
Verification Methodology Manual Tutorial

Version Y-2006.06 Copyright © 2006 Synopsys, Inc. 1

Verification Methodology Manual

SystemVerilog

Self-Paced Tutorial

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Version Y-2006.06 2

Table of Contents

1 Introduction ...4
1.1 Requirements...4

1.1.1 Knowledge...4
1.1.2 Tools..4

1.2 References ...4
1.3 Overview ...4
1.4 Layered Environment ..5
1.5 Labs ...6

2 Messaging..7
2.1 Overview ...7
2.2 Type and Severity..7
2.3 vmm_log class ...7
2.4 Declaration and Instantiation ...7
2.5 Message Handling ...8
2.6 Controlling Verbosity ..8

2.6.1 Using +vmm_log_default ..9
2.6.2 Using set_verbosity()...9

2.7 Further Exploration ...9
3 Verification Environment..10

3.1 Overview ...10
3.2 The Nine Steps ..10
3.3 Simplest Example..10
3.4 Basic Example ...11
3.5 Automatic Sequencing...11
3.6 Using vmm_env ..11
3.7 Detailed Explanation of Methods ..12

3.7.1 gen_cfg() ...12
3.7.2 build() ..12
3.7.3 reset_dut()..12
3.7.4 cfg_dut() ..12
3.7.5 start() ...12
3.7.6 wait_for_end() ...12
3.7.7 stop()..13
3.7.8 cleanup()..13
3.7.9 report()...13

3.8 Lab 1 vmm_env...13
4 Data and Transactions ...14

4.1 Introduction ...14
4.2 Transaction Coding Guidelines ...14
4.3 Transactions vs. Transactors..14
4.4 Creating Your Own Transactions ..15
4.5 ID Fields ..15
4.6 Constraints...15
4.7 Methods...16

Verification Methodology Manual Tutorial

Version Y-2006.06 Copyright © 2006 Synopsys, Inc. 3

4.8 display() & psdisplay() ..16
4.9 allocate()..16
4.10 copy() ..16
4.11 compare() ..17
4.12 Packing and unpacking..17
4.13 Lab 2 – the vmm_data class...17

5 Notification..18
5.1 Introduction ...18
5.2 Pre-defined Events...18
5.3 Further Exploration ...19

6 Channels and Completion Models...20
6.1 Introduction ...20
6.2 Definition and Creation ...20
6.3 Under the Hood ...21
6.4 Using Channels to Connect Blocks ...21
6.5 Transaction Completion ..22
6.6 Further Exploration ...22

7 Atomic Generators ..23
7.1 Introduction ...23
7.2 Adding Constraints ..23
7.3 Factories ..24
7.4 Benefits..25
7.5 Atomic Generator Macro...25
7.6 Lab 3 – Channels and the Atomic Generator ...25

8 Transactors ..26
8.1 Introduction ...26
8.2 A Basic Transactor ..26
8.3 Stopping and Starting ..27
8.4 Physical and Virtual Interfaces ..27
8.5 Reusable Transactors...27
8.6 Creating Callbacks...28
8.7 Labs 4, 5,6and 7 ..29

Appendix A OOP & Virtual Methods..30
8.8 Introduction to Classes ..30
8.9 Inheritance ...30
8.10 Handles to Objects...30
8.11 Polymorphism ...31

Appendix B: Labs..33
LAB 1: VMM Environment ...33
LAB 2: Creating a vmm_data class ..35
LAB 2: Creating a vmm_data class ..35
LAB 3: Channels and Atomic Generator..37
LAB 4: APB Master Transactor ...39
LAB 5: APB Monitor Transactor ...41
LAB 6: Scoreboard Integration ..43
LAB 7: Functional Coverage..45

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 4

1 Introduction

This tutorial is a beginner’s guide to using the VMM methodology, with the SystemVerilog
language. You can simulate your testbenches with VCS. With using the VMM methodology,
you can quickly build a layered testbench. These testbenches support high-level tests using
constrained random stimulus and functional coverage to indicate which areas of the design you
have checked.

In this tutorial, you will verify an ATM switch, starting with simple stimuli and then working
up to a complex testbench.

1.1 Requirements

1.1.1 Knowledge

• You should know the Verilog hardware design language.
• You should have basic knowledge of the SystemVerilog language, especially concepts

such as Object Oriented Programming (OOP) and synchronization between the
testbench and Design Under Test (DUT). If you have not used virtual methods in OOP,
you should first read Appendix A. The term “method” refers to tasks and functions.

• You should be familiar with VCS to compile and simulate designs plus testbenches.

1.1.2 Tools

This tutorial requires VCS X-2005.06 or higher.

1.2 References
You should refer to documentation and examples contained in the releases of the tools used.
The Verification Methodology Manual (VMM) for SystemVerilog is a useful reference. You
can buy it from Springer Science + Media or use the on-line version at
$VCS_HOME/doc/UserGuide/vmm_sv.pdf. More information on the VMM book is
available at www.vmm-sv.org.

Just to clarify, the methodology is known as the VMM methodology, while the book is the
VMM book. Synopsys uses the “vmm_” prefix for the classes and macros in SystemVerilog.

1.3 Overview
To get the most out of a Hardware Verification Language (HVL) such as SystemVerilog, you
need to adopt a new methodology. If you use the same techniques from your old Verilog
testbenches (directed tests with little randomization), you will not find bugs in your design as
quickly as if you tried a new approach. Switching will also help make your code easier to
maintain and reuse.

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 5

The VMM methodology consists of coding guidelines and a set of base classes that allow you
to develop reusable testbench components such as data models, transactors, and generators.
Synopsys designed VMM based on years of experience verifying many different types of
designs, enabling use of advanced techniques. Using VMM will give your project a consistent
look and feel, so less time is spent creating verification infrastructure, and more time verifying
your design.

The VMM involves creating a robust, flexible testbench infrastructure once, and then creating
many simple tests, while never changing the underlying testbench. This requires advanced
techniques such as factory patterns and callbacks. For example, virtual methods allow you to
write the testbench once, and then not have to modify it for every possible type of stimulus
variant such as error injection, synchronization, and variable delays. While you can verify a
design using a simple testbench, you would have to create many elaborate tests and continually
update the testbench. This latter approach yields more code and reduces the readability and
maintainability of your code.

1.4 Layered Environment

The three major parts of a verification environment are the DUT, the testbench (the inner box
above), and the test which controls the testbench. Inside the testbench are the following parts:

• The Driver controls the signals into the DUT. You can write it in SystemVerilog or
Verilog. It executes single commands such as a bus read or write, or driving a cell /
packet / frame into the DUT

DUT

Driver

Transactor

Generators

Tests

Monitor

Checker Scoreboard

Assertions

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 6

• The Monitor bundles signal changes from the DUT into transactions.
• Assertions constantly check the DUT for correctness. These look at external and

internal signals. The testbench uses the results of these assertions to see if the DUT
responded correctly.

• The Transactor takes high-level transactions such as a burst-read into individual read
commands, or a single USB transaction into multiple USB packet TX/RX commands.

• The Scoreboard stores the transactions from the Transactor for later comparison.
• The Checker compares the output of the DUT, as seen by the Monitor, to the

Scoreboard, using a predictor or reference model.
• The Generator generates transactions, either individually or in streams.

Note that each of these components may be instantiated several times or come in several
flavors for different protocols.

A goal of VMM is that the testbench will not need to change for individual tests. Its
components include hooks to allow the testbench to control the stimulus, without having to
anticipate all possible conditions such as error injection.

1.5 Labs
Each lab exists in a separate directory, allowing you to complete the labs in any order. Each
lab has some existing code and comments indicating where you need to complete code, as
shown below:

// Lab1 - ... comments

Solutions to all labs are in the solutions directory. You should examine the tips and hints
sections that follow each lab before consulting the solutions.

During the labs, you will construct a verification environment to verify a very simple APB
system. The testbench issues read/write commands, and the RTL is a simple memory. The
APB protocol uses a simple address, write-data, read-data, Read/Write, Select, Enable and
clock interface.

Lab instructions are provided in Appendix B of this document.

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 7

2 Messaging
2.1 Overview
A testbench produces messages of many types and severities. The vmm_log class lets you
control which messages are displayed, what their format is, and even promote and demote them
(useful for error testing). All messages are sent to standard output, i.e. displayed on the screen
and sent to the simulation log file, just like $display.

2.2 Type and Severity
In VMM, every message has a type and a severity. You may want to print a message to debug
a piece of code, tell the user that simulation reached a notable state, or encountered a problem.
The message type tells which of these is happening.

• Failure: Error has been detected
• Note: Simulation progress
• Debug: Optional simulation diagnostics
• Timing: Timing check or error

The severity field describes the message importance. The following list shows the severity
levels and the type in parenthesis.

• Fatal: Functional correctness definitely compromised (Failure)
o Example: Testbench failure

• Error: Functional correctness may be compromised (Failure)
o Example: Actual model results don’t match expected results

• Warning: Functional correctness not compromised (Failure or Timing)
• Normal: Regular, expected message
• Trace: High-level simulation execution trace message (Debug)

o Example: "Executing transaction"
• Debug: Detailed simulation execution trace message (Debug)

o Example: "Waiting for acknowledge"
• Verbose: Very detailed simulation execution trace message (Debug)

o Example: "Sending byte #5 (0x5A)"

2.3 vmm_log class
Each part of the testbench (test, generator, checker, etc.) uses its own instance of the vmm_log
class to generate messages. Each instance is a separate message source with a descriptive name
and an instance name. You can use regular expressions to select and control sources so use
clear names. Usually the descriptive name is the name of the class instantiating vmm_log, and
the instance name is the name of the object, or “class” if there is only a single instance.

2.4 Declaration and Instantiation
The vmm_log is usually instantiated inside a testbench object such as a generator or checker, or
in a data object:
 vmm_log log;

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 8

 log = new(“name”, “instance”);

The name string is the name of the class that contains the log, such as “USB Host”, or “MAC
Frame”. The instance string is the name of this instance of the object such as “Generator 1”,
or “Left side”. If there is only a single instance, just use the string “class”.

The easiest way to use a vmm_log object is with the macros:

`vmm_fatal(vmm_log log, string msg);
`vmm_error(vmm_log log, string msg);
`vmm_warning(vmm_log log, string msg);
`vmm_note(vmm_log log, string msg);
`vmm_trace(vmm_log log, string msg);
`vmm_debug(vmm_log log, string msg);
`vmm_verbose(vmm_log log, string msg);

Here are two examples of using the above messages. The first displays a simple string. The
second needs to print variable arguments, so it uses $psprintf, which returns a formatted string:

`vmm_verbose(log, "Checking rcvd byte");
if (byte != expect) begin
 `vmm_error(log, $psprintf("Bad data: 0x%h vs. 0x%h",
 byte, expect));
end

Note that these macros expand to several lines, so surround them with begin-end when used in
an if-statement.

Coding Guideline:
Avoid declaring and instantiating an object all on one line. You will not be able to call any
procedural code before the first call to new(). Instead of:
 vmm_log log = new(“name”, “instance”); // Poor code

Use:
 vmm_log log; // Separate declaration
 log = new(“name”, “instance”); // from instantiation

Note that this tutorial occasionally skips this rule to make the examples more readable.

2.5 Message Handling
The messaging class handles each message according to its severity level. The default is that
fatal messages cause the simulation to exit, error messages increment a global error count, and
cause the simulation to exit after 10 errors, while all others just print to standard out. You can
use the method vmm_log::modify() to change how messages are handled.

2.6 Controlling Verbosity
By default, only messages with a severity of NORMAL (vmm_fatal, vmm_error,
vmm_warning, vmm_note) or higher are displayed. You can control this two ways:

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 9

2.6.1 Using +vmm_log_default

The command line switch +vmm_log_default=DEBUG will enable printing of all messages
with the severity level DEBUG and higher. Other settings are WARNING, NORMAL, TRACE, or
VERBOSE.

2.6.2 Using set_verbosity()

The method vmm_log::set_verbosity() allows you to set the level of printing on the fly.
The following code sets the level to DEBUG for any vmm_log object with “Drv” in its name:

log.set_verbosity(log.DEBUG_SEV, "/Drv/", "/./",);

The regular expression "/./" matches any string, so the following matches all vmm_log
objects, regardless of their name or instance name:

log.set_verbosity(log.DEBUG_SEV, "/./", "/./",);

Note that since set_verbosity() and DEBUG_SEV are part of the vmm_log class, they must
be prefixed with a handle to that class.

Also note that this call overrides the +vmm_log_default switch, and only applies to current
vmm_log objects, not any created afterwards.

2.7 Further Exploration
• You can create complex, multi-line messages using the vmm_log methods

start_msg(), text(), and end_msg().

• You can change the formatting of vmm_log by extending the vmm_log_format class
and register an instance with the vmm_log::set_format method.

See the VMM for more information and examples.

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 10

3 Verification Environment
3.1 Overview
Your testbench goes through many phases of execution, from initialization, simulation, and
cleanup. The class vmm_env helps you manage these steps and ensures that all execute in the
proper order.

Coding Guideline:
The new() method should only initialize values, and should never have any side effects such
as spawning threads or consuming time. If a testbench object starts running as soon as new()
is called, you will not be able to delay its start, or synchronize it with other testbench
operations.

3.2 The Nine Steps
The vmm_env class divides a simulation into the following nine steps, with corresponding
methods:

• gen_cfg() – Randomize test configuration descriptor

• build() – Allocate and connect test environment components

• reset_dut() – Reset the DUT

• cfg_dut() – Download test configuration into the DUT

• start() – Start components

• wait_for_end() – End of test detection

• stop() – Stop data generators and wait for DUT to drain

• cleanup() – Check recorded statistics and sweep for lost data

• report() – Print final report

3.3 Simplest Example
Above all these methods is run() which keeps track of which steps have executed, and, when
called, runs the remaining ones. For example, the following program runs all nine steps
automatically:

program test;
 initial begin
 verif_env env;
 env = new(...);
 env.run();
 end
endprogram

The class verif_env extends vmm_env. You call run() and it will call all the steps which
have not yet been run.

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 11

3.4 Basic Example
The next example runs the first step, makes a modification to the configuration, and then
completes the test:

program test;
 initial begin
 verif_env env;
 env = new(...);

 env.gen_cfg(); // Create rand config
 env.rand_cfg.n_frames = 1; // Only run for 1 frame
 env.run(); // Run the other steps
 end
endprogram

3.5 Automatic Sequencing
The run() task is not the only method that executes the steps. As shown in the following
example, if you call build() without calling gen_cfg(), the build() method will
automatically execute the previous step:

class my_eth_fr extends eth_frame;
 rand bit [47:0] mac_address;
 constraint one_port_only {
 da == mac_address; // Use fixed address
 }
endclass

program test;
 initial begin
 verif_env env
 env = new();
 env.build(); // Config and build
 begin
 my_eth_fr my_fr;
 my_fr = new(); // Use my own frame
 void = my_fr.randomize();
 env.src[0].rand_fr = my_fr; // Use to build more
 end
 env.run();
 end
endprogram

3.6 Using vmm_env
The following example defines the class verif_env. The virtual methods gen_cfg() and
build() must call their super method as the first step. These calls to the base methods
contain the sequencing code that ensures all previous steps have been called. If you leave out
the calls, the vmm_env class will generate a fatal error at run time.

`include “vmm.sv”

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 12

class verif_env extends vmm_env;
 my_cfg cfg;
 my_gen gen[4];
 my_drv drv[4];
 my_mon mon[4];

 virtual function void gen_cfg();
 super.gen_cfg();
 // rest of gen_cfg method
 endfunction

 virtual function void build();
 super.build();
 // rest of build method
 endfunction
endclass

3.7 Detailed Explanation of Methods

3.7.1 gen_cfg()

This method creates a random configuration of the test environment and DUT. It may choose
the number of input and output ports in the design and their speed, or the number of drivers on
a bus and their type (master or slave). You can also randomly select the number of
transactions, percent errors, and other parameters. The goal is that over many random runs, you
will test every possible configuration, instead of the limited number chosen by directed test
writers.

3.7.2 build()

This method builds the testbench configuration that you generated in the previous method:
generators and checkers, drivers and monitors, and anything else not in the DUT.

3.7.3 reset_dut()

This method resets the DUT to make it ready for configuration.

3.7.4 cfg_dut()

In this method you download the configuration information into the DUT. This might be done
by loading registers using bus transactions, or backdoor loading them using C code.

3.7.5 start()

This method starts the test components. This is usually done by starting the transactor objects,
which will be described in section 8.

3.7.6 wait_for_end()

This method waits for the end of the test, usually done by waiting for a certain number of
transactions or a maximum time limit.

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 13

The following example shows the wait_for_end() method with its inner wait for the end of
test event, plus a time-out statement. These are wrapped in a fork-join_any that completes
when either of these complete, and then a terminate command to stop the unfinished
statement/threads.

class verif_env extends vmm_env {
 virtual task wait_for_end();
 super.wait_for_end(); // Call super method
 fork // Limit scope of terminate
 begin
 fork
 sync(ALL, this.sb.enough); // End of test event
 begin
 delay(TIME_OUT);
 `vmm_fatal(log, "Test did not complete");
 end
 join any
 terminate;
 end
 join
 endtask

3.7.7 stop()

This method stops the data generators and waits for the transactions in the DUT to drain out.

3.7.8 cleanup()

Check recorded statistics and sweep for lost data.

3.7.9 report()

Print the final report. Note that vmm_log will automatically print its report at the end of
simulation so you do not have to write any special code for this.

3.8 Lab 1 vmm_env
Using the lab instructions (Appendix B), complete Lab 1 for vmm_env.

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 14

4 Data and Transactions
4.1 Introduction
Traditionally, when you created a testbench in Verilog, you implemented transactions as
procedures, one per transaction. This caused the following problems:

• Code is not self-contained
• Code is not protected properly
• Cannot extend data types
• Cannot add constraints to an existing data type

Instead, you should model transactions as objects. Their data values exist in a transaction class
that can be randomized, copied, packed, and unpacked. The code that actually executes the
transactions resides in the Driver.

4.2 Transaction Coding Guidelines
Properties in a transaction class should be public so they can be modified or constrained by
other classes, such as the testbench. Do not hide data values using set() & get() methods. In
hardware verification, you need access to all parts of the testbench for maximum control.

Properties should be random by default so that they can be randomized by other classes. You
can always go back and use rand_mode() to turn this off.

4.3 Transactions vs. Transactors
The transaction class contains both physical values that are sent to the DUT (address, data, etc.)
and meta-data that has extra information about the transaction, such as a “kind” field. Even
though this might be encoded in the physical values, put it into a separate field that can be
easily accessed and can be randomized.

enum kind_t = READ, WRITE;
class apb_transaction extends vmm_data;
 rand kind_t kind;
 rand bit [7:0] sel;
 rand bit [31:0] addr;
 rand bit [31:0] data;
endclass

The Transactor contains the code to send the transaction to the next testbench level. The
following is a Driver to read and write to a real bus:

class apb_master;
 task do(apb_transaction tr);
 case (tr.kind)
 READ:
 tr.data = this.read(tr.addr);
 WRITE:
 this.write(tr.addr, tr.data);

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 15

 endcase
 endtask
endclass

4.4 Creating Your Own Transactions
The VMM recommends that you extend the VMM classes to create your own company-
specific classes to build a buffer between the VMM and end users. In this buffer, you can
customize the classes for your own best practices. This layer is most commonly added around
vmm_data, though this tutorial uses the class directly.

4.5 ID Fields
Every transaction has three integer ID fields uniquely identifying it. The stream_id tells
which stream created this object – useful when there are multiple generators. The
sequence_id is used when a stream generator creates groups of related transactions, and
identifies the group. The object_id identifies individual transactions in a sequence. In the
following example, a constraint block uses the stream_id.

class vmm_data;
 integer stream_id;
 integer scenario_id;
 integer object_id;
 ...
endclass

class atm_cell extends vmm_data;
 rand integer has_vlan;
 …
endclass

class my_atm_cell extends atm_cell;
 ...
 constraint stream_0_is_vlan {
 if (stream_id == 0) has_vlan == 1;
 }
endclass

4.6 Constraints
Every transaction should have one or more constraint blocks for the “must-obey” constraints
that are never turned off or overridden. For example, they would make sure an integer field is
never negative or that a length field is never 0. Name these constraints “class_name_valid”,
such as atm_cell_valid.

You should have separate constraints for “should-obey”. You can turn these off later for
injecting errors. Name these constraints “class_name_rule”.

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 16

4.7 Methods
The vmm_data class defines a set of virtual methods for manipulating its properties. (See
Appendix A for a review of virtual methods.) Here are some of the ones used in this tutorial.
You will need to make your own methods when you extend vmm_data.

4.8 display() & psdisplay()
These methods display the contents of the class, either to the screen or to a string.

virtual task display (string prefix);
virtual function string psdisplay(string prefix);

4.9 allocate()
This method allocates a vmm_data object and initializes required fields. This is a virtual
method, unlike new() so the correct method is called regardless of the handle type.

virtual function vmm_data allocate();

4.10 copy()
This method makes a copy of an existing transaction. It has an optional “to” field so you can
copy to a previously allocated object. Note that this method returns a vmm_data type, so you
may need to use $cast() with it.

virtual function vmm_data my_data::copy(vmm_data to = null);
 my_data cpy;

 // Copying to a new instance?
 if (to == null)
 cpy = new();
 else

 // Copy to an existing instance. Is it the correct type?
 // If destination handle is passed as argument during copy()
 // call, use $cast to check that handle type is correct.
 // Argument handle has to be base type (vmm_data) or my_data
 // else abort. IF argument is base type(vmm_data), cpy
 // handle is upcasted to vmm_data type (cpy -> "to").

 if (!$cast(cpy, to, CHECK)) begin
 `vmm_fatal(this.log,
 "Attempting to copy to a non my_data instance");
 return;
 end

 // Copy ID’s and any other properties
 cpy.stream_id = this.stream_id;
 cpy.scenario_id = this.scenario_id;
 cpy.object_id = this.object_id;

 // Assign the copy to the return handle

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 17

 copy = cpy;
endfunction

There is an alternative to the copy() method. The new keyword does a shallow copy – more
of a “photocopy” of variable values. Encapsulated objects are not copied; the handle value is
just copied. Note that the new() method is not called, so the result will have the same ID fields
as the original.

The following example shows how to use the copy method:

my_data d1, d2, d3; // Handles
d1 = new(); // Allocate object
d2 = d1; // Both d1 & d2 point to same object
d2 = d1.copy(); // Error, copy returns vmm_data
$cast(d2, d1.copy()); // Good
void = d1.copy(d2); // Copy d1 contents to d2 object
void = d1.copy(d3); // Bug – d3 is still null

4.11 compare()
This method compares two objects and reports the difference.

virtual function bit compare (to, diff, kind);

The current object is compared with “to” using type “kind”. (See 4.3 for an example of
“kind”.) The method returns 1 if the two objects are the same, 0 if not. The diff string gives a
description of the difference.

4.12 Packing and unpacking
The following three methods are used for converting between the physical fields of an object
and an array of bytes:

virtual function integer byte_size (kind);
virtual function integer byte_pack (bytes,offset,kind);
virtual function integer byte_unpack(bytes,offset,kind);

The method byte_size tells how many bytes you need to pack an object of this kind. The
method byte_pack packs the object of type kind into a dynamic array of bytes. The method
byte_unpack unpacks the data from the dynamic array of bytes. The offset tells the
methods where to start in the byte array.

4.13 Lab 2 – the vmm_data class
Using the VMM Basic lab instructions, complete Lab 2 for vmm_data.

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 18

5 Notification
5.1 Introduction
VMM provides an event notification class that allows you to notify when an event notification
is indicated, and includes data. These notifiers are based on integer identifiers that hold a
symbolic value. For example, the following code creates three notification identifiers
associated with the atm_driver class:

class atm_driver extends vmm_xactor;
 static integer TR_STARTED;
 static integer TR_ABORTED;
 static integer TR_SUCCESS;
endclass

You must configure a notifier before using it. A notifier can be ON_OFF, ONE_SHOT, or
BLAST. The following example calls the configure() method in the notify object (pre-
instantiated in vmm_xactor, described in a later section), which returns an integer value.

class apb_master extends vmm_xactor;
 function new(...);
 this.TR_STARTED = this.notify.configure(*,
 this.notify.ON_OFF_TRIGGER);
 endtask
endclass

When you indicate an event, you can optionally attach an object derived from vmm_data. You
use this to describe why you indicated the notification. You should not modify this object. If
you need to change the object, use callbacks instead, shown later in this tutorial.

forever begin
 atm_cell cell;
 ...
 this.pre_cell_tx_t(cell, drop);
 foreach (callbacks[i]) begin
 ...
 end
 if (drop) continue;
 this.notify.indicate(this.PRE_CELL_TX, cell);
 ...
end

5.2 Pre-defined Events
Many VMM classes include notification service interfaces, instances of vmm_notify. As
shown above, vmm_data has an instance of vmm_notify and the events EXECUTE, STARTED
and ENDED. The vmm_xactor class includes the notify properties XACTOR_IDLE,
XACTOR_BUSY, XACTOR_STARTED, XACTOR_STOPPED, and XACTOR_RESET.

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 19

5.3 Further Exploration
When you use a VMM notification to pass an object, it should be treated as read-only. To pass
an object that may be modified in more than one location in your testbench, use the
vmm_broadcast class. This can buffer objects so you will not lose data.

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 20

6 Channels and Completion Models
6.1 Introduction
Your testbench environment needs to exchange transactions between its components. For
example, transactions flow from the Generator -> Transactor -> Driver, or from the Monitor ->
Checker -> Scoreboard. As you saw in the last section, you should model transactions as
objects that are then created and modified by the different testbench components.

The connection between these components is the VMM channel. One side is the producer
(such as the Generator) putting transactions into the channel. The consumer side (Transactor)
gets the transactions out of the channel, and executes them.

The VMM channel has several advantages over the SystemVerilog mailbox:

• Unlike mailboxes, channels are strongly typed which helps prevent coding errors.
• Channels allow flow control, so the put() method will block if the channel is full.

• A channel can have both high-water and low water marks to fine tune the interactions
between the producer and consumer. The get() method removes the transaction from
the end of the channel, while peek() give you a handle to it without removal. Both
block if the channel is empty.

• The output of a channel can be replicated using the tee() method.

6.2 Definition and Creation
You define a channel for a specific type using a macro, and then create channels as shown:

class atm_cell extends vmm_data;
 ...
endclass

// macro automatically creates new data type by
// appending "_channel" to data_type_name
vmm_channel(atm_cell) // atm_cell_channel declaration

Driver Monitor

Generators

Transactor Scoreboard Checker

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 21

program test;
 initial begin
 atm_cell_channel chan;
 chan = new(“ATM Cell channel”, “class”);
 end
endprogram

Now two threads can create communicate as follows:

// Producer
forever begin
 atm_cell cell = new();
 ch.put_t(cell);
end

and:
// Consumer
forever begin
 atm_cell cell = ch.get();
 ...
end

6.3 Under the Hood
Just like a SystemVerilog mailbox, the channel contains handles to objects, not the object
themselves. You can modify an object after it has been put in the channel, leading to a
common mistake:

// Producer
atm_cell_channel ch = new(“ATM Cell channel”, “class”);
atm_cell cell;
cell = new();
while (...) begin
 void = cell.randomize();
 ch.put_t(cell);
end

This code only allocates a single cell. It then repeatedly randomizes this cell and puts it in the
channel. The result is that the channel will contain many references to the same object. The
solution is to allocate a new cell every time through the loop.

while (...) begin
 cell = new();
 void = cell.randomize();
 ch.put_t(cell);
end

6.4 Using Channels to Connect Blocks
The most common way to use channels is to allocate them in the vmm_env object and then pass
them into the testbench components as shown in the following example.

task dut_env::build() {
 chan = new(...);

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 22

 consumer = new(chan);
 producer = new(chan);
}

6.5 Transaction Completion
You can synchronize two testbench blocks using a channel. The easiest way is to configure the
channel with full=1 (the default) so it works like a procedural interface. The producer thread
blocks when it calls put(). When the consumer calls get() to remove the transaction from
the channel, the producer unblocks so it can create a new transaction. In the following
example, the consumer first calls peek() to read the transaction, but does not call get() until
it is done, thus waking the producer:

// Consumer
forever begin
 cell = ch.peek(); // Read the cell
 case (cell.kind) {
 ... // Process the cell
 }
 void = ch.get(); // Done, wake up producer
end

6.6 Further Exploration
See the VMM section on “Completion and Response Models” for more examples of
synchronizing using channels. What if you have more than one producer or consumer? The
vmm_broadcast class is used for one-to-many communication, while vmm_scheduler takes
N inputs and combines them into a single output.

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 23

7 Atomic Generators
7.1 Introduction
Tests should tune random generators, not completely rewrite them. This results in less code
(each test is smaller), more randomness (all unspecified behavior is random) and more
checking (extra randomness broadens the stimulus). Traditional testbenches create stimulus
with generators that grow more and more complex as the project progresses, accommodating
every variant of stimulus, error generation, synchronization, etc. This “mother of all
generators” can be unstable because of the constant changes, as well as difficult to enhance and
maintain. VMM recommends a different approach.

7.2 Adding Constraints
A typical generator might look like the following:

class cell_gen extends vmm_xactor;
 ...
 task main();
 forever begin
 atm_cell cell = new();
 void = cell.randomize();
 this.chan.put_t(tr);
 end
 endtask
endclass

The problem with this generator is that there is no easy way to randomize cells with different
constraints.

CODING TIP: While the above example ignores the result from cell.randomize(), you
should never do this in real code. Always check the result and issue a vmm_error. Otherwise,
you may miss a constraint failure, leading you to think that the test generated cases that it really
did not.

• You could use the randomize() with{} construct, but this would require a separate
generator for each test, just what you were trying to avoid.

• You could modify the transaction class, atm_cell, adding constraints for each test, but
this moves the problem to a different file.

Each of these requires every test writer to edit a common file, with the results applied to every
generator / ATM cell. Some testbenches have knobs to control the different distributions and
cases, but once again, the generator or transaction becomes the bottleneck, growing in
complexity. In addition, the testcase is the testbench plus knob files, adding another file to the
flow.

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 24

7.3 Factories
As an alternative, consider an automobile factory. It creates a stream of cars, each unique with
varying options. The manufacturer accomplishes this by having a set of blueprints for the
major variants (coupe, sedan, station wagon), and then allowing the user to tweak the details.
You can use the same idea with creating transactions. Create a “factory” that stamps out
transactions, then have individual tests feed it different blueprints. All the test-specific code is
located in the test file, not the generators. In fact, you can have multiple factories running in a
test, each generating a unique set of stimulus.

What does this look like? The following example uses a transaction class that extends
vmm_data. The blueprint instance is randomized, then copied to a new instance processed by
the next testbench layer.

class factory;
 transaction blueprint = new();
 task run();
 while (run) begim
 transaction tr;
 void = blueprint.randomize()
 $cast(tr, blueprint.copy());
 process(tr);
 end
 endtask
endclass

You can change the blueprint from the test level, which is just a SystemVerilog program:

class my_transaction extends transaction;
 constraint address_even {
 addr[0] == 0;
 }
endclass

program test;
 verif_env env;

 initial begin
 env = new();
 env.build();
 begin
 my_transaction my_tr = new();
 env.src[0].blueprint = my_tr;
 end

 env.run();
 end
endprogram

With this change, the generator src[0] will always create transactions with even addresses.

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 25

7.4 Benefits
Tests can modify constraints by
• Making variables non-random
• Turning constraint blocks off
• Add new constraint block
• Re-define constraint blocks
• Add random variables
• Supersede random results with directed data

Factory generators are:
• Good: Unmodified generic, reusable data class
• Good: Unmodified generic, reusable generator class
• Good: Different generators can have different constraints
• Good: Constraint set can be dynamically changed
• Good: Localized test-specific code
• Bad: Difficult to share constraint sets between testcases

7.5 Atomic Generator Macro
VCS includes a macro to create an atomic generator:

vmm_channel(atm_cell) //Macro: defines atm_cell_channel
vmm_atomic_gen(atm_cell, “ATM_Cell”) //Macro: defines atm_atomic_gen

class atm_env extends vmm_env;
 atm_cell_atomic_gen gen1; // Generator instance
 atm_cell_channel chan; // Channel instance

 virtual function void build();
 chan = new(“Channel”, "from gen");
 gen1 = new(“Gen”, *, chan); // Connect channel
 drv = new (“Driver”, “*”, chan); // to next level
 endfunction
endclass

The macro uses the blueprint object randomized_obj.

7.6 Lab 3 – Channels and the Atomic Generator
Using the VMM Basic lab instructions, complete Lab 3 for Channels and the Atomic Generator

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 26

8 Transactors
8.1 Introduction
By this point, you have seen VMM transactors. In this section, you are going to learn more
about how to create and use them in simulation.

At its simplest, an VMM transactor is just a while loop that reads in transactions from a
previous testbench layer, does some processing, and sends out transactions to the next layer.
The key is properly starting and stopping the transactors.

The VMM has several transactor types:

• Active Xactor – Master
• Drives pins, blocks on channel get()
• Reactive Xactor – Slave
• Monitors and drives pins, blocks on signal edges
• Passive Xactor – Monitor
• Monitors pins, blocks on signal edges
• Also – Generator or other Xactors as needed
• Creates transactions, blocks using notification or channel put()

8.2 A Basic Transactor
Here is a basic transactor. You add code to method main() to process transactions. The other
methods all start with a call to the base method to start and stop this method. For example,
vmm_xactor::start_xactor() starts the virtual method main() – you don’t need to do this.

class driver extends vmm_xactor;
 //start_xactor starts the execution threads
 virtual task start_xactor;
 super.start_xactor();
 ...
 endtask

 //stops execution threads after currently executing
 //transaction had completed. Takes effect at next call
 //to ::wait_if_stopped()
 virtual task stop_xactor();
 super.stop_xactor();
 ...
 endtask

 //resets the xactor’s state and execution threads
 virtual task reset_xactor(...);
 super.reset_xactor(...);
 ...
 endtask

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 27

 virtual task main();
 ...
 endtask
endclass

8.3 Stopping and Starting
The main() method periodically checks to see if the transactor has been stopped by calling
wait_if_stopped() as shown below:

virtual task main();
 forever begin
 this.wait_if_stopped();
 atm_cell cell = to_driver.get();
 this.wait_if_stopped();
 ...
 end
endtask

The wait_if_stopped() method will block if stop_xactor() has been called. Different
blocks in your testbench will define when to stop and what it means. You should check if the
transactor needs to stop after every time-consuming action, such as the call to get() above.

8.4 Physical and Virtual Interfaces
The SystemVerilog interface groups all relevant physical signals (ports) together, just as a C
typedef combines several objects into a struct. A virtual interface is just a pointer to a physical
interface. You can pass a virtual interface into drivers and monitors. Now the testbench can
replicate a driver, with each instance using a separate virtual interface so as to drive multiple
physical ports.
If you need to synchronize on a clock edge in an interface, use the clocking block in the
interface.

@1 bus_ifc.cb;

Note that this form does not contain the active edge of the clock signal. If the designer changes
the edge, you only have to change the interface definition, not every usage of the signal.

8.5 Reusable Transactors
Recall that one of the goals of VMM is that the testbench objects should not have to change.
Test specific code goes in the test, not in the transactors such as the driver. The question then,
is, how do you write a transactor that can meet all verification requirements such as injecting
errors and delays, sampling data for functional coverage and connecting the scoreboard?

Before the VMM, the testbench would have the “mother of all transactors” (MOT) that
performed all these actions and more. However, any time one would dream up a new way to
control the DUT, one would have to edit the MOT. All these edits make the MOT unstable and
a bottleneck for the verification team.

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 28

Instead, a transactor should do the simplest things by default – no errors, no delays, but has
hooks so that you can add test-specific extensions. You can accomplish this by using callback
methods. These are extensible virtual methods that are empty by default.

task main();
 ...
 forever begin
 ...
 cb.pre_drive_callback();

 // Drive out the transaction

 cb.post_drive_callback();
 end
endtask

In the above code, the method cb.pre_drive_callback() is called just before that
transaction is driven into the design, and cb.post_drive_callback() is called just after
the transaction is driven. By customizing your own method, you could insert delays, modify or
even drop the transaction, gather functional coverage information on the transmitted
transaction, and put this transaction into the scoreboard.

8.6 Creating Callbacks
Once you have identified key points in the transactor flow to insert callbacks, you can define a
callback façade class:

class atm_callbacks extends vmm_xactor_callbacks;
 virtual task pre_cell_tx_t(atm_driver xactor,
 atm_cell cell,
 var bit drop)
 …
 endtask
endclass

The driver now just calls pre_cell_tx() before driving the cell. Next, define your test-
specific callback classes such as error_inject, scoreboard_insert, functional_cov
that extend atm_callbacks. Each callback class is then registered at the test level. The
callbacks are called in the order you registered them. So, be sure to inject errors first, and then
add the transaction to the scoreboard.

class stretch_ifg extends atm_callbacks;
 // This class stretches the inter-frame gap
 ...
endclass

program test;
 verif_env env;
 initial begin
 env = new();
 env.build();

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 29

 begin
 stretch_ifg cb = new();
 env.driver[0].prepend_callback(cb);
 env.driver[3].prepend_callback(cb);
 end
 env.run();
 end
endprogram

You can see that the code to invoke the callbacks is common across all transactors, so the
VMM provides a macro:

class atm_driver extends vmm_xactor;
 ...
 forever begin
 atm_cell cells = this.in_chan.get();
 bit drop = 0;

 `vmm_callback(atm_driver_callbacks,
 pre_cell_tx_t(this, cell, drop));
 if (drop) continue;

 // Drive the cell here …

 `vmm_callback(atm_driver_callbacks,
 pre_cell_tx_t(this, cell, drop));
 end
endclass

8.7 Labs 4, 5,6and 7
Using the VMM Basic lab instructions, complete Lab 4 for the APB Master Transactor, Lab 5
for the Monitor Transactor, and Lab 6, Scoreboard Integration

Lab 7, Functional Coverage, is optional. It shows an example of adjusting random constraints
to increate functional coverage.

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 30

Appendix A OOP & Virtual Methods

8.8 Introduction to Classes
With traditional procedural programming, you create structs to hold the data, and global
procedures that manipulate the data. With Object Oriented Programming, you wrap the data
and the procedures inside of a class:

class packet;
 logic [31:0] src, dst, crc, data[8];

 task display();
 ...
 endtask

 function logic [31:0] compute_crc();
 ...
 endfunction
endclass

program test;
 packet p;
 initial begin
 p = new();
 p.display();
 p.crc = p.compute_crc();
 end
endprogram

8.9 Inheritance
Now that you have a packet, how do you create different flavors? For example, you might
want to add an is_good bit that tells if the class should always generate good CRC. In OOP,
this is done by extending the original packet class (base class):

class my_packet extends packet;
 bit is_good;
 function compute_crc();
 compute_crc = super.compute_crc();
 if (!is_good) compute_crc = urandom;
 endfunction
endclass

8.10 Handles to Objects
When you make the following declaration:

packet p;

you are creating a handle that can reference objects of type packet. The handle is initialized to
null. You can call the new() method to create an object:

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 31

p = new();

This allocates enough memory to hold the class packet, 11 longwords (sa, da, crc, and
data[8]). If you allocate a my_packet object, 12 longwords will be allocated (the original
11 plus one more for the is_good bit).

What happens if you try to mix handles for base and extended classes? The easiest way to
visualize this is to consider the is_good bit. It would be an error if you used a my_packet
handle to access the is_good bit, but the handle points to only a packet object (11 longwords).

packet p;
my_packet mp;

mp = new();
p = mp; // Good: Copies a handle

p = new();
mp = p; // Error: mp.is_good won’t exist

But what if you use a base handle to point to an extended object, then try to assign back to an
extended handle? This is normally not allowed, so you will need to use $cast(). This
method checks the object type to make sure it matches the destination object.

packet p;
my_packet mp, m2;

 mp = new();
 p = mp; // Still good
 $cast(m2, p); // Good: p points to my_packet object

8.11 Polymorphism
What happens if you call a method in a class. By default, if you use a packet handle to call the
compute_crc() method, the packet::compute_crc() method is called, even if the object
was actually of type my_packet. (See code in the Inheritance section above.) But if you use
virtual methods, VCS will call the method based on the object type, not the handle type:

class packet;
 virtual function logic [31:0] compute_crc();
 ...
 endfunction
endclass

class my_packet extends packet;
 bit is_good;
 virtual function compute_crc();
 compute_crc = super.compute_crc();
 if (!is_good) compute_crc = ~compute_crc;
 endfunction
endclass

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 32

packet p;
my_packet mp;

initial begin
 mp = new();
 p = mp;
 p.crc = p.compute_crc(); // Calls my_packet method
end

Why is this useful? You can write a generic class such as packet and use it in a testbench:

class protocol;
 ...
 task transmit(packet pkt);
 ...
 pkt.crc = pkt.compute_crc();
 off = vera_pack(bytes, off, pkt);
 // Transmit packet data
 endtask
endclass

If you call the transmit() method with a packet object, it will call
packet::compute_crc(). Call it with a my_packet object and it will call
my_packet::compute_crc() and inject errors.

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 33

Appendix B: Labs

LAB 1: VMM Environment

Goal Create a testbench environment class
Issue a message

Location lab1

Base Classes vmm_env, vmm_log

Allocated Time 15 minutes

apb/apb_cfg.sv APB Configuration Class
env/dut_env.sv DUT Environment Class
tests/test_01.sv Simple Test to run the environment

The DUT Environment class is the main top-level testbench class. This class instantiates all the
permanent testbench elements, and controls the sequence of testbench steps. The environment
is DUT specific, so it is in the env/ directory.

1) DUT Environment Class Code Review

Review the dut_env.sv file and answer the following.

How many steps are present in the vmm_env flow?
Are the tasks/functions all defined as virtual?
Why?

2) APB Configuration Class Code Review

The apb_cfg class contains the random configuration details for the testbench. For
simplicity, this consists of a single data item, to determine how many cycles to run
before exiting the testbench.

Review the code for the testbench configuration object in apb_cfg.sv.
How many random integers are present in the class?

3) Adding APB Configuration Class to the APB Environment

Edit the dut_env.sv file, and follow the directions in the file to accomplish the above
steps. Each step has a “Lab1 – comment” to provide help in completing the task. The
following steps add the config object to the APB environment:

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 34

a. Add a vmm_log handle to the dut_env class
b. Add a configuration handle to the dut_env class
c. Construct the log handle using new(“dut”, “env”)
d. Construct the configuration handle
e. Randomize the configuration in the dut_env::gen_cfg() task
f. Add a debug print statement to the end of the dut_env::gen_cfg() task to print

the value of the cfg.trans_cnt data using the `vmm_note() macro. Hint: Use
$psprintf or $sformat

4) Compile and Run the Testbench

Compile the testbench using the following command in the lab1 directory.

csh% gmake lab1

Note the VCS command and options that are used by the Makefile here.
vcs

csh% gmake lab1

Run the testbench several times with random seeds.
Verify the trans_cnt value changes.

csh% ./simv +ntb_random_seed=1
csh% ./simv +ntb_random_seed=2
csh% ./simv +ntb_random_seed=3

Solutions for the above questions are at the end of this document.

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 35

LAB 2: Creating a vmm_data class

Goal Create an APB transaction class

Location lab2

Base Classes vmm_data

Allocated Time 15 minutes

apb/apb_trans.sv APB Transaction Class
Tests/test_02.sv APB Transaction Test Program

The APB Data class will contain properties for an APB transaction. The properties include
addr, data and an enumerated type for direction. This code is part of the reusable VIP, so it is
in the apb/ directory. Each step has comments in the code to assist in editing.

1) Properties
The transaction class contains a random property for each data field.

For the APB protocol, add the following properties.
typedef enum {READ, WRITE} dir_e;
rand dir_e dir;
rand logic [31:0] addr, data;

2) copy()

The copy() function is used by a transaction to make a copy of itself.

For the APB protocol, review the copy() function contents.

3) copy_data()

The copy_data() function is used by a transaction to copy each data field.

Complete the copy_data() function by adding a line for each property.

4) compare()

The compare() function is used by a transaction to compare itself with another
transaction. The pass/fail result is returned by the function, and a ‘diff’ string is used to
return a compare message.

For the APB protocol, complete the compare() function by adding a block to compare
the property to the end of the compare() function.

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 36

5) psdisplay()

The psdisplay() function is used to create a text string from a transaction for printing to
the screen or log file.

Review the psdisplay() function and note the function uses several $sformat()
statements to create a string. The string contains the transaction in a text format,
including the stream_id, scenario_id and data_id values.

6) byte_size()

This function calculates the number of bytes in a transaction.

Review the code for byte_size(). In our simplified APB protocol, the size is always 4
bytes, so this function returns a constant.

7) byte_pack()

This function packs the transaction object into a byte-array.

Review the code for byte_pack(). In our simplified APB protocol, the transaction is
always 4 bytes long, so the transaction can simply be packed with 4 assignment
statements.

8) byte_unpack()

This function unpacks a byte-array of data into a transaction object.

Review the code for byte_unpack(). In our simplified APB protocol, the transaction is
always 4 bytes long, so the transaction can be unpacked with an assignment statement.

9) Testing the apb_trans class

A short test is supplied to test the apb_trans class. Briefly review the teststs/test02.sv and
note that the test performs the following tasks.

a. creates a random apb_trans
b. prints this transaction to the screen
c. copies the apb_trans
d. prints the copied transaction to the screen
e. compares the two transactions

Compile and run the test using the following command in the lab2 directory.

csh% gmake lab2

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 37

LAB 3: Channels and Atomic
Generator

Goal Create an atomic generator and add it to the
environment

Location lab3

Base Classes vmm_data, vmm_atomic_gen macro

Allocated Time 15 minutes

apb/apb_trans.sv APB Transaction Class
apb/apb_cfg.sv APB Configuration Class
env/dut_env.sv DUT Environment Class
tests/test_03.sv Simple Test Program

In this lab, an atomic generator and channel will be added to the environment. The atomic
generator will create streams of individually-randomized transactions. The apb-channel will be
used to connect the generator to other transactors in the
environment.

The APB Transaction class contains the following two macro statements.

`vmm_channel(apb_trans)
`vmm_atomic_gen(apb_trans)

These macro statements cause the following classes to be created automatically when the
apb_trans.sv file is compiled.

class apb_trans_channel;
class apb_trans_atomic_gen;

apb_trans_atomic_gen apb trans channel

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 38

1) Addition of the Atomic Generator and Channel

The macro statement creates the atm_trans_atomic_gen class when the apb_trans.sv file
is compiled. This class can easily be used by the testbench to create a stream of
individually-randomized transactions.

Edit the dut_env.sv file, and follow the directions in the file to accomplish the above
steps. Each step has a “Lab3 – comment” to provide help in completing the task. The
following steps are required to add an atomic generator to the environment.

a. Define an apb_trans_channel handle called gen2mas
b. Define an apb_trans_atomic_gen handle called gen
c. Create the channel by calling new() in the dut_env::build() task
d. Create the generator by calling new() in the dut_env::build() task
e. Configure the generator by adding gen.stop_after_n_inst = cfg.trans_cnt in the

dut_env::build() task
f. Start the generator by calling gen.start_xactor() in dut_env::start()
g. Wait for the generator to signal completion (DONE) by calling

gen.notify.wait_for() in the dut_env::wait_for_end() task
(hint: apb_trans_atomic_gen::DONE, Note: enum {DONE} is created when
vmm_atomic_gen macro is called, please refer to VMM manual for more detail)

h. Stop the generator by calling gen.stop_xactor() in dut_env::stop()

2) Compile and Run the Testbench

Compile and run the testbench using the following command.

csh% gmake lab3

Note: All atomic generators contain the following properties.
 - randomized_obj (blueprint)
 - stop_after_n_insts(control)
 - DONE (notify)
 - GENERATED (notify)

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 39

LAB 4: APB Master Transactor

Goal Create an APB Master Transactor

Location Lab4

Base Classes vmm_xactor, vmm_xactor_callbacks

Allocated Time 30 minutes

apb/apb_if.sv APB Interface Definition
apb/apb_master.sv APB Master Transactor
apb/apb_trans.sv APB Transaction Class
env/dut_env.sv Testbench Environment
tests/test_04.sv Simple Test Program

A timing diagram for the APB interface is shown below for reference during this lab.

clk

reset

request[1:0]

grant[1:0]

zz

xx

00 01

1000 00 00 00 00

000000

01

1010 11

01 10

The APB master transactor extracts apb_trans objects from a channel, and executes read/write
cycles on the APB bus. The goal of this lab is to create a VMM-compliant transactor, not to
focus on the low-level physical protocol. For this reason, do_read(), do_write() and do_idle()
tasks are provided to perform the bus cycles.

1) Create an APB Master Transactor

Complete the new() task of the apb_master class, using the following arguments.

string instance;
integer stream_id = -1;
virtual apb_if.Master apb_master_mp;
apb_trans_channel in_chan = null;

2) Review the new() task

Review the code in the new() task. Note that if the in_chan argument is not specified
(null), a channel will be created automatically.

3) Review the main() task

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 40

Note the following:

a. super.main is called to perform any base-class actions
b. The body of main() is an infinite forever loop
c. A transaction is extracted from the channel
d. A pre-tx callback is called
e. The transaction is processed (read, write or idle cycles executed on the bus)
f. A post-tx callback is called

4) Add a post-tx callback

Add a `vmm_callback() macro call to the main() task after the transaction is processed.
The arguments to the macro are detailed in the comments.

5) Review the reset(), do_read(), do_write(),do_idle() tasks

These tasks execute the various transactions on the physical bus. Note that these tasks
contain code that is typically present inside a BFM model. These tasks block as needed,
and are protocol specific.

6) Integration of APB Master into the APB Environment

The following steps are required to add the apb_master into the environment in
dut_env.sv.

a. Define an apb_master handle called mst
b. Create the master by calling new() in the dut_env::build() task
c. Reset the master by calling mst.reset() in dut_env::reset_dut() task
d. Start the master by calling mst.start_xactor() in dut_env::start()
e. Stop the master by calling mst.stop_xactor() in dut_env::stop()

Edit the dut_env.sv file, and follow the directions in the file to accomplish the above
steps. Each step has a “// Lab4” comment to provide guidance.

7) Compile and Run the Testbench

Compile and run the testbench using the following command in the lab4 directory.

csh% gmake lab4

Optional: View the waveforms using DVE.

csh% dve &
File > Open Database > vcdplus.vpd

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 41

LAB 5: APB Monitor Transactor

Goal Create an APB Monitor Transactor

Location Lab5

Base Classes vmm_xactor, vmm_xactor_callbacks

Allocated Time 15 minutes

apb/apb_if.sv APB Interface Definition
apb/apb_monitor.sv APB Monitor Transactor
apb/apb_trans.sv APB Transaction Class
apb/dut_env.sv Testbench Environment
tests/test_05.sv Simple Test Program

1) Review the APB Monitor Code

Note that the Monitor is similar to a generator, as both create a stream of transactions.
The monitor uses the factory pattern, to copy a blueprint in a similar fashion to the
generator. This allows the test writer to replace the default transaction object with a
custom object, containing additional tracking information or other properties.

The monitor class contains a randomized_obj declaration that is constructed in the
apb_monitor::new() task.

The main() task contains an infinite loop, to constantly monitor the bus.
The bus is monitored in the sample_bus() task containing BFM-like code.

2) Add the Factory/Prototype Pattern code

In the main() task, add code to copy the randomized_obj instance, and cast assign this to
the local ‘tr’ data variable. Comments in the code provide hints on how to accomplish
this.

3) Add a Post-Rx Callback

After the sample_bus() task is called, add a Post-Rx callback macro call to invoke the
VMM callback class tasks. Comments in the code help with the required syntax; this
will be very similar to the Post-Rx callback in the APB Master.

Integration of APB Monitor into the APB Environment

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 42

The following steps are required to add the apb_monitor into the environment. Edit the
dut_env.sv file, and follow the directions in the file to accomplish the above steps.
Each step has a “Lab5 – comment” to provide help in completing the task.

a. Define an apb_monitor handle called mon
b. Define a dut_scb handle called scb
c. Create the scoreboard by calling new() in the dut_env::build() task
d. Create the monitor by calling new() in the dut_env::build() task
e. Start the monitor by calling mon.start_xactor() in dut_env::start()
f. Stop the monitor by calling mon.stop_xactor() in dut_env::stop()

4) Compile and Run the Testbench

Compile and run the testbench using the following command in the lab5 directory.

csh% gmake lab5

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 43

LAB 6: Scoreboard Integration

Goal Integrate the scoreboard using callbacks

Location Lab6

Base Classes vmm_xactor, vmm_xactor_callbacks

Allocated Time 15 minutes

env/apb_scb.sv Scoreboard Class
env/scb_callbacks.sv Scoreboard Callback Class
env/dut_env.sv Test Bench Environment
tests/test_06.sv Simple Test Program

The scoreboard is integrated using callbacks attached to the Driver and Monitor transactors.
This allows the scoreboard to integrate with the APB VIP components in a passive manner, and
requires no code changes or restrictions on the APB classes.

1) Review the APB Callback Class

Review the apb/apb_master.sv file and verify following tasks are present.

apb_master_callbacks::master_pre_tx()
apb_master_callbacks::master_post_tx()

As these classes are base-classes for the APB callbacks, the tasks are empty. The code
to perform callback actions is DUT or test specific, so it does not appear in the APB
VIP directory files.

2) Review the Scoreboard Callback Class and Integrate the Scoreboard

Review the env/scb_callbacks.sv file.

Scoreboard

Monitor Driver DUT

Driver
Callback

Scoreboard to
Memory XMR

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 44

Verify the following class::tasks are present

apb_master_callbacks::master_pre_tx()
apb_master_callbacks::master_post_tx()
apb_monitor_callbacks::monitor_pre_tx()
apb_monitor_callbacks::monitor_post_tx()

Add the following code

a. In master_post_tx, call scb.from_master() to add a transaction to the scoreboard
b. In monitor_post_tx, call scb.compare() to compare the received transaction to

the expected one

3) Review the Scoreboard Class

Briefly review the env/dut_scb.sv file.
Note the following task to add data to the scoreboard from the master callback
dut_scb::from_master(), and another task to compare the actual with expected
dut_scb::compare().

Integration of Scoreboard into the APB Environment

The following steps are required to add the scoreboard into the environment. Edit the
dut_env.sv file, and follow the directions in the file to accomplish the above steps.
Each step has a “Lab6 – comment” to provide help in completing the task.

a. Create and construct an apb_master_scb_callbacks object called
apb_mst_scb_cb, and append the callback to the APB Master object mst

b. Create and construct an apb_monitor_scb_callbacks object called
apb_mon_scb_cb, and append the callback to the APB Monitor object mst

c. In wait_for_end, Wait for either the generator or scoreboard in a fork-join_any.
The generator’s wait is already there, just call scb.notify.wait_for(scb.DONE)

d. Clean up after the test by calling scb.cleanup() in dut_env::cleanup()
e. Create a report by calling scb.report () in dut_env::report ()

4) Compile and Run the Testbench

Compile and run the testbench using the following command in the lab6 directory.

csh% gmake lab6

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 45

LAB 7: Functional Coverage

Goal Add functional coverage using callbacks

Location Lab7

Base Classes vmm_xactor, vmm_xactor_callbacks

Allocated Time 15 minutes

env/cov_callback.sv Coverage Callbacks & Coverage Code
env/dut_env.sv Test Bench Environment
tests/test_07.sv Simple Test Program

The coverage will be integrated using callbacks attached to the Master transactor. This allows
coverage to be added in a passive manner, with no changes to the APB master.

1) Add Coverage Points

The structure of the coverage callback class is similar to the scoreboard callback class.
Significantly more code is present in the coverage callback, as the coverage model has
been placed directly in the class.

Review the env/cov_callbacks.sv file, and add the following coverage points:

data: coverpoint tr.data {
 bins zero = {0};
 bins onek = {1024};
 bins others = default;
}

2) Integration of Scoreboard into the APB Environment

The following steps are required to add the scoreboard into the environment:

a. Define an apb_master_cov_callback cov_cb and call new()
b. Append the callback to the mst APB Master object

Edit the dut_env.sv file, and follow the directions in the file to accomplish the above
steps. Each step has a “Lab7 – comment” to provide help in completing the task. This
code will look very similar to the master scoreboard callback.

Verification Methodology Manual Tutorial

Copyright © 2006 Synopsys, Inc. Revision Y-2006.06 46

3) Compile and Run the Testbench

Compile and run the test using the following command in the lab7 directory

csh% gmake lab7

4) Create and View the Functional Coverage Reports

The unified report generator is used to create the reports. Run the report using the
following command:

csh% gmake cov

View the report by opening the HTML files in the urgReport/ directory with a browser.

Or use the following commands for older-style HTML or text coverage reports:

csh% vcs –cov_report .
csh% vcs –cov__text_report .

5) Constrain the atomic generator to increase coverage

It is unlikely that totally random APB transactions will hit the specified coverage points
unless we run a huge number of simulation cycles. Adding constraints into the test to
increase the chances that interesting stimulus will be generated will help.

Modify the tests/test_07.sv file as follows:

a) Add a new class derived from apb_trans called my_apb_trans
b) Add a constraint into the new class to constrain addr and data (see comments)
c) In the environment initial block, create a new scope with begin … end
d) Create a new my_apb_trans object
e) Place this object into the atomic generator object gen

Re-run the test, and examine the log output and coverage reports.
The addr and data fields should now be constrained, and the coverage numbers should be
higher than before.

csh% gmake cov
csh% vcs –cov_report .

Verification Methodology Manual Tutorial

Revision Y-2006.06 Copyright © 2006 Synopsys, Inc. 47

Question/ Answers

Lab1:

How many steps are present in the vmm_env flow? 9
Are the tasks all defined as virtual? Yes
Why? So you can override the functionality in your own derived env class.

How many random integers are present in the class? 1

