
A Verilog RTL Synthesis Tool
for Heterogeneous FPGAs

Peter Jamieson and Jonathan Rose
The Edward S. Rogers Sr. Department of Electrical

and Computer Engineering
University of Toronto

Homogeneous FPGAs

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

Consist of:
1. Programmable logic

and routing
• soft logic fabric

• Basic logic unit
• Programmable Routing

Heterogeneous FPGAs

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

SOFT
LOGIC

M
EM

O
R

Y B
LO

C
K

M
EM

O
R

Y B
LO

C
K

Consist of:
1. Programmable logic

and routing
• soft logic fabric
• hard structures

2. Dedicated hard
structures

• e.g. multiplier
• e.g memory block

Fundamental Trade-off

• Hard structures provide benefit
when used

– Faster
– Smaller
– Consume less power

However…

• If hard structure not used
wasted Silicon

• Routing resources wasted
• 70-90% of FPGA area occupied by routing

Motivation of This Work

• Long term: derive more benefit from
hard structures
– By exploring the fundamental trade-off

• Academic CAD flows currently can’t
target these structures

State-of-the-Art CAD Flows
• Existing Front-end Synthesis tools do

target heterogeneous FPGAs
– Altera’s Quartus
– Xilinx ‘ISE
– Mentor’s LeanardoSpectrum
– Synplicity’s Synplify
– Synopsys’ Design Compiler FPGA
– Magma’s Blast FPGA

Goals of this Work

1. Front-end tool to map to hard structures
2. Achieve comparable results to Industrial

Front-end Synthesis
3. Deliver open source for academic

community

Our Tool
Called “Odin”

– maps Verilog HDL designs to
heterogeneous FPGA architectures

– can interface with existing CAD flows:
• Quartus
• Modelsim
• VPR (no heterogeneity)

– Can be used as front end to the following
heterogenous CAD Flow

Heterogeneous FPGA CAD Flow

• Input:
– HDL design

module small (a, b, c, out);
input[5:0] a, b, c;
output [5:0]out;

assign out = ({2'b00,a[2:0]} * b) + (b & ~c));
endmodule

Heterogeneous FPGA CAD Flow

• Parse HDL
– Icarus creates an

intermediate
representation

MODULE = small
PARAMATERS = {

{a, input, 5},
{b, input, 5},
{c, input, 5},
{out, output, 5}}

NETS = {{out, {a1}}}
EXPRESSIONS = {

{e0 = op cat, 2'b00, a},
{e1 = op*, e0, b},
{e2 = op~, c},
{e3 = op&, b, e2},
{e4 = op+, t1, t3}}

LEFT_ASSIGNMENT = {
{a1 = e4}

Heterogeneous FPGA CAD Flow

• Elaboration [Odin]
– Convert into a netlist
– Preserve high-level

Information

*

!
&

+

a

b

c

out

2'b00

Heterogeneous FPGA CAD Flow

• Optimize RTL [Odin]
– Arithmetic

Operations
– Finite State

Machines
– Multiplexers

*

!
&

+

a

b

c

out

2'b00

Heterogeneous FPGA CAD Flow

• Partial Mapping [Odin]
– Identify high-level

functions that map into
hard structures

*

!
&

+

a

b

c

out

HETEROGENEOUS FPGA LIBRARY

*
+

*
+

*

Heterogeneous FPGA CAD Flow

• Partial Mapping [Odin]
– Bind to hard structures

or soft fabric

H
ETE

R
O

G
EN

EO
U

S
STR

U
C

TU
R

E (X)

!
&

+

a

b

c

out

Heterogeneous FPGA CAD Flow

• Output
– Netlist targeting

remainder of
heterogeneous
FPGA CAD flow

module small (a, b, c, out);
input[5:0] a, b, c;
output [5:0]out;

not(c, e2);
and(b, e2, e3);
lpm_mult(a[3:0],b,e1);
lpm_add(e1,e3,out);

endmodule

Heterogeneous FPGA CAD Flow

• Input – HDL
• Odin
• Logic Optimize
• Technology Map
• Place
• Route
• Output – FPGA

bitstream

H
E

TE
R

O
G

E
N

E
O

U
S

STR
U

C
TU

R
E (X)

4-LU
T

4-LU
T

a

b

c
out

Heterogeneous FPGA CAD Flow

• Input – HDL
• Odin
• Logic Optimize
• Technology Map
• Place
• Route
• Output – FPGA

bitstream

X
g

Heterogeneous FPGA CAD Flow

• Input – HDL
• Odin
• Logic Optimize
• Technology Map
• Place
• Route
• Output – FPGA

bitstream

X
g

ab

c

out

Heterogeneous FPGA CAD Flow

• Input – HDL
• Odin
• Logic Optimize
• Technology Map
• Place
• Route
• Output – FPGA

bitstream

10000101010110101000111101010
10101010101000101010010101001
11

Mapping to Heterogeneity

• Partial mapping maps functionality to
hard structures on FPGAs

Step 1: Identification Algorithm
Step 2: Binding Algorithm

Partial Mapping Identification Step

Input:
1. Netlist:

2. Library
describing hard
structure:

HETEROGENEOUS FPGA LIBRARY

*
+

*
+

*

>
&

! <
*+

||&

&&
&

&

& &

&
&

& &

*
** +

+

!

*

Identification Goal

• Identify all portions of the circuit that
could make use of some version of the
hard structure on the FPGA

Identification Output

• Netlist with identified functionality

>
&

! <
*+

||&

&&
&

&

& &

&
&

& &

*
** +

+

!

*

Algorithm

For each (f = function available on hard structure)
seed = a unique part of the f
For each (e = element in netlist of type seed)

RECORD if (match(f, e))

*
+

*
+

*

>
&

! <
*+

||&

&&
&

&

& &

&
&

& &

*
** +

+

!

*

Partial Mapping Binding
• Input: Netlist with identified functionality

>
&

! <
*+

||&

&&
&

&

& &

&
&

& &

*
** +

+

!

*

Binding - Goal

• Decide how each element in the netlist
will be mapped on the FPGA

Binding - Output

• Netlist with each element bound to soft
fabric or hard structure

>
&

! <
*/+

+
||&

&&
&

&

& &

&
&

& &

*
**/+* !

S

S
S

S

S
S

S
S

S

S
S

S

S

S

S

S

S

S

S

H

H

Binding Algorithm

• Map all identified functionality to FPGA
implementations
– Only find 2 advanced structures in our

benchmarks

Mapping Optimizations

• Flip-flops
– Need to consider the clear signal

• Adder
– Map to dedicated adder logic on FPGA

RTL Optimizations

• Arithmetic Optimizations
• One-hot Re-encoding of Finite State

Machines
• Multiplexer Collapsing

Arithmetic Optimizations

• Goal = Map to smaller arithmetic units
– Constant propagation
– Downstream tools don’t always do this for

arithmetic structures

Arithmetic Optimizations -
Examples

a[1]a[2]a[3] a[0]b[0]b[1]

carry
out

o[1]o[2]o[3] o[0]

a[1]a[2]a[3] a[0] 0b[0]b[1] 0

carry
out

o[1]o[2]o[3] o[0]

lsbmsb lsbmsb

lsbmsb

a[1]a[2]a[3] a[0]

0b[0]b[1] 0

o[1]o[2]o[3] o[0]

+

a[1]

a[2]a[3]

a[0]

b[0]b[1]

o[2]o[3]

+

Arithmetic Optimizations -
Examples

lsbmsb lsbmsb

lsbmsb

a[1]a[2]0 a[0] 0 b[0]b[1]0

o[1]o[2]o[3] o[0]o[5]o[6]o[7] o[4]

a[1]a[2] a[0] b[0]b[1]

o[1]o[2]o[3] o[0]o[4]

a[1]a[2]0 a[0]

0 b[0]b[1]0
o[1]o[2]o[3] o[0]o[5]o[6]o[7] o[4]

*
a[1]a[2] a[0]

b[0]b[1]

o[1]o[2]o[3] o[0]o[4]
*

One-hot re-encoding of Finite
State Machine

• One-hot encoded FSM use less routing
and less logic [Golson93]

• Odin identifies and re-encode FSMs

Identifying State Machines in
Verilog

always @(w or CS)
begin

case (CS)
A :if (w==0) NS = A;
 else NS = B;
B :if (w==0) NS = B;
 else NS = A;

endcase
end

always @(posedege clock)
begin

CS <= NS;
end

Combinational case
statement. CS is the

state register

All assignments to state
Register are constant or

feedback loop

Convert to one-hot

• Once identified change the size of the
state register and re-encode constants

Problems with FSM re-encoding

• Not guaranteed to find all state
machines

Verification

• Odin has been tested by simulating and
verifying results through modelsim
– cf_cordic
– fir_scu_rtl
– molecular dynamics

Quality of Results

Basic Goal

• Show Odin produces comparable
results to an industrial front-end
synthesis tool

Experimental Setup

• Compare Odin against Altera’s Quartus
front-end synthesis
– Use Quartus back-end

• FPGA Used: Stratix I
• CAD Flow based on Altera Quartus 4.1

CAD Flows

• Comparison
CAD flows

• Both use
Quartus
back-end

Quartus - Logic optimization

Quartus - Technology map

Quartus - Pack logic blocks

Quartus - Place logic blocks

Quartus - Route logic blocks

FPGA programming file

HDL Description

Odin - Elaborate

Odin - Partial Map

Quartus - Logic optimization

Quartus - Technology map

Quartus - Pack logic blocks

Quartus - Place logic blocks

Quartus - Route logic blocks

FPGA programming file

HDL Description

Quartus - Elaborate

Quartus - Partial Map

Benchmarks
• Collection of Verilog Benchmarks

– Opencores.org
– SCU-RTL
– Texas-97
– Benchmark Suite for Placement-2001
– Local designs converted from VHDL

• Raytrace
• Molecular Dynamics
• Stereo Vision

Results – Area Comparison

• Ratio < 1 means results from Odin smaller

Designs Ratio Designs Ratio
fft_258_6 1.34 reed_sol_decoder1 1.03
iir1 1.73 reed_sol_decoder2 1.09
iir 1.14 md 1.41
fir_3_8_8 1.00 cordic_8_8 1.42
fir_24_16_16 1.00 cordic_18_18 1.45
fir_scu_rtl 0.55 MAC1 0.98
diffeq_f_systemC 1.23 MAC2 0.99
diffeq_paj_convert 0.72 CRC33_D264 1.00
sv_chip1 0.97 des_area 0.88
sv_chip2 1.02 des_perf 0.84
sv_chip2_no_mem 0.98 sv_chip0 1.02
rt_raygentop 1.02 sv_chip0_no_mem 0.98
rt_raygentop_no_mem 1.33 sv_chip3_no_mem 0.79
rt_top 1.14 rt_frambuf_top 1.44
rt_top_no_mem 1.37 rt_frambuf_top_no_mem 1.19
oc45_cpu 1.42 rt_boundtop 1.59

Results Summary

• Ratio < 1 means results from Odin better
• Geometric Average

– Area Ratio: 1.11
– Speed Ratio: 1.05

Effectiveness of RTL
Optimizations

• Show how techniques improve results
generated by Odin

Results – DSP block reduction

• Arithmetic Optimizations cause all
improvement
– 27.8% less DSP-blocks

Results – LE Reduction

• Overall 4% improvement

81%Multiplexer Collapsing

11%One hot state reencoding

5%Arithmetic optimizations

3%Partial Mapping

Percent
Improvement

Optimization

Results – Speed Improvement

• Overall 5.6% improvement

45%Multiplexer Collapsing

27%One hot state reencoding

15%Arithmetic optimizations

13%Partial Mapping

Percent
Improvement

Optimization

Summary

• Odin generates results comparable to
Quartus

– Give numbers
• Showed the relative importance of

RTL optimizations

Summary

• Odin available:
– http://www.eecg.toronto.edu/~jayar/software/odin/
– Open Source
– GPL software license

Future Work

• Architect better hard structures that are
more widely usable

