation post-graph

• Assignments in the transformation post-graph

• Datapath elements in the transformation
2-26

Chapter 2: Automated Setup Commands

Syntax

The syntax is as follows:

guide_transformation
-design designName
-type type
-input inputList
-output outputList
[-control controlList]
[-virtual virtualList]
[-pre_resource preResourceList]
[-pre_assign preAssignList]
[-post_resource postResourceList]
[-post_assign postAssignList]
[-datapath datapathList]

Arguments

The arguments for the guide_transformation command are as
follows:

-design designName

The name of the design containing the transformations

-type type

The type of transformation: share, tree, map, or merge

-input inputList

A list of the transformation inputs

-output outputList

A list of the transformation outputs

-control controlList

A list of the transformation control signals
2-27

guide_transformation

-virtual virtualList

A list of the transformation virtual signals

-pre_resource preResourceList

A list of the resources in the transformation pre-graph

-pre_assign preAssignList

A list of the assignments in the transformation pre-graph

-post_resource postResourceList

A list of the resources in the transformation post-graph

-post_assign postAssigntList

A list of the assignments in the transformation post-graph

-datapath datapathList

A list of datapath elements in the transformation
2-28

Chapter 2: Automated Setup Commands

Example

The following is an example of the guide_transformation
command:

fm_shell (guide)> guide_transformation
-design general_tree \
-type tree \
-input { 4 src1 4 src2 4 src4 } \
-output { 6 O1 } \
-control { ctrl1 = cond ctrl2 } \
-pre_resource { { 5 5 } add_7 = DIV { { src1 2 4 } { src2

2 3 ZERO 3 } } } \
pre_resource { { 5 5 } add_8 = DIV { { src1 2 4 } { src2

2 4 ZERO 5 } } } \
-pre_resource { { 5 5 } add_9 = DIV { { src1 ZERO 5 } {

src2 ZERO 5 } } } \
-pre_resource { { 6 4 4 } sub_9 = USUB { { add_9 ZERO 6 } \

{ src4 ZERO 6 } } } \
-pre_assign { O1 = { sub_9 } } \
-post_resource { { 6 7 4 3 } sub_1_root_sub_9 = USUB \

{ { src1 ZERO 6 } { src4 ZERO 6 } } } \
-post_resource { { 6 7 3 2 5 } add_0_root_sub_9 = UADD \

{ { src2 ZERO 6 } { sub_1_root_sub_9 } } } \
-post_assign { O1 = { add_0_root_sub_9 } }

1

2-29

guide_transformation

guide_ungroup

The guide_ungroup command removes a level or levels of
hierarchy. Also, you use this command to specify how registers
names are to be changed when the hierarchy is removed. You can
specify the current design context, names of the removed
hierarchical blocks, and old names and new names of compare
points as options to the guide_ungroup command.

Syntax

The syntax for the guide_ungroup command is as follows:

guide_ungroup
-design designName
[-instance instanceName]
[-cells cellList]
[ungroupBlock]

Arguments

The arguments for the guide_ungroup command are as follows:

-design designName

The name of the design containing the objects

DC ungroup options.

-instance instanceName

The name of the instance containing the objects

-cells cellList

A list of the cells being ungrouped
2-30

Chapter 2: Automated Setup Commands

ungroupBlock

A colon-separated list of old cell:new cell pairs

Example

The following is an example of the guide_ungroup command:

guide_ungroup \
-design shift8 \
-instance shift16/shift8_i_1 \
-cells { foo } \
-flatten \
{ shift4_i_1/shift2_i_1/dout_reg:dout_reg \
shift4_i_1/shift2_i_1/state1_reg:state1_reg \
shift4_i_1/shift2_i_2/dout_reg:dout_reg1 \
shift4_i_1/shift2_i_2/state1_reg:state1_reg1 \
shift4_i_2/shift2_i_2/state1_reg:state1_reg3 }
2-31

guide_ungroup

guide_uniquify

The guide_uniquify operation provides information about
components of the design that have been uniquified. When a design
is uniquified, all instances of a component instantiated multiple times
are assigned unique names and thus become unique components.
The V-SDC file will contain:

• The current design where the uniquify is to take place

• The new design names that are to be created for each uniquified
instance

Note that changing the design name does not necessarily change
the instance specific names of the registers in the design. This is
because design names don’t appear in the instance specific
pathnames of objects. However, certain combinations of this
command and the hierarchy-modifying commands guide_group
and guide_ungroup can change the names of registers and
hierarchical blocks.

Syntax

The syntax for the guide_uniquify command is as follows:

guide_uniquify
-design designName
[uniquifyBlock]
2-32

Chapter 2: Automated Setup Commands

Arguments

The arguments for the guide_uniquify command are as follows:

-design designName

The name of the design containing the objects being uniquified

uniquifyBlock

A colon-separated list of old cell:new cell pairs

Example

The following is an example of the guide_uniquify command:

guide_uniquify \
-design shift4 \
{ shift2_i_1:shift2_0 \
shift2_i_2:shift2_1 }
2-33

guide_uniquify

guide_ununiquify

The guide_ununiquify operation reverses the changes made to
the design by the guide_uniquify command. When a design is
ununiquified, all instances of a design that had been uniquified are
changed back to non-unique designs. The V-SDC file will contain:

• The current design where the ununiquify is to take place

• The new design names that are to be created for each uniquified
instance

Note that changing the design name does not necessarily change
the instance specific names of the registers in the design. This is
because design names don’t appear in the instance specific
pathnames of objects. However, certain combinations of this
command and the hierarchy-modifying command guide_group
and guide_ungroup can change the names of registers and
hierarchical blocks.

Syntax

The syntax for the guide_ununiquify operation is as follows:

guide_ununiquify
-design designName
[ununiquifyBlock]
2-34

Chapter 2: Automated Setup Commands

Arguments

The arguments for the guide_ununiquify command are as
follows:

-design designName

The name of the design containing the objects being folded

uniquifyBlock

A colon-separated list of old cell:new cell pairs

Example

The following is an example of the guide_ununiquify command:

guide_ununiquify \
-design top \
{ U2:mid \
U1:mid \
U2/U3:bot \
U1/U3:bot }
2-35

guide_ununiquify

2-36

Chapter 2: Automated Setup Commands

	About This Manual
	Introduction to the Automated Setup File
	Overview of the Automated Setup File
	Creating an Automated Setup File
	Reading an Automated Setup File Into Formality
	Reading in Multiple Automated Setup Files
	Setup File Commands
	Writing a Text Version of the Automated Setup File in Formality
	Using the Automated Setup File to Verify Multipliers

	Automated Setup Commands
	guide
	Syntax
	Example

	guide_architecture_db
	Syntax
	Arguments
	Example

	guide_architecture_netlist
	Syntax
	Arguments
	Example

	guide_change_names
	Syntax
	Arguments
	Example

	guide_datapath
	Syntax
	Arguments
	Example

	guide_fsm_reencoding
	Syntax
	Arguments
	Example

	guide_group
	Syntax
	Arguments
	Example

	guide_multiplier
	Syntax
	Arguments
	Example

	guide_reg_constant
	Syntax
	Arguments
	Examples

	guide_reg_duplication
	Syntax
	Arguments
	Example

	guide_reg_encoding
	Syntax
	Arguments
	Example

	guide_reg_merging
	Syntax
	Arguments
	Example

	guide_transformation
	Syntax
	Arguments
	Example

	guide_ungroup
	Syntax
	Arguments
	Example

	guide_uniquify
	Syntax
	Arguments
	Example

	guide_ununiquify
	Syntax
	Arguments
	Example

