My part is RTL optimization. It can be done in two level, i.e. behavior level and structural level. 
Arithmetic optimization can be done on the behavior level, while finite state machine optimization and mux collapose can be done on the structural level.

I will finish the arithmetic optimization on the behavior level first, including 1)implementing A + B + 1 in one adder using the carry in signal that commonly exists in the adder capabilities of an SFLU, 2) replacing “0” low order constant inputs to an adder with a wire, and similarly, removing most significant “0” constant multiplier inputs, 3) constant propagation. 

I’m trying to code for the first issue-- A + B + 1 so far. It should be done between the intermediate format and the elaboration in the whole flow. First, the pattern should be detected from the expressions of the intermediate format. Then, adders are combined.

The detail algorithm of that part is as follows,

1) Extract nodes that are arithmetic operations;

2) Build them into trees;

3) Traverse the trees to check if the optimization could be done on them;

4) Combine the adders,

a) As for A+B+1, it could be done by reorganizing the trees;
b) As for A+B+C+…+1, a graph matching to find the optimal matching should be done.

Odin is just fit for the first situation of step 4. So, ours will be power than theirs as for the first issue.

