Weekly Report

1, Design new data structures for the DSP48
[image: image1.png]a8

SUBTRACT

48
Wire Shit Fight by 17 Bits ~ PCIN




The DSP48 library cell may have two groups of signals: one can be called internal, and the other can be called external. For the external signals you can see them in the above figure, It mainly includes inputs for A, B, C, BCIN, PCIN, CIN, SUBTRACT etc, and the outputs for P, PCOUT, BCOUT, as well as the Clock and Reset signals. All these signals should be connected to the other RtlNodes in the mapping result. For the internal signals, It may include registers pipeline control signals, operation mode signals, etc. All these signals are relatively independent to the Mapping and Binding process. As a result, we need to apply a new class for these internal signals.
All the signals’ name and functions are listed in the reference file below:

http://eda.ee.ucla.edu/member_only/fpga_rtl/design/papers/ISE8.1/v4ldl.pdf
Because we take the hardcoding scheme to implement the DSP48 cell, as a result the definition for the external signals has been put into the library cell definition part- oagFpgaMapperUtils.h. And a member function called createDsp48() has been designed to generate the master module of DSP48. A new class called ConstantSignalDSP48 was designed in the oagFpgaBinding.h, in order to carry the values for the internal signals of DSP48. Due to the good extensibility of OA platform, we made a application extension for the master module of DSP48. A void pointer has been declared in the oagFpga.h to make a connection between the specific instance of DSP48 with the external signals and one object of ConstantSignalDSP48 representing the internal signals. 
2, Generate DSP48 instance in the Module Domain

I am got trapped in the coding of mapping and binding of DSP48 cell. The mapping from RtlGraph to the DSP48 template was implemented in the member function MappingToDSP48() in oagFpagInference.h. For the fast implementing of simple flow, the mapping itself can only handle simple combination of the complex DSP48. It now can only handle one register for each input, and one register for the output. I think I will refine the algorithm here later. And a user-defined data type called NodeForExternalCon was designed in the Inference part. The member function oagFpgaMapper::implementDSP() will take the mapping result, and generate a instance of master DSP48 module first, then generate each ModInstTerm in order to implement the real connection between the DSP instance external port and the other RtlNodes left in the RtlGraph. I am still working on this part now, and my next plan is to finish it in several days and add codes for writing the DSP block into the final verilog output. If all these parts done, the whole flow would be issued though simple.
