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Homogeneous FPGAs
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Consist of:
1. Programmable logic 

and routing
• soft logic fabric

• Basic logic unit
• Programmable Routing



Heterogeneous FPGAs
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Consist of:
1. Programmable logic 

and routing
• soft logic fabric
• hard structures

2. Dedicated hard 
structures

• e.g. multiplier
• e.g memory block



Fundamental Trade-off

• Hard structures provide benefit 
when used

– Faster
– Smaller
– Consume less power



However…

• If hard structure not used 
wasted Silicon

• Routing resources wasted
• 70-90% of FPGA area occupied by routing



Motivation of This Work

• Long term: derive more benefit from 
hard structures
– By exploring the fundamental trade-off

• Academic CAD flows currently can’t 
target these structures  



State-of-the-Art CAD Flows
• Existing Front-end Synthesis tools do 

target heterogeneous FPGAs
– Altera’s Quartus
– Xilinx ‘ISE
– Mentor’s LeanardoSpectrum
– Synplicity’s Synplify
– Synopsys’ Design Compiler FPGA 
– Magma’s Blast FPGA



Goals of this Work

1. Front-end tool to map to hard structures
2. Achieve comparable results to Industrial 

Front-end Synthesis
3. Deliver open source for academic 

community



Our Tool
Called “Odin”

– maps Verilog HDL designs to 
heterogeneous FPGA architectures

– can interface with existing CAD flows:
• Quartus
• Modelsim
• VPR (no heterogeneity)

– Can be used as front end to the following 
heterogenous CAD Flow



Heterogeneous FPGA CAD Flow

• Input:
– HDL design

module small (a, b, c, out);
input[5:0] a, b, c;
output [5:0]out;

assign out = ({2'b00,a[2:0]} * b) + (b & ~c));
endmodule



Heterogeneous FPGA CAD Flow

• Parse HDL
– Icarus creates an 

intermediate 
representation

MODULE = small
PARAMATERS = {

{a, input, 5},
{b, input, 5},
{c, input, 5},
{out, output, 5}}

NETS = {{out, {a1}}}
EXPRESSIONS = {

{e0 = op cat, 2'b00, a},
{e1 = op*, e0, b},
{e2 = op~, c},
{e3 = op&, b, e2},
{e4 = op+, t1, t3}}

LEFT_ASSIGNMENT = {
{a1 = e4}



Heterogeneous FPGA CAD Flow

• Elaboration [Odin]
– Convert into a netlist
– Preserve high-level 

Information
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Heterogeneous FPGA CAD Flow

• Optimize RTL [Odin] 
– Arithmetic 

Operations
– Finite State 

Machines
– Multiplexers
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Heterogeneous FPGA CAD Flow

• Partial Mapping [Odin] 
– Identify high-level 

functions that map into 
hard structures
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Heterogeneous FPGA CAD Flow

• Partial Mapping [Odin] 
– Bind to hard structures 

or soft fabric
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Heterogeneous FPGA CAD Flow

• Output
– Netlist targeting 

remainder of 
heterogeneous 
FPGA CAD flow

module small (a, b, c, out);
input[5:0] a, b, c;
output [5:0]out;

not(c, e2);
and(b, e2, e3);
lpm_mult(a[3:0],b,e1);
lpm_add(e1,e3,out);

endmodule



Heterogeneous FPGA CAD Flow

• Input – HDL 
• Odin
• Logic Optimize
• Technology Map
• Place
• Route
• Output – FPGA 

bitstream
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Heterogeneous FPGA CAD Flow

• Input – HDL 
• Odin
• Logic Optimize
• Technology Map
• Place
• Route
• Output – FPGA 

bitstream

X
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Heterogeneous FPGA CAD Flow

• Input – HDL 
• Odin
• Logic Optimize
• Technology Map
• Place
• Route
• Output – FPGA 

bitstream
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Heterogeneous FPGA CAD Flow

• Input – HDL 
• Odin
• Logic Optimize
• Technology Map
• Place
• Route
• Output – FPGA 

bitstream
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Mapping to Heterogeneity

• Partial mapping maps functionality to 
hard structures on FPGAs

Step 1: Identification Algorithm
Step 2: Binding Algorithm



Partial Mapping Identification Step

Input: 
1. Netlist:

2. Library 
describing hard 
structure:

HETEROGENEOUS FPGA LIBRARY
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Identification Goal

• Identify all portions of the circuit that 
could make use of some version of the 
hard structure on the FPGA



Identification Output

• Netlist with identified functionality
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Algorithm

For each (f = function available on hard structure)
seed = a unique part of the f
For each (e = element in netlist of type seed)

RECORD if (match(f, e))
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Partial Mapping Binding
• Input: Netlist with identified functionality 
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Binding - Goal

• Decide how each element in the netlist
will be mapped on the FPGA



Binding - Output

• Netlist with each element bound to soft 
fabric or hard structure
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Binding Algorithm

• Map all identified functionality to FPGA 
implementations
– Only find 2 advanced structures in our 

benchmarks



Mapping Optimizations

• Flip-flops
– Need to consider the clear signal

• Adder
– Map to dedicated adder logic on FPGA



RTL Optimizations

• Arithmetic Optimizations
• One-hot Re-encoding of Finite State 

Machines
• Multiplexer Collapsing



Arithmetic Optimizations

• Goal = Map to smaller arithmetic units
– Constant propagation
– Downstream tools don’t always do this for 

arithmetic structures



Arithmetic Optimizations -
Examples

a[1]a[2]a[3] a[0]b[0]b[1]

carry
out

o[1]o[2]o[3] o[0]

a[1]a[2]a[3] a[0] 0b[0]b[1] 0

carry
out

o[1]o[2]o[3] o[0]

lsbmsb lsbmsb

lsbmsb

a[1]a[2]a[3] a[0]

0b[0]b[1] 0

o[1]o[2]o[3] o[0]

+

a[1]

a[2]a[3]

a[0]

b[0]b[1]

o[2]o[3]

+



Arithmetic Optimizations -
Examples

lsbmsb lsbmsb

lsbmsb

a[1]a[2]0 a[0] 0 b[0]b[1]0

o[1]o[2]o[3] o[0]o[5]o[6]o[7] o[4]

a[1]a[2] a[0] b[0]b[1]

o[1]o[2]o[3] o[0]o[4]

a[1]a[2]0 a[0]

0 b[0]b[1]0
o[1]o[2]o[3] o[0]o[5]o[6]o[7] o[4]

*
a[1]a[2] a[0]

b[0]b[1]

o[1]o[2]o[3] o[0]o[4]
*



One-hot re-encoding of Finite 
State Machine

• One-hot encoded FSM use less routing 
and less logic [Golson93]

• Odin identifies and re-encode FSMs



Identifying State Machines in 
Verilog

always @(w or CS)
begin

case (CS)
A :if (w==0) NS = A;
     else NS = B;
B :if (w==0) NS = B;
     else NS = A;

endcase
end

always @(posedege clock)
begin

CS <= NS;
end

Combinational case
statement.  CS is the

state register

All assignments to state
Register are constant or

feedback loop



Convert to one-hot

• Once identified change the size of the 
state register and re-encode constants



Problems with FSM re-encoding

• Not guaranteed to find all state 
machines



Verification

• Odin has been tested by simulating and 
verifying results through modelsim
– cf_cordic
– fir_scu_rtl
– molecular dynamics



Quality of Results



Basic Goal

• Show Odin produces comparable 
results to an industrial front-end 
synthesis tool



Experimental Setup

• Compare Odin against Altera’s Quartus 
front-end synthesis
– Use Quartus back-end

• FPGA Used: Stratix I
• CAD Flow based on Altera Quartus 4.1



CAD Flows

• Comparison 
CAD flows

• Both use 
Quartus 
back-end

Quartus - Logic optimization

Quartus - Technology map

Quartus - Pack logic blocks

Quartus - Place logic blocks

Quartus - Route logic blocks

FPGA programming file

HDL Description

Odin - Elaborate

Odin - Partial Map

Quartus - Logic optimization

Quartus - Technology map

Quartus - Pack logic blocks

Quartus - Place logic blocks

Quartus - Route logic blocks

FPGA programming file

HDL Description

Quartus - Elaborate

Quartus - Partial Map



Benchmarks
• Collection of Verilog Benchmarks

– Opencores.org
– SCU-RTL
– Texas-97
– Benchmark Suite for Placement-2001
– Local designs converted from VHDL

• Raytrace
• Molecular Dynamics
• Stereo Vision



Results – Area Comparison

• Ratio < 1 means results from Odin smaller 

Designs Ratio Designs Ratio
fft_258_6 1.34 reed_sol_decoder1 1.03
iir1 1.73 reed_sol_decoder2 1.09
iir 1.14 md 1.41
fir_3_8_8 1.00 cordic_8_8 1.42
fir_24_16_16 1.00 cordic_18_18 1.45
fir_scu_rtl 0.55 MAC1 0.98
diffeq_f_systemC 1.23 MAC2 0.99
diffeq_paj_convert 0.72 CRC33_D264 1.00
sv_chip1 0.97 des_area 0.88
sv_chip2 1.02 des_perf 0.84
sv_chip2_no_mem 0.98 sv_chip0 1.02
rt_raygentop 1.02 sv_chip0_no_mem 0.98
rt_raygentop_no_mem 1.33 sv_chip3_no_mem 0.79
rt_top 1.14 rt_frambuf_top 1.44
rt_top_no_mem 1.37 rt_frambuf_top_no_mem 1.19
oc45_cpu 1.42 rt_boundtop 1.59



Results Summary

• Ratio < 1 means results from Odin better
• Geometric Average

– Area Ratio: 1.11
– Speed Ratio: 1.05



Effectiveness of RTL 
Optimizations

• Show how techniques improve results 
generated by Odin



Results – DSP block reduction

• Arithmetic Optimizations cause all 
improvement
– 27.8% less DSP-blocks



Results – LE Reduction

• Overall 4% improvement

81%Multiplexer Collapsing

11%One hot state reencoding

5%Arithmetic optimizations

3%Partial Mapping

Percent 
Improvement

Optimization



Results – Speed Improvement

• Overall 5.6% improvement

45%Multiplexer Collapsing

27%One hot state reencoding

15%Arithmetic optimizations

13%Partial Mapping

Percent 
Improvement

Optimization



Summary

• Odin generates results comparable to 
Quartus

– Give numbers
• Showed the relative importance of 

RTL optimizations



Summary

• Odin available:
– http://www.eecg.toronto.edu/~jayar/software/odin/
– Open Source
– GPL software license



Future Work

• Architect better hard structures that are 
more widely usable


